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Abstract. Polynomial vector fields which admit a prescribed Darboux integrat-
ing factor are quite well-understood when the geometry of the underlying curve is
nondegenerate. In the general setting morphisms of the affine plane may remove
degeneracies of the curve, and thus allow more structural insight. In the present
paper we establish some properties of integrating factors subjected to morphisms,
and we discuss in detail one particular class of morphisms related to finite reflection
groups. The results indicate that degeneracies for the underlying curve generally
impose additional restrictions on vector fields admitting a given integrating factor.

1. Introduction and preliminaries

This paper continues, and to some extent concludes, our work on inverse problems
in the Darboux theory of integrability in the affine plane. The inverse problem for
Darboux integrating factors is to characterize and determine all polynomial vector
fields which admit a prescribed integrating factor. The inverse problem for invariant
algebraic curves (which is a part of the former) asks for all polynomial vector fields
which admit a given collection of algebraic curves as invariant sets.

Inverse problems in the Darboux theory of integrability are of interest because their
solution is necessary to identify and classify the vector fields admitting a Darboux inte-
grating factor. Moreover, such inverse problems have useful applications. For instance,
Christopher [1] used an inverse problem to produce polynomial vector fields with alge-
braic limit cycles, and in [6] solutions of inverse problems were employed to determine
vector fields of small degree with a prescribed limit cycle configuration.

In a nondegenerate geometric setting both inverse problems were essentially resolved
in [2] and [3]; see also earlier work in [10], [5], [7]. Moreover, the inverse problem for
curves is generally well-understood and algorithmically accessible; see [2].

The main result of [3] states that the linear space of vector fields admitting a given
integrating factor is finite dimensional modulo a subspace of “trivial” vector fields,
provided the underlying geometry is nondegenerate. This finiteness result was extended
to arbitrary geometry in [4] with the help of sigma processes, a particular class of
morphisms of the affine plane.
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In the present paper we will consider general morphisms of the affine plane and
discuss the behavior of invariant curves and integrating factors subject to morphisms.

Assume that irreducible, pairwise relatively prime polynomials f1, . . . , fr ∈ C[x, y]
are given, and abbreviate f = f1 · · · fr. We will consider complex polynomial vector
fields

X = P
∂

∂x
+ Q

∂

∂y
,

sometimes briefly written as X = (P,Q)t. Our principal focus will be on the in-
verse problem for Darboux integrating factors. Thus fix nonzero complex constants
d1, . . . , dr, and consider all vector fields admitting the Darboux integrating factor

(1)
(
fd1

1 · · · fdr

r

)
−1

.

It is known (cf. [7], [2], [10]) that for any such vector field the complex zero set of f is
invariant; equivalently there is a polynomial L (called the cofactor of f) such that

(2) Xf = L · f.

The respective zero sets of f and fi in C2 will be denoted by C and Ci. As usual, we
call a point z with f(z) = fx(z) = fy(z) = 0 a singular point of C, and similarly for
the Ci. The Hamiltonian vector field of f is defined by

Xf = −fy
∂

∂x
+ fx

∂

∂y
.

Following and slightly modifying [7], two generic nondegeneracy conditions were intro-
duced in [3]:

(ND1) Each Ci is nonsingular.
(ND2) All singular points of C have multiplicity one.

Thus when two irreducible components of C intersect, they intersect transversely, and
no more than two irreducible components intersect at any point.

The vector fields admitting the integrating factor (1) form a linear space F . We first
exhibit some of its elements; cf. [10] and [3]. Given an arbitrary polynomial g, define

(3) Zg = Z(d1,...,dr)
g

to be the Hamiltonian vector field of g/
(
fd1−1
1 · · · fdr−1

r

)
. Then

(4) fd1

1 · · · fdr

r · Z(d1,...,dr)
g = fXg −

r∑

i=1

(di − 1)g
f

fi

Xfi
∈ F

is easily verified. Note that the last expression indeed defines a polynomial vector field,
and that the property of admitting the integrating factor (1) does not depend on the
irreducibility or the relative primeness of the fi. The vector fields of this particular
type will be called trivial. They form a subspace F0 of F . In presence of the geometric
nondegeneracy conditions (ND1) and (ND2) we showed in [3] that the codimension
of F0 in F is finite. With the help of sigma processes this result was extended to
the general case in [4]. Nontrivial vector fields may exist; for instance in the case
d1 = · · · = dr = 1 all vector fields of the form

(5) X =
∑

αi
f

fi

Xfi
+ f · Xh
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with constants αi and an arbitrary polynomial h admit the integrating factor f−1. For
nondegenerate geometry one knows that there are no others; see [3].

Generally, it seems desirable to obtain better insight into the structure of vector fields
with a given integrating factor when the underlying curves have degenerate singular
points. As will be shown in this article, morphims can be useful for this purpose.
In Section 2 we record some basic technical results and properties. In Section 3 we
discuss a particular class of morphisms related to reflection groups in the plane, and
as an application we obtain a class of examples with degenerate irreducible underlying
curves. These examples show that degenerate geometry may impose obstructions to the
existence of nontrivial vector fields with prescribed Darboux integrating factor. Indeed,
after a transformation to remove degeneracies, the quotient space F/F0 will generally
have higher dimension than in the degenerate setting.

2. Morphisms

Morphisms of the affine plane may transform certain degenerate curve configurations
into nondegenerate ones (in the sense that (ND1) and (ND2) hold) or at least into
less degenerate settings. This observation opens an approach to solutions of inverse
problems with degenerate geometry. Sigma processes were employed in Section 5 of
[2] for the inverse problem for curves, and in Section 4 of [3] to investigate the inverse
problem for integrating factors. Here we discuss general morphisms of the affine plane
and the behavior of invariant curves and integrating factors subject to morphisms.

Consider a polynomial map

(6) Φ : C
2 → C

2, detDΦ 6= 0,

thus the image of Φ is dense in the plane (see e.g. Shafarevich [8]) and we have local
analytic invertibility on an open and dense set. The comorphism of Φ assigns to every
polynomial g ∈ C[x, y] the polynomial

(7) ĝ := g ◦ Φ,

and to every polynomial vector field X = P ∂/∂x + Q∂/∂y the rational vector field

(8) Φ∗(X) = DΦ(x, y)−1
(

P (Φ(x, y))
Q (Φ(x, y))

)

as well as the polynomial vector field

(9) X̂ = det(DΦ(x, y)) · Φ∗(X).

Note that these definitions also are applicable to analytic functions and vector fields.

Proposition 1. Let g = g1 · · · gr be a polynomial, with irreducible factors gi, and X a
polynomial vector field on C2.

(a) The zero set of g is invariant for X if and only if the zero set of ĝ is invariant

for X̂:

X(g) = K · g ⇔ X̂(ĝ) = K̂ · ĝ with K̂ := det DΦ · (K ◦ Φ).

(b) Given constants d1, . . . , dr, the vector field X admits the integrating factor

g−d1

1 · · · g−dr

r if and only if the vector field X̂ admits the integrating factor

ĝ−d1

1 · · · ĝ−dr

r = (g−d1

1 · · · g−dr

r ) ◦ Φ.
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Proof. Part (a) is a direct consequence of the identity

Φ∗(X) (g ◦ Φ) = (X(g)) ◦ Φ.

For part (b) see e.g. [10], Corollary 1.3. �

Some elementary properties of the transformations will be collected next. Proofs are
included for the sake of completeness.

Lemma 2. Let Φ be as in (6).

(a) For any analytic f one has the identity

X̂f = X
f̂
.

(b) Given polynomials f1, . . . , fr and g, and the vector field defined in (3), one has
the identity

f̂d1

1 · · · f̂dr

r Zĝ = ̂fd1

1 · · · fdr
r Zg.

Proof. Note that

Xf (x, y) = J · Df(x, y)t, with J :=

(
0 −1
1 0

)

and .t denotes transposition. Using the identity

J · At = A∗ · J

for arbitrary matrices A, with A∗ the adjoint of A, and

Df̂(x, y)t = DΦ(x, y)t · Df(x, y)t,

we find

X
f̂
(x, y) = det DΦ(x, y)DΦ(x, y)−1 · J · Df(Φ(x, y))t

as asserted in part (a). Part (b) is now immediate from the definitions. �

Remark 3. (a) Proposition 1 and Lemma 2 in particular apply to automorphisms
of the affine plane. Mutatis mutandis, results about vector fields that admit in-
variant curves or Darboux integrating factors are unaffected by automorphisms.
This fact has been often tacitly used, such as in [3]. But automorphisms will not
remove or create degeneracies, and therefore are of less interest in the present
paper.

(b) To apply Proposition 1 and Lemma 2, one may start with a morphism Φ that
turns a polynomial f , with degenerate geometry of the underlying curve C, to a
polynomial f̂ with nondegenerate, or less degenerate, geometry of the underly-
ing curve. For the transformed polynomial it may be possible to determine all

vector fields that admit f̂ , resp. a particular Darboux integrating factor. There
remains the problem to decide under what circumstances such a vector field
Y is of the type X̂ as given in (9). Generally this decision poses a nontrivial
problem, but in the next section we consider a class of morphisms for which it
is easily manageable.

(c) In Lemma 2(b), some f̂i may be reducible even if the fi are irreducible. Note

that the expression defining f̂d1

1 · · · f̂dr

r Zĝ will change its appearance when it is

rewritten in the form (4) with irreducible factors.
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To mention a substantial application of morphisms, in [4] sigma processes (and the
Tarski-Seidenberg theorem) were used to extend the main result of [3] from nondegen-
erate geometry to the general case and prove finite dimension of F/F0. The critical
argument in [4] is concerned with the behavior of trivial vector fields under transforma-
tion. On the other hand, for sigma processes it seems hard to understand the behavior
of nontrivial vector fields under transformation, and they do not seem well-suited for
computations in actual examples. As a counterpoint, we will therefore present a class of
morphisms which pose few computational problems, and provide easy access to relevant
applications.

3. Invariants of reflection groups

In this section we discuss morphisms related to reflection groups, which allow the
investigation of certain complicated geometric settings with little computational effort.
In particular, the problem to decide whether Y = X̂ for some X (see Remark 3(b)) is
easily accessible.

Recall that a reflection of the plane (in the sense of Chevalley) is a linear transforma-
tion with one eigenvalue 1 and one eigenvalue 6= 1; see Sturmfels [9]. We are interested
in finite groups generated by reflections, hence the second eigenvalue is necessarily a
nontrivial root ζ of unity. Up to an invertible linear transformation, such a reflection
is given by

(10) T =

(
ζ 0
0 1

)
.

Lemma 4. Let T be a reflection of the plane, and let the nontrivial eigenvalue ζ be a
primitive mth root of unity. Then:

(a) T acts on polynomial functions via f 7→ f◦T . The space of polynomial functions
is a direct sum of eigenspaces for this action, with eigenvalues 1, ζ, . . . , ζm−1.

(b) T acts on polynomial vector fields via X 7→ T−1X ◦T . The space of polynomial
vector fields is a direct sum of eigenspaces for this action, with eigenvalues
1, ζ, . . . , ζm−1.

(c) If f is a polynomial such that f ◦ T = ζrf then T−1Xf ◦ T = ζr−1Xf .

Proof. Parts (a) and (b) are immediate when T is given in the form (10), and this is
sufficient for the proof. Part (c) follows from Lemma 2 (a) with Φ = T . �

Let G be a finite reflection group in the plane. A characteristic property of reflec-
tion groups is that their invariant algebra admits an algebraically independent set of
generators (Chevalley’s theorem; see e.g. Sturmfels [9]). Thus in in the planar case
there are two algebraically independent polynomials which generate the invariant alge-
bra of G. Now consider a morphism Φ whose components are such generators for the
invariant algebra. For instance, if G is generated by T as given in (10) then one may
let Φ(x, y) = (xm, y).

In the following we abbreviate z := (x, y)t. Since Φ is built from invariants of G, we
have

(11) Φ(Tz) = Φ(z), DΦ(Tz)T = DΦ(z), for all T ∈ G.

Lemma 5. Let G and Φ be as above. Then the following hold:

(a) Given a polynomial h, there exists a polynomial f such that h = f̂ if and only
if h ◦ T = h for all T ∈ G.
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(b) Given a vector field Y , there exists a vector field X such that Y = X̂ if and
only if

T−1Y ◦ T = (detT )−1 · Y,

for all T ∈ G.

(c) If f is an irreducible polynomial such that g := f̂ is reducible, thus g = g1 · · · gs

with irreducible gi, then s divides the order m of G and the G-orbit of g1 equals
{g1, . . . , gs}, up to multiplication by nonzero constants.

Proof. (a) If h = f ◦ Φ then for all z one has

h(Tz) = f(Φ(Tz)) = f(Φ(z)) = h(z),

whence h ◦ T = h, for all T ∈ G. Conversely, h ◦ T = h for all T means that h is
invariant for G, hence by construction of Φ there is an f such that h = f ◦ Φ. One
direction of part (b) is obvious from (9) for the morphism T . For the converse direction
assume that the identity holds and set

V (z) := (det DΦ(z))−1 DΦ(z)Y (z).

A direct computation shows

T−1V ◦ T (z) = T−1V (z),

for all T ∈ G and all z. Therefore the entries of V are G-invariant and there is a vector
field X such that V = X ◦ Φ. As for part (c), note that composition with T leaves g
unchanged, and thus permutes the irreducible factors (up to nonzero constants). The
product q of the elements in the orbit of (e.g.) g1 satisfies q ◦ T = q, and therefore
q = p ◦Φ for some p. Moreover, p divides f because q divides g. Since f is irreducible,
p must be a constant multiple of f , whence the orbit of g1 contains all irreducible
factors. �

Remark 6. One may use Lemma 5(c) to construct examples. Given a reflection
group G, let p be an irreducible polynomial such that its G-orbit contains |G| pairwise
relatively prime polynomials p = g1, g2, . . . , gm. Then g =

∏
gi is G-invariant by

construction, hence g = f ◦ φ for some polynomial f . Since the orbit of p has length
|G|, f must be irreducible. If g satisfies the nondegeneracy conditions (ND1) and
(ND2), Proposition 7 below is applicable for f .

The next result indicates that degeneracies for the underlying curves may restrict
the possible nontrivial vector fields with a given integrating factor.

Proposition 7. Let G and Φ be as above, and let f be an irreducible polynomial such

that f̂ = g = g1 · · · gs is reducible. Moreover, assume that g satisfies the nondegeneracy
conditions (ND1) and (ND2). Then:

(a) The vector field X admits the integrating factor f−1 if and only if

X = α · Xf + f · X̃ (α ∈ C, div X̃ = 0).

(b) Given an integer d > 1, the vector field X admits the integrating factor f−d if
and only if

X = fd

(
α

f
· Xf + Z(d)

q

)

for some α ∈ C and some polynomial q.
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Proof. By [3], Theorem 3, a vector field Y admits the integrating factor g−1 if and only
if

Y =
∑

i

αi
g

gi

· Xgi
+ g · Xh

with complex constants αi and some polynomial h. The αi and h are uniquely deter-
mined in this representation. (As for uniqueness, consider the case Y = 0 and check
prime factors.) Now one verifies

T−1Y ◦ T =
∑

i

απT (i)
g

gi

· Xgi
+ g · Xh◦T

for all T ∈ G, where πT is a permutation of the indices which is defined by gπT (i)◦T = gi.

Evaluating the condition T−1Y ◦T = (detT )−1 ·Y from Lemma 5, using uniqueness
and Lemma 2, shows that h ◦ T = h as well as απT (i) = αi for all i, for every T ∈ G.
Since the G-orbit of g1 contains all prime factors of g, one finds α1 = · · · = αs. The
assertion of part (a) now follows from Lemma 2. Part (b) is a direct consequence of
(a) and the reduction principle given in [3], Lemma 2 and Lemma 6. �

Remark 8. (a) The statement preceding the Proposition is to be understood as

follows. Upon transfer to from f to f̂ = g via Φ one obtains linear spaces F̂ and
F̂0. While the quotient space F/F0 is one-dimensional, F̂/F̂0 has dimension
s > 1 (see [3]). In this sense, removing the degeneracy yields more nontrivial
solutions to the inverse problem.

(b) Given a constant d which is not a positive integer, vector fields admitting the
integrating factor g−d may not always be of the form (3), although [3] indicates
that exceptions are rare. But if a vector field Y admitting g−d is of the form

Y = gd · Z
(d)
h

for some polynomial h, then there exists a vector field X such that Y = X̂ if
and only if

X = fd · Z(d)
p

for some polynomial p. To verify this, write h =
∑

hℓ with hℓ ◦ T = ζℓhℓ and
note that

T−1Zhℓ
◦ T = ζℓ−1Zhℓ

by Lemma 2(a). Therefore one may conclude F = F0 if the corresponding
property holds after transformation by Φ.

(c) One can employ the argument in the proof to construct all vector fields admit-
ting f : Let

W =
∑

i

ai
g

gi

· Xgi

with the property that aπT (i) ◦T = ai for all i. Then T−1W ◦T = (detT )−1 ·W

holds for all T ∈ G, and therefore W = Ẑ for some Z. If one chooses a1

that is not G-invariant then one will obtain vector fields admitting f which
are not contained in V0(= V1) (see [2] for notation and details). This simple
direct construction of all nontrivial vector fields admitting f is also a particular
feature of the morphisms related to reflection groups.



8 J. LLIBRE, C. PANTAZI AND S. WALCHER

Example 1. Given a nonconstant polynomial q in one variable, with simple roots
v1, . . . , vm that are all different from 0, consider

f = y2 − x · q(x)2.

The polynomial f is irreducible, e.g. by Eisenstein’s criterion. Now let

Φ : C
2 → C

2,

(
x
y

)
7→

(
x2

y

)
.

Then

g(x, y) := f̂(x, y) =
(
y − x · q(x2)

)
·
(
y + x · q(x2)

)
=: g1 · g2

is reducible and the nondegeneracy conditions (ND1), (ND2) apply. This example fits
into the general scheme of Remark 6 with the group G generated by the reflection T
about the y-axis, and p = g1.

We first discuss vector fields admitting f . The singular points are precisely the
zi = (vi, 0), 1 ≤ i ≤ m, and from their Hessian we see that all these points have
multiplicity 1. Hence the quotient space V/V0 has dimension m, according to [2],
Theorem 8. The vector field

W := −xg2 · Xg1
+ xg1 · Xg2

admits g and satisfies T−1W ◦T = −W , hence is of the form W = Ẑ for some Z. (The
construction uses Remark 8(b) with a1 = −x.) A straightforward computation shows

Z = 2x · q(x)∂/∂x + y(2x · q′(x) + q(x))∂/∂y.

The cofactor of Z is equal to 4x ·q′(x)+2q(x) and hence does not vanish at any singular
point. Now the argument from [2], Theorem 8 and its proof shows that

Vf = V0
f + {b · Z; b ∈ C[x, y]}.

Let us turn to integrating factors. According to Proposition 7, for any positive
integer d the vector field X admits the integrating factor f−d if and only if

X = fd ·

(
α

f
· Xf + Z(d)

q

)

with some constant α and some polynomial q.

Finally, given a constant d which is not a positive integer, the vector field X admits
the integrating factor f−d if and only if

X = fd · Z(d)
p

for some polynomial p. To see this we note that a vector field Y admits the integrating
factor g−d if and only if

Y = gd · Z
(d)
h

for some polynomial h, due to Theorem 24(b) of [3]. Remark 8 now shows that h is
T -invariant.

For the purpose of illustration we consider a concrete example, with
q(x) = (1 − x)(4 − x).

Figure 1 shows the zero set of the reducible polynomial g on the left, and the zero
set of the irreducible polynomial f on the right, which is just the image of the former
with respect to Φ.
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g = (y − x(1 − x2)(4 − x2))(y + x(1 − x2)(4 − x2)). f = y2 − x(1 − x)2(4 − x)2.

Figure 1. The zero sets of the reducible polynomial g and the irre-
ducible polynomial f .

Example 2. Let q1, q2 be nonconstant polynomials in one variable with q1(0) 6= 0,
q2(0) 6= 0, and

p = y + q2(y
2) − xq1(x

2).

Moreover let G be the four-element group generated by the reflections T1 about the
y-axis and T2 about the x-axis. According to Lemma 5(c) and Remark 6, let g1 = p,
moreover

g2 = y + q2(y
2) + xq1(x

2), g3 = −y + q2(y
2)− xq1(x

2), g4 = −y + q2(y
2) + xq1(x

2),

and define
g = g1 · · · g4.

With

Φ :

(
x
y

)
7→

(
x2

y2

)

one obtains the irreducible polynomial

f = (y − q2(y)2)2 − xq1(x
2)(y + q2(y)2) + x2q1(x)4,

with g = f ◦Φ. Now fix q1 and assume that it has only simple roots, hence x 7→ x·q1(x
2)

has only simple roots. Write q2 = v+β with a constant β 6= 0 and v(0) = 0. Then there
are only finitely many values of β such that the curve {p = 0} is not smooth, because
the gradient of p has only finitely many zeros. Similarly, there are only finitely many
values of β such that y 7→ q2(y

2) or y 7→ y+q2(y
2) or y 7→ y−q2(y

2) has a multiple root.
Excluding these exceptional values, one verifies by straightforward computation: The
only singular points on the curve {g = 0} are intersection points of two curves {gi = 0}.
There are no triple intersections, and the intersections are transversal. Thus, with the
exception of finitely many values for β, Proposition 7 is applicable, and we have found,
in a quite complicated-looking geometric setting, all the vector fields admitting the
integrating factor f−d, with d a positive integer. The case when d is not a positive
integer depends on more specific properties of the reducible polynomial g.

As for vector fields admitting f , by Remark 8(b) we define

W1 :=
xg

g1
· Xg1

−
xg

g2
· Xg2

+
xg

g3
· Xg3

−
xg

g4
· Xg4

,
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and
W2 :=

yg

g1
· Xg1

+
yg

g2
· Xg2

−
yg

g3
· Xg3

−
yg

g4
· Xg4

,

with a1 = x resp. a1 = y. Then Wi = Ẑi for suitable Zi, and an elementary verification
similar to the one in Example 1 shows that V is spanned by V0 and polynomial multiples
of the Zi.

Again we consider a concrete example for illustration, with q1(x) = 1−x and q2(y) =
y − 2.

The graph of g1g2g3g4 = g = 0. The graph of f = 0.

Figure 2. The zero set of the reducible polynomial g and the irre-
ducible polynomial f . Note that g(x, y) = f̂(x, y).

Figure 2 shows the zero set of the reducible polynomial g on the left, and the zero
set of the irreducible polynomial f on the right, which is just the image of the former
with respect to Φ.
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