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1 Introduction

The notion quasi-steady state (QSS) characterizes the behavior of certain re-
action networks with slow and fast species, or slow and fast reactions. It was
introduced in the early 20th century, with arguments based on scientific intu-
ition. Mathematically, an intuitive approach prevailed for several decades as well,
one reason being that the appropriate mathematical tools did not yet exist. With
the emergence of singular perturbation theory, a possible appropriate transla-
tion from (bio-) chemical phenomenon to mathematical terms became available,
and much of the subsequent work referred to singular perturbations. However,
alternative interpretations and approaches do exist.

In the present paper we will survey two possible interpretations of QSS,
and highlight the (perhaps surprising) fact that their implementation naturally
leads to algorithmic algebra. “Naturally” in this context means that the famil-
iar modelling of reaction networks by mass-action kinetics, and the subsequent
reductions based on mathematical arguments, yield differential equations with
polynomial or rational right-hand sides that are defined on algebraic varieties. (It
is not necessary to invoke any additional assumptions.) From this perspective,
QSS represents a very fitting example for “algebraic biology”.

We will survey some recent work (mostly by the authors and co-workers)
discussing the passage from (biological to) analytical to algebraic concepts. The



analytical results lead to problems which, at least initially, are amenable to
standard methods of algorithmic algebra.

To illustrate the notions and arguments, we choose the Michaelis-Menten
reaction system. (We do so with some reluctance, but this system is very relevant
and very well-suited for brief illustrations.) In the Michaelis-Menten network,
substrate S and enzyme E reversibly combine to a complex C, which in turn
degrades – reversibly or irreversibly – to E and product P ; thus one has the
reaction scheme

E + S
k1


k−1

C
k2


k−2

E + P.

Mass action kinetics and conservation laws yield the differential system

ṡ = − k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),

(1)

for the concentrations, usually with initial values s(0) = s0 > 0 and c(0) = 0.
Here k−2 = 0 defines the irreversible scenario, while a network with k−2 > 0 is
called reversible; all other parameters are > 0.

We instantly employ this system to give readers with little or no background
in biochemistry an impression of the arguments and problems arising in the
practice of quasi-steady state.
As for a first example, consider the irreversible Michaelis-Menten system

ṡ = − k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1 + k2)c

(2)

and assume (based on intuition or experiments) that the complex concentration
c has a negligible rate of change, thus 0 ≈ ċ = k1e0s − (k1s + k−1 + k2)c,
for an extended duration of time. This gives rise to a heuristic approach: Set
k1e0s − (k1s + k−1 + k2)c = 0 (i.e., make the stronger assumption that ċ = 0
holds exactly), solve this relation for c and substitute into the first equation of
(2). Using some high school algebra one obtains the so-called Michaelis-Menten
equation

ṡ = − k1k2e0s

k1s+ k−1 + k2
.

This heuristics clearly needs a justification.
As for a second example, assume (based, again, on intuition or experimental
data) that the rate constants k2 and k−2 in the reversible system (1) are very
small, thus the “right half” of the reaction scheme proceeds at a much slower
pace than the “left half”. Here it is natural to consider the limit k2 → 0 and
k−2 → 0. Thus one obtains the system

ṡ = − k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1)c.

This system admits non-isolated stationary points, viz. a curve Z of equilibria
corresponding to the fast reactions. In this approach the (presumed) interest-
ing dynamics near Z is not being accounted for, hence more delicate limiting
processes are necessary.



It goes without saying that a solid mathematical underpinning is necess-
sary in both examples. One purpose of the present contribution is to sketch the
underlying theory, and to set the heuristics on firm ground.

2 Transferring scientific to mathematical notions

The following short historical sketch of relevant contributions is necessarily in-
complete, but it should serve to give an impression to non-expert readers.
Quasi-steady state assumptions for the irreversible reaction system (2) go back
(among others) to Henri [19] in 1903, and Michaelis and Menten [25] in 1913.
In the early stages, two incarnations of QSS materialized: One may say that
Henri and Michaelis/Menten discussed QSS assuming slow and fast reactions
(also known as partial equilibrium assumption, briefly PEA), while Briggs and
Haldane [6] in 1925 considered QSS with a slow variable, and gave a heuris-
tic derivation of the familiar Michaelis-Menten equation starting from the irre-
versible system (2). There was much work in the following decades, with argu-
ments generally based on (bio-) chemical considerations; one representative is
Laidler [22]. On the mathematical side, Tikhonov’s work [36] on singular per-
turbations provided a solid mathematical foundation for slow-fast phenomena,
as well as solid results. Heineken, Tsuchiya and Aris [18] were among the first
to consider QSS (for irreversible Michaelis-Menten) from the perspective of sin-
gular perturbation theory; Schauer and Heinrich [30] gave a general discussion
of slow-fast reactions from this point of view. One of Fenichel’s [13] fundamen-
tal contributions to singular perturbation theory was a characterization with no
reference to special coordinates. This was employed (and partly derived in an
alternative way) by Stiefenhofer [35], as well as several others. The authors’ work
in [15–17] is also based on Fenichel’s results. As for recent papers on slow/fast
reactions one could mention Lee and Othmer [24] who included a discussion
of the initial phase. A (quite efficient) numerical approach related to singular
perturbation results, called computational singular perturbation (CSP), was in-
troduced by Lam and Goussis [23] in the 1990s.
In addition to reducing a system with given small parameters, QSS also involves
finding parameter regions where such phenomena occur (briefly, “finding small
parameters”). Such lines of reasoning also go back to Henri, Michaelis/Menten,
and Briggs/Haldane. Segel and Slemrod [32] in 1989 introduced an approach to
determine appropriate small parameters via time scale heuristics, and their work
triggered a large number of follow-up publications, such as Borghans et al. [5].
A different approach, to be discussed below, was recently introduced in [15, 17].
Generally, algebraic-algorithmic techniques for biological (and chemical) systems
have been in the focus of attention since about 2000. An overview of early de-
velopments and an impression of the range of applications is provided in the
conference proceedings [1, 20]. We mention only a few publications that are of
relevance for reaction equations. Gatermann and Huber [14], as well as Shiu and
Sturmfels [34] make use of the special structure of mass action systems to discuss
the variety of stationary points, resp. siphons. Conditions for Hopf bifurcations



were considered by Niu and Wang [26], and by Errami et al. [9], among others.
Parameter reduction from an algebraic perspective was discussed by Sedoglavic
[31], and by Hubert and Labahn [21]. It seems that there exists relatively little
work on algorithmic algebra aspects of quasi-steady state phenomena and re-
duction; one should, however, mention Boulier et al. [2–4].
The interpretation of QSS as a singular perturbation phenomenon is widely
accepted but this does not seem to be a foregone conclusion. While a singu-
lar perturbation approach is natural for slow and fast chemical reactions, with
the “small parameter” appearing in rate constants of certain reactions, it is
less straightforward for QSS involving chemical species, and actually there exist
alternative mathematical interpretations. Thus, Heinrich and Schauer [29] em-
phasized the approximate invariance of the set defined by ċ = 0 in equation
(1). This approximate invariance is implicitly assumed by practitioners who use
the ad hoc reduction method as in Briggs/Haldane [6]. We will discuss both
interpretations.

3 Preliminaries and notation

In this section we fix notation and recall a few notions and results. Throughout
the paper we will consider a parameter-dependent ordinary differential equation

ẋ = h(x, π), x ∈ U ⊆ Rn, π ∈ Π ⊆ Rm (3)

with U open and the right-hand side h smooth in the variable (x, π). (The case
m = 0 describes parameter-independent systems.) Our principal interest lies in
polynomial or rational systems; this is a natural assumption in the setting of
chemical reaction equations. When appropriate, we will pass to the complexifi-
cation.

3.1 Lie derivatives and invariance criteria

Given a smooth function ψ : U ×Π → R, we call Lh(ψ), with

Lh(ψ)(x, π) = D1ψ(x, π)h(x, π)

(note that only the partial derivative with respect to x is involved) the Lie deriva-
tive of ψ with respect to h. The Lie derivative describes the rate of change for
ψ along solutions of (3); it is useful for invariance criteria such as the following.

Lemma 1. (a) Let ψ1, . . . , ψs be smooth on U ×Π, and assume that there are
smooth functions µjk such that

Lh(ψj) =

s∑
k=1

µjkψk, 1 ≤ j ≤ s. (4)

Then the common zero set Y of the ψj is an invariant set of (3); i.e.,
whenever y ∈ Y then the solution trajectory through y is contained in Y .



(b) For complex polynomial functions and vector fields, the following converse
holds: If the ψj generate a radical ideal, then invariance of the set Y will
imply a relation (4), with polynomials µjk.

3.2 Singular perturbations

Singular perturbation theory for ODEs starts with Tikhonov’s theorem (for de-
tails see the monograph by Verhulst [37]; Theorem 8.1). We specialize it to
smooth autonomous equations. Consider a system in Tikhonov standard form in
“slow time”

y′1 = f(y1, y2) + ε . . . , y1 ∈ D,
εy′2 = g(y1, y2) + ε . . . , y2 ∈ G,

(5)

with small parameter ε ≥ 0, defined on an open set D×G ⊂ Rr ×Rn−r. Under
some technical assumptions, the theorem guarantees that solutions of this system
converge to solutions of a reduced system on the r-dimensional asymptotic slow
manifold

Z̃ :=
{

(y1, y2)tr ∈ D ×G; g(y1, y2) = 0
}

;

the reduced system being given by

y′1 = f(y1, y2), g(y1, y2) = 0, (6)

on a suitable time interval as ε→ 0. A crucial technical assumption is satisfied
whenever a uniform linear stability condition holds for the eigenvalues of the
Jacobian D2g(y1, y2) with respect to y2. Generalizations for systems that are
not in standard form, as well as less restrictive eigenvalue conditions (normal
hyperbolicity), are due to Fenichel [13].

4 The ad hoc approach

The following classical reduction heuristic (which we call the ad hoc reduction)
is directly related to an intuitive quasi-steady state assumption for chemical
species, such as by Briggs and Haldane [6]: In the differential equation, set the
negligible rates of change equal to zero, and use the subsequent algebraic rela-
tions to obtain a reduced system. The procedure may be formalized by intro-
ducing the notion of enforced invariant sets.

Definition 1. Given system (3), let ψ1, . . . , ψn−r be smooth in a neighbor-
hood of some (x0, π0) ∈ U × Π, and assume that the rank of the Jacobian of
Ψ := (ψ1, . . . , ψn−r)

tr equals n − r on this neighborhood. Let Y be (locally) the
set of common zeros of these functions. Assume furthermore (w.l.o.g. upon rela-
belling) that the rank of (x1, . . . , xr, ψ1, . . . , ψn−r) equals n on this neighborhood.
Partition x = (x[1], x[2]), with x[1] = (x1, . . . , xr)

tr and x[2] = (xr+1, . . . , xn)tr.
Then we will call any system

ẋ[1] = h[1](x, π) +
∑
jm

[1]
j ψj

ẋ[2] = −D2Ψ(x, π)−1D1Ψ(x, π)h[1](x, π) +
∑
jm

[2]
j ψj

(7)



with arbitrary smooth m
[1]
j and m

[2]
j , a system associated to (3) with enforced

invariant set Y .

For the standard QSS setting, assuming “slow” variables xr+1, . . . , xn and ψj =
hr+j = Lh(xr+j), this definition is applicable for ad hoc reduction. The common
strategy is to consider only the first r equations, and to replace xr+1, . . . , xn in
h[1] via Ψ = 0. System (7) on the invariant manifold Y provides an alternative to
this (generally non-constructive) approach. In the polynomial or rational setting
there remains to discuss a polynomial or rational system on an invariant algebraic
variety; this seems more amenable to algebraic techniques. Boulier et al. [3, 4]
present an algorithmic approach to ad hoc reduction using elimination; in [4] the
authors specifically introduce a variant to describe the dynamics on invariant
manifolds arising from slow and fast reactions.
One must note that such procedures are consistent only if Y is actually an
invariant set. We record a few facts; the proof is straightforward with Lemma 1.

Lemma 2. (a) The set Y is invariant for system (7).
(b) If Y is an invariant set for system (3) then its solutions on Y coincide with

those of (7).

Example 1. Ad hoc approach for the irreversible Michaelis-Menten system, as-
suming QSS for the variable s. A system with enforced invariant set Y defined
by ψ = Lh(s) = −k1e0s+ (k1s+ k−1)c = 0 has the form

ṡ = k1s+k−1

k1(e0−c) (k1e0s+ (k1s+ k−1 + k2)c) ,

ċ = k1e0s− (k1s+ k−1 + k2)c ;
(8)

here – in the notation of (7) – we chose m[1] = m[2] = 0. The choice m[2] = 1
provides a more convenient version of the second equation on Y , viz. ċ = −k2c.

We will return later to the crucial condition of invariance (or “approximate
invariance”) of the QSS set Y , which is fundamental for the ad hoc reduction.

5 Reduction in the SPT setting

In this section we discuss the (standard) singular perturbation approach to re-
duction. Thus we specialize system (3) to a smooth system with one small pa-
rameter, viz.

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + · · · (9)

with ε in some neighborhood of 0. (One may think of other parameters as being
“frozen”.)

5.1 Conditions

Assume that system (9) is – in principle, after a coordinate change – amenable
to reduction by Tikhonov’s theorem. An obvious problem is to cast equations (9)



into standard form (5). Fenichel [13] discussed this, and the following local char-
acterization of systems which admit a coordinate transformation to Tikhonov
standard form is a consequence of his results. (An elementary proof is given in
[28].)

Proposition 1. Let system (9) be given, and denote by Z = V(h(0)) the zero set
of h(0). Let a ∈ Z and assume that there exists a neighborhood U of a in Rnsuch
that Z ∩ U is an r-dimensional submanifold. Then there exists an invertible
local coordinate transformation to standard form (5), satisfying a linear stability
condition in some neighborhood of a, if and only if the following hold.

(i) The rank of Dh(0)(a) is equal to n − r, and there exists a direct sum de-
composition

Rn = Ker Dh(0)(a)⊕ Im Dh(0)(a).

(ii) The nonzero eigenvalues of Dh(0)(a) have real part < 0.

Adopting the nomenclature from subsection 3.2, we will refer to Z as the (asymp-
totic) slow manifold of (9).

As pointed out in [28], Proposition 1 guarantees the existence of a transfor-
mation to Tikhonov standard form, but generally one cannot determine such
a transformation explicitly, even for polynomial systems. The main obstacle
lies in the explicit determination of first integrals of system (9) when ε = 0.
(There is an important exception to this rule for slow and fast reactions, if and
when stoichiometry provides sufficiently many linear first integrals; see Schauer
and Heinrich [30], Lee and Othmer [24] and the algorithmic implementation by
Boulier et al. [2].) But even if such a transformation cannot be determined, for
rational sytems one can compute a reduced system on Z explicitly.

5.2 Reduction of rational systems

The main result of this section (taken from [15, 16]) provides an algorithmic
approach to the computation of reduced equations for general systems (9) with
rational right-hand side, in particular for reaction equations with mass action
kinetics. We will freely use some notions and results from commutative algebra
and algebraic geometry. Underlying the reduction theorem is a fact from classical
algebraic geometry; viz., a variety of dimension r can be represented as the zero
set of n − r regular functions in a Zariski-open neighborhood of a simple point
(see e.g. Shafarevich [33], Ch.II, §3).

Theorem 1. (See [16]) Consider system (9) with rational right-hand side h, and
let a ∈ Rn be a simple point of V(h(0)), with n−r = rank Dh(0)(a). (Thus locally
the dimension of V(h(0)) equals r.) Assume moreover a direct sum decomposition

Rn = Ker Dh(0)(a)⊕ Im Dh(0)(a).

Then the following hold.



(a) There exist a Zariski-open neighborhood Ua of a in Rn and a product de-
composition with matrices µ(x) ∈ R(x)(n−r)×1, P (x) ∈ R(x)n×(n−r), such
that

h(0)(x) = P (x)µ(x), x ∈ Ua (10)

with rank P (a) = n− r, rank Dµ(a) = n− r, and

V(h(0)) ∩ Ua = V(µ) ∩ Ua

is an r–dimensional submanifold.
(b) The following system is defined on a Zariski-open neighborhood of a in Rn,

and admits a relatively Zariski-open neighborhood Ua ⊂ V(h0) as an invari-
ant set:

x′ =
[
In − P (x)A(x)−1Dµ(x)

]
h(1)(x), (11)

with

A(x) := Dµ(x)P (x) ∈ R(x)(n−r)×(n−r).

(c) If all the nonzero eigenvalues of Dh(0)(a) have negative real part then system
(11), restricted to Ua, corresponds to the reduced system (6) in Tikhonov’s
theorem.

If the condition in part (c) is not satisfied then formula (11) still defines a system
with invariant set Ua; we will call this a formal reduction of (9). (Fenichel’s theory
[13] implies convergence under mild hyperbolicity conditions.)

Example 2. In the Michaelis-Menten system, let k−1 = εκ−1 and k2 = εκ2. Then

h(0) = P · µ with P =

(
−k1s

k1s+ k−2(s0 − s− c)

)
and µ = e0 − c,

and h(1) = (κ−1c, −(κ−1 + κ2)c)tr; thus the slow manifold is given by c = e0.
With the notation from Theorem 1 one has, for instance,

I2 − P ·A−1 ·Dµ =

(
1 −k1s/(k1s+ k−2(s0 − s− c))
0 0

)
,

and the reduced equation on the slow manifold reads

ṡ = k−1e0 + k1s(k−1 + k2)e0/(k1s+ k−2(s0 − e0 − s))

together with ċ = 0. This setting corresponds to slow degradation of complex; for
biologically relevant parameter values the solution will eventually escape from
the slow manifold.

The reduction of the irreversible Michaelis-Menten system with small k2 is dis-
cussed by Schauer and Heinrich [30], who (essentially) employ a linear trans-
formation to Tikhonov standard form, and by Boulier et al. [4] who take an
approach via enforced invariant sets.



5.3 Algorithmic aspects

The decomposition in Theorem 1 (a) is found by inspection in many applications,
but we point out that it can be determined constructively. First, according to
Shafarevich [33], one may choose (any) n − r functionally independent entries
of h(0) for µ; thus a generator system of the vanishing ideal in the local ring of
a is known. An algorithm to determine P (in effect, to express the remaining
entries of h(0) by µ) uses standard bases and Mora’s algorithm (see Decker and
Lossen [11], Lecture 9). There is an implementation of Mora’s algorithm in the
computer algebra system Singular [10]. Thus, to a great extent the reduction
of rational systems is manageable by customary algorithms. Some restrictions
apply, however, since inequations (to ensure rank conditions) and inequalities
(to ensure negative real parts for eigenvalues) also play a role in the discussion.
Moreover, one usually deals with semi-algebraic sets in phase and parameter
space, due to nonnegativity conditions.

6 Identifying “small parameters”

In the previous section we assumed that a “small parameter” was known a
priori for system (9). In some applications (such as networks with slow and fast
reactions) this is the case, but in others it is not. In particular, for a quasi-steady
state assumption for chemical species the designation of small parameters is not
straightforward. In their influential paper on the irreversible Michaelis-Menten
system, Segel and Slemrod [32] introduced a heuristics to identify and compare
time scales, from which they derived appropriate “small parameters”; this laid
the foundation for many publications on quasi-steady state phenomena. As it
seems, all approaches in the literature to identify “small parameters” require
some intuition (or initial assumption) about the reaction network. In recent
work [15, 17] the authors proceeded differently, just assuming the existence of
a singular perturbation scenario. A mathematical motivation for this approach
was obtained from numerically oriented work, such as Lam and Goussis [23],
Duchêne and Rouchon [12].

6.1 Definition and basic properties

Looking at a system in Tikhonov standard form (5) shows that “small param-
eters” ε are in fact distinguished by properties of the system at ε = 0, such as
the existence of non-isolated stationary points.

Definition 2. A π∗ ∈ Π will be called a Tikhonov-Fenichel parameter value
(TFPV) for dimension r ( 1 ≤ r ≤ n− 1) of system (3) whenever the following
hold:

(i) The zero set V(h(·, π∗)) of x 7→ h(x , π∗) contains a local submanifold Z of
dimension r.



(ii) There is a point x0 ∈ Z such that rank D1h(x0, π
∗) = n− r and

Rn = Ker D1h(x, π∗)⊕ Im D1h(x, π∗), all x ∈ Z near x0.

(iii) The nonzero eigenvalues of D1h(x0, π
∗) have real part < 0.

If only conditions (i) and (ii) hold then we will call π∗ a weak Tikhonov-Fenichel
parameter value for dimension r.

A straightforward application of Theorem 1 shows:

Remark 1. Let π∗ ∈ Π be a Tikhonov-Fenichel parameter value for dimension r
of system (3), and let x0 ∈ V(h(·, π∗)) be such that the conditions in Definition
2 are satisfied. Then for any smooth curve γ : R → Π, δ 7→ γ(δ) in parameter
space with γ(0) = π∗, the system

ẋ = h(x, γ(δ)) = h(x, π∗) + δ ·D2h(x, π∗)γ′(0) +O(δ2) (12)

admits a Tikhonov-Fenichel reduction for δ → 0.

6.2 Structure of the TFPV set

We turn to the computation of TFPV’s for polynomial (or rational) vector fields;
at the same time we will clarify the structure of the Tikhonov-Fenichel parameter
value set. Thus we consider system (3) with a polynomial (or rational) right-hand
side, and we will also assume that the domain of interest is a Zariski-open subset
∆ of a semi-algebraic set in Rn+m. (All proofs, as well as further details, may
be found in [17].)

Given system (3) and (x, π)tr ∈ U ×Π, we denote by

χ(τ) = χx,π(τ) := τn + σn−1(x, π)τn−1 + · · ·+ σ1(x, π)τ + σ0(x, π) (13)

the characteristic polynomial of the Jacobian D1h(x, π), in the indeterminate τ .
The coefficients σi are polynomial (resp. rational) functions in x and π. We first
list a few technical facts.

Lemma 3. Let (x0, π
∗) ∈ ∆ be such that h(x0, π

∗) = 0, and let the character-
istic polynomial of D1h(x0, π

∗) be given by (13). Then π∗ ∈ Π is a Tikhonov-
Fenichel parameter value for dimension r, and x0 lies in the local slow manifold
of π∗, only if the following hold.

(i) One has σ0(x0, π
∗) = · · · = σr−1(x0, π

∗) = 0.
(ii) The polynomial

χ̃(τ) = τn−r + σn−1(x0, π
∗)τn−r−1 + · · ·+ σr(x0, π

∗)

has only zeros with negative real part.

Note that the subset of ∆ satisfying (i) and (ii) is defined by polynomial equa-
tions and inequalities (Routh-Hurwitz conditions for χ̃). The next auxiliary re-
sult is proven via Poincaré-Dulac normal form theory.



Lemma 4. Let (x0, π
∗) ∈ ∆ satisfy the conditions in Lemma 3. Then π∗ is a

TFPV for dimension r, and x0 lies in the local slow manifold of π∗, if and only if
the system ẋ = h(x, π∗) admits r functionally independent analytic (equivalently,
formal) first integrals in a neighborhood of x0. The lowest-degree terms of these
first integrals may be chosen as (linearly independent) linear forms in x− x0.

There remains the task to restate these conditions by polynomial equalities or
inequalities. Assuming h(x0, π

∗) = 0, consider the Taylor expansion with respect
to y := x− x0:

h(x, π∗) =
∑
k≥1

hk(x0, π
∗, y), (14)

with hk homogeneous of degree k in y, and in particular h1(x0, π
∗, y) = Dh(x0, π

∗)y.
Every hk is rational in (x0, π

∗), since h is rational. A formal power series

ψ(y) =
∑
j≥0

ψj(y), ψj homogeneous of degree j

is a first integral of h near y = 0 if and only if

Lh(ψ)(y) := Dψ(y)h(x0, π
∗, y) = 0,

equivalently (comparing homogeneous parts with respect to y) if

k∑
j=1

Lhj
(ψk−j) = 0 for all k.

Now denote by Sk the space of homogeneous polynomials of degree k in y. For
any d ≥ 1 define the linear map

L
(d)
h : S1 + · · ·+ Sd → S1 + · · ·+ Sd

by sending ψ = ψ1 + · · ·+ ψd to the truncation of Lh(ψ) at degree d.

Proposition 2. Let (x0, π
∗) ∈ ∆ satisfy the conditions in Lemma 3. There

exist r independent first integrals for ẋ = h(x, π∗) near x0 if and only if

dim KerL
(d)
h = ϑr,d :=

d∑
j=1

(
r + j − 1

j

)
for all d ≥ 1.

One knows that the kernel of L
(d)
h has dimension at most ϑr,d, hence the con-

ditions may be restated, in a manner similar to Lemma 3(i), via coefficients

of the characteristic polynomial of L
(d)
h . (The condition corresponding to (ii) is

automatically satisfied.) Due to Hilbert’s Basissatz, it is sufficient to check the
dimension condition for some suitable d = d∗, which, however, is not known
a priori. Hence we have the foundation for a pseudo-algorithm, rather than an
algorithm. The above observations, in conjunction with Tarski-Seidenberg, also
lead to a proof of the following structure theorem.

Theorem 2. The Tikhonov-Fenichel parameter values of (3) for dimension r
form a semialgebraic subset of Rm.



6.3 Algorithmic aspects

In this subsection we further restrict attention to systems (3) with polynomial
right-hand side; for rational systems matters are similar, but the presentation is
more cumbersome. Moreover we will only consider the setting of Lemma 3 (which
also corresponds to the d = 1 case of Proposition 2), and we will only discuss
the equations necessary for a TPFV (disregarding inequalities). This represents
the first step in the general procedure.

Remark 2. If π∗ ∈ Π is a Tikhonov-Fenichel parameter value for dimension r
(with 1 ≤ r ≤ n− 1) for system (3) then there exists x0 ∈ Rn with the following
properties.

(i) h(x0, π
∗) = 0;

(ii) the Jacobian D1h(x0, π
∗) has rank ≤ n−r, thus for any k > n−r, all k×k

minors vanish;
(iii) σr(x0, π

∗) 6= 0.

There is some redundancy in the statement of part (ii) (clearly k = n − r + 1
suffices), which is harmless and sometimes even welcome for computations in
small systems. To obtain TFPV’s, it is natural to employ elimination ideals (see
e.g. Cox, Little, O’Shea [8], pp. 24–26). Once more standard methods suffice for
the initial computations.

Proposition 3. Let π∗ ∈ Π be a TFPV of the polynomial system (3) for di-
mension r, 1 ≤ r ≤ n− 1. Let γ1, . . . , γ`r ∈ R[x, π] denote all the k × k minors
of D1h(x, π), n ≥ k > n− r, and let

I = 〈h1, . . . , hn, γ1, . . . , γ`r 〉 ⊆ R[x, π].

Then π∗ is a zero of the elimination ideal Iπ = I ∩ R[π].

Corollary 1. For the polynomial system (3), denote by

J = 〈h1, . . . , hn,det D1h(x, π)〉

the ideal generated by the entries of h and its Jacobian determinant. Then for
every r ≥ 1, a TFPV π∗ of system (3) for dimension r is a zero of Jπ := J∩R[π].

Example 3. Consider the irreversible Michaelis-Menten equation (2). The com-
ponents h1 and h2 and the Jacobian determinant d of h generate the ideal

I = 〈h1, h2, d〉,

in R[x, π]. With respect to lexicographic order, Singular finds the reduced
Groebner basis

g1(x, π) = e0k1k2,
g2(x, π) = k2c,
g3(x, π) = −k1se0 + (k1s+ k−1)c,

with the elimination ideal Iπ = I ∩ R[π] generated by g1. The condition g1 = 0
shows that the only possible “small parameters” in this system are e0, k1 and k2.
(One verifies that these actually yield Tikhonov-Fenichel reductions; furthermore
g2 and g3 provide conditions on the slow manifold.)



7 The ad hoc approach revisited

We return to ad hoc QSS assumptions for chemical species, see Section 4. One
motivation for this (as noted) lies in a possible different mathematical interpre-
tation of QSS. But the strategy is also useful for finding certain TFPV’s (keeping
in mind that knowing partial solutions may be helpful when solving large poly-
nomial systems). As noted above, constructing a differential equation with an
enforced invariant set from a given one will only be relevant for the original
when the set in question is “approximately invariant”. Essentially this obser-
vation goes back to Schauer and Heinrich [29], who employed it to determine
“small parameters” for the irreversible Michaelis-Menten system. In [27], the
notion was investigated further, and an infinitesimal criterion was obtained. Re-
cently in [7], the focus was on parameter values which force invariance (whence
small perturbations force “approximate invariance”). These parameter values
are algorithmically accessible for polynomial or rational vector fields.

7.1 Basics and approximation properties

Given the parameter-dependent system (3), we search for criteria to identify
parameter regions where certain sets (defined by pre-imposed QSS conditions
on certain species) are “approximately invariant” in the specific sense that a
suitable nearby parameter will assure invariance. The following basic observation
is a variant of [7], Prop. 4.1, with some details omitted.

Proposition 4. Let π∗ ∈ Rm such that the equations

ψ1(x, π∗) = · · · = ψn−r(x, π
∗) = 0

(with smooth functions and full rank) define a local r-dimensional submanifold
Yπ∗ of Rn which is invariant for the system (3) at π = π∗; moreover let y∗ ∈ Yπ∗ .
Then there exist a compact neighborhood K of y∗ and a neighborhood V of π∗

such that for every π ∈ V the set defined by the equations

ψ1(x, π) = · · · = ψn−r(x, π) = 0

contains an r-dimensional local submanifold Yπ which has nonempty compact
intersection with K. As π → π∗, solutions of (3) with initial value in Yπ ∩ K
converge to solutions of any associated system (7) with enforced invariant set
Yπ∗ .

We will call π∗ a critical parameter value with respect to ψ1, . . . , ψn−r if the
system of functions has full rank and defines an invariant r-dimensional local
submanifold near some point (y∗, π∗).

7.2 Polynomial systems and algorithmic aspects

The algorithmic-algebraic implementation of critical parameter values has not
been previously discussed. (The approach by Boulier et al. [4] to enforce certain



invariant manifolds, and to investigate the dynamics on these manifolds, has a
different starting point, and uses different arguments.) The outline presented
here (although based on arguments similar to section 6) may thus be considered
new. Specializing to systems with polynomial right hand side, and keeping the
maximal rank condition from Proposition 4, it is again natural to work in the
local setting, as in subsection 5.2, and once more one obtains algebraic conditions
on the parameters.

Proposition 5. Given system (3) with polynomial right-hand side, and poly-
nomials ψ1, . . . , ψn−r as in Proposition 4, a critical parameter value lies in the
ideal generated by all (n− r + 1)× (n− r + 1) minors of the Jacobians of

ψ1

...
ψn−r
Lh(ψj)

 , 1 ≤ j ≤ n− r.

Proof. We pass to the complexification, and choose y ∈ Yπ∗ . By the rank condi-
tion, ψ1, . . . , ψn−r locally define a variety of dimension r, and invariance, together
with the local version of Hilbert’s Nullstellensatz (see Shafarevich [33], Ch. III,
§3) implies the existence of rational µjk, regular at y, such that

Lh(ψj) =

n−r∑
k=1

µjkψk, 1 ≤ j ≤ n− r.

Differentiation of these identities with respect to x and using ψj(z) = 0 for z ∈
Yπ∗ shows that D1(Lh(ψj))(z, π

∗) is a linear combination of the D1(ψk)(z, π∗)
for all z ∈ Yπ∗ . Therefore the Jacobian has rank ≤ n− r.

Together with the n − r + 1 equations ψ1 = · · · = ψn−r = Lh(ψj) = 0, these
determinant conditions (of which there are at least r, so one has more than n
equations in total) again allow to employ elimination ideals, with elimination of
the variables. We discuss a small example to illustrate the procedure.

Example 4. We continue the example from section 4, searching for critical pa-
rameter values with respect to ψ = −k1e0s+ (k1s+ k−1)c, but we will consider
the reversible case here. Elimination of s and c from the ideal generated by
ψ, Lh(ψ) and their Jacobian determinant yields an elimination ideal with one
generator

g := e0k−1 · p,

with

p = (k1k2 + k−1k−2)2 + 2k1k−2((e0 + s0)k1k2 + k−1k−2) + k21k
2
−2(e0 − s0)2.

In view of nonnegativity conditions, this provides the following cases (and only
these).



– e0 = 0 (see Briggs-Haldane [6]);
– k−1 = 0; the invariant set is given here by s = 0;
– k1 = k−2 = 0 (slow formation of complex);
– k2 = k−2 = 0 (slow formation and degradation of product).

A comparison with [17], subsection 5.1 shows that (only) the second parameter
value is not a TFPV. Thus, generally there exist critical parameter values which
are not TFPV’s.

A straightforward algorithmic search for critical parameter values via Proposi-
tion 5 seems to be more involved than a search for TFPV’s. But a more detailed
analysis will yield further (more convenient) conditions. This is the subject of
ongoing work.

8 Conclusion

Readers with expertise in algorithmic algebra will have noticed that we did
not discuss algorithmic-algebraic aspects in any depth or detail. Indeed, for a
complete analysis of the relatively low-dimensional standard systems (involving
relatively few parameters) from biochemistry that were discussed in [15–17], a
combination of standard algorithms and case-by-case inspection of intermediate
results turned out to be sufficient.

The principal purpose of the present note was to present and describe the ba-
sic analytical results which provide a natural foundation for algorithmic-algebraic
work in the case of reaction equations. Indeed for this class all analytical condi-
tions can be transferred to (semi-) algebraic ones, and the pertinent results of
[15–17] were outlined here.

The (semi-) algebraic conditions we gave are quite likely not stated in an
optimal manner, and it may be advisable for further analysis to use more special
properties of reaction systems in a general discussion. (We essentially only re-
quired polynomiality of the systems and certain positivity conditions.) Certainly
a general approach will take a substantially bigger effort to become feasible, and
much work remains to be done. The authors hope that the present paper will
provide a stimulus for such work.

References

1. H. Anai, K. Horimoto, T. Kutsia: Algebraic biology. Proceedings of the 2nd Inter-
national Conference (AB 2007) held at the Castle of Hagenberg, July 24, 2007.
Lecture Notes in Computer Science 4545, Springer-Verlag, Berlin (2007).

2. F. Boulier, F. Lemaire, A. Sedoglavic, A. Ürgüplü: Towards an Automated Re-
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