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Abstract We present an outline of quasi-steady state methods (QSS) in ordinary
differential equations which model systems of chemical reactions, and its applica-
tion to reduction of dimension. Special attention is given to the relation between
QSS and singular perturbations including, as a new result, a general explicit reduc-
tion formula. Moreover, we describe and discuss heuristics which convert a QSS
assumption to conditions restricting the parameters of the differential equation.
MSC (2010): 92C45, 80A30, 34D05, 34D23.

1 Introduction

Quasi-steady state reduction is frequently employed to reduce the dimension of dif-
ferential equations for chemical and biochemical reactions, in particular as a prelim-
inary step in parameter identification problems. While quasi-steady state (QSS) has
been used by biologists, chemists and also by application-oriented mathematicians
since the early twentieth century, a precise mathematical description and analysis
was achieved only in the late 1980s, and some aspects are still not completely re-
solved. The issue is complicated by the fact that different groups of scientists (in-
cluding different groups of mathematicians) have different notions of, and different
approaches to QSS assumptions and reductions. Another critical point concerns the
role, the applicability and the application of singular perturbation theory.
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Most of the present paper collects some classical and recent results on QSS and
QSS reduction. We also present a few new results and aspects, including a general
explicit reduction formula for mass action kinetics, given a singular perturbation set-
ting. In Section 2 we review definitions of QSS (including a working definition we
will adopt), give a short historical outline, and describe some problems and appli-
cations, including standard examples. Motivated by applications, it seems advisable
to distinguish two notions of QSS (which also appear under different names in the
literature). On the one hand, there is QSS for reactions, where certain (forward-
backward) reactions are assumed to reach equilibrium quickly. On the other hand,
there is QSS for concentrations of certain chemical species, which goes back to
Michaelis and Menten. Analyzing these different QSS assumptions leads to different
mathematical problems. Section 3 is about reduction of dimension in the classical
Tikhonov-Fenichel setting of singular perturbations. We present a general reduction
formula, sketch its derivation and give several examples. Moreover we show that,
in the scenario of slow-fast reactions, Tikhonov-Fenichel theory is applicable in
rather general circumstances. Section 4 is about various heuristics - including scal-
ing methods - for finding ”small parameters” from QSS assumptions. While these
heuristics provide satisfactory results in many cases, identification of small parame-
ters for QSS - which is closely tied to the chosen definition - still seems unfinished.
Most of the examples we give are presented for the purpose of illustration, and have
been discussed in other publications. One exception is a somewhat larger example
to demonstrate the feasibility of the reduction procedure.

2 Background and statement of problem

2.1 Chemical reactions and ODEs

Systems of chemical reactions are frequently modelled with the help of differential
equations. In the present paper we will concentrate on systems that can be modelled
by ordinary differential equations, which is justified in the following scenario:

• Reactions take place in a closed vessel, and there is no spatial inhomogeneity.
• Thermodynamical parameters such as temperature and pressure are (being kept)

constant.
• There are explicit expressions for the reaction rates (usually mass action kinet-

ics).

Given these conditions, there is a standard procedure to transfer a chemical reac-
tion scheme to a system of ordinary differential equations and there is a number of
strong theoretical results on the properties of such equations. The procedure was
formalized and the class of resulting equations was discussed by several authors in
the 1960s and 1970s, with fundamental contributions, in particular with regard to
convergence to equilibrium, due to Feinberg [7], and Horn and Jackson [15]. One
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important ingredient of this procedure is stoichiometry: Molecules do not vanish
into nothing, and are not created out of nothing. Thus in a reaction like A+B
C,
for every C-molecule that is created, an A and a B vanish. Hence stoichiometry im-
plies the existence of linear first integrals for the differential equations.

Example 1. The Michaelis-Menten system (Michaelis and Menten [20], see also
Briggs and Haldane [5] and many textbooks and monographs such as Atkins and
de Paula [2]; Berg, Tymovzko and Stryer [3]; Keener and Sneyd [18]; Murray [22])
is a basic model reaction for an enzyme E catalyzing the transformation of substrate
S to product P via an intermediate complex C. The reaction scheme

E +S
k1

GGGGGBFGGGGG

k−1

C
k2

GGGGGGGBFGGGGGGG

k−2

E +P

by way of the above mentioned procedure with mass action kinetics, yields a differ-
ential equation system for the concentrations:

ė = −k1es + (k−1 + k2)c − k−2ep,
ṡ = −k1es + k−1c,
ċ = k1es − (k−1 + k2)c + k−2ep,
ṗ = k2c − k−2ep.

The relevant initial values are s(0) = s0 > 0, c(0) = 0, e(0) = e0 > 0 and p(0) = 0.
All rate constants ki are assumed to be > 0, with the possible exception k−2 ≥
0. In case k−2 = 0 one speaks of the irreversible Michaelis-Menten reaction, the
case k−2 > 0 is called reversible. The irreversible system is usually presented and
investigated in monographs and research articles.

From stoichiometry one obtains the linear first integrals e+c and s+c+ p, which
may be used to reduce the differential equation to dimension two. The standard
procedure leads to the following equation:

ṡ =− k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0− c)(s0− s− c). (1)

Example 2. A cooperative enzyme-catalyzed reaction is described by the reaction
scheme (see e.g. Keener and Sneyd [18], and [10], [25]):

S+E
k1

GGGGGBFGGGGG

k−1

C1
k2

GGGGGBFGGGGG

k−2

E +P,

S+C1
k3

GGGGGBFGGGGG

k−3

C2
k4

GGGGGBFGGGGG

k−4

C1 +P.

Here substrate and enzyme react to form a complex C1, and moreover substrate and
C1 react to form a complex C2. In the reversible scenario, enzyme and product may
also combine to form C1 with rate constant k−2 > 0, and C1 and P may combine
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to form C2 with rate constant k−4 > 0. Similar to the Michaelis-Menten system one
also considers the irreversible case with k−2 = k−4 = 0; all other rate constants are
assumed > 0 throughout. From mass action kinetics, stoichiometry and the initial
values s(0) = s0 > 0, c1(0) = c2(0) = 0, e(0) = e0 > 0 and p(0) = 0 one obtains the
differential equation

ṡ =−k1e0s+(k−1 + k1s− k3s)c1 +(k1s+ k−3)c2,
ċ1=k1(e0− c1− c2)s− (k−1 + k2)c1 + k−2(e0− c1− c2)(s0− s− c1−2c2)

−k3c1s+(k−3 + k4)c2− k−4c1(s0− s− c1−2c2),
ċ2=k3c1s− (k−3 + k4)c2 + k−4c1(s0− s− c1−2c2).

(2)

2.2 Quasi-steady state

It seems much harder to precisely define quasi-steady state (QSS), as well as the cor-
responding quasi-steady state assumption, than to illustrate the use of QSS to reduce
the dimension of the system. Some authors use a (relatively straightforward) notion
of QSS for reactions, which we will consider in Subsection 3.3 below. However,
the notion of QSS for chemical species, which will be in the focus of the present
paper, seems more delicate. (The distinction has also been noticed and investigated
in detail by Goussis [11]. One also speaks of partial equilibrium instead of QSS
for reactions.) It should be emphasized that the choice of a definition for QSS criti-
cally influences its translation to mathematical terms, and that various notions exist
in the literature. The following characterization (taken from [24]) may be the least
common denominator of all definitions:

Working Definition. A reacting system is in quasi-steady state (QSS), or quasi-
stationary, with respect to certain species, if the rates of change of their concen-
trations are negligibly small compared to the overall rate of reaction, during some
relevant time interval.
A QSS assumption amounts to the hypothesis that a reaction is in QSS with respect
to certain components.

The source of a QSS assumption generally lies outside mathematics. Usually experi-
mental observations or biological or chemical intuition are invoked. Generally QSS
corresponds to restrictions on certain parameters, such as rate constants or initial
concentrations.

We give a brief sketch of the history of QSS and mention some contributors
to its theory and practice, with no claim to completeness. Michaelis and Menten
[20] stated and applied a certain equilibrium assumption, which they did not justify
further. Briggs and Haldane [5] seem to be the first who discussed the QSS assump-
tion for the complex C (now sometimes called the standard QSS assumption) in the
Michaelis-Menten system (1), and moreover they justified this assumption by refer-
ring to smallness of certain parameters in the differential equation. Atkins and de
Paula’s popular introductory text on Physical Chemistry (see [2], p. 812 ff.) reflects
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a frequently used notion of quasi-steady state in a reacting system: “(. . .) after an
initial induction period (. . .), and during the major part of the reaction, the rates of
change of concentrations of all reaction intermediates are negligibly small”. The
biochemistry text by Stryer et al. (see [3]) seems to make direct use of QSS, with no
discussion of underlying assumptions. In the contribution by Rubinow and Segel to
the collection [31] (see p. 3 ff.), one finds the following description for (irreversible)
Michaelis-Menten: Under suitable experimental conditions “one expects that after
an initial short transient period there will be a balance between the formation of
complex by the union of enzyme and substrate and the breaking apart of complex
(. . .)”. From a mathematical perspective, the (explicit or implicit) involvement of
two different time regimes (initial phase vs. major part of the reaction, to paraphrase
Atkins et al.) suggests a singular perturbation approach. One of the earliest papers
on QSS from the perspective of Tikhonov’s theorem is due to Heineken, Tsuchiya
and Aris [12], with “small parameter” e0/s0. Segel [29], and Segel and Slemrod
[30] performed a careful analysis of QSS and conditions on parameters. These pa-
pers seem to be the starting point for time scale arguments in QSS considerations.
Among the many who continued and extended this approach, with varying empha-
sis on mathematical rigor, we mention Ignetik and Deakin [17]; Ignetik, Deakin and
Fandry [16]; Borghans, de Boer and Segel [4]; Schnell and Maini [28]; Tzafriri and
Edelman [35]. An approach by Schauer and Heinrich [26] to the Michaelis-Menten
system, on the other hand, could be seen as emphasizing the slow manifold in a sin-
gular perturbation setting, but their reasoning is essentially based on the assumption
that the concentration of the complex is almost constant (more precisely, that ċ≈ 0).

In Section 4 we will review some of these arguments and their use in heuristics
for finding small parameters.

2.3 The ad-hoc reduction from QSS

The following reduction method (which we call the ad-hoc reduction) is directly
related to a quasi-steady state assumption: In the differential equation, set the neg-
ligible rates of change equal to zero, and use the subsequent algebraic relations to
obtain a reduced system.

Example 3. QSS for the complex C in the Michaelis-Menten system.
In the irreversible case (k−2 = 0) one has

0(= ċ) = k1e0s− (k1s+ k−1 + k2)c, thus c =
k1e0s

k1s+ k−1 + k2
.

By substitution one obtains the reduced equation

ṡ =− k2e0s
(s+(k−1 + k2)/k1)
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which can be found in virtually all books and papers which mention Michaelis-
Menten. Note that this approach does not explicitly make use of small parameters,
although in its justification in the literature ( e.g. [4], [12], [29] and [30]) small
parameters are frequently invoked. We will discuss a different approach in Example
5 below.
In the reversible case the ad-hoc method leads to a quadratic equation

0(= ċ) = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0− c)(s0− s− c),

which yields

c =
1

2k−2

(
k1s+ k−1 + k2 + k−2(e0 + s0− s)±

√
(· · ·)

)
and a relatively cumbersome reduced equation, which is not frequently used. (There
are discussions e.g. in Miller and Alberty [21]; Seshadri and Fritsch [32].)

Example 4. QSS in the cooperative system.
Consider the system from Equation (2), and assume quasi-steady state for both com-
plexes. In the irreversible case (k−2 = k−4 = 0), solving “ċ1 = ċ2 = 0”, which is a
linear parameter-dependent system for c1 and c2, provides a nice reduced equa-
tion for s; see Keener and Sneyd [18]. But the reversible case leads to a system of
quadratic equations for c1 and c2, which in turn leads to a reduced equation for s
which is intractable, for all practical purposes. See [25] and [10] for more details.

Thus the ad hoc reduction, although conceptually straightforward, may become
quite inconvenient even in rather simple settings. And, more fundamentally, there
remains the question: How, if at all, can a reduction procedure be justified mathe-
matically?

3 Reduction in presence of small parameters

In this section we consider an analytic ordinary differential equation depending on
a “small parameter” ε ≥ 0. Thus we have

ẋ = h(x,ε) = h(0)(x)+ εh(1)(x)+ . . . , x ∈U ⊂ Rn+m, (3)

with both n and m positive integers (to be specified below), and we will be interested
in the behavior of the solutions as ε→ 0. Our primary focus is on differential equa-
tions modelling chemical reactions, and the small parameter may stem either from
a separation of fast and slow reactions, or (by some yet-to-be-discussed reasoning;
see Section 4) from a QSS assumption. (For the examples introduced in Section 2,
ε = e0 works.) But once a small parameter is given, the natural starting point is to
try singular perturbation theory.

Due to our focus on chemical reactions, we will impose additional conditions on
the right hand side, which go beyond what is necessary from the perspective of sin-
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gular perturbation theory. Thus we assume that h(0) and h(1) are polynomials. These
assumptions are natural in our setting, since we start from polynomial differential
equations of mass action kinetics.

We will mostly rely only on the classical results of singular perturbation theory,
see Tikhonov [34], Vasil’eva [36], Fenichel [8] and Hoppensteadt [14]. The mono-
graph [37] by Verhulst, in particular Chapter 8, is an appropriate source for most
of the relevant material. The principal new result in this section will be an explicit
expression for a reduction of (3), given the special assumptions on the right hand
side. We obtain a QSS reduction which is both on solid mathematical ground and
relatively simple to compute.

3.1 Singular perturbations

The usual scenario for Tikhonov’s and Fenichel’s theorems starts with a system in
what we call Tikhonov standard form:

ẏ1= ε f (1)(y1,y2)+ . . . , y1(0) = y1,0,

ẏ2= g(0)(y1,y2) + εg(1)(y1,y2)+ . . . , y2(0) = y2,0,
(4)

with (y1, y2) ∈ D⊆ Rn×Rm, D open, and (in our setting) analytic right-hand side.
We obtain the system in “slow time” by rescaling τ = εt:

y′1= f (1)(y1,y2)+ . . . , y1(0) = y1,0,

y′2= ε−1g(0)(y1,y2) + g(1)(y1,y2)+ . . . , y2(0) = y2,0.
(5)

A fundamental result of Tikhonov’s theory can be stated as follows. (See Verhulst
[37], Theorem 8.1 for a more general theorem under less restrictive hypotheses.)

Theorem 1. Let system (5) be given. Assume that:

(i) The zero set Ỹ of g(0) is nonempty.
(ii) There exist a nonempty relatively open subset M̃0 ⊆ Ỹ and ρ > 0 such that

every eigenvalue of D2g(0)(y1,y2), with (y1,y2) ∈ M̃0, has real part ≤−ρ .

Then there exists t1 > 0 such that for every t0 ∈ (0, t1) and for every point sufficiently
close to M̃0, the solution of (5) with initial condition (y1,0, y2,0) approaches the
solution of the degenerate system

y′1 = f (1)(y1,y2,0), y1(0) = y1,0 ,

0 = g(0)(y1,y2,0)

uniformly on [t0, t1] as ε → 0.

A priori a system (3) derived from a chemical reaction network may not be given in
Tikhonov standard form, which raises two questions. First, under what conditions
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does a transformation to standard form exist? Second, assuming the existence of a
transformation, how can a reduced equation be computed?

As for existence, one needs a diffeomorphism Ψ = (Ψ1,Ψ2)
tr (defined on some

open subset of D) which sends solutions of (3) to solutions of a system (4) in stan-
dard form. A necessary and sufficient condition is the identity

DΨ(x)
(

h(0)(x)+ εh(1)(x)+ . . .
)
=

(
ε · f (1)(x)(Ψ1(x),Ψ2(x))+ . . .

g(0)(x)(Ψ1(x),Ψ2(x))+ . . .

)
.

For ε = 0 one obtains

DΨ(x)h(0)(x) =
(

0
g(0)(Ψ1(x),Ψ2(x))

)
,

and this implies the existence of n independent first integrals (viz., the entries of
Ψ1) for ẋ = h(0)(x). Recall that the existence of first integrals is not trivial near
stationary points. Moreover, h(0) then admits an n-dimensional local manifold M0
of stationary points. The following result is taken from [25], but it essentially goes
back to Fenichel [8].

Proposition 1. Given ẋ = h(x,ε), there exists a transformation Ψ , defined on some
open Ũ ⊆ D, to Tikhonov standard form with the eigenvalue condition (ii) from
Theorem 1, if and only if the following hold:

The zero set Y of h(0) in Ũ is nonempty. Moreover there exist a nonempty rela-
tively open M0 ⊆ Y and ρ > 0 such that for every x0 ∈M0 the derivative Dh(0)(x0)
admits the eigenvalue 0 with algebraic and geometric multiplicity n, and the remain-
ing eigenvalues have real part ≤ −ρ . (In particular M0 is a local n-dimensional
submanifold.)

The condition given in Proposition 1 implies the existence of a direct sum decom-
position

Rn+m = KerDh(0)(x0)⊕ ImDh(0)(x0) (6)

for every x0 ∈M0. Moreover, this condition implies locally the existence of n inde-
pendent first integrals for ẋ = h(0)(x).

3.2 Computing a reduction

First, we discuss the special case when the hypotheses of Proposition 1 are satisfied
and a transformation Ψ to Tikhonov standard form (as well as its inverse) is explic-
itly known. Then determining a reduced system in original coordinates is relatively
straightforward. Although Ψ cannot be directly applied to the reduced system in the
version

y′1 = f (1)(y1,y2), g(0)(y1,y2) = 0,
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there is an equivalent version on the invariant manifold M̃0 introduced in Theorem
1, viz. (

y′1
y′2

)
= p(y) :=

(
f (1)(y1,y2)

−D2g(0)(y1,y2)
−1D1g(0)(y1,y2) · f (1)(y1,y2)

)
, (7)

which can be transported back via Ψ , to a differential equation with invariant mani-
fold M0, see [25].

Example 5. The reduced system for reversible Michaelis-Menten.
Here the small parameter is (assumed to be) e0, and system (1) gives the function

h(0) =
(

(k1s+ k−1)c
−(k1s+ k−1 + k2 + k−2(s0− s− c))c

)
.

The differential equation with righthand side h(0) is a scaled linear system, and a
first integral (and therefore a transformation) can be found explicitly. Carrying out
the program outlined above (see [25]), one obtains the reduced equation, in addition
to ċ = 0,

ṡ =−e0 ·
s(k1k2 + k−1k−2)− k−1k−2s0

k1s+ k−1 + k2 + k−2(s0− s)
,

which is generally different from the ad-hoc-reduced equation, and actually appears
less complicated (no square roots). But note that the Tikhonov-Fenichel reduction
coincides with the ad-hoc reduction when k−2 = 0.

If an explicit transformation is known, it may provide an additional benefit be-
cause Theorem 8.1 in Verhulst [37] characterizes the admissible initial conditions.
Moreover, for Michaelis-Menten one can verify Hoppensteadt’s [14] criteria for
convergence on the interval [t0, ∞) (notation from Theorem 1).

Generally, one cannot hope for an explicit construction of a transformation to
Tikhonov standard form, but still it is possible to compute a reduced equation. If
the slow manifold M0 can be explicitly represented as the graph of some function,
Fenichel ([8], Lemma 5.4), and Stiefenhofer ([33], Equation (2.13), with a different
and quite short proof) gave expressions for the reduced equation.

One can carry Fenichel’s observations further to obtain a reduced system in the
general setting. A closer look at Equation (7) shows that one gets p(y) via the kernel-
image decomposition of the derivative(

0 0
D1g(0)(y) D2g(0)(y)

)
(compare Equation (6)) by computing the kernel component of ( f (1)(y),g(1)(y))tr.
Since the kernel-image decomposition is preserved in coordinate transformations,
one obtains (see [25]):

Proposition 2. Given the eigenvalue condition from Proposition 1 for transforma-
bility to Tikhonov standard form, near a point x0 with h(0)(x0) = 0, one obtains the
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reduced system of (3) by computing the kernel component of h(1)(x) with respect to
the direct kernel-image decomposition of Dh(0)(x).

As noted in [25], the projection onto the kernel can be found from the minimal
polynomial of Dh(0)(x), and for some - relatively small - examples this approach
is computationally feasible. For higher dimensions and many parameters, this pro-
cedure becomes prohibitively expensive. But in any case the argument shows that
for polynomial (or rational) h(0) and h(1) the reduced system will have a rational
right-hand side.

A practicable method to compute reduced systems was recently developed in [9].
It is based on an auxiliary result from classical Algebraic Geometry.

Lemma 1. For system (3) with polynomials (or rational functions) h(0) and h(1), let
x0 be such that h(0)(x0) = 0 and that the eigenvalue condition from Proposition 1
hold for Dh(0)(x0), with m = rank Dh(0)(x0). Then there exist a
(n+m)×m matrix P with rational entries, of rank m, and a vector valued polyno-
mial µ with m entries, such that

h(0)(x) = P(x)µ(x)

in some Zariski neighborhood of x0. By appropriate choice of the neighborhood,
one may assume that h(0) and µ have the same zero sets. The entries of µ may be
taken as any m independent entries of h(0).

This Lemma, which is proved in [9], is almost trivial in the local analytic (or differ-
entiable) setting, in view of the Implicit Function Theorem. But the point is that P is
rational, and that there are constructive methods to determine P. With this auxiliary
result, the reduction is relatively straightforward, as is shown in the next theorem.

Theorem 2. For system (3), with assumptions as in Lemma 1, let x0 be such that
h(0)(x0) = 0. Then the reduced system, in a Zariski neighborhood M0 of x0 in the
zero set Y of h(0), is given (in slow time) by

x′ = h(1)(x)−P(x)(Dµ(x)P(x))−1 Dµ(x)h(1)(x).

Proof. The eigenvalue conditions at x0 guarantee that Y is locally an n-dimensional
manifold. Let M0 be a relatively open subset of Y such that the eigenvalue conditions
hold for all points of M0. Denote the columns of P by p1, . . . , pm. The Jacobian
matrix of h(0) equals

Dh(0)(x) =
m

∑
i=1

(pi(x)Dµi(x)+µi(x)Dpi(x))

in a Zariski neighborhood of x0, and therefore

Dh(0)(x) = P(x) ·Dµ(x) for all x ∈M0. (8)

Now fix x ∈M0. Then
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Ker Dh(0)(x) = Ker Dµ(x), (9)

due to the rank condition for P(x). The condition rankP(x) = m also implies

Im Dh(0)(x) = Im P(x).

From our basic hypothesis we have the direct sum decomposition (6). Set

A(x) := Dµ(x) ·P(x).

We first show that A(x) is invertible. Thus let β ∈ Rm be a solution of the equation

Dµ(x)P(x)β = 0. (10)

The direct sum decomposition and

P(x)β ∈ Ker Dh(0)(x)∩ Im Dh(0)(x)

show P(x)β = 0. Since P(x) has full rank, we see β = 0. Thus Equation (10) admits
only the trivial solution, whence A(x) = Dµ(x)P(x) is invertible.

Moreover, due to the direct sum decomposition (6), for any y ∈ Rn+m there exist
z ∈ Ker Dh(0)(x) = Ker Dµ(x) and α ∈ Rm such that

y = z+P(x)α.

Since z = y−P(x)α ∈ Ker Dµ(x), one finds

Dµ(x)(y−P(x)α) = 0,

which implies α = A(x)−1Dµ(x)y, and thus

z = y−P(x)A(x)−1Dµ(x)y.

Apply this to h(1)(x) to obtain the assertion.

Remark 1. (a) It may be appropriate to discuss invertibility of A(x) and the eigen-
value condition in more detail. The zero set Y of h(0) is an algebraic variety in Rn+m,
and we are actually interested in an n-dimensional component M0 of this variety. For
x ∈ Y , Dh(0)(x) must therefore have eigenvalue 0 with geometric multiplicity n. If
the geometric and algebraic multiplicity are equal to n then (and only then) the
kernel-image decomposition (6) exists, and the latter is equivalent to invertibility of
A(x). Thus it is possible to write down the equation in Theorem 2. But additional
conditions (for instance, all real parts of eigenvalues ≤ −ρ) are necessary to make
this a meaningful reduced system.
(b) The matrix A(x) is of size m×m, hence relatively small. One should also em-
phasize that inverting this matrix is not actually necessary to determine the reduced
system: It suffices to solve a system of linear equations with this matrix.
(c) The eigenvalue condition (ii) from Theorem 1 on Dh(0)(x) is satisfied if and only
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if all eigenvalues of A(x) have real part ≤ −ρ . Indeed, by virtue of Equation 8 and
linear algebra the nonzero eigenvalues of these two matrices are the same.

Example 6. Irreversible Michaelis-Menten with slow product formation.
This is an example for a slow-fast reaction separation. One considers the familiar
differential equation (1), but now with small parameter k2. The underlying assump-
tion is that product formation is much slower than formation of complex and de-
grading of complex back to enzyme and substrate. One has (with the arguments s, c
suppressed)

h(0) =
(
−µ

µ

)
, P =

(
−1
1

)
, µ = k1e0s− (k1s+ k−1)c, h(1) =

(
0
−c

)
.

Thus

A = (k1(e0− c),−(k1s+ k−1))

(
−1
1

)
=−(k1(e0− c)+ k1s+ k−1)

and the reduction procedure yields the system(
ṡ
ċ

)
=− k2

k1(e0− c)+ k1s+ k−1

(
(k1s+ k−1)c
k1(e0− c)c

)
on the invariant variety M∗0 defined by µ = 0. Using the parametrization of M0 one
may obtain a reduced equation for substrate alone, viz.

ṡ =− k2k1e0s(k1s+ k−1)

k1k−1e0 +(k1s+ k−1)2

This is different from the standard reduction based on QSS for complex. This ex-
ample illustrates that different QSS assumptions (QSS for the species C, resp. QSS
with slow product formation) will lead to different reductions.

Example 7. The cooperative system with small parameter e0 (see Example 2 above)
was originally discussed in [25], with the minimal polynomial approach (and serious
reliance on a computer algebra system). Theorem 2 makes this computation feasible
even by hand. With the abbreviations

α =−(k1 + k3)s− (k−1 + k2)− (k−2 + k−4)(s0− s− c1−2c2)

β =−k1s+ k−3 + k4− k−2(s0− s− c1−2c2)

one has

h(0) =

 (k−1 + k1s− k3s)c1 +(k1s+ k−3)c2
c1α + c2β

k3c1s− (k−3 + k4)c2 + k−4c1(s0− s− c1−2c2)

 ,
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h(1) =

 −k1s
k1s+ k−2(s0− s− c1−2c2)

0

 ,

and the (relevant component of the) zero set of h(0) is given by c1 = c2 = 0. A
decomposition according to Lemma 1 is given by

P =

 k−1 + k1s− k3s k1s+ k−3
α β

k3s+ k−4(s0− s− c1−2c2) −k−3− k4


and

µ =

(
c1
c2

)
.

Note that such a decomposition is not unique. For A = Dµ ·P one obtains

A(s, 0, 0) =
(

a(s) −k1s+ k−3 + k4− k−2(s0− s)
k3s+ k−4(s0− s) −k−3− k4

)
with abbreviation a(s) =−(k1 + k3)s− (k−1 + k2)− (k2 + k−4)(s0− s). The matrix
A can easily be inverted, and the eigenvalue condition is readily checked. The final
result for the reduced equation is, of course, identical to the one given in [25].

Example 8. To illustrate the feasibility of the approach via Theorem 2, we discuss
a somewhat bigger example, from Stiefenhofer [33], Section 3, whose reduction
was computed in [33] only for some special parameter choices. This system mod-
els communication between slime mold cells such as Dictyostelium discoideum.
Communication is effected by cAMP, denoted by P, furthermore S stands for the
substrate AT P, while D and R represent transmembrane receptors, with D and R
representing the corresponding bound states. (See [33] for more details.) The reac-
tion scheme, including production and decomposition of cAMP with constant rates,
can be written as follows.

D
εk1



εk−1
R S+R

εk2⇀ P+R
εk3⇀ P

εk−3
⇀

D
k4


k−4

D+2P R
k5


k−5

R+2P,

with parameters ki > 0, and the ε’s indicating the slow reactions. We also adopt the
further simplification s(t) = S > 0 from [33].

We use the first integral d = c−d−r−r, with some constant c≥ 0, to obtain the
system

ṗ = −2k4d p2 +2k−4(c−d− r− r)−2k5rp2 +2k−5r+ εk3− εk−3 p+ εk2Sr,
ḋ = −k4d p2 + k−4(c−d− r− r)− εk1d + εk−1r,
ṙ = −k5rp2 + k−5r+ εk1d− εk−1r,
ṙ = k5rp2− k−5r.

(11)
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With

µ(p,d,r,r) :=
(

−k5rp2 + k−5r
−k4d p2 + k−4(c−d− r− r)

)
, P(p,d,r,r) :=


2 2
0 1
1 0
−1 0

 ,

and

h(1)(p,d,r,r) :=


k3− k−3 p+ k2Sr
−k1d + k−1r
k1d− k−1r

0

 ,

equation (11) may be written as

d
dt


p
d
r
r

= P ·µ + εh(1),

which is a representation according to Lemma 1. The variety Y may be taken as the
zero set of µ , and one verifies that the choice

M0 := Y ∩ intR4
+,

is possible. Straightforward computations show that the eigenvalue condition is at
least generically satisfied, and the reduced system on the invariant set M0 is given
by

d
dt


p
d
r
r

=
1
Q


N1
N2
N3
N4


on a suitable subset W ⊂R2, which is determined from M0∩R4

+ by this elimination,
with

N1 := −k−3 p5k5k4 +(k2Sr k5k4 + k3k5k4) p4− k−3 (k−5k4 + k−4k5) p3

+
(
2k1 (−k−4k5 + k−5k4)d−2k−1 (−k−4k5 + k−5k4)r

+Sk2 (k−5k4 + k−4k5)r+ k3 (k−5k4 + k−4k5)
)

p2− k−3 pk−5k−4 + k3k−5k−4
+k2Sr k−5k−4,

N2 := 2k4d p4k5k−3 +(−2k3k5k4−2k2Sr k5k4)d p3 +
(
(2k4k−5k−3− k5k−4k1)d

+k5k−4k−1r
)

p2 +
(
−4k1d2k4k−5 +

(
(−4k5k−4k1 +4k−1k4k−5)r

−2k4k−5k2Sr−2k4k−5k3
)
d +4k−1r2k−4k5

)
p− k1dk−5k−4 + k−1rk−5k−4,

N3 := 2k5rp4k4k−3 +(−2k3k5k4−2k2Sr k5k4)rp3 +
(
k−5k4k1d

+(2k5k−4k−3− k−1k4k−5)r
)

p2 +
(
4k1d2k4k−5

+(−4k−1k4k−5 +4k5k−4k1)rd−4k−1r2k−4k5 +
(
−2k5k−4k3

−2k5k−4k2Sr
)
r
)

p+ k1dk−5k−4− k−1rk−5k−4,
N4 := (k5k4k1d− k5k4 (k−1 +2k−3)r) p4 +

(
4k5k4k1d2 +4k5k4 (−k−1 + k1)rd

−4k5k−1k4r2 +(2k2Sr k5k4 +2k3k5k4)r
)

p3 +
(
k5k−4k1d− k5k−4

(
k−1

+2k−3
)
r
)

p2 +(2k5k−4k2Sr+2k5k−4k3)rp
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and

Q := k5 p4k4 +(4k4k5r+4k4dk5) p3 +(k−5k4 + k−4k5) p2 +(4k5rk−4 +4k4dk−5) p+ k−5k−4.

One may eliminate the variables r and r via

M0 =

{
(p,d,r,r)tr;r =

k−5(−k4d p2 + k−4(c−d))
k−4(k−5 + k5 p2)

,r =
k5 p2(−k4d p2 + k−4(c−d))

k−4(k−5 + k5 p2)

}
,

and obtain the equivalent version

d
dt

(
p
d

)
=

1

Q̃

(
Ñ1

Ñ2

)
with

Ñ1 := −p10Sdk5
3k4

2k2− p9k5
3k4 k−4 k−3 + p8(cStk5

3k4 k−4 k2
−2Sdk5

3k4 k−4 k2−2Sdk5
2k−5 k4

2k2k5
3k4 k−4 k3)+ p7(−k5

3k−4
2k−3

−3k5
2k−5 k4 k−4 k−3)+ p6(cSk5

3k−4
2k2 +2cSk5

2k−5 k4,k−4 k2−Sdk5
3k−4

2k2
−4Sdk5

2k−5 k4 k−4 k2−Sdk5 k−5
2k4

2k23k5
2k−5 k4 k−4 k3−2dk5

3k−4
2k1

+2dk5
2k−5 k4 k−4 k1−2dk5

2k−5 k4 k−4 k−1 +2dk5 k−5
2k4

2k−1 + k5
3k−4

2k3)

+p5(−3k5
2k−5 k−4

2k−3−3k5 k−5
2k4 k−4 k−3)+ p4(2cSk5

2k−5 k−4
2k2

+cSk5 k−5
2k4 k−4 k2−2Sdk5

2k−5 k−4
2k2−2Sdk5 k−5

2k4 k−4 k2
+2ck5

2k−5 k−4
2k−1−2ck5 k−5

2k4 k−4 k−1−4dk5
2k−5 k−4

2k1
−2dk5

2k−5 k−4
2k−1 +4dk5 k−5

2k4 k−4 k1 +2dk−5
3k4

2k−1
+3k5 k−5

2k4 k−4 k3)+ p3(−3k5 k−5
2k−4

2k−3− k−5
3k4 k−4 k−3)

+p2(cSk5 k−5
2k−4

2k2 +3k5
2k−5 k−4

2k3−Sdk5 k−5
2k−4

2k2
+2ck5 k−5

2k−4
2k−1−2ck−5

3k4 k−4 k−1−2dk5 k−5
2k−4

2k1
−2dk5 k−5

2k−4
2k−1 +2dk−5

3k4 k−4 k1 +2dk−5
3k4 k−4 k−1 +3k5 k−5

2k−4
2k3

+k−5
3k4 k−4 k3)− pk−5

3k−4
2k−3 + k−5

3k−4
2k3,

Ñ2 := p9(2Sd2k5
3k4

2k2)+ p8(2dk5
3k4 k−4 k−3)+ p7(−2cSdk5

3k4 k−4 k2
+2Sd2k5

3k4 k−4 k2 +4Sd2k5
2k−5 k4

2k2−2dk5
3k4 k−4 k3)+ p6(−dk5

3k−4
2k1

+6dk5
2k−5 k4 k−4 k−3−dk5

2k−5 k4 k−4 k−1)+ p5(−6dk5
2k−5 k4 k−4 k3

−4cSdk5
2k−5 k4 k−4 k2 +4Sd2k5

2k−5 k4 k−4 k2 +2Sd2k5 k−5
2k4

2k2)

+p4(+ck5
2k−5 k−4

2k−1−3dk5
2k−5 k−4

2k1−dk5
2k−5 k−4

2k−1 +6dk5 k−5
2k4 k−4 k−3

−2dk5 k−5
2k4 k−4 k−1)+ p3(+4d2k5

2k−5 k−4
2k1−4d2k5 k−5

2k4 k−4 k1
+4d2k5 k−5

2k4 k−4 k−1−4d2k−5
3k4

2k−1−6dk5 k−5
2k4 k−4 k3−2cSdk5 k−5

2k4 k−4 k2
+2Sd2k5 k−5

2k4 k−4 k2−4cdk2
5k−5 k−4

2k1−4cdk5 k−5
2k4 k−4 k−1)

+p2(2ck5 k−5
2k−4

2k−1−3dk5 k−5
2k−4

2k1−2dk5 k−5
2k−4

2k−1 +2dk−5
3k4 k−4 k−3

−dk−5
3k4 k−4 k−1)+ p(4c2k5 k−5

2k−4
2k−1−4cdk5 k−5

2k−4
2k1−8cdk5 k−5

2k−4
2k−1

+4cdk−5
3k4 k−4 k−1 +4d2k5 k−5

2k−4
2k1 +4d2k5 k−5

2k−4
2k−1−4d2k−5

3k4 k−4 k1
−4d2k−5

3k4 k−4 k−1−2dk−5
3k4 k−4 k3)+ ck−5

3k−4
2k−1−dk−5

3k−4
2k1

−dk−5
3k−4

2k−1,

Q̃ :=
(

p6k5
2k4 k−4 + p5(4dk5

2k4 k−4−4dk5 k−5 k4
2)+ p4(k5

2k−4
2 +2k5 k−5 k4 k−4)

+p3(4ck5 k−5 k4 k−4)+ p2(2k5 k−5 k−4
2 + k−5

2k4 k−4)+ p(4ck5 k−5 k−4
2

−4dk5 k−5 k−4
2 +4dk−5

2k4 k−4)+ k−5
2k−4

2)(p2k5 + k−5
)
.
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Up to scaling of time, one therefore obtains a two-dimensional equation with poly-
nomial right-hand side (of degree 11) on W . (Q̃ > 0 on W follows from Q > 0 on
R4
+.) In particular one has Poincaré-Bendixson theory available in the asymptotic

limit.

3.3 Slow and fast reactions

For slow and fast reactions the reduction program via Tikhonov-Fenichel was car-
ried out by Schauer and Heinrich [27] (who cited Vasil’eva [36] for singular per-
turbation results), and continued by Stiefenhofer [33]. (A recent paper by Lee and
Othmer [19] reproduces several of these results.)

Before discussing slow and fast reactions in some detail, it will be necessary to
give a more precise outline of the work by Feinberg [7], Horn and Jackson [15],
and others. We mostly follow Feinberg’s Lecture Notes [7]; a short overview can
be found in Section 2 of Anderson’s recent paper [1]. We sketch the formalism for
chemical reaction networks and reaction systems with mass action kinetics, using
the irreversible Michaelis-Menten system as an illustrating example. One starts with
an ordered collection of q chemical species, which are identified with the standard
basis of Rq. Next one forms complexes, which formally speaking are nonnegative
(integer) linear combinations of species (appearing as reactants or as reaction prod-
ucts). Then reactions are defined as ordered pairs of complexes, usually written in
a notation with reaction arrows. (The notion of reversible reaction is obvious). For
Michaelis-Menten the species are E, S, C and P, which will in the following be
identified with the standard basis vectors of R4. Moreover one has complexes E+S,
C, E +P, and reactions

E +S→C; C→ E +S; C→ E +P.

Using the identification of species and standard basis vectors, one assigns to each
reaction a vector in Rq, counting the reactants with negative sign, calls their span
in Rq the stoichiometric subspace S, and collects these column vectors in a ma-
trix Z which is related to the stoichiometric matrix as defined by Feinberg. For the
Michaelis-Menten example one has, in the above order, column vectors

−1
−1
1
0

 ,


1
1
−1
0

 ,


1
0
−1
1

 , thus Z =


−1 1 1
−1 1 0
1 −1 −1
0 0 1

 .

The differential equation for the concentrations may now be written in the form
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d
dt


e
s
c
p

=


−1 1 1
−1 1 0
1 −1 −1
0 0 1

 ·
 k1es

k−1c
k2c


and generally for mass action kinetics one obtains a differential equation system of
the form

ẋ = Z ·Φ(x) (12)

for the vector of concentrations. Φ can be characterized more precisely; see [7] for
details.

There is a natural assignment of a directed graph to a reaction network: The
nodes are the complexes, and there exists a directed edge from one complex to
another if and only if there is a reaction from the former to the latter. The connected
components of this graph are called linkage classes. The deficiency of a network is
then defined by

δ := #complexes−#linkage classes− rankZ,

and one can show that δ ≥ 0. Finally, one calls the reaction network weakly re-
versible if, whenever there is a reaction from one complex to another, there is also a
chain of reactions from the latter to the former.

Both Rq
+ and its interior are positively invariant for the system (12). The cosets

x∗+ S, with S the stoichiometric subspace and 0 6= x∗ ∈ Rq
+, are called the stoi-

chiometric compatibility classes, and are positively invariant sets for the differential
equation. Now we can state one fundamental result of the theory.

Deficiency Zero Theorem. (Horn and Jackson [15], Feinberg [7]) Assume that (12)
corresponds to a weakly reversible deficiency zero network. Then the following hold.

(i) The intersection of every stoichiometric compatibility class with intRq
+ con-

tains exactly one stationary point.
(ii) This point is locally asymptotically stable within its compatiblity class.

Remark 2. (a) The proof of part (ii) is based on an ingenious choice of a Lyapunov
function. Linear asymptotic stability cannot be deduced from the inequalities in this
argument.
(b) In Feinberg’s Notes [7] a stronger claim is made, viz. global asymptotic stability
within the intersection of the stoichiometric compatibility class and intRq

+. Later
a problem in the global stability argument was pointed out; and generally global
stability is still a conjecture. Only recently Anderson [1] succeeded with a proof in
the case of a single linkage class.

Now we turn to slow-fast systems of chemical reactions. These are usually described
by

ẋ = h(0)(x)+ εh(1)(x), x ∈ Rq (13)

with the fast subsystem h(0) (large rate constants) and the slow subsystem εh(1)

(small rate constants, symbolized by the factor ε). Thus both h(0) and h(1) admit a
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representation of the form (12). A substantial part of the following result is due to
Schauer and Heinrich [27]. The transfer from Schauer and Heinrich’s condition to
weakly reversible deficiency zero systems in the statement and proof of the follow-
ing Proposition is a first step, in ongoing work [9], towards a more comprehensive
theorem.

Proposition 3. Assume that the fast subsystem of (13) has deficiency zero and is
weakly reversible. Assume moreover that every stationary point in intRq

+ is linearly
asymptotically stable for h(0) within its stoichiometric compatibility class. Then the
following hold.

(a) The eigenvalue conditions from Proposition 1 are satisfied for Dh(0)(x0) at all
zeros x0 ∈ intRq

+ of h(0).
(b) There exists a linear transformation of the system to Tikhonov standard form.

Proof. We write
h(0)(x) = Z ·Φ(x)

and let x0 ∈ intRq
+ be a stationary point. Let s be the dimension of the stoichiometric

subspace, thus rankZ = s. Then

Dh(0)(x0) = Z DΦ(x0)

admits the eigenvalue 0 with multiplicity ≥ q− s (due to the rank of Z) and has s
eigenvalues with negative real part, due to the linear stability requirement. In partic-
ular

rankZ = rankDh(0)(x0). (14)

Therefore the zero set of h(0) is locally a manifold of dimension s. Moreover there
are independent linear forms λ1, . . . ,λq−s such that λi ◦ Z = 0, 1 ≤ i ≤ q− s, and
these are also first integrals of h(0). Completing these by suitable linear forms to a
basis of the dual of Rq will produce the desired transformation to Tikhonov standard
form.

Remark 3. The importance of the rank condition (14) for the existence of a linear
transformation to standard form was first noted by Schauer and Heinrich [27]. They
also stated (with only a partial justification for some special cases, it seems; see
[27], Section 4) that the rank condition holds when every fast reaction is reversible
with fast reverse reaction. It seems that linear stability conditions did not play a role
in [27].

3.4 Why does the ad-hoc method persist?

As noted earlier, the ad-hoc reduction produces the same result as Tikhonov-
Fenichel in some relevant cases, but not in general. In [10] we provide a detailed in-
vestigation for several basic reaction schemes in biochemistry (including Michaelis-
Menten), with the result that ad-hoc and Tikhonov-Fenichel reduction coincide
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when certain product-forming reactions are irreversible, but differ in the fully re-
versible case. Since such reductions are actually used to determine rate constants
and other reaction parameters, it is very likely that serious discrepancies between
ad-hoc reduction and reality would have been noticed in experimental verification.
To explain this apparent lack of serious discrepancy, we note two possible reasons
for good approximation by the irreversible reduced system.

First, some reversible reactions may be almost irreversible (for instance, k−2 may
be very small in the Michaelis-Menten example). Since the reduced system in the
irreversible case is the limit of the reversible case, the discrepancy may be hardly
noticeable.

Second, continuous removal of product may be responsible, as noted in Heinrich
and Schuster [13], Keener and Sneyd [18]. A thorough justification of this argument
was also given in [10] for reversible Michaelis-Menten with product removal (rate
α > 0). Indeed, a Tikhonov-Fenichel reduction of the system

ṡ = −k1e0 +(k1s+ k−1)c,
ċ = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0− c)p,
ṗ = k2c− k−2 p(e0− c)−α p

with ”small parameter” e0 yields the familiar ”irreversible reduced equation” (with
α vanishing along the way). See Example 3 and Example 5 with k−2 = 0.

4 Finding small parameters

While the results in the previous section are based on a well-defined mathematical
scenario, there is another facet of QSS which, in the present stage, is not so amenable
to rigorous mathematics. The underlying problem is that the translation of a model
assumption to mathematical terms is rarely straightforward, and it may depend on
seemingly small details. Here we are concerned with translating certain assumptions
on chemical reacting systems - in particular QSS assumptions - to mathematical
terms.

4.1 Underlying assumptions: QSS vs. slow-fast

Frequently QSS assumptions - directly or indirectly - amount to slow-fast hypothe-
ses, and we briefly review some of these.

A direct slow-fast assumption (small and large rate constants) underlies the dis-
cussion of slow and fast reactions, as in Equation (13). As noticed above, this is
different from a QSS assumption for chemical species, which we discuss now. An
indirect slow-fast assumption for species (based on the fact that the linearization
of a system (4) in Tikhonov standard form necessarily has some very small eigen-
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values near the slow manifold) works by seeking conditions to ensure a very small
ratio of absolutely smallest to absolutely largest eigenvalue of the linearization (near
some submanifold). This was used, for instance, by Duchêne and Rouchon [6], but
the method frequently has to rely on numerical calculations, and general parame-
ter conditions seem to be hard to derive. A different indirect slow-fast assumption
proposed by Segel [29], Segel and Slemrod [30] starts from the observation that
in singular perturbation scenarios there is a fast initial phase (a ”boundary layer in
time”; see Verhulst [37]), followed by a slower time regime. From time scale esti-
mates for the initial and the later phase, and the requirement that their ratio should
be very small, Segel and Slemrod [30] obtain conditions on the parameters in the
Michaelis-Menten system. The approach by Schauer and Heinrich [26] may also be
justified by singular perturbation arguments, but the line of reasoning is concerned
not with time scales but rather with the presumed slow manifold, and derives param-
eter conditions from requiring closeness of a solution trajectory to this manifold.

Generally, all these approaches are (at least partly) of heuristic nature, and valid-
ity of QSS will have to be checked a posteriori. A potentially erroneous conclusion
from the time scale comparisons in Segel and Slemrod [30] for so-called reverse
QSS (quasi-steady state for substrate) is discussed in [10], Section 4. Moreover it
is easy to construct examples which satisfy the condition proposed by Schauer and
Heinrich [26] but do not satisfy any initial phase requirement (as stated in Atkins
and de Paula [2]; see quote in Section 2): Consider systems with a first integral. We
emphasize that, while quasi-steady state hypotheses frequently lead to singularly
perturbed systems (with the benefit of a solid reduction theory), this does not seem
to be the case in every relevant scenario. Again, much depends on the exact notion
of QSS that is used.

4.2 The role of scaling

For the purpose of the present article, a scaling transformation for an ordinary dif-
ferential equation consists of multiplying the independent variable (time) and each
dependent variable by positive numbers. In most mathematically oriented texts and
research papers (see in particular Murray [22], Segel and Slemrod [30], Heineken,
Tsuchiya and Aris [12]) scaling is used, and frequently employed to find ”small
parameters”. While there is no doubt that scaling is highly relevant for an appropri-
ate analysis of differential equations modelling a real-life situation, in particular for
concrete estimates, there may be some danger in the ”lumping together” of several
model parameters into one ”small parameter” for asymptotic arguments.

We will briefly discuss the necessity, benefits and limitations of scaling for ir-
reversible Michaelis-Menten and the ”small parameter” ε∗ = e0

s0
from Heineken,

Tsuchiya and Aris [12]. (For the Segel-Slemrod ”small parameter” ε = k1e0
s0+k−1+k2

– see [30] – similar remarks apply.) Note that ε∗ tends to zero when e0 → 0, and
this case has been resolved above in a satisfactory manner. But ε∗ also tends to zero
when s0→ ∞, and to properly analyze the latter case one should keep in mind that
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the relevant domain for the Michaelis-Menten system (1) is defined by the inequali-
ties 0≤ c≤ e0 and 0≤ s+c≤ s0. Hence s0→∞ will blow up the region of interest.
Since Tikhonov’s theory applies to differential equations on fixed domains, scaling
is necessary here. We scale (following Heineken, Tsuchiya and Aris [12] in part,
but not completely) by setting σ = s/s0 and γ = c/e0, and ε = 1/s0, obtaining the
system

σ̇ = −k1e0σ(1− γ)+ ε · e0k−1γ

γ̇ = ε−1k1σ (1− γ)− (k−1 + k2)γ
(15)

on the domain defined e.g. by the inequalities 0≤ σ + e0γ ≤ 1, 0≤ γ ≤ 1.
With the usual notation we have

h(0) =
(

0
k1σ(1− γ)

)
, h(1) =

(
−k1e0σ(1− γ)
−(k−1 + k2)γ

)
.

The zero set M0 of h(0) has two components; the one defined by γ = 1 corresponds to
the standard QSS assumption. The conditions for Tikhonov-Fenichel are satisfied,
and a straightforward computation shows that the reduced equation is given by

σ̇ = 0, γ = 1.

In other words, Tikhonov-Fenichel applies but it yields a degenerate reduced system.
Including higher-order terms in ε (thus passing to a O’Malley-Vasil’eva expansion,
see Verhulst [37]) one formally obtains the familiar reduced equation. The approach
in [12], Equations (10) to (13) encounters the same problem in the case s0 → ∞,
because some of the scaled parameters approach zero in this limiting case. Taking
this into account, the lowest-order reduction in [12] will also be trivial.

The point we want to emphasize here is the necessity to consider all possible
ways in which a ”small parameter” may approach zero. This also may be of some
practical relevance, since e0→ 0 (”very little enzyme”) and s0→∞ (”very high sub-
strate concentration”) represent different experimental settings. These cases require
individual consideration, with one case not amenable to standard singular perturba-
tion methods. However, other lines of reasoning, such as the phase plane arguments
in [23], show that a QSS assumption is indeed justified for this scenario.

Finally, we note that the other component of M0 for Equation (15) is given by
σ = 0, which would correspond to the reverse QSS assumption (with s approaching
its equilibrium 0 very fast). In this case the Tikhonov-Fenichel reduction formalism
is not applicable, due to a nilpotent Jacobian. (One may question whether reverse
QSS is chemically sensible for very high s0.)

4.3 Near-invariance heuristics

In [24] a proposal was made to generalize Schauer and Heinrich’s [26] heuristics
from Michaelis-Menten to general systems. We will present the heuristics here in
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a somewhat informal manner, referring for details to [24]. Thus we start with a
parameter-dependent differential equation

ẋ = q(x, p) (16)

with q : U ×V → Rn, where U ⊂ Rn is a neighborhood of a compact set K∗ and V
is some subset of Rd (d ≥ 1).

(i) We assume that certain functions ψ1(x, p), . . . ,ψr(x, p), defined for all x ∈ K∗,
are in quasi-steady state (according to the Working Definition) for some rele-
vant solution. Thus their rates of change, given by the Lie derivatives

φi(x, p) := Lq(ψi)(x, p) = 〈gradψi(x, p), q(x, p)〉 , 1≤ i≤ r,

are small along this solution. (All derivatives are to be understood with respect
to x only.) In applications, the ψi are frequently coordinate functions.

(ii) For p ∈V let

K = Kp = {y ∈ K∗ : φ1(y) = · · ·= φr(y) = 0} .

Then, due to continuity and compactness arguments, the maximum of the
terms |φ1(x)|, . . . , |φr(x)| tends to zero if and only if dist(x, K) tends to zero.
Thus requiring QSS with higher and higher accuracy, one obtains invariance
of the set K for the differential equation in the limiting case. This is one moti-
vation for the following definition.

(iii) Near-invariance (see [24]): Let K∗, φ1, . . . ,φr and K be as above, let the φi be
sufficiently differentiable, and assume that the rank of (Dφ1, . . . ,Dφr) on K is
equal to r. Given 0≤ δ ≤ 1 we say that K is δ -nearly invariant for ẋ = q(x, p)
with respect to φ1, . . . ,φr if for all x ∈ K and 1≤ j ≤ r one has the inequality

|
〈
gradφ j(x, p), q(x, p)

〉
| ≤ δ · ‖gradφ j(x, p)‖ · ‖q(x, p)‖.

The inequality always holds for δ = 1, due to Cauchy-Schwarz, and for δ = 0
the condition implies invariance of K. Thus one may expect solutions to stay
close to K when δ � 1.
It should be emphasized that this is another heuristic approach, replacing slow-
fast heuristics by ”invariant set-heuristics”. Also, the notion does not only de-
pend on the set K but also on the defining functions.

(iv) Some properties of near-invariance.

• Locally the desired property from (ii) is a consequence of near-invariance
(see [24]): Let K be δ -nearly invariant. Then locally in time (|t| ≤ ρ) ,
solutions starting on K remain (C ·δ )-close to K, with C and ρ independent
of the starting point and of δ .

• In the limiting case δ → 0 one obtains an invariant set. Since one has a
parameter-dependent system, and K may change with parameters, one has
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to take care that no degeneracies occur, as in scaling procedures, and one
should avoid blowing up K∗.

• The notion is compatible (up to an error of order ε) with Tikhonov-
Fenichel: While the asymptotic slow manifold M0 in the singular pertur-
bation setting is not necessarily (C · ε)-nearly invariant, by an order ε cor-
rection in the defining equations one will obtain order ε near-invariance
(see [24]).

(v) Use in practice: Let a parameter-dependent system (16) be given on K∗. Let
φ1, · · · ,φr define a desired or suspected nearly invariant set K. The near-
invariance property cannot be expected to hold generally, but only for certain
parameter combinations. Thus evaluation of the near-invariance condition in
(iii) will produce (necessary) conditions for the parameters. Determine (or es-
timate)

δ (p) := max

{
|
〈
(gradφ j)(x, p), q(x, p)

〉
|

‖gradφ j(x, p)‖ · ‖q(x, p)‖
; x ∈ K, 1≤ j ≤ r

}

as a function of the parameters. Requiring δ (p) to be small provides conditions
on the parameter set p. Asymptotic conditions are obtained from the limiting
case δ (p)→ 0.
Again we emphasize that further analysis and verification is necessary.

Example 9. Reversible Michaelis-Menten.
Consider the reversible Michaelis-Menten reaction (1), which we restate as

ṡ =− φ(s,c) − k2c+ k−2(e0− c)(s0− s− c),
ċ = φ(s,c), (17)

(the right-hand side will be called q) with QSS for complex ψ(s, c) = c, and its Lie
derivative

φ(s,c) = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0− c)(s0− s− c)

on the set K∗ ⊆ R2 given by 0 ≤ c ≤ e∗0, s ≥ 0 and s+ c ≤ s∗0. (Here e∗0 and s∗0 are
upper bounds for the initial concentrations.)
This system was discussed in detail in [24], with attention to the range for which
QSS is assumed to hold. (For instance, requiring QSS only when sufficient substrate
is still present would amount to a different choice of K∗.) Here we focus on QSS for
the whole course of the reaction (after some initial phase), and look at the asymptotic
scenario. To obtain QSS conditions for ψ = c, evaluate

Lq(φ)(s, c) = ((k1− k−2)(e0− c), ∗)
(
−k2c+ k−2(e0− c)(s0− s− c)

0

)
for (s, c) ∈ K (taking into account φ = 0). One has
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|Lq(φ)(s, c)|
||q(s, c)||

= |k1− k−2| · (e0− c),

and a rough estimate yields

|Lq(φ)(s, c)|
||q(s, c)|| · ||gradφ(s,c)||

≤ |k1− k−2| · e0

k−1 + k2
=: δ

∗

for all (s, c) ∈ K.
The particular case k1 = k−2 actually yields an invariant set (regardless of other

parameters), as noted by Miller and Alberty [21]. For the irreversible case k−2 = 0,
the expression for δ ∗ is equal to one introduced by Seshadri and Fritzsch [32]; com-
pare the discussion in [23].
It may be appropriate to clarify what has actually been gained. By design of the
procedure, one is assured of an invariant set in the limiting case e0 → 0. This
may be taken as a motivation for choosing the small parameter e0 in the reversible
Michaelis-Menten differential equation, which we did throughout this paper. One
then verifies that the hypotheses for Tikhonov-Fenichel are satisfied, and one ob-
tains a reduced system with a mathematically solid foundation. Finally (see [10])
one can check a posteriori that QSS does indeed hold for complex under the as-
sumption of small e0. Thus the circle closes.

Near-invariance heuristics, like all the proposed heuristics leading from a QSS as-
sumption (to a precisely stated QSS assumption) to finding small parameters should
be seen as work in progress, but there seems to be more potential in this particular
approach. One advantage is that the implementation of the procedure (see (v) above)
is in principle straightforward.
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6. P. Duchêne, P. Rouchon: Kinetic scheme reduction via geometric singular perturbation tech-

niques. Chem. Engineering Sci. 51, 4461 - 4472 (1996).
7. M. Feinberg: Lectures on chemical reaction networks. Lecture Notes (1979).

URL: http://www.che.eng.ohio-state.edu/ feinberg/LecturesOnReactionNetworks/
8. N. Fenichel: Geometric singular perturbation theory for ordinary differential equations.

J. Diff. Eqs. 31, 53 - 98 (1979).
9. A. Goeke: Reduktion und asymptotische Reduktion von Differentialgleichungen für chemische

Reaktionen. Doctoral thesis, RWTH Aachen, in preparation.



Quasi-steady state: Searching for and utilizing small parameters 25

10. A. Goeke, C. Schilli, S. Walcher, E. Zerz: Computing quasi-steady state reductions. J. Math.
Chem. 50, 1495-1513 (2012).

11. D. A. Goussis: Quasi steady state and partial equilibrium approximations: their relation and
their validity. Combustion Theory and Modelling (to appear).

12. F.G. Heineken, H.M. Tsuchiya, R. Aris: On the mathematical status of the pseudo-steady state
hypothesis of biochemical kinetics. Math. Biosci. 1, 95 - 113 (1967).

13. R. Heinrich, S. Schuster: The regulation of cellular systems. Chapman and Hall, New York
(1996).

14. F. Hoppensteadt: Stability in systems with parameter. J. Math. Analysis Appl. 18, 129 - 134
(1967).

15. F. Horn, R. Jackson: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81 - 116
(1972).

16. R. Ignetik, M.A.B. Deakin, C. Fandry: Phase plane analyses of the Michaelis-Menten reaction
equations. Bull. Math. Biol. 43, 361 - 370 (1981).

17. R. Ignetik, M.A.B. Deakin: Asymptotic analysis of the Michaelis-Menten reaction equations.
Bull. Math. Biol. 43, 375 - 388 (1981).

18. J. Keener, J. Sneyd: Mathematical Physiology. I: Cellular Physiology. Springer, New York
(2009).

19. C.H. Lee, H.G. Othmer: A multi-scale analysis of chemical reaction networks: I. Deterministic
systems. J. Math. Biol. 60, 387 - 450 (2010).

20. L. Michaelis, M.L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333 - 369
(1913).

21. W.G. Miller, R.A. Alberty: Kinetics of the reversible Michaelis-Menten mechanism and the
applicability of the steady state approximation. J.A.C.S. 80, 5146 - 5151 (1958).

22. J.D. Murray: Mathematical Biology. I. An Introduction. 3rd Ed. Springer, New York (2002).
23. L. Noethen, S. Walcher: Quasi-steady state in the Michaelis-Menten system. Nonlin. Analysis

Real World Appl. 8, 1512 - 1535 (2007).
24. L. Noethen, S. Walcher: Quasi-steady state and nearly invariant sets. SIAM J. Appl. Math.

70, 1341 - 1363 (2009).
25. L. Noethen, S. Walcher: Tihkonov’s theorem and quasi-steady state. Discrete Contin. Dyn.

Syst. Ser. B 16(3), 945 - 961 (2011).
26. M. Schauer, R. Heinrich: Analysis of the quasi-steady-state approximation for an enzymatic

one-substrate reaction. J. Theor. Biol. 79, 425 - 442 (1979).
27. M. Schauer, R. Heinrich: Quasi-steady-state approximation in the mathematical modeling of

biochemical reaction networks. Math. Biosci. 65, 155 - 170 (1983).
28. S. Schnell, C. Maini: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483

- 499 (2000).
29. L.A. Segel: On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol.

50, 579 - 593 (1988).
30. L.A. Segel, M. Slemrod: The quasi-steady-state assumption: A case study in perturbation.

SIAM Review 31, 446 - 477 (1989).
31. L.A. Segel (ed.): Biological kinetics. Cambridge University Press, Cambridge (1991).
32. M. Seshadri, G. Fritzsch: Analytical solutions of a simple enzyme kinetic problem by a pertur-

bative procedure. Biophys. Struct. Mech. 6, 111 - 123 (1980).
33. R. Stiefenhofer: Quasi-steady-state approximation for chemical reaction networks. J. Math.

Biol. 36, 593 - 609 (1998).
34. A.N. Tikhonov: Systems of differential equations containing a small parameter multiplying

the derivative. (In Russian.) Mat. Sb. 31(73), 575 - 586 (1952).
35. A.R. Tzafriri, E.R. Edelman: The total quasi-steady-state approximation is valid for reversible

enzyme kinetics. J. Theoret. Biol. 226(3), 303 - 313 (2004).
36. A.B. Vasil’eva: Asymptotic behavior of solutions to certain problems involving nonlinear dif-

ferential equations containing a small parameter multiplying the highest derivatives. Russ.
Math. Surveys 18, 13 - 84 (1963).

37. F. Verhulst: Methods and Applications of Singular Perturbations. Springer, Berlin (2005).


