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Abstract

We determine locally minimizing functions that are invariant with
respect to the action of a finite linear group. This resolves a problem
which is inverse to one discussed in a seminal paper by Abud and
Sartori, and occurs naturally in various physical applications, such
as elasticity theory and phase transitions. A general existence result
reduces the local problem to elementary computations. Some results
are extended to the compact case, and some examples and applications
are given.

1 Introduction and overview

Minima of functions that are invariant under a (compact) group action have
been in the focus of theoretical as well as applied physics for several decades.
In particular, symmetry breaking at critical points was identified as a cru-
cial mechanism to explain a number of physical phenomena. Several fun-
damental contributions to the underlying mathematical theory culminated
in papers by Michel and Radicati [12], Michel [13], Michel and Zhilinskii
[14], and Abud and Sartori [1, 2] (the latter will be our basic reference).
Abud and Sartori [2] passed to the orbit space (realized as a semi-algebraic
variety via the Hilbert map) and resolved the problem of finding minima
on strata (which are submanifolds) via the Lagrange multiplier method. In
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the present paper, we will discuss the inverse problem; viz. to position a
minimum of a G-invariant function at some prescribed point. This inverse
problem is relevant, for instance, in the modelling and analysis of strain-
energy density functions in elasticity theory (see e.g. Coleman and Noll [5],
Smith and Rivlin [17])). For readers who are less familiar with this area of
research, we give a brief account of the relevant physical and mathematical
background.
For materials which are perfectly elastic (hyperelastic), at a given temper-
ature, the strain-energy density is a smooth function over the set of all
deformation gradients or rather over all Cauchy-Green strain tensors. The
latter are symmetric and positive definite. Critical points of this function
correspond to stress-free configurations of the material. At (local) minima,
these are stable in the sense that typically lower energies are preferred. If
the material possesses symmetry, i.e. the underlying crystal lattice is invari-
ant under certain symmetry transformations, the strain-energy function is
invariant under the action of the corresponding symmetry group on the set
of all Cauchy-Green strain tensors by conjugacy. This imposes restrictions
on the shape of the strain-energy function depending on the type of sym-
metry. For example, the strain energy density is constant along any orbit
of the symmetry group. In particular, all the points of the group orbit of
a minimum correspond to energetically equivalent stress-free configurations
of the material. The smaller the isotropy of a minimum is, the bigger is
the corresponding orbit of the symmetry group, i.e., the more energetically
equivalent stress-free configurations of the material exist. The symmetry
group for an isotropic elastic material is the full rotation group SO(3), oth-
erwise the material is called anisotropic.
Certain materials can undergo phase transformations. For instance, so-
called martensitic phase transformations have been observed in various met-
als, alloys and even ceramics. They are diffusionless, solid-to-solid phase
transformations under applied stresses and/or temperature changes, accom-
panied by the development of a rich microstructure which might be explained
by a change in crystal symmetry during the transition. Martensitic phase
transformations can be irreversible, as seen in steels upon quenching, or
they can be reversible, such as those observed in shape-memory alloys (cf.
Bhattacharya et al. [3]). Generally, under stress free conditions, the highest
symmetry of the crystal structure, referred to as the austenite phase, is pre-
ferred by these alloys at higher temperatures. At lower temperatures, crystal
structures with a relatively lower symmetry, referred to as the martensite
phases, have lower energy and are preferred. So, the transition from austen-
ite to martensite phases as the temperature decreases through the transition
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temperature, is accompanied by a loss of symmetry. At a martensite phase,
the micro- as well as the macrostructure of the material is easily deformed
by loads. Upon reheating, the deformations disappear. In the framework of
thermoelasticity, such phase transitions are frequently described as changes
in the internal energy or (Helmholtz) free energy density (cf. Landau [11]).
These are functions of the strain as well as of thermodynamic variables such
as temperature. So, one might think of them as being parameter-dependent
strain-energy functions. At any value of the temperature, they possess min-
ima for each of the stable phases. Since martensite phases do not have
maximal isotropy, they are never unique. Again, the inverse problem ad-
dressed in the present paper is relevant here. Moreover, questions concerning
parameter-dependence of the minima such as symmetry breaking arise (cf.
Falk and Konopka [7] and Zimmer [21]).

The plan of the present paper is as follows. Given an action of a finite lin-
ear group G on Rn, we first discuss the problem to determine a G-invariant
(smooth) function ψ that admits a minimum at a prescribed point z (and
hence at its whole orbit), and we solve this problem for locally minimizing
functions. As will be shown in Section 2 there actually exist such functions
which are robust with respect to any smooth (not necessarily G-invariant)
small perturbations, since their Hessians at the local minimum positions are
positive definite. (By “robustness” within a given function space we mean
here that any small perturbation of the given function will admit a minimum
nearby.) Proposition 1 opens an elementary path to a systematic determi-
nation of all functions that have the required properties.
In Section 3 we proceed to discuss parameter-dependent G-invariant func-
tions and symmetry breaking. We do not specifically consider physically
relevant parameters, i.e., we ignore physical restrictions for the parameter
dependence. Rather, our aim is two-fold. On the one hand, we consider
critical points emanating smoothly from a point of highest symmetry, and
discuss possible geometric restrictions on that curve of critical points due to
the group invariance (direct approach). On the other hand, we consider the
restriction which a given curve of critical points generally imposes on the
parameter-dependence of the underlying G-invariant function (complemen-
tary approach).
The final Section 4 is motivated by the modelling and analysis of phase tran-
sitions in crystals, particularly shape-memory alloys. We discuss problems
considered by Falk and Konopka [7] and Zimmer [21], who presented some
partial solutions. Here we will show that, and how, all robust strain-energy
functions which have a local minimum at a given position for prescribed

3



isotropy can be computed, and give explicit examples. There seems to be
no such comprehensive discussion in the literature. Moreover we discuss
parameter-dependent functions and symmetry-breaking phenomena for the
underlying group action.
In this paper we focus on finite groups and, in the spirit of a tutorial, mostly
give rather detailed proofs and record elementary steps in computations for
that case. In Section 2 generalizations to compact groups are mentioned
briefly, with sketches of proofs. The main results of Section 3 are stated and
proved for compact linear group actions, but in their geometric interpreta-
tion and in examples we consider finite groups only.

2 Locally minimizing functions

We consider a finite group G ⊆ GL(n,R) acting on Rn; we may and will
assume that G is a subgroup of the orthogonal group O(n,R). Given a point
z ∈ Rn, our objective is to find group-invariant functions (of sufficiently
high differentiability) which admit a local minimum at z, but no other local
minima in some neighborhood of z. By invariance, there necessarily exist
local minima at all points of the orbit G · z.
It is natural to construct such minimizing functions from a Hilbert basis of
the polynomial invariant ring; a well-known theorem by G.W. Schwarz [16]
implies that by this approach one obtains all smooth minimizing functions
(see also Rumberger [15] for the finitely differentiable case). But a priori
it seems not obvious that there is a (uniform) degree bound for the Taylor
expansion of a group-invariant function that guarantees a minimum for any
group-invariant higher-order perturbation. We will show with an elementary
argument that there exist group-invariant minimizing functions which are
locally robust with respect to arbitrary (not necessarily group-invariant)
perturbations, and that Taylor expansion up to degree two suffices. We
start with an auxiliary result.

Lemma 1. Let G be a finite subgroup of GL(n,R). Given z ∈ Rn, there
exists a G-invariant C∞ function ψ which has local and global minima at
the points of the orbit G · z, and there is a neighborhood of the orbit which
contains no other local minima. Moreover, the Hessian of ψ at every point
of G · z is positive definite; thus the minima are robust with respect to C2

perturbations.

Proof. We denote by ‖ · ‖ the Euclidean norm, and for r > 0 we let Kr(a)
be the open ball with center a and radius r. Given z ∈ Rn, denote by Gz
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the isotropy subgroup of z.
(i) There exists ρ > 0 (we may assume ρ < 1) such that

Gx ⊆ Gz for all x ∈ Kρ(z) (1)

and
Kρ(Tz) ∩Kρ(Sz) = ∅ whenever T, S ∈ G, Tz 6= Sz. (2)

Here (2) is obvious from the finiteness of the orbit. To prove (1), assume
that there is a sequence (x`) converging to z and for every ` there exists
T` ∈ Gx` \ Gz. Since G is finite, there is an S ∈ G such that T` = S for
infinitely many `. Taking the limit shows Sz = z; a contradiction.
(ii) There exists a C∞ function σ : R→ R such that

σ(t) = 1− t, t < ρ2/2,
σ(t) = 0, t > ρ2,

and σ′(t) < 0 for all t < ρ2. Define

µ(x) := σ(‖x− z‖2) (3)

and note that for all T ∈ G one has

µ(Tx) = σ(‖Tx− z‖2) = σ(‖x− T−1z‖2) (4)

by orthogonality; in particular µ(Rx) = µ(x) for all R ∈ Gz.
(iii) Now define

ψ(x) := − 1

|Gz|
∑
T∈G

µ(Tx). (5)

Then ψ is a G-invariant C∞ function (by construction) with the following
properties:

• ψ(x) = 0 for all x 6∈
⋃
T∈GKρ(Tz).

• If Sy ∈ Kρ(z) then

ψ(y) = − 1

|Gz|
∑
R∈Gz

µ(RSy) = −µ(Sy).

• There are robust local minima at the points of the orbit G ·z, and only
there.

• For all x ∈ Rn \ G · z one has 0 ≥ φ(x) > −1; therefore the points of
G · z are also global minima.
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The first and last of these are immediate. For the second one may assume
S = E, due to G-invariance. Then Ty ∈ Kρ(z) if and only if T ∈ Gz, due
to (2), then (4) shows the assertion. To prove the third claim, by invariance
it suffices to consider x ∈ Kρ(z). For these x one finds

ψ(x) = −µ(x) = −σ(‖x− z‖2), Dψ(x) = −2σ′(‖x− z‖2) · (x− z)tr .

Therefore z is the only critical point in Kρ(z), and D2ψ(z) = 2E is positive
definite.

There is an immediate application to constructive polynomial approxi-
mation.

Proposition 1. Let G be a finite subgroup of GL(n,R), with a generator
system γ1, . . . , γs for the algebra of G-invariant polynomials, denote by Γ :=
(γ1, . . . , γs)

tr the corresponding Hilbert map, and let z ∈ Rn.

(a) There exist smooth, G-invariant locally minimizing functions with posi-
tive definite Hessian at z.

(b) The ansatz

θ =
∑
i

µi (γi − γi(z)) +
∑
i,j

νij (γi − γi(z)) (γj − γj(z)) (6)

with real parameters µi and νij(= νji) will yield all such smooth locally
minimizing functions with θ(z) = 0, modulo terms of order > 2 in x−z.

(c) The parameter sets (µi, νjk) which determine a minimum with positive
definite Hessian form a nonempty semialgebraic subset of Rs × R(s,s).

Proof. Part (a) follows from Lemma 1. Concerning part (b), let the smooth
function ψ admit a minimum with positive definite Hessian at z. Due to
Schwarz [16] one has

ψ = η(γ1 − γ1(z), . . . , γs − γs(z))

with a smooth function η in s variables. With wi = γi(z), Taylor expansion
yields

η(y)− η(w) =
∑
i

µi (yi − wi) +
∑
i,j

νij (yi − wi) (yj − wj) + R̃(y).
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Given a compact and convex neighborhood K̃ of w there is a positive con-
stant M such that ‖R̃(y)‖ ≤M ·‖y−w‖3 for all y in K̃. Let K be a compact
and convex neighborhood of z so that Γ(K) ⊆ K̃, and let L > 0 so that
‖Γ(x)−Γ(x∗)‖ ≤ L‖x− x∗‖ for all x, x∗ ∈ K. Thus, with ψ(z) = 0 one has

ψ =
∑
i

µi (γi − γi(z)) +
∑
i,j

νij (γi − γi(z)) (γj − γj(z)) +R

with ‖R(x)‖ ≤ ML3‖x − z‖3 for all x ∈ K. This shows that the gradient
and the Hessian of R vanish at z.
To prove part (c), note that the condition

0 = gradψ(z) =
∑

µi gradγi(z) (7)

defines a system of linear equations for the µi. Likewise, the entries of
the Hessian at z are linear in the coefficients µi and νjk, so the Hurwitz
conditions on positivity of all principal minors yield polynomial inequalities.
These equations and inequalities define a semi-algebraic set.

Remark 1. (a) One thus obtains all robust G-invariant locally minimizing
functions (at any fixed z) from an ansatz with degree two polynomials in
the γi, modulo higher order terms. It should be noted that (6) does not
(and is not intended to) provide all G-invariant polynomials of degree
≤ 2M , where M is the maximal degree of the γi. But the ansatz includes
allG-invariant polynomials which provide nontrivial contributions to the
gradient or the Hessian at z.

(b) As mentioned above, Rumberger [15] showed the existence of a pos-
itive integer q (depending only on the group action) such that every
G-invariant function ψ of class Cm·q admits a representation ψ = η ◦ Γ
with a Cm function η. From this result one obtains a version of the
Proposition for functions of differentiability class C3q.

Remark 2. A substantial part of the results in Lemma 1 and Proposition
1 remains true for compact linear group actions.Thus let G ⊆ O(n,R) be a
compact linear group, with identity component Go, and z ∈ Rn with orbit
G · z of dimension d. Since any G-invariant function is constant on orbits,
a minimum at z cannot be robust with respect to arbitrary perturbations
whenever d > 0, as the rank of the Hessian is ≤ n − d. But there ex-
ist G-invariant functions which have a local minimum at z, with positive
semidefinite Hessian of rank n − d. Thus robustness with respect to G-
invariant perturbations holds. Moreover one will find all locally minimizing
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functions via the ansatz (6).
As for a sketch of the proof, Lemma 1 can be modified to show the existence
of a G-invariant smooth function ψ which has a local and global minimum
at G · z, with positive semidefinite Hessian of rank n− d.
Essential for proving this modification are some facts about orbits of com-
pact groups. For our purpose, the account in Abud and Sartori [2], Section
IV is quite appropriate; for more background see Bredon [4]. Given z, one
has a well-defined function

x 7→ d(x, Go · z)2 := minT∈Go‖x− Tz‖2

which is smooth (in a neighborhood of Go · z) and G-invariant. For suffi-
ciently small ρ > 0 denote by

Sρ(z) :=
{
x; d(x, Go · z)2 < ρ2

}
a tubular neighborhood of the orbit Go · z. Then analogues to (1) and (2)
hold for suitable tubular neighborhoods. Now one may define

µ(x) := σ(d(x, Go · z)2)

and furthermore define ψ by summation over a system of representatives
for G/Go, and normalization. The assertion about the rank of the Hessian
follows from the slice theorem (see [2], Section IV).

3 Parameter-dependent minimizing functions

In applications, the focus of interest is often on G-invariant functions that
depend on a parameter, and one is led to the question how minima (more
generally, critical points) evolve with changing parameter values. The results
of the previous section resolve the local problem for any fixed parameter
value, but special phenomena occur when minima move between strata,
concerning e.g. smoothness with respect to the parameter.
We recall some pertinent facts from Abud and Sartori [2]; no elementary
proof seems available for these.

Lemma 2. Let G ⊆ O(n, R) be a finite group. Given a Hilbert basis
γ1, . . . , γs of the invariant algebra, the fixed point space of Gz is spanned
by the gradients of the γi, evaluated at z. Denoting by Γ = (γ1, . . . , γs)

tr the
corresponding Hilbert map, one has in particular

U = {x ∈ Rn; Gx is minimal} = {x ∈ Rn; rankDΓ(x) = n} ,

and the union of the non-principal strata is the complement of U .
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Sketch of proof. This follows from [2] (VIII.P1) on p. 336 together with
equation (5.6) on p. 325, noting that all the group dimensions equal zero in
our scenario.

3.1 A direct approach

In this subsection we consider critical points emanating smoothly from a
point of highest symmetry and discuss possible geometric restrictions due
to group invariance. We consider compact (not necessarily finite) group
actions, but specialize the setting a little more via the following assumptions.

• G is a compact subgroup of O(n, R) which acts irreducibly on Rn.

• (γ1, . . . , γs) is a (minimal) homogeneous generating system for the in-
variant algebra, ordered by ascending degree.

By irreducibility, the minimal degree is two, and there is, up to scalar multi-
ples, only one invariant of degree two, viz. γ1(x) = ‖x‖2. We recall a proof:
Let φ be a homogeneous invariant of degree two. There is some α ∈ R such
that the symmetric bilinear form β corresponding to the quadratic form
αγ1 − φ is degenerate, since the symmetric matrix representing φ admits
real eigenvalues. Thus the subspace

W := {v; β(x, v) = 0 for all x ∈ Rn}

is nonzero and G-invariant. Irreducibility forces W = Rn.

We now consider a smooth G-invariant function

ψ : Rn × R→ R, ψ(x, t) = η(γ1(x), . . . , γs(x), t) (8)

with η a smooth function of s+ 1 variables. Then ψ has a critical point at 0
and this is the only point with isotropy group G, by our assumptions. Let
a smooth curve

t 7→ z(t), z(0) = 0, z′(0) := v 6= 0 (9)

be defined in some neighborhood of t = 0, such that each z(t) is a critical
point of ψ(·, t). Taking the gradient we obtain a criticality condition that
can be written as

0 = gradψ(z(t), t) =
s∑
i=1

µi(t) grad γi(z(t)) for all t near 0, (10)
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with the abbreviation

µi(t) = Diη (γ1(z(t)), . . . , γs(z(t)), t) , 1 ≤ i ≤ s,

the Di denoting partial derivatives. There is no a priori restriction on the
µi at t = 0, since all gradients vanish at 0. The condition z′(0) 6= 0 may
have nontrivial consequences, however.

Proposition 2. Let d = deg(γ2) be the second smallest degree among the
γi, and assume that (9) defines a smooth curve of critical points for the
parameter-dependent G-invariant function ψ.

(a) Then µ1(0) = 0, and all derivatives of µ1 up to order d − 3 vanish at
t = 0.

(b) The following identity holds:

2µ
(d−2)
1 (0) · v + (d− 1)!

∑
i: deg γi=d

µi(0) · grad γi(v) = 0.

Proof. For the proof it is convenient to rewrite condition (10) in the equiv-
alent form

0 =
s∑
i=1

µi(t)Dγi(z(t)), for all t near 0.

(i) We recall a version of Euler’s identity: Given a homogeneous polyno-
mial map F between finite dimensional vector spaces, of degree r ≥ 1, the
following properties hold for the k-th derivatives (which are considered as
k-multilinear symmetric maps):

DkF (0) = 0 for all k < r, DrF (0)(y, . . . , y) = r!F (y) for all y.

Using these properties for the Dγi, we obtain for γj of degree rj the identites

Drj−1γj(0)(y, . . . , y, ·) = (rj − 1)!Dγj(y)

and Dk−1γj(0) = 0 for all k < rj .
(ii) Differentiation yields

0 =

s∑
i=1

µ′i(t)Dγi(z(t)) +

s∑
i=1

µi(t)D
2γi(z(t)) (z′(t), ·)

Recalling that only γ1 has degree 2, substitution of t = 0, z(0) = 0 yields
with (i) that

0 = µ1(0)Dγ1(v),
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hence µ1(0) = 0 due to v 6= 0.
(iii) By further differentiation one obtains

0 =
∑s

i=1 µ
′′
i (t)Dγi(z(t))

+2
∑s

i=1 µ
′
i(t)D

2γi(z(t)) (z′(t), ·)
+
∑s

i=1 µi(t)D
2γi(z(t)) (z′′(t), ·)

+
∑s

i=1 µi(t)D
3γi(z(t)) (z′(t), z′(t), ·)

At t = 0 the first term on the right-hand side vanishes for degree reasons, and
so does the third due to µ1(0) = 0. The second term reduces to µ′1(0)Dγ1(v),
and by Euler the last term equals

2
∑

i: deg γi=3

µi(0) ·Dγi(v).

In case d = 3 one has the assertion of (b) (after rewriting the result for
gradients); in case d > 3 one sees that µ′1(0) = 0.
(iv) The assertion for d > 3 follows in an analogous manner, by successive
differentiation up to order d and comparing terms.

For the setting of the present subsection, Proposition 2 thus imposes two
conditions for a curve of critical points to emanate from a minimum at 0.
First, the Hessian at 0 must be trivial for the critical parameter value (loss
of robustness for the minimum at 0). Second, since the µi(0), i > 1, are a
priori arbitrary, the linear dependence of grad γ1(v) = 2v and the grad γi(v)
for those i with deg γi = d may provide nontrivial restrictions on v. As for
examples and applications we return to finite groups.

Example. (a) Let m > 2 be an integer and Dm the dihedral group acting
naturally on R2 as symmetry group of the regular m-gon. The invariant
algebra is generated by

γ1(x) = x21 + x22, γ2(x) = Re (x1 + ix2)
m.

The nontrivial isotropy subspaces are just the reflection axes, and by
Lemma 2 the points on these are characterized by the linear dependence
of grad γ1(v) and grad γ2(v). According to the Proposition, smooth
curves of critical points emanating from 0 will “generically” be tangent
to a reflection axis.

(b) On the other hand let Cm be the subgroup of rotations. The invariant
algebra is now generated by

γ1(x) = x21 + x22, γ2(x) = Re (x1 + ix2)
m, γ2(x) = Im (x1 + ix2)

m,
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and while Proposition 2(b) provides nontrivial conditions relating v and
the µi at 0, there is no general restriction to possible tangent directions.

The reader may be reminded of similar phenomena related to the equiv-
ariant branching lemma, in particular the cube deformation example in Gol-
ubitsky et al. ([8] XI, §1(b) and XIII §3). The underlying mathematical
arguments are quite similar indeed.

Example. The case of finite reflection groups (which includes Dm) is of
particular interest. This class of groups is distinguished by the property
that their invariant algebras admit an algebraically independent system of n
generators (see Springer [19], Ch. 4, Grove and Benson [9], Solomon [18] for
their properties). Thus let G be a finite reflection group acting irreducibly
on Rn, and let ψ(x, t) and z(t) be as in Proposition 2. Unless µi(0) = 0 for
all i with deg γi = d, the tangent vector v lies in some nontrivial isotropy
subspace. To see this, recall Lemma 2 and note that linear dependence of
some grad γi(v) already implies non-invertibility of DΓ(v), as the number of
generators equals the dimension of the vector space. We will return to this
example later.

3.2 A complementary approach

The approach in the previous subsection provides necessary conditions for
the curve z(t), given the parameter functions µi(t). Here, we change perspec-
tive and consider the restrictions that a given curve z(t) of critical points
imposes on the parameter functions µi. We assume the parameter func-
tions to be analytic in this subsection; our results are also applicable to the
finitely differentiable (with Taylor expansion up to some degree) or smooth
case (modulo flat terms), with some restrictions and modifications.
We consider a compact (not necessarily finite) linear group action on Rn,
with no further requirements. Letting γ1, . . . , γs be a Hilbert basis of the
invariants, we restate equation (10) in the form

A(t) ·M(t) = 0; (11)

A(t) :=
(
grad γ1(z(t)), . . . , grad γs(z(t))

)
, M(t) :=

µ1(t)...
µs(t)

 (12)

Since (10) arises by taking the gradient of (8) one should ascertain that
there exist no additional restrictions on the µi. To verify this, consider the
particular function ψ(x, t) =

∑
µi(t)γi(x).
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We denote the highest rank of A(t), with t near 0, by r; the case of interest
is rankA(0) < r. Moreover we are interested in nonzero M , thus we may
assume that M(0) 6= 0, after possibly dividing by a power of t. There is an
invertible n× n matrix Q(t) such that

Q(t) ·A(t) =

(
Er B(t)
0 0

)
with the r × r identity matrix Er and an r × (n− r) matrix

B(t) = t−m

∑
k≥0

β
(k)
ij t

k


r+1≤i≤s, 1≤j≤r

for which m ∈ Z is chosen minimal, thus some β
(0)
ij 6= 0. (A priori we do not

exclude the possibilities r = 0 or r = n; then there are obvious modifications
in the notation.) Letting

µi(t) =
∑
k≥0

ν
(k)
i tk, 1 ≤ i ≤ r,

a degree-by-degree evaluation of (11) yields

for 0 ≤ k < m :
s∑

j=r+1

(
k∑
d=0

β
(d)
ij ν

(k−d)
j

)
= 0; 1 ≤ i ≤ r; (13)

for k ≥ m : ν
(k−m)
i +

s∑
j=r+1

(
k∑
d=0

β
(d)
ij ν

(k−d)
j

)
= 0; 1 ≤ i ≤ r. (14)

Now we can quantify the restrictions on the Taylor coefficients ν
(k)
i of the

µi imposed by relation (11) for given A(t). The proof of the following facts
is straightforward.

Proposition 3. For each ` ≥ 0 define

V` :=

{(
ν
(d)
i

)
1≤i≤s, 0≤d≤`

}
∼= Rs×(`+1),

moreover let W` be the subspace defined by equations (13) and (14) for k ≤ `,
and let W̃` be the subspace of V` defined by equations (14) for k ≤ `. Then

W̃` has codimension r · (`+1) in V` and W` has constant codimension in W̃`

whenever ` ≥ m. Thus asymptotically

dimV`/W` ∼ r · (`+ 1) as `→∞.
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In other words, for a sufficiently high degree of the Taylor expansion, the
generic rank r of the matrix A determines the number of “free” parameters

ν
(k)
i in the µi. (The solution space of (11) will not have finite codimension

in the space of all local curves M(t) unless r = 0, hence considering the
respective codimension of W` in V` seems the most natural approach.) From
this vantage point it is natural to focus on scenarios with small r. To
illustrate the result we continue the reflection group example.

Example. Let G be a finite reflection group, let ψ : Rn × R → R be
an analytic function as in (8), and assume that M(0) 6= 0. If there is a
nonconstant analytic curve z(t), z(0) = 0, of critical points for ψ(·, t) then
there exists a reflection hyperplane which contains each z(t). The proof
is a consequence of the introductory remarks for this section. Indeed the
complement of the set U from Lemma 2 is just the union of the reflection
hyperplanes; see Solomon [18], proof of Lemma. By analyticity a curve
z(t) either has discrete intersection with a reflection hyperplane or is fully
contained in it.

4 The cube group action on symmetric matrices

In this section we will consider the group of rotations in R3 that leave a
cube invariant, and focus on the representation of this group given by the
action on symmetric 3 × 3 matrices by conjugation. Our physical motiva-
tion lies in the modelling and analysis of anisotropic elastic materials; the
approach via invariants of symmetry groups to model strain-energy func-
tions is classical, see e.g. Smith and Rivlin [17]. (Of course, group actions
by conjugation are also relevant in many other physical applications.) The
minimizing functions we will discuss are specifically motivated by the mod-
elling of shape-memory alloys which were investigated from this perspec-
tive by Falk and Konopka [7], Zimmer [20, 21] and others. The problem
of finding group-invariant strain-energy functions with prescribed minimum
positions (and coefficients to fit to experimental data) naturally leads to an
application of Proposition 1. For the group action of interest the minimal
number of generators for the invariant algebra is rather large, therefore ex-
plicit computations may be seen as cumbersome. Possibly for this reason
only solutions with additional restrictions, or geometric descriptions of (not
explicitly given) solutions, were determined by Falk and Konopka [7], resp.
by Zimmer [21]. (Citing this cumbersomeness as one motive, Hormann and
Zimmer [10] even took an alternative approach, departing from invariant
polynomials.) In the present section we will review some of the physically
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interesting scenarios discussed in the literature, and illustrate that the ap-
proach via Proposition 1 provides a transparent and computationally simple
way to construct minimizing functions. Using the strategies developed in
Section 3, we also consider the parameter-dependent scenario.

We first fix a Hilbert basis of invariants; such systems of generators can
be found in Smith and Rivlin [17], and in Zimmer [21] (which we will use).
For notational convenience we identify the matrix x1 x4 x6

x4 x2 x5
x5 x2 x3


with the vector x ∈ R6, and denote the corresponding group acting on R6

by G. Zimmer [21] computed a Hilbert basis of invariants using Singular
[6]; the following eleven generators can be taken from his Theorem 5 (where
the xi are named ei):

γ1 = x1 + x2 + x3
γ2 = x21 + x22 + x23
γ3 = x31 + x32 + x33
γ4 = x24 + x25 + x26
γ5 = x4x5x6
γ6 = x44 + x45 + x46

γ7 = x3x
2
4 + x1x

2
5 + x2x

2
6

γ8 = x23x
2
4 + x21x

2
5 + x22x

2
6

γ9 = x3x
4
4 + x1x

4
5 + x2x

4
6

γ10 = x23x
4
4 + x21x

4
5 + x22x

4
6

γ11 = x21x2x
4
4x

2
5 + x2x

2
3x

2
4x

4
5 + x1x

2
2x

4
4x

2
6

+x22x3x
4
5x

2
6 + x1x

2
3x

2
4x

4
6 + x21x3x

2
5x

4
6

(15)

Here γ1, . . . , γ6 are the primary invariants, which form an algebraically in-
dependent set. For reasons of convenience we slightly modified the sec-
ondary invariants γ7, . . . , γ10 given in [21]; for instance Zimmer’s list contains
γ̃7 = γ1γ4 − γ7 instead of γ7.

4.1 Tetragonal isotropy

As in Zimmer [21], Subsection 4.1, we wish to construct G-invariant func-
tions which admit a minimum at

z := (a, b, a, 0, 0, 0)tr with a 6= b.
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We will determine a G-invariant polynomial ψ that admits a robust local
minimum at each point in the orbit of z. According to Proposition 1, an
ansatz with a quadratic polynomial in the γi − γi(z) will work. One has

γ1(z) = 2a+ b, γ2(z) = 2a2 + b2, γ3(z) = 2a3 + b3, γi(z) = 0 for i > 3,

and moreover

grad γ1(z) =



1
1
1
0
0
0

 , grad γ2(z) =



2a
2b
2a
0
0
0

 , grad γ3(z) =



3a2

3b2

3a2

0
0
0

 ,

with all other gradients having value zero at z. The degree one part of ψ
therefore has the form

ψ(1) =
11∑
i=1

µi (γi − γi(z)) (16)

with real coefficients µi subject to the condition

µ1

 1
1
1

+ µ2

 2a
2b
2a

+ µ3

 3a2

3b2

3a2

 = 0,

equivalently

µ1 = 3ab µ3, µ2 = −3

2
(a+ b)µ3.

We restate this observation:

Lemma 3. The vector space of linear combinations of the γi − γi(z) with
zero gradient at z is spanned by

ρ1 := 3ab (γ1 − γ1(z))−
3

2
(a+ b) (γ2 − γ2(z)) + (γ3 − γ3(z))

and
ρj := γj+2, 2 ≤ j ≤ 9.
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The Hessian of ψ(1) at z is a block diagonal matrix, with upper left block
equal to 3µ3C0, where

C0 :=

 a− b 0 0
0 b− a 0
0 0 a− b


and lower right block equal to

2µ4

 1 0 0
0 1 0
0 0 1

+ 2µ7

 a 0 0
0 b 0
0 0 a

+ 2µ8

 a2 0 0
0 b2 0
0 0 a2


The lower right block is positive definite e.g. for µ7 = µ8 = 0 and any µ4 > 0,
but the upper left block is indefinite for any choice of µ3 6= 0. Therefore
quadratic terms of the form (γi − γi(z)) (γj − γj(z)) are necessary to obtain
a positive definite Hessian. An evaluation, using the relation

Hess [(γi − γi(z)) (γj − γj(z))] |z = grad γi(z)grad γj(z)
tr+grad γj(z)grad γi(z)

tr

and grad γk(z) = 0 for all k > 3 shows that such a Hessian is nonzero at
most for 1 ≤ i, j ≤ 3. All of these are block diagonal matrices with zero
lower right 3× 3 block, and upper left block of the form u v u

v w v
u v u

 . (17)

Every such matrix is singular, with eigenvector (1, 0, −1)tr for eigenvalue 0.
In particular the upper left block of Hess (γ1 − γ1(z))2 |z is equal to

C1 :=

 2 2 2
2 2 2
2 2 2


and the upper left block of Hess (γ2 − γ2(z))2 |z is equal to

C2 :=

 4a2 4ab 4a2

4ab 4b2 4ab
4a2 4ab 4a2

 .

Proposition 4. There exist scalars α0, α1, α2 such that for any β > 0, the
G-invariant function

ψ∗ := α0 · ρ1 + α1(γ1 − γ1(z))2 + α2(γ2 − γ2(z))2 + βγ4

admits a robust local minimum at the orbit of z.
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Proof. We will show that a suitable linear combination α0C0+α1C1+α2C2 is
positive definite. This, in conjunction with the considerations above, proves
the claim.
The quadratic form which is defined by (17) in the standard basis, is repre-
sented by the matrix  4u 2v 0

2v w 0
0 0 0


with respect to the new basis 1

0
1

 ,

 0
1
0

 ,

 1
0
−1

 .

In particular, the representing matrix C2 + δ
2C1 will be transformed to

C̃2 +
δ

2
C̃1 =

 16a2 + 4δ 8ab+ 2δ 0
8ab+ 2δ 4b2 + δ 0

0 0 0


with respect to this new basis. The upper left 2× 2 minor of this matrix is
equal to 16δ (a−b)2, and therefore the matrix admits two positive eigenvalues
for all δ > 0. Moreover, the base change transforms C0 to

C̃0 = (a− b) ·

 2 0 0
0 −1 0
0 0 2

 ,

hence for δ > 0 and ε of appropriate sign with |ε| sufficiently small the
matrix

ε · (a− b)C0 +
δ

2
C1 + C2

will be positive definite.

We did not attempt to write down the most general minimizing func-
tion given by Proposition 1. Indeed this would require determination of
the inequalities which characterize the semialgebraic set from part (c) of
this Proposition, and this is far from trivial. Instead we we exhibited one
such function that can be expressed with the smallest number of generators.
Compared to previous approaches, this task is straightforward, requiring
only some linear algebra.
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4.2 Orthorhombic isotropy

As in Zimmer [21], Subsection 4.2, the primary task here is to construct
G-invariant functions which have a minimum at

z := (a, b, a, 0, 0, c)tr with a 6= b and c 6= 0.

Falk and Konopka [7] discussed a minimizing function of degree six. Zimmer
did not write down an explicit minimizer in this case, but rather gave a
discussion in geometric terms. We will determine a minimizing function ψ
via the ansatz (6); as will be seen, little effort is needed. We note some
values:

γ1(z) = 2a+ b, γ2(z) = 2a2 + b2, γ3(z) = 2a3 + b3,
γ4(z) = c2, γ5(z) = 0, γ6(z) = c4,
γ7(z) = bc2, γ8(z) = b2c2, γ9(z) = bc4,
γ10(z) = b2c4, γ11(z) = 0.

The homogeneous linear part of ψ has the form

ψ(1) =
11∑
i=1

µi (γi − γi(z)) (18)

with real coefficients µi subject to the conditions derived from∑
µi grad γi(z) = 0.

We will not go through the details of the computations, which are similar to
those in the previous subsection (elementary but more lengthy). The result
is as follows.

Lemma 4. In the orthorhombic isotropy case, the space of linear combina-
tions of the γi − γi(z) with zero gradient at z is spanned by:

σ1 := 3ab (γ1 − γ1(z))− 3
2(a+ b) (γ2 − γ2(z)) + (γ3 − γ3(z))

σ2 := γ5 − γ5(z)
σ3 := −c2 (γ4 − γ4(z)) + (γ6 − γ6(z))
σ4 := 2ac2 (γ1 − γ1(z))− c2 (γ2 − γ2(z))− b(b− a) (γ4 − γ4(z))

+(b− a) (γ7 − γ7(z))
σ5 := 2abc2 (γ1 − γ1(z))− 2bc2 (γ2 − γ2(z))− b2(b− a) (γ4 − γ4(z))

+(b− a) (γ8 − γ8(z))
σ6 := 2ac4 (γ1 − γ1(z))− c4 (γ2 − γ2(z))− 4bc2(b− a) (γ4 − γ4(z))

+(b− a) (γ9 − γ9(z))
σ7 := 2abc4 (γ1 − γ1(z))− bc4 (γ2 − γ2(z))− 2b2c2(b− a) (γ4 − γ4(z))

+(b− a) (γ10 − γ10(z))
σ8 := γ11
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We list only some of the Hessians here. As in the previous subsection,
Hess (σ1) is block diagonal with upper left block

3

 a− b 0 0
0 b− a 0
0 0 a− b


and lower right block zero. The Hessian of σ3 is block diagonal, with upper
left block zero and lower right block −2c2 0 0

0 −2c2 0
0 0 2c2

 ,

and the Hessian of σ8 is block diagonal, with upper left block zero and lower
right block  2a3c4 0 0

0 2a3c4 0
0 0 0

 .

Clearly, a suitable linear combination of the latter two matrices will be
positive definite. Combining this observation with the arguments to prove
Proposition 4, we have:

Proposition 5. There exist scalars α0, α1, α2 and β1, β2 such that the G-
invariant function

ψ∗ := α0 · σ1 + α1(γ1 − γ1(z))2 + α2(γ2 − γ2(z))2 + β1σ3 + β2σ8

admits a robust local minimum at the orbit of z.

Again, we did not attempt to write down the most general minimiz-
ing function but rather determined one involving the smallest number of
generators.

4.3 Parameter-dependent functions

In this final subsection we consider parameter-dependent functions and dis-
cuss critical points emanating from a point with highest isotropy. In contrast
to Section 3 the cube group action on symmetric matrices is not faithful; the
points with maximal isotropy form the line R · (1, 1, 1, 0, 0, 0)tr. But while
the arguments in the proof of Proposition 2 (which utilize homogeneity)
do not carry over to the present setting, the underlying strategy still works.
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Taking the direct approach we consider a smooth G-invariant function which
depends smoothly on a parameter t, and assume there is a smooth curve

t 7→ z(t), z(0) = z := a ·



1
1
1
0
0
0

 with a 6= 0, z′(0) = v.

Since our interest lies in critical points with smaller isotropy, we require that
(1, 1, 1, 0, 0, 0)tr and v are linearly independent.
We thus arrive at a condition

11∑
i=1

µi(t)grad γi(z(t)) = 0

with the γi given by (15), to be evaluated at t = 0. By straightforward (even
though somewhat lengthy) computations one finds the zero order condition
(in t)

(
µ1(0) + 2aµ2(0) + 3a2µ3(0)

)
·



1
1
1
0
0
0

 = 0; (19)

the first-order condition

0 =
(
µ′1(0) + 2aµ′2(0) + 3a2µ′3(0)

)
·



1
1
1
0
0
0

+ (2µ2(0) + 3aµ3(0)) ·



v1
v2
v3
0
0
0



+
(
2µ4(0) + 2aµ7(0) + 2a2µ8(0)

)
·



0
0
0
v4
v5
v6

 ;

(20)
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and the second-order condition

0 =
(
µ′′1(0) + 2aµ′′2(0) + 3a2µ′′3(0)

)
·



1
1
1
0
0
0



+2 (2µ2(
′0) + 3aµ′3(0)) ·



v1
v2
v3
0
0
0

+ 3µ3(0) ·



v21
v22
v23
0
0
0



+2
(
2µ′4(0) + 2aµ′7(0) + 2a2µ′8(0)

)
·



0
0
0
v4
v5
v6



+2µ5(0) ·



0
0
0

v5v6
v6v4
v4v5

+ 2 (µ7(0) + aµ8(0)) ·



v25
v26
v24

2v3v4
2v1v5
2v2v6

 .

(21)

We note some consequences of these identities.

Proposition 6. (a) The order zero condition (19) implies

µ1(0) + 2aµ2(0) + 3a2µ3(0) = 0;

this is a nontrivial (necessary and sufficient) condition for the criticality
of a point with highest symmetry.

(b) The order one condition (20) yields a splitting into two cases.

• If (v4, v5, v6)
tr = 0 then (given the linear independence require-

ment)
µ1(0) = 0, µ′1(0) + 2aµ′2(0) + 3a2µ′3(0) = 0,
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which characterizes degeneracy of the upper left block in the Hes-
sian. The order two condition (21) then forces

µ2(0) = µ3(0) = 0 or det

1 v1 v21
1 v2 v22
1 v3 v31

 = 0.

The Vandermonde determinant vanishes (this represents the generic
case) if and only if two of the vi are equal. This corresponds to
tetragonal isotropy.

• If (v4, v5, v6)
tr 6= 0 then the order one condition forces

µ4(0) + aµ7(0) + a2µ8(0) = 0

which is equivalent to degeneracy of the lower right block of the
Hessian. Generically one has linear dependence of (1, 1, 1)tr and
(v1, v2, v3)

tr, and furthermore the top three entries of the order two
condition (21) imply generically thatv25v26

v24

 ∈ R ·

1
1
1


whence v4, v5 and v6 differ at most in their signs.

We have to give a precise meaning to the term “generic” here. Using
(with obvious modifications) the notions introduced in Proposition 3, we
call a subset of V2 generic if it is (Zariski-) open and dense in a maximal
vector subspace defined by conditions (19) through (21).
Proposition 6 provides necessary conditions for the entries of v, assuming
genericity. Each of these necessary conditions yields nontrivial curves of crit-
ical points, as can be seen via the complementary approach from subsection
3.2. The proof of the following involves some straightforward computations
(such as the determination and evaluation of various gradients) which we
will not reproduce here.

Proposition 7. (a) Let b1, b2 and b3 be real numbers, exactly two of which
are equal. Then the curve

z(t) = z + t · (b1, b2, b3, 0, 0, 0)tr

defines a matrix A(t) via (12), with rank r = 2. In particular there
exist parameter-dependent G-invariant functions which admit z(t) as a
curve of critical points; this describes a passage from cubic to tetragonal
isotropy.
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(b) Let b and c 6= 0 be real numbers, and εi ∈ {1, −1} for 1 ≤ i ≤ 3. Then
the curve

z(t) = z + t · (b, b, b, ε1c, ε2c, ε3c)tr

defines a matrix A(t) via (12), with rank r = 2. In particular there exist
parameter-dependent G-invariant functions which admit z(t) as a curve
of critical points.

Since the rank of A(t) is equal to one only for curves contained in the line
of maximal isotropy, the case r = 2 represents the “most” free parameters
in the µi (in the sense of subsection 3.2). Thus the passage from cubic to
tetragonal isotropy may be explained as a generic symmetry breaking phe-
nomenon from a point of highest symmetry, but this is not the case for the
passage from cubic to orthorhombic isotropy. (The latter observation is in
agreement with remarks in Falk and Konopka [7], who use arguments from
physics.)
Case (b) of the Proposition corresponds to an isotropy group called D3 in
[21], Fig. 1, when not all εi are equal, and an isotropy group not listed in
[21] when all the εi are equal. The common feature is that the dimensions
of the corresponding fixed point spaces are equal to two.
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