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Abstract

We present a method to determine the reduction of a (polynomial or
rational) ordinary differential equation that models a chemically reacting
system, under the assumption that this system admits quasi-steady state
behavior for certain variables or reactions. We interpret quasi-steady state
mathematically as a singular perturbation setting to which the classical
theorems of Tikhonov and Fenichel apply. Based on a special decompo-
sition of the fast part of the equation, we obtain an explicit formula for
a reduced system, defined on the slow manifold (which is a subset of an
algebraic variety). Moreover we determine appropriate initial values for
the reduced system, which correspond to first integrals of the fast sub-
system. These first integrals may not be obtainable in closed form, but
locally Taylor expansions are available. We give several examples and
applications, and we discuss in detail the separation of a system into fast
and slow reactions. It turns out that methods and results from (algo-
rithmic) commutative algebra and algebraic geometry are useful tools for
quasi-steady state reduction.

MSC (2010): 92C45, 34E15, 80A30, 13P10.

1 Introduction

Quasi-steady state (QSS) phenomena occur frequently for differential equations
that model chemical and biochemical reactions. Their existence, on the one
hand, must be taken into account due to stiff behavior for numerical solutions.
On the other hand, QSS scenarios are welcome because they permit a (some-
times substantial) reduction of dimension for a given system. By now it is
customary to interpret QSS as a singular perturbation phenomenon (Heineken,
Tsuchiya and Aris [21], Schauer and Heinrich [34], Segel and Slemrod [35],
Kaper and Kaper [25], Goussis [20], and others), and in the present paper we
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will adhere to this interpretation. Thus mathematically we work within the
framework of Tikhonov’s [39] and Fenichel’s [14] classical papers. (We will refer
to this as Tikhonov-Fenichel reduction.) Moreover we will restrict attention to
systems with polynomial or rational right-hand side; this is motivated by our
focus on chemically reacting systems and mass-action kinetics. This assumption
will allow the employment of algebraic techniques.

Tikhonov’s theorem (see Verhulst [40], Ch. 8) is directly applicable only if
the variables are separated into fast and slow ones. Fenichel’s theory [14] over-
comes this problem but generally no explicit reduction is given. For systems
that model chemical reactions, with additional assumptions, explicit reduction
formulas were obtained by Schauer and Heinrich [34], Stiefenhofer [37], Bothe
[6], Lee and Othmer [28], among others. Lee and Othmer also discuss the fast
initial phase and the determination of appropriate initial values for the reduced
system. For general differential equations with rational right-hand side, the
principal result in [32] states that whenever the hypotheses of Tikhonov’s theo-
rem are satisfied (for suitable coordinates which need not be known explicitly),
there exists a reduced system which has again rational right-hand side. How-
ever, although the reduction procedure given in [32] is in principle constructive,
it is not feasible beyond small dimensions.
In the present paper we start from a QSS scenario, thus a rational system
depending on a “small parameter” ε is given which satisfies the hypotheses
of Tikhonov’s theorem, up to some coordinate transformation. We show that
there exists a decomposition of the fast part which generalizes the matrix-vector
decomposition obtained from stoichiometry for certain classes of reaction equa-
tions (Schauer and Heinrich [34], Bothe [6], Lee and Othmer [28]), but our
proof works with (and requires) mathematical arguments only. (The necessary
algebraic background is presented in an Appendix, as are some proofs; using
these results in applications is quite straightforward.) Once this decomposition
(which is obtainable in an algorithmic manner) is known, a reduced system is
explicitly computable; in this sense our approach is constructive. We arrive at a
reduced system that has rational right-hand side and is defined on an algebraic
variety. It may be worth emphasizing that this setting is a natural consequence
of mass action kinetics and the Tikhonov-Fenichel reduction procedure; no fur-
ther assumptions or simplifications are involved. While the determination of
the reduced system is thus algorithmically accessible, a discussion of the fast
subsystem, hence of the initial phase and the appropriate initial data on the
slow manifold, may be more complicated. The fundamental problem is that,
although the existence of certain (independent) first integrals for the fast sys-
tem is known from theory, their explicit determination is generally impossible.
(In the special cases discussed by Schauer and Heinrich [34], Bothe [6], Lee and
Othmer [28], stoichiometry provides sufficiently many independent linear first
integrals.) Generally, resorting to Taylor expansion will yield at least locally
useful approximations.

The paper is organized as follows. In Section 2 we briefly review the setup for
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singular perturbations, then state a theorem which describes a computationally
feasible approach to the reduced equation, which is generally defined on a local
submanifold or subvariety of phase space. (The theorem generalizes the main
result of [18], which corresponds to the subvariety being an affine subspace. It
was announced in [19], but no proof of the crucial part was given there.) We
also compare the reduction to existing work in the literature. We proceed to
discuss the fast dynamics, in view of determining an appropriate starting value
on the slow manifold from given initial data, and then illustrate the method by
a number of examples. (More examples are contained in [19].) In Section 3 we
turn to the setting of slow and fast reactions (QSS for reactions, or PEA) and
discuss the relevance of the classical results by Horn and Jackson, and Feinberg,
on Tikhonov-Fenichel reduction. In Section 4 we discuss an example (maltose
transport), where reduction leads to a system on a nontrivial algebraic curve.
We show that (and how) the behavior of the reduced system can be discussed
rather easily in such a setting. An Appendix contains some basic information
on algebraic notions, results and algorithms, and also the proof of the main
theorem.

2 Reduction

2.1 Preliminaries

Throughout this paper let U ⊂ Rn be an open set, ε0 > 0, and h : U × [0, ε0)→
Rn an analytic function which defines a parameter-dependent system of ordinary
differential equations

(1) ẋ = h(0)(x) + εh(1)(x) + ε2 . . . , x ∈ U.

The equation may (as reaction equations typically do) depend on further pa-
rameters, but we will assume that these are constant, and will suppress them
in the notation. In the slow time scale τ = εt we have a singularly perturbed
system

(2) x′ =
1

ε
h(0)(x) + h(1)(x) + ε . . . , x ∈ U.

Our primary interest lies in the behavior as ε → 0; h(0) will be called the fast
part and h(1) the slow part of either system. We will focus on those scenarios for
which the classical singular perturbation theorems of Tikhonov [39] and Fenichel
[14] hold.

Tikhonov’s theorem (specialized to the autonomous analytic case) refers to
a system in what we call Tikhonov standard form, i.e.,

(3)
y′1 = f(y1, y2) + ε . . . , y1 ∈ D,
εy′2 = g(y1, y2) + ε . . . , y2 ∈ G

in slow time with small parameter ε ≥ 0, defined on an open set D×G ⊂ Rs+r
with r+ s = n. See the monograph by Verhulst [40]; in particular Theorem 8.1.
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Thus, we let
Z̃ :=

{
(y1, y2)T ∈ D ×G; g(y1, y2) = 0

}
and assume a uniform linear stability condition for the eigenvalues of the Jaco-
bian D2g(y1, y2) (with respect to y2); viz., the existence of µ > 0 such that

(4) Re Sp D2g(y1, y2) ≤ −µ for every (y1, y2) ∈ Z̃.

Then Tikhonov’s theorem guarantees that there are T > 0 and a neighbor-
hood of Z̃ such that all solutions of (3) starting in this neighborhood converge

uniformly on [t0, T ] to solutions of the reduced system on Z̃, given by

(5) ẏ1 = f(y1, y2), g(y1, y2) = 0

for ε→ 0, for any t0 > 0. We will refer to Z̃ as the (asymptotic) slow manifold
of the system.

In general, reaction equations (1) are not in standard form (3). Fenichel
[14] deals with this general setting, and the following local characterization of
systems which admit a coordinate transformation to Tikhonov standard form
essentially goes back to his work. An elementary proof of the next result is
given in [32].

Proposition 1. Let system (1) be given, and denote by Z the zero set of h(0).

Let x0 ∈ Z and assume that there exists a neighborhood Ũ such that Z ∩ Ũ is
an s-dimensional submanifold of Rn. Then there exists an invertible coordinate
transformation to standard form (3) satisfying condition (4) in some neighbor-
hood of x0, if and only if the following hold.

(i) The rank of Dh(0)(x0) is equal to s, and one has a direct sum decomposition

(6) Rn = Ker Dh(0)(x0)⊕ Im Dh(0)(x0).

(ii) The nonzero eigenvalues of Dh(0)(x0) have real part < 0.

Extending the nomenclature from above, we will refer to Z ∩ Ũ – and briefly
to Z – as the (asymptotic) slow manifold of (1).

As pointed out in [32], Proposition 1 guarantees the existence of a transfor-
mation to Tikhonov standard form, but generally it is impossible to determine
such a transformation explicitly. On the other hand, it was also shown in [32]
that a reduced system can be determined explicitly, but some issues of feasibility
remained open.

2.2 Reduction of rational systems

We will (have to) use some notions and results from classical commutative al-
gebra and algebraic geometry. For the reader’s convenience, a short overview is
given in the Appendix, A.1. Our main result provides an algorithmic approach
to the computation of reduced equations for general systems (1) with rational
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right-hand side, in particular for reaction equations with mass action kinetics.
The central argument underlying the reduction theorem relies on a classical
result from algebraic geometry; see Lemma 2 in Appendix A.2.

Thus we assume that h is rational, in particular h(0) ∈ R(x)n. Hence the
zero set V(h(0)) forms a Zariski-open and dense subset of an algebraic variety.
The following result describes Tikhonov-Fenichel reduction in such a scenario.

Theorem 1. Consider system (1) with rational right-hand side h, and let a ∈
Rn be a simple point of V(h(0)), with r = rank Dh(0)(a). (Thus locally the
dimension of V(h(0)) equals s = n− r.) Assume moreover that there is a direct
sum decomposition

Rn = Ker Dh(0)(a)⊕ Im Dh(0)(a).

Then the following hold.

(a) There exist a Zariski-open neighborhood Ua of a in Rn and a product de-
composition with matrices µ(x) ∈ R(x)r×1, P (x) ∈ R(x)n×r, such that

(7) h(0)(x) = P (x)µ(x), x ∈ Ua

with rank P (a) = r, rank Dµ(a) = r and

V(h(0)) ∩ Ua = V(µ) ∩ Ua

is a (n−r)–dimensional submanifold. The entries of µ may be taken as any
r entries of h(0) that are functionally independent at a.

(b) The following system is defined on a Zariski-open neighborhood of a in Rn,
and admits a Zariski-open neighborhood Ua ⊂ V(h0) as an invariant set:

(8) x′ =
[
In − P (x)A(x)−1Dµ(x)

]
h(1)(x),

with
A(x) := Dµ(x)P (x) ∈ R(x)r×r

invertible for all x ∈ Ua.

(c) If all the nonzero eigenvalues of Dh(0)(a) have negative real part then system
(8), restricted to the slow manifold Ua, corresponds to the reduced system
(5) from Tikhonov’s theorem.

The proof of this Theorem will be given in Appendix A.2.

Remark 1. (a) We will call

(9) Q(x) := In − P (x)A(x)−1Dµ(x)

the projection operator of the reduction. Although this may seem apparent
from (8), it is not necessary to invert the matrix A(x); in practice one only
needs to solve one linear system of equations involving this matrix. The size
(r × r) of A determines the size of the reduction (to a system of dimension
n− r).
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(b) The projection operator Q projects h(1)(x) to its kernel component in the
kernel-image decomposition with respect to Dh(0)(x). This corresponds
to the reduced system in the sense of Tikhonov and Fenichel, as shown in
[32], Lemma 2.4 and Proposition 2.5. One may also view this projection as a
special (degenerate) instance of the CSP reduction by Lam and Goussis [27],
where a decomposition corresponding to “large” and “small’ eigenvalues is
carried out iteratively. In the limiting case when the small eigenvalues
are equal to zero (and one has a direct kernel-image decomposition), the
iteration terminates after one step.

(c) A detailed proof of part (b) is given in [19]. The specific form of the reduced
system for particular classes of equations – using special properties of reac-
tion equations and with different proofs – was also given earlier by Boulier
et al. [5], and (in a special case) by Bothe [6], Theorem 2; see also Lee and
Othmer [28]. The classical paper by Fenichel [14], as well as Stiefenhofer’s
paper [37], contain explicit reduction formulas for sufficiently smooth vector
fields under the assumption that a parameterization of the slow manifold is
explicitly known. The crucial point of our approach, however, is the gen-
eral existence of the decomposition in part (a); we prove this by a purely
mathematical argument.

(d) There is a constructive method to obtain the multiplicative decomposition
in part (a) of the Theorem, and thus the reduction procedure as a whole is
algorithmically accessible. The argument is sketched in Appendix A.3. We
note that in many applications one will find a decomposition by inspection.

Remark 2. Theorem 1 also applies to the analytic (and to the sufficiently
smooth) case. In these settings the decomposition in part (a) is a consequence
of the implicit function theorem; the proof of part (b) rests only on the existence
of such a decomposition. But note that generally this is not a constructive
approach.

Remark 3. (a) The right-hand side of (8) is well-defined whenever the direct
sum decomposition of Rn with respect to Dh(0)(a) exists; we will sometimes
refer to this as a formal reduction. The results of Fenichel [14] show that
there actually exists a slow manifold (not attractive in general) provided
that all nonzero eigenvalues ofDh(0)(a) have nonzero real part (the normally
hyperbolic case). The following observation, which goes back to a statement
of Tikhonov’s theorem with weaker hypotheses (see e.g. Verhulst [40], Thm.
8.1, hypothesis b) is also worth noting: If every point a in a neighborhood
of a0 in V(h(0)) is asymptotically stable for the equation ẋ = h(0)(x), with
attraction locally uniform in a, then one has a convergence result analogous
to part (c) of the Theorem.

(b) The condition, in Theorem 1, on a being a simple point of the variety V(h(0))
is also necessary for the existence of a reduction in the sense of Tikhonov
and Fenichel, since it is necessary for the local submanifold property. We
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do not address the (interesting) question of behavior near singular points in
this paper.

Remark 4. It may be appropriate to take a closer look at the linear algebra
underlying part (b) of Theorem 1. Thus let r < n and R ∈ Rn×n of rank r,
S ∈ Rn×r and T ∈ Rr×n such that

R = ST.

Then rankT = r and KerR = KerT , ImR = ImS, and the following are
equivalent.

(i) Rn = KerR⊕ ImR;
(ii) Rn = KerT ⊕ ImS;
(iii) KerT ∩ ImS = {0};
(iv) TS is invertible.

These statements and their proofs are standard. For instance, the first assertion
is a consequence of rankST ≤ min{rankS, rankT}, and the second follows
from KerR ⊆ KerT and equal dimension. This underlies Theorem 1(b), with
R = Dh(0)(x), S = P (x), T = Dµ(x) for x ∈ V(h(0)). We will get back to such
arguments in Section 3.

2.3 Fast dynamics

We turn to the initial phase for system (1), given that the conditions of Proposi-
tion 1 are satisfied. Our principal interest lies in determining appropriate initial
data for the reduced system (8) from the initial data of (1). Tikhonov’s theo-
rem is – again – crucial for this, thus we first review the setting in Tikhonov
standard form.
In fast time, system (3) becomes

(10)
ẏ1 = εf(y1, y2) + ε2 . . . , y1 ∈ D ⊂ Rs
ẏ2 = g(y1, y2) + ε . . . , y2 ∈ G ⊂ Rr,

which in the limiting case ε = 0 degenerates to the system

ẏ1 = 0
ẏ2 = g(y1, y2),

which has two characteristic features: Every entry of y1 is a first integral, and
every solution of this equation, starting at (z1, z2) in a sufficiently small neigh-

borhood of the slow manifold Z̃, converges for t → ∞ to a single point on Z̃,
which is defined by g(z1, y

∗
2) = 0. In other words, the limit point is the intersec-

tion of Z̃ and level sets of first integrals. By coordinate change and Proposition
1 we obtain:

Proposition 2. Let x0 ∈ V(h(0)) and suppose that there is some neighborhood

Ũ of x0 such that V(h(0))∩ Ũ is an s-dimensional submanifold of Rn. Moreover
assume that conditions (i) and (ii) in Proposition 1 are satisfied. Then the
following hold for ε = 0.
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(a) System (1) admits s independent first integrals φ1, . . . , φs in a neighborhood
U∗ of x0. Moreover, in U∗ the intersection of every level set φj(x) = cj =
const., 1 ≤ j ≤ s, with V(h(0)) consists of a single point.

(b) For any w ∈ U∗ which also lies in the domain of attraction, the solution of
(1) with initial value w converges to the intersection point of V(h(0)) and
the level set φj(x) = φj(w), 1 ≤ j ≤ s, as t→∞.

This intersection point is the appropriate initial value for the reduced system
on the slow manifold, which approximates the behavior of (1) for small ε > 0.
For a proof see Fenichel [14], Theorem 9.1, and also the arguments in Verhulst
[40], Section 8.3, about matching of expansions. Moreover, cf. Lee and Othmer
[28], p. 404f. and p. 407f.; and Stiefenhofer [37], p. 596 and p. 599 for reaction
systems.

Remark 5. In the context of reaction equations the determination of appro-
priate initial data on the slow manifold has been discussed by Heinrich and
Schauer [34], Stiefenhofer [37], and Lee and Othmer [28] (in particular p. 408).
They consider a slow–fast reaction scenario and make specific use of linear first
integrals given by stoichiometric properties of the fast subsystem. Stiefenhofer
[37], p. 607 discusses an application to a maltose transport model. See Section
3 for more details.

Remark 6. Generally one cannot determine first integrals of the fast subsystem
explicitly; see the discussion about transformations to Tikhonov standard form
in [32]. But one can determine Taylor approximations of such first integrals
near the slow manifold Z. Thus let x0 ∈ Z be a simple point. Then h(0) admits
a Taylor expansion

h(0)(x) = h
(0)
1 (x− x0) + h

(0)
2 (x− x0) + . . .

with homogeneous terms h
(0)
j (x − x0) of degree j. An analytic first integral ψ

of h(0) has a representation

ψ(x) = ψ1(x− x0) + ψ2(x− x0) + . . .

with homogeneous ψi of degree i. Since ψ is a first integral, the Lie derivative
with respect to h(0) vanishes, thus

(Lh(0)ψ) (x) = Dψ(x)h(0)(x) = 0, for all x.

Evaluating this condition degree by degree, one obtains necessary and sufficient
conditions

(11)

Degree 1 : Dψ1(y)h
(0)
1 (y) = 0

Degree 2 : Dψ2(y)h
(0)
1 (y) +Dψ1(y)h

(0)
2 (y) = 0

Degree 3 : Dψ3(y)h
(0)
1 (y) +Dψ2(y)h

(0)
2 (y) +Dψ1(y)h

(0)
3 (y) = 0

...
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For given h
(0)
j this allows a successive determination of the ψi; the existence of

s independent solutions (i.e., s linearly independent initial terms of degree one)
is guaranteed by [32], for instance.
The approximations thus obtained are relevant at least for initial values close
to the slow manifold. The computations can be handled by any standard algo-
rithmic algebra software.

2.4 Examples

Several applications of Theorem 1, including reversible Michaelis-Menten and
generalizations, have been discussed in [18] (where a special case of Theorem 1
was considered), and in [19]. We present more examples here, for some including
a discussion of the initial phase. Our main purpose is to illustrate the reduction
procedure.

Example 1. Consider the reaction scheme

X + Y
k1


εκ−1

Z,

X
k2⇀ ∅,

Z
εκ3⇀ ∅,

imposing a QSS assumption on both reactions starting from Z, thus ε is a small
parameter. The reaction equations are given by

d

dt

xy
z

 =

−k1xy − k2x−k1xy
k1xy

+ ε

 κ−1z
κ−1z

−(κ−1 + κ3)z

 .

We decompose the fast term

h(0) = P (x, y, z) · µ(x, y, z) :=

−k1y − k2−k1y
k1y

 · x.
Since (DµP )(x, y, z) = −k1y − k2 < 0 for all y ≥ 0, the convergence conditions
in Theorem 1 are satisfied on the nonnegative part of the slow manifold W :=
V(h(0)) = {(0, y, z); y, z ∈ R}. As stated in Theorem 1, the reduced system is
given by applying the projection

Q = I3 − P (DµP )−1Dµ =

 0 0 0

− k1y
k1y+k2

1 0
k1y

k1y+k2
0 1


to the slow term. Thus we get the reduced dynamics

(12)
ẏ = k−1k2

k1y+k2
z

ż = −
(
k−1k2
k1y+k2

+ k3

)
z
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on the slow manifold W ; as a matter of notational convenience we set k−1 =
εκ−1 and k3 = εκ3.
During the transient phase the initial value (x0, y0, z0)T ∈ R3 in the domain of
attraction of V(h(0)) is attracted by a point (0, y∗, z∗)T ∈ V(µ). Asymptotically
the fast dynamics is given by h(0) which has two independent first integrals, viz.

ψ1((x, y, z)T ) = k1(x− y)− k2 lny and ψ2((x, y, z)T ) = y + z.

The second of these is due to stoichiometry, while the first can be obtained from
the separable orbit equation

dx

dy
(=

ẋ

ẏ
) = 1 +

k2
k1
· 1

y
.

Accordingly, y∗ and z∗ are uniquely determined by

(13)
y∗ + z∗ = y0 + z0,

k1y
∗ + k2lny∗ = k1(y0 − x0) + k2lny0.

(As for uniqueness note that y 7→ k1y+ k2lny is stricly increasing.) To summa-
rize, system (12) gives the reduced dynamics, with initial data determined by
(13).

Example 2. Next we discuss the Brusselator model (Prigogine and Lefever
[33]) with a QSS assumption for one of the reactions. Consider the reaction
scheme

A
k
⇀ X,

2X + Y
`
⇀ 3X,

B +X
m
⇀ Y +D,

X
n
⇀ E,

with rate constants k, `,m, n > 0. We impose a QSS assumption on the first
reaction, thus k is our small parameter. The four-dimensional system of reaction
equations is given by

d

dt


a
x
y
b

 =


0

−`x2y + `x3 −mbx− nx
−`x2y +mbx
−mbx

+ k


−a
a
0
0

 ,

(a, x, y, b)T ∈ R4. (Incidentally, this may also be interpreted as the case of a
“slow variable” a.) The fast term h(0) vanishes on the submanifold W given by
x = 0. Since the Jacobian of the fast term

Dh(0)(a, 0, y, b) =


0 0 0 0
0 −mb− n 0 0
0 mb 0 0
0 −mb 0 0
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has rank one when x = 0 and the nontrivial eigenvalue is negative, there exists
a Tikhonov-Fenichel reduction to the attractive slow manifold W . Defining

P (a, x, y, b) =


0

−`xy + `x2 −mb− n
−`xy +mb
−mb

 , µ(a, x, y, b) = x,

Theorem 1 yields the reduced 3-dimensional system

ȧ = −a
ẏ = mba/(mb+ n)

ḃ = −mba/(mb+ n)

on W , which is elementary.
We turn to first integrals of

h(0) = h
(0)
1 + h

(0)
2 + · · · =


0
−nx

0
0

+


0

−mbx
mbx
−mbx

+ · · ·

in order to find appropriate initial values on the slow manifold. According
to Proposition 2, three independent first integrals exist near any point of W .
One of these is given by the first coordinate (a, x, y, b) 7→ a, but the explicit
determination of three independent first integrals of h(0) seems impossible here.
Hence we use Remark 6 and determine an approximation up to degree two.
Obviously, (a, x, y, b) 7→ y and (a, x, y, b) 7→ b are independent first integrals of

h
(0)
1 , and Proposition 2 guarantees that there exist first integrals φ = y+ t.h.o.,
ψ = b+ t.h.o. for h(0).
Up to degree 2 we make the ansatz

φ(a, x, y, b) = y + α1x
2 + β1xa+ γ1xy + δ1xb+ · · · = φ1 + φ2 + t.h.o.

with undetermined coefficients of the quadratic terms, and evaluate the condi-
tion

Dφ1 h
(0)
2 +Dφ2 h

(0)
1 = 0

for the homogeneous quadratic part. (In principle there are 10 monomials to be
considered in the quadratic part, but any product of two terms a, y and b will
provide no information, since a, y and b are initial terms of first integrals, and
products of first integrals are first integrals). We get

mbx = −2α1x
2 − nβ1xa− nγ1xy − nδ1xb

and therefore δ1 = −mn , α1 = β1 = γ1 = 0, comparing coefficients. We have

φ(a, x, y, b) = y − m

n
bx+ · · · ,
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and by a similar computation

ψ(a, x, y, b) = b− m

n
bx+ · · ·

Thus the fast dynamics project an initial point (a0, x0, y0, b0)T near W to
(a∗, 0, y∗, b∗)T ∈W , with

a∗ = a0, y
∗ = y0 −

m

n
b0x0, b

∗ = b0 −
m

n
b0x0,

with approximation up to degree 2.

Example 3 (Field-Noyes model). We discuss a Field-Noyes model [15], fol-
lowing the presentation in Murray [31], Ch. 8. The reaction scheme is given
by

A+ Y
k1⇀ X + P, X + Y

k2⇀ 2P,

A+X
k3⇀ 2X + 2Z, 2X

k4⇀ A+ P, Z
k5⇀ fY

for some f ≥ 0. (This scheme is to be understood as compounding a larger set of
elementary reactions.) By mass-action kinetics one obtains a four-dimensional
differential equation

(14)

ȧ = −k1ay − k3ax+ k4x
2

ẋ = k1ay − k2xy + k3ax− k4x2
ẏ = −k1ay − k2xy + fk5z
ż = 2k3ax− k5z

We will not invoke the additional assumption in Murray [31], p. 260 that a is
(nearly) constant (which is used in [31] to reduce the system to three dimen-
sions). Rather we look at one possible interpretation of this assumption: We
interpret the requirement of constant a to mean that the function a is a first
integral of (14), thus k1 = k3 = k4 = 0. We relax these conditions to

k1 = εκ1, k3 = εκ3, k4 = εκ4

to obtain ”almost-constancy” of a; this yields a slow-fast separation with fast
part

h(0) =


0

−k2xy
−k2xy + fk5z
−k5z

 =


0 0
−k2x 0
−k2x fk5

0 −k5

 · (yz
)

and slow manifold W defined by y = z = 0. A Tikhonov-Fenichel reduction to
W exists, with

A =

(
−k2x fk5

0 −k5

)
, A−1 = ρ−1

(
−k5 −fk5

0 −k2x

)
; ρ = k2k5x
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and projection matrix

Q =


1 0 0 0
0 1 −1 −f
0 0 0 0
0 0 0 0

 .

The reduced system on W is thus given by

ȧ = −k3ax+ k4x
2

ẋ = (1− 2f)k3ax− k4x2

This system exhibits rather simple behavior; for instance ψ = a+x is obviously
a Lyapunov function. (One should be aware that at x = 0 the reduction is no
longer guaranteed, since the rank of P collapses to one. There is also a two-
dimensional slow manifold contained in the plane x = z = 0, with equally simple
dynamics. We refrain from discussing the interplay of these two slow manifold
components, such as possible switching of an asymptotic solution from one to
the other.)

Example 4. We also provide some systems for which there is no direct sum
decomposition as required in Proposition 1, and the reduction procedure is not
applicable.

• The first one is rather simple (if a bit contrived), with reaction scheme

X
εκ1⇀ mY, Y

εκ2⇀ ∅,

thus X degrades slowly, and every molecule of X degrades to large number
m of Y -molecules, which in turn degrade slowly. The specific condition
we impose is mε = 1. Hence the differential equation reads

ẋ = −εκ1x
ẏ = x− εκ2y,

with fast part

h(0) =

(
0
x

)
, Dh(0) =

(
0 0
1 0

)
,

and there is no kernel-image decomposition for this nilpotent matrix (Tikhonov
is not applicable in any coordinate system). Likewise, there is no sensible
reduction to a “slow manifold” (which would have to be defined by x = 0)
here. As the explicit solution of this linear system shows, generally solu-
tions do not approach the set x = 0 quickly, and the dynamics for y is not
adequately described by the “reduced equation” ẏ = −εκ2y.

• Consider a simple autocatalytic reaction scheme

X + Y
k+
�
k−

2X

13



with associated differential equation

ẋ = k+xy − k−x2
ẏ = −k+xy + k−x

2.

Assuming that (−k−x2, k−x2)T is the fast part, we have the one-dimensional
slow manifold W defined by x = 0. Since the Jacobian vanishes on W ,
there is no direct sum decomposition with appropriate dimensions.

• The following reaction scheme for a pyrolytic process can be found in the
literature; see e.g. Aiken [1], p. 44.

X1
k1⇀ X2 +X3, X2 +X3

k2⇀ X5,

X1 +X3
k3⇀ X4, X4

k4⇀ X3 +X6.

Through mass action kinetics, first integrals x1 + x3 + 2x4 + x5 + x6 and
x2 − x3 − x4, and initial conditions x1(0) = c, xj(0) = 0 for j > 1 one
arrives at the differential equation

ẋ3 = (k1 − k3x3) (c− x3 − 2x4 − x5 − x6)− k2x3(x3 + x4) + k4x4
ẋ4 = k3x3 (c− x3 − 2x4 − x5 − x6)− k4x4
ẋ5 = k2x3(x3 + x4)
ẋ6 = k4x4.

Assuming that k1 = εκ1 represents the slow part of the reaction, we obtain
a two-dimensional slow manifold

W =
{

(0, 0, x5, x6)T
}

and

Dh(0)(0, 0, x5, x6) =


−k3(c− x5 − x6) k4 0 0
k3(c− x5 − x6) −k4 0 0

0 0 0 0
0 k4 0 0


Here the algebraic and the geometric multiplicity of the eigenvalue 0 are
different; the reduction theorem is not applicable.

3 Slow and fast reactions

3.1 Review of reaction equations

We first briefly sketch the standard procedure to assign to a chemical reaction
network (in a spatially homogeneous setting, with constant thermodynamical
parameters) a system of ordinary differential equations. The main purpose is to
fix notation and recall some pertinent results. More detailed presentations can
be found e.g. in Feinberg [13], Sections 2-3, Lee and Othmer [28], Section 2,
or Schauer and Heinrich [34], Section 2. We use the terminology from Feinberg

14



[13].
Suppose that one has chemical species X1, . . . , Xn, with respective concentra-
tions (in suitable units) denoted by x1, . . . , xn. A reaction is denoted by

d1X1 + · · ·+ dnXn ⇀ e1X1 + · · ·+ enXn

with nonnegative integers dj , ej , and di 6= ei for at least one i. (More gener-
ally, one may consider nonnegative real numbers dj , ej , and discuss generalized
mass-action kinetics.) The formal linear combinations on both sides are called
complexes; formally, a reaction is an ordered pair of complexes. Thus a reaction
network may be seen as a directed graph, with complexes as nodes and reac-
tions as edges. The connected components of the underlying undirected graph
are called linkage classes. A network is called weakly reversible if for every
directed edge connecting two complexes there is a sequence of directed edges
connecting these complexes in reverse order.
The ordinary differential equation assigned to the above reaction (with rate
constant k > 0) is

d

dt

x1...
xn

 = kxd11 · · ·xdnn

e1 − d1...
en − dn

 .

The vector on the right-hand side is also called a stoichiometric vector. (The sto-
ichiometric vectors span the stoichiometric subspace of the network.) To obtain
the differential equation for a network of reactions one adds up the individual
reaction terms. One may rewrite this concisely as

(15) ẋ = f(x) := S · θ(x),

with the columns of the stoichiometric matrix S being the stoichiometric vec-
tors, and θ a vector-valued function with monomial entries. (There are various
notions of stoichiometric matrix, but this is of no consequence for our purpose.)
The deficiency of a network is defined as the number of complexes, minus the
number of linkage classes, minus the dimension of the stoichiometric subspace;
this is always a nonnegative integer. Similarly one defines the deficiency of a
single linkage class.
Whenever β : x 7→

∑
βjxj is a linear form with (β1, . . . , βn) · S = 0 then β is a

first integral of (15). We speak of a linear first integral induced by stoichiometry.
A stoichiometric compatibility class (SCC) is by definition a coset of the stoichio-
metric subspace which contains an element of Rn+; it is called positive whenever
it contains an element of the interior R∗+

n. Thus stoichiometric compatibility
classes may also be seen as common level sets of linear first integrals from stoi-
chiometry.
Addressing the differential equation, one first will simplify the matrix in (15),
since the columns of S will generally be linearly dependent (for instance when-
ever the network contains both a reaction and its reverse). Lee and Othmer
[28], Section 3, provide an algorithm for such a simplification. For our purpose
the following will suffice.

15



Lemma 1. Let (15) be given, and rankS = q > 0.

(a) There exist a matrix P̂ ∈ Rn×q and a polynomial µ̂ ∈ R[x]q such that

rank P̂ = q and
f(x) = S · θ(x) = P̂ · µ̂(x).

(b) If W ⊆ V(f) is a local submanifold of dimension n − r ≥ n − q then there
exists a further decomposition

µ̂(x) = P ∗(x)µ(x), f(x) = P̂P ∗(x)µ(x)

with P ∗ ∈ R(x)q×r of rank r, µ ∈ R[x]r, and W = V(µ) locally. In the
special case r = q one may take P ∗ = Iq.

(c) Assume that x0 ∈ Rn+ is a stationary point which is isolated in its SCC, and

that Dµ̂(x0)P̂ (x0) is invertible. Then there is a neighborhood U of x0 such
that W := V(f)∩U is a local submanifold of dimension n−q, and moreover
Rn = KerDf(x)⊕ ImDf(x) for all x ∈W .

Proof. For part (a), elementary column operations transform S to (P̂ | 0) with

P̂ ∈ Rn×q of full rank; in other words there is an invertible n×n matrix Λ such
that

S = (P̂ | 0)Λ.

Defining µ̂(x) as the first q entries of Λ ·θ(x), the assertion follows. The proof of
part (b) is based on Lemma 2 and similar to that of Theorem 1. For part (c) we
use Remark 4 to verify the direct sum decomposition. By the implicit function
theorem, the zero set of µ̂ is locally a submanifold of dimension n − q. Since
(again by Remark 4) the tangent space of W at x0 and the subspace spanned

by the columns of P̂ have trivial intersection, W coincides locally with the zero
set of f .

Examples 1 and 2 above show that one generally cannot expect a decompo-
sition in the sense of Theorem 1 with constant matrix P ; in both cases there
are too few linear first integrals. (Note that determining linear first integrals is
just a matter of solving a system of linear equations for the coefficients, hence
all these can be found explicitly.) Thus the mathematical approach to the de-
composition in Theorem 1 goes beyond arguments from stoichiometry. The
following example illustrates that there may be an appropriate decomposition
with a constant matrix, but the matrix is not obtained from stoichiometry only.
(Lee and Othmer [28], Section 3, Step 3, discuss this case generally; there must
be linear first integrals which are not induced by stoichiometry.)

Example 5. We consider a model of suicide kinetics, discussed in Burke et
al. [8] and Tatsunami et al. [38] (and also in [17]), with reaction scheme

E + S
k1


k−1

X
k2⇀ Y

k3⇀ E + P, Y
k4⇀ Ei
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for substrate S, enzymes E, Ei, intermediates X, Y and product P . In addition
to a Michaelis-Menten scheme with two intermediates, there is also irreversible
degradation of Y to inactivated enzyme Ei. Since a molecule of S is irreversibly
bound in Ei, one calls S a suicide substrate.
Let z = (e, s, x, y, p, ei)

T ∈ R6
+ denote the vector of concentrations, ż = f(z) the

equations of the suicide kinetics. A stoichiometric decomposition f(z) = P̂ ·µ̂(z)
reads

f(z) =


−1 0 1 0
−1 0 0 0
1 −1 0 0
0 0 −1 −1
0 0 1 0
0 0 0 1



k1es+ k−1x

k2x
k3y
k4y

 .

Note that the entries of µ̂ are dependent; the zero set is a union of two three-
dimensional subspaces given by e = x = y = 0 resp. s = x = y = 0. A further
decomposition according to Lemma 1 (b) is easy to find:

µ̂ = P ∗ · µ :=


1 0 0
0 1 0
0 0 k3
0 0 k4


k1es+ k−1x

k2x
y


To summarize, we obtain a decomposition with matrix

P :=


−1 0 1
−1 0 0
1 −1 0
0 0 −(k3 + k4)
0 0 k3
0 0 k4


of rank 3, and µ as above.

In view of applications to Tikhonov-Fenichel reduction via Theorem 1, there
is particular interest in situations where the conclusion of Lemma 1, part (c)
holds. Some notable results on this question are known, such as the following
Deficiency Zero Theorem by Horn and Jackson [23], and Feinberg [13].

Proposition 3. Assume that a reaction network has deficiency zero, and is
weakly reversible. Let a decomposition as in Lemma 1(a) be given. Then every
positive SCC contains precisely one stationary point, which is locally asymptot-
ically stable. The stationary points in R∗+

n form a submanifold of dimension
n− q, and Rn = KerDf(x)⊕ ImDf(x) for each of these stationary points.

Proof. For the first and second assertion see [13], Thm. 4.1, the third holds
according to [13], Remark 4.3, and the last one follows from [13], Thm. 4.3
together with Remark 4.

17



Remark 7. There are several generalizations and specializations of this result.

(a) The Deficiency One Theorem (Feinberg [13], Thm. 4.2, is based on the fol-
lowing hypotheses: Deficiency ≤ 1 for each linkage class; the total deficiency
equals the sum of the deficiencies for the linkage classes; every linkage class
contains just one terminal strong-linkage class. Then, assuming that there
exists a stationary point in R∗+

n, the second conclusion of Proposition 3 still
holds true.

(b) Bothe [6], Thm. 1, is based on the (strong) assumption that the network
is reversible, and that the stoichiometric vectors associated with pairs of
forward-reverse reactions form a linearly independent set. Under these con-
ditions (which imply deficiency zero) there is a globally asymptotically sta-
ble stationary point in each SCC. Moreover the asymptotic stability is lo-
cally uniform (when the stationary point runs through varying SCC), in
the sense that there exists a Lyapunov function, and a locally uniform es-
timate for its Lie derivative. (This property is not stated explicitly in [6],
but follows from the inequality on p. 33, last line.)

(c) If a stationary point x0 in a positive SCC is linearly asymptotically sta-
ble in its compatibility class, then the stationary points locally form a
manifold of dimension n − q, and one has the direct sum decomposition
Rn = KerDf(x)⊕ ImDf(x) for every stationary point. See Remark 4 and
[19], Prop. 8.3.

(d) Schauer and Heinrich [34], Section 4, discuss the condition (at a stationary
point x0)

f(x0) = 0 and rankS Dθ(x0) = rankS
(
⇔ rank P̃ Dµ̃(x0) = rank P̃

)
.

They note that this condition is sufficient to ensure the existence of a local
(n − q)-dimensional submanifold of stationary points; but (as Example 4
illustrates) there is no direct sum decomposition in general. See also the
rank condition in Lee and Othmer [28], p. 407 on this. (Schauer and Heinrich
moreover assert that their rank condition is satisfied whenever all reactions
in the network are reversible.)

3.2 Reduction via stoichiometry

In this section, we discuss a system of reaction equations with a separation
into slow and fast reactions. The focus is on systems which admit a Tikhonov-
Fenichel reduction through the stoichiometric decomposition of the fast part.
Thus we have

(16) ẋ = h(0)(x) + εh(1)(x), x ∈ Rn+,

and focus on decompositions

(17) h(0)(x) = S θ(x)
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with a stoichiometric matrix S of rank q < n, refined according to Lemma 1(a),
thus

(18) h(0)(x) = P̂ µ̂(x)

with a constant matrix P̂ .

Proposition 4. Let system (16) be given, with decompositions (17) and (18)
for the fast part, and let x0 be a nonnegative stationary point of h(0). Then the
following hold.

(a) If x0 is isolated in its SCC, and Dµ̂(x0) P̂ (x0) is invertible then there exists
a formal Tikhonov-Fenichel reduction of (16) in the sense of Remark 3.
In particular such a formal reduction exists whenever x0 ∈ R∗+

n and the
hypotheses of Feinberg’s deficiency-one theorem (see Remark 7) are satisfied
for h(0).

(b) If the hypotheses of (a) are satisfied then the reduced equation may be de-
termined directly from the decomposition (17): For x near x0 the linear
equation

Dθ(x)Sα = Dθ(x)h(1)(x), for α ∈ R(x)n

has a solution α∗(x) ∈ R(x)n, which gives the reduced system

(19) x′ = h(1)(x)− Sα∗(x).

(c) If the reaction network underlying h(0) has deficiency zero, and the unifor-
mity condition for asymptotic stability from Verhulst [40], Thm. 8.1b holds
for all stationary points near x0 then the convergence property holds for the
formal Tikhonov-Fenichel reduction. In particular this holds whenever all
nonzero eigenvalues of Dh(0)(x0) have negative real part, and also given the
conditions stated by Bothe [6] (see Remark 7).

Proof. Parts (a) and (c) are immediate consequences of the statements in Propo-
sition 3 and Remark 7. For part (b), the observation

rankDh(0)(x0) = rankS Dθ(x0) = rankS

shows that KerDθ(x0) ∩ ImS = {0}, and then (by inclusion and equal dimen-
sions)

KerDh(0)(x0) = KerDθ(x0), ImDh(0)(x0) = ImS.

For y ∈ Rn we thus have a kernel-image decomposition

y = z + Sα⇒ Dθ(x0)y = Dθ(x0)Sα;

in particular the linear equation stated in (b) admits a solution α∗, and the
assertion follows.
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Remark 8. The uniformity condition mentioned in Verhulst [40], Ch. 8 is
stated in detail in Hoppensteadt [22], under the name of Condition VI. It may
actually be true that in the analytic setting the uniformity condition is always
satisfied, but there seems to be no simple proof. Due to Proposition 4, Bothe’s
[6] Theorem 2 can be proved directly via Tikhonov.

Example 6 (Suicide kinetics, again). We discuss suicide kinetics with k1 =
εκ1 as small parameter. Using the results from Example 5 and discarding the
equations for p and ei, we have

(20) h(0) =


−1 0 1
1 0 0
1 −1 0
0 0 −(k3 + k4)

 ·
k−1xk2x

y

 , h(1) = k1


−es
−es
es
0

 .

The variety of the fast term V(µ) = {(e, s, 0, 0)T } defines the slow manifold. We
proceed with k−1xk2x

y

 =

k−1 0
k2 0
0 1

(x
y

)
and thus get the appropriate decomposition

h(0) =


−k−1 0
k−1 0

k−1 − k2 0
0 −(k3 + k4)

 · (xy
)

=: P · µ

in accordance with Lemma 1. Furthermore one finds

DµP =

(
k−1 − k2 0

0 −(k3 + k4)

)
Note that one must require k−1 6= k2 to ensure invertibility of DµP . The
projection matrix turns out to be

1 0 k−1

k−1−k2 0

0 1 − k−1

k−1−k2 0

0 0 0 0
0 0 0 0


and finally the reduced system is

(21)
ė = − k1k2

k−1−k2 es

ṡ = −k1(k2−2k−1)
k−1−k2 es,

with an elementary solution.
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4 Application: Maltose transport

In this section we discuss a Tikhonov-Fenichel reduction to a one-dimensional
variety which does not seem to allow an explicit parameterization. Nevertheless
we are able to analyze the limiting behavior of the reduced system, since the
qualitative behavior of vector fields on one-dimensional submanifolds (and by
extension on varieties) is well-understood. Thus the example also illustrates
how reduction to a nontrivial variety will provide useful information for further
analysis.

Stiefenhofer [37] discusses a transport mechanism through a biomembrane,
with a mechanism based on selective permeability. In order to pass through
the cell membrane, a maltose molecule X first reacts with a so-called binding
protein Z to a complex Y1. The latter reacts with the membrane-bound receptor
R, forming a complex Y2, which subsequently degrades, thus releasing maltose
into the cell. This last process is modelled by reaction E∗1 , where Xi stands
for maltose in the interior of the cell. In addition, Stiefenhofer assumes a direct
reaction E∗4 between the binding protein and the mebrane receptors. Altogether,
the transport mechanism is modelled by the network

E∗1 : Y2
k1⇀ R+ Z +Xi E∗2 : Z +X

k2


k−2

Y1

E∗3 : Y1 +R
k3


k−3

Y2 E∗4 : Z +R
k4


k−4

Y3.

The corresponding reaction rates are

E1 := −y2 E2 := y1 − zx
E3 := y2 − y1r E4 := y3 − zr

and the reaction equations (with ξ denoting the concentration of Xi) thus are

(22)

ẋ = E2

ż = − εE1 + E2 + E4

ṙ = − εE1 + E3 + E4

ξ̇ = − εE1

ẏ1 = − E2 + E3

ẏ2 = εE1 − E3

ẏ3 = − E4

From stoichiometry one has linear first integrals

z + y1 + y2 + y3, r + y2 + y3, x+ ξ + y1 + y2.

With initial conditions x(0) = x0 > 0, z(0) = z0 > 0, r(0) = r0 > 0, ξ(0) =
ξ0 > 0 and y1(0) = y2(0) = y3(0) = 0 we obtain a four-dimensional system for
(ξ, y1, y2, y3)T , upon replacing

z = z0 − (z + y1 + y2 + y3), r = r0 − (y2 + y3), x = x0 + ξ0 − (ξ + y1 + y2).
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We note that the compact set

L := {(ξ, y1, y2, y3)T ∈ R4
+; y1 +y2 +y3 ≤ z0, y2 +y3 ≤ r0, ξ+y1 +y2 ≤ ξ0 +x0}

is positively invariant for this four-dimensional system.
According to [37], the release of maltose into the cell is slow compared to the
other reactions, i. e. k1 is a small parameter. The fast and slow terms are
therefore given by

h(0) =


0

−E2 + E3

−E3

−E4

 , h(1) =


−E1

0
E1

0

 .

For this system, Stiefenhofer [37] discussed the initial phase of the process and
obtained a starting value on the slow manifold. In the present paper we inves-
tigate the quasi-steady state phase.
The reduction works for arbitrary rate constants, but (following [37]) to keep
the output size manageable we fix the rate constants k2 = k−2 = k3 = k−3 =
k4 = k−4 = 1 from now on. We get a matrix decomposition h(0) = P · µ with

µ =

E2

E3

E4

 =

y1 − (z0 − (y1 + y2 + y3))(x0 + ξ0 − ξ − (y2 + y1))
y2 − y1(r0 − (y2 + y3))

y3 − (z0 − (y1 + y2 + y3))(r0 − (y2 + y3))


and

P =


0 0 0
−1 1 0
0 −1 0
0 0 −1

 .

A formal reduction exists if and only if the matrix

Dµ · P =

(
ξ−ξ0+2(y1+y2)+y3−(x0+z0+1) 1 ξ−ξ0+y1+y2−x0

−(y2+y3)+r0 −y1+y2+y3−(r0+1) −y1
y2+y3−r0 y1+y2+y3−z0 y1+2y2+2y3−(r0+z0+1)

)
is invertible. Setting

b = Dµ · h(1) =

 y2(ξ − ξ0 + y1 + y2 − x0)
−y2(y1 + 1)

y2(y1 + 2(y2 + y3)− (r0 + z0))

 ,

then

α =
1

n

 ξ − ξ0 + y1 + y2 − (x0 + 1)
ξ − ξ0 + 2(y1 + y2) + y3 − (x0 + z0 + 1)
y2(y1 + y2 + y3 − z0)(y2 + y3 − r0)


with polynomial denominator

n = ξ0 − ξ + (y1 + y2 + y3 − z0)(y2 + y3 − r0 − 1)− (y1 + y2) + 1 + x0
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solves the linear equation
(DµP ) · α = b.

(Note that n > 0, due to initial values and first integrals.) As remarked in
Proposition 4(b) the reduced vector field is given by h(1) − Pα, explicitly

ξ̇ = y2

ẏ1 =
y2(y1 + y2 + y3 − z0)

n(ξ, y1, y2, y3)

ẏ2 = −y2 −
y2(ξ − ξ0 + 2(y1 + y2) + y3 − (x0 + z0 + 1))

n(ξ, y1, y2, y3)

ẏ3 =
y2((y2 + y3)(y1 + y2 + y3 − r0 − z0) + r0(z0 − y1))

n(ξ, y1, y2, y3)

(23)

on the one-dimensional slow manifold Y := V(µ)\V(det DµP ). It seems impos-
sible to determine an explicit parameterization of this algebraic curve, but we
will be able to give a complete qualitative analysis. We first recall a few general
facts.

Remark 9. The behavior of (polynomial or rational) vector fields on one-
dimensional varieties is rather easy to understand. The singular points of such
a variety (which are finite in number) form an invariant set, thus are stationary.
The complement of the singular set is a finite union of submanifolds (without
boundary), and each connected component is diffeomorphic either to R or to
the circle S1 (see e.g. Milnor [30], Appendix). The qualitative behavior of
differential equations on R is well-understood: Nonstationary trajectories are
unbounded or have stationary limit points (in either direction). Likewise, non-
stationary trajectories on the circle connect stationary points if there are any
(which then are limit points), or correspond to periodic solutions.

Proposition 5. (a) The intersection K := L ∩ Y is positively invariant for
(23). The determinant of DµP is nonzero on L, hence a formal Tikhonov-
Fenichel reduction exists on L.

(b) Y is a reducible variety, with two irreducible components (in the Zariski
topology) and there are no singular points in K. There are two stationary
points on Y , viz.

s1 :=

(
ξ0 + x0, 0, 0, r0+z0+1

2 +
√

(r0+z0+1)2

4 − r0z0
)T

,

s2 :=

(
ξ0 + x0, 0, 0, r0+z0+1

2 −
√

(r0+z0+1)2

4 − r0z0
)T

.

Only s2 lies in K.

(c) There is no closed connected component of Y (in the norm topology) that
intersects L. Only one connected component of Y has nonempty intersection
with L, and the intersection contains s2.
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(d) The stationary point s2 is globally asymptotically stable on K. Concern-
ing the linearization of the restriction of (23) to Y , the eigenvalue (which
governs the approach to the stationary point) is

λ :=
s2,3 − z0

(s2,3 − r0 − 1)(s2,3 − z0) + 1
,

with s2,3 the y3-component of s2. An eigenvector is given by (1, λ, λ, λ)T .

Proof. The positive invariance of K for (23) follows from the positive invariance
of L for the four-dimensional system and the reduction formula. Moreover

det (DµP ) = (2(y3 + y2)− z0 − r0 − 1)((ξ0 + x0 − ξ − y1 − y2)
+(z0 − y1 − y2 − y3)) + (1 + (r0 − y2 − y3)(z0 − y1 − y2 − y3))

is > 0 on L by inspection. For instance the term

2(y3 + y2)− z0 − r0 − 1 = (y2 + y3 − z0) + (y2 + y3 − r0)− 1

is negative on L, and the other terms can be analyzed similarly. Thus (a) is
proven.
To prove the first assertion of (b), we use Singular [10] to compute a primary
decomposition of the vanishing ideal I(V(µ)) and take radicals. (See Decker and
Lossen [11], Ch. 7 for background.) Thus we obtain a decompostion of V(µ)
into two irreducible components V(µ) = W1 ∪W2. As a practical matter we let

u =

√
(r0 + z0 + 1)2

4
− r0z0,

take Q[u] as a base ring and add the minimum polynomial of u to the ideal
generators. The ideal I(W1) is generated by

ω1 = u2 − (r0 + z0 + 1)u+ r0z0,
ω2 = y2 + y3 − u,
ω3 = r0(y1 + y2)− y3u+ (r0 + z0 + 1)y3 − r0z0,
ω4 = r0z0ξy3 + z0y

2
3u− z0(r0 + z0 + 1)y23 + (x0 + ξ0 − z0 + 1)zu2

+((z0 − 1)(r0 + 1)− (x0 + ξ0)(r0 + z0 + 1))y3u
+((r0 + z0 + 1)2 + r0z0)u− r0z0(r0 + z0 + 1)− (r0 + z0 + 1)u2

over Q[u] (respectively over Q, upon substitution for u). Generators of I(W2)
are

ω5 = u2 − (r0 + z0 + 1)u+ r0z0,
ω6 = y2 + y3 + u− (r0 + z0 + 1),
ω7 = r0(y1 + y2) + y3u− r0z0,
ω8 = r0z0ξy3 − z0y23u+ (x0 + ξ0 − z0 + 1)zu2 + (−(x0 + ξ0)·

(r0 + z0 + 1) + (z0 − 1)(r0 + 1))y3u+ ((r0 + z0 + 1)2 − r0z0)u
−(r0 + z0 + 1)u2.
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By straightforward computation one finds the stationary points on V(µ), namely

s1 :=

(
ξ0 + x0, 0, 0, r0+z0+1

2 +
√

(r0+z0+1)2

4 − r0z0
)T

,

s2 :=

(
ξ0 + x0, 0, 0, r0+z0+1

2 −
√

(r0+z0+1)2

4 − r0z0
)T

.

One checks s1 ∈W1 and s2 ∈W2 by substitution into the ideal generators. On
L one has y2 + y3 ≤ (r0 + z0)/2, and this shows that s1 6∈ K. Let g be the
right-hand side of the reduced equation. The linearization of (23) in s2 reads

Dg(s2) =


0 0 1 0
0 0 λ 0
0 0 λ 0
0 0 λ 0

 .

This matrix has eigenvalue 0 with multiplicity 3 and one nontrivial eigenvalue
λ < 0. The nonzero eigenvalue corresponds to the tangent space of Y (see e.g.
the arguments on NFIS in Bibikov [2]), hence the stationary point s2 is linearly
asymptotically stable for the restriction to Y .
There remains to prove that s2 ∈ K and that K contains no closed connected
component. Assume that such a closed component exists. Then it cannot
contain s1 6∈ K, and also it cannot contain s2, since s2 cannot be an α-limit
point. Therefore nontrivial periodic solutions must exist. But inspecting the
first entry of (23) shows (by monotonicity) that a periodic solution must have
y2-entry zero, and thus be stationary; a contradiction.
Since the ω-limit set of any point in K is nonempty, Remark 9 shows that K
must contain a stationary point (thus necessarily s2) and this stationary point
is the ω-limit point for all solutions in K.
Thus all claims are proven.

There remains the legitimate question to what extent this Proposition holds
for general parameters ki, rather than the special ones chosen. Part (a) remains
true (with appropriately modified definitions of L and K), as does the assertion
that there is no nonconstant periodic solution, since the monotonicity argument
remains valid. On the other hand, the number of irreducible components and
the number and properties of stationary points may vary, in principle; this would
require further study by algebraic means.

A Appendix

A.1 Some algebra

We give a brief account of some notions and results from classical commuta-
tive algebra and algebraic geometry. In our context these are mostly relevant
for computational and algorithmic purposes. A more detailed (application-
oriented) presentation is given in the monograph by Cox, Little, O’Shea [9];
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in proofs below we will refer to some special results stated in Shafarevich [36].
A very good short introduction to commutative algebra and algebraic geometry
is contained in Humphreys [24], Ch. I; much of what we need is already con-
tained in Subsections 1.1 to 1.3 of this monograph. We let K stand for R or the
complex numbers C.

1. With K[x1, . . . , xn] we denote the polynomial ring in n variables; we will
regard a polynomial as a map from Kn to K. A subset Y ⊆ Kn will be
called Zariski-closed, or an affine algebraic variety if there exist finitely many
polynomials φ1, . . . , φr such that Y is the set of common zeros of these poly-
nomials in Kn; we will write Y = V(φ1, . . . , φr). Rather than considering
polynomials φ1, . . . , φr one looks at the ideal I = 〈φ1, . . . , φr〉 they generate;
note that Y is the common zero set of all the elements of I. The comple-
ment of a Zariski-closed set in Kn is called Zariski-open (this is an open and
dense set in the norm topology, unless empty), and we transfer this notion
to Zariski-open subsets of affine varieties in the obvious way.

2. There is one particular feature of the Zariski topology: One calls a Zariski-
closed set Y reducible if there are Zariski-closed sets Y1, Y2 ⊂ Y with Yi 6= Y ,
i = 1, 2 but Y1 ∪ Y2 = Y , and irreducible otherwise. Every Zariki-closed set
is a finite union of irreducible components: Y = Y1 ∪ · · · ∪ Ym, with no Yi a
subset of another Yj , and this representation is unique up to ordering.

3. With K(x1, . . . , xn) we denote the field of rational functions in n variables;
a rational function may be seen as a map from a Zariski-open subset U of
Kn (those points where the denominator is nonzero) to K. One may extend
the notion of rational function to irreducible varieties by restriction, but note
that the variety should not be contained in the zero set of the denominator.
If Y is irreducible and a ∈ Y then the local ring of a (denoted by Oa or
Oa,Y ) is defined as the set of all rational functions that can be represented
as a quotient of polynomials with nonzero denominator at a. (One then says
that such functions are regular at a.)

4. Given Y = V(φ1, . . . , φr) and a ∈ Y , the tangent space of Y in a is defined
as

Ta(Y ) := {z ∈ Kn; Dφ1(a)z = · · ·Dφr(a)z = 0} ,

similar to the definition for submanifolds of Kn. One can show that this
notion does not depend on the specific choice of the φi. A point a ∈ Y is
called simple if (i) a is contained in only one irreducible component Yi of Y ,
and (ii) the dimension of Ta(Y ) is not greater than the dimension of Tb(Y ),
for any b ∈ Yi. (The dimension of Ta(Y ) is also equal to the dimension of the
variety Yi.) The simple points of Yi form a Zariski-open and dense subset of
Yi, which is also a submanifold of Kn in the usual sense. This observation also
implies that any affine algebraic variety, as well as any Zariski-open subset
of such a variety, is a finite union of submanifolds.
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A.2 Proof of Theorem 1

We first state a lemma which essentially says that a n−r–dimensional subvariety
of Kn can locally, near a simple point, be represented as the common zero set
of r rational functions. A proof is given in Shafarevich [36], Ch. II, §2.3 (using
special properties of K), and also for a more general setting in [36], Ch. II,
§3, Thm. 5, using special properties of the local ring. (The proof of Thm. 5
is given for an algebraically closed base field, but in case K = R one obtains
the assertion by taking real parts. The more general statement from Thm. 5
becomes relevant when one considers successive reductions, thus also reductions
starting on varieties.)

Lemma 2. Let µ1, . . . , µm ∈ K(x1, . . . , xn), Y = V(µ1, . . . , µm), and a ∈ Y
a simple point. Let Ỹ ⊆ Y the irreducible component which contains a, with
dim Ỹ = n− r. Moreover assume (w.l.o.g., up to relabeling) that

rank

Dµ1(a)
...

Dµr(a)

 = r.

Then for any η ∈ K(x1, . . . , xn) which (is regular and) vanishes on Ỹ , there
exist ϑ1, . . . , ϑr ∈ K(x1, . . . , xn), regular at a, such that

η = ϑ1µ1 + · · ·+ ϑrµr.

Proof of the theorem. (a) The first (as well as the last)assertion is a direct con-
sequence of Lemma 2, taking the entries of h(0) to be µ1, . . . , µn, assum-
ing µi1 , . . . , µir to be independent at a and applying the statement of the

Lemma to each µj . The irreducible component Ỹ of V(h(0)) which contains
a has dimension n − r. Thus the rank of Dh(0)(x) is equal to r in some
Zariski neighborhood of a in V(h(0)), since smaller rank is characterized by
the vanishing of certain minors.

(b) A step-by-step derivation of (8) was given in [19]. Here we present a shorter
version.
There is a Zariski-open neighborhood Ua of a in Rn such that

Rn = Ker Dh(0)(x)⊕ Im Dh(0)(x)

for all x ∈ Ua := Ua∩Ỹ , since the kernel must have dimension n−r = dim Ỹ .
Since P (x) has full rank, we get

Ker Dh(0)(x) = Ker Dµ(x) and Im Dh(0)(x) = Im P (x)

and furthermore
Dh(0)(x) = P (x)Dµ(x)
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for all x ∈ Ua. Moreover by Remark 4, A(x) := Dµ(x)P (x) is invertible for
all x ∈ Ua.
Since

Dµ(x)
(
Id− P (x)A(x)−1Dµ(x)

)
h(1)(x)

=
(
Dµ(x)−A(x)A(x)−1Dµ(x)

)
h(1)(x) = 0,

every component of µ is a first integral of (8). The invariance assertion
follows from part (a).

(c) Now let

v = v0 + v1 ∈ Rn; v0 ∈ KerDh(0)(x), v1 = P (x)w ∈ ImDh(0)(x).

Then

P (x)A(x)−1Dµ(x) (v0 + v1) = P (x)A(x)−1Dµ(x)P (x)w = P (x)w = v1,

whence Id−P (x)A(x)−1Dµ(x) projects any vector to its kernel component
with repect to the kernel-image decomposition. According to [32], Lemma
2.4 and Proposition 2.5, the reduced system for (2) is obtained as the kernel
component of h(1)(x) in the kernel-image decomposition with respect to
Dh(0)(x). This finishes the proof.

A.3 Algorithmic decomposition

The decomposition introduced in Lemma 2 can be carried out constructively
with the help of standard bases; see Decker and Lossen [11], in particular Lecture
9, for a general introduction and details concerning the algorithms. Here we give
a short outline of the procedure, for the reader’s convenience. Thus assume the
situation in Lemma 2 is given. Regarding the local ring Oa, the lemma states
that

I := 〈µ1, . . . , µr〉

is the vanishing ideal ideal of Ỹ . Given η ∈ I, one obtains the ϑj in three steps:

1. Given a local monomial order, denote by L(γ) the leading term of a mono-
mial. The first step is to complete M := {µ1, . . . , µr} to a standard basis
of I. To do so, given a generating set q1, . . . , q` of I, one computes all
S-polynomials

si,j := S(qi, qj) =
L(qj)

gcd(L(qj), L(qi))
qi −

L(qi)

gcd(L(qi), L(qj))
qj ∈ Oa,

1 ≤ i, j ≤ `, augments the generating set by the si,j 6∈ {q1, . . . , q`}, and
continues the process with the augmented set. As shown in [11], this
process terminates; thus after finitely many steps one obtains a standard
basis from µ1, . . . , µr.
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2. Given any set {φ1, . . . , φk} ⊂ I and a nonzero η ∈ Oa, Mora’s division
algorithm (see [11], Thm. 9.19) yields ρ and γ1, . . . , γk ∈ Oa, such that

η =

k∑
i=1

γiφi + ρ

and

• (DIV 1): L(η) ≥ L(γiφi), 1 ≤ i ≤ k (unless γiφi = 0).

• (DIV 2): L(ρ) is not divisible by any of L(φi), 1 ≤ i ≤ k unless ρ = 0.

For a standard basis {φ1, . . . , φk} the remainder ρ vanishes if and only if
η ∈ I.

3. Now consider a standard basis

φi =

{
µi, 1 ≤ i ≤ r,
σi, r + 1 ≤ i ≤ k,

of I which is obtained from µ1, . . . , µr by successively adjoining S-polynomials

σr+1, . . . , σk. For η ∈ I we obtain a representation η =
r∑
i=1

γiφi. Since φi

can be expressed as a linear combination of φ1, . . . , φi−1 as long as i > r,
succcessive substitution yields a representation

η =

r∑
i=1

ϑiµi

with ϑi ∈ Oa for 1 ≤ i ≤ r.

There is an implementation of Mora’s algorithm in the computer algebra
system Singular; see [10]. Thus we see, as stated earlier, that the reduction
of rational systems can be obtained in an algorithmic fashion.
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