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Abstract

We review the familiar method of reducing a symmetric ordinary
differential equation via invariants of the symmetry group. Working
exclusively with polynomial invariants is problematic: Generator sys-
tems of the polynomial invariant algebra, as well as generator systems
for the ideal of their relations, may be prohibitively large, which makes
reduction unfeasible. In the present paper we propose an alternative
approach which starts from a characterization of common invariant
sets of all vector fields with a given symmetry group, and uses suitably
chosen localizations. We prove that there exists a reduction to an al-
gebraic variety of codimension at most two in its ambient space. Some
examples illustrate the approach.
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1 Introduction

In this note we consider a symmetric ordinary differential equation

(1) ẋ = f(x)

on Rn or Cn, with the symmetries forming a subgroup G of the general linear
group GL(n). There is an obvious benefit to be gained from symmetries, as
one may employ them to find new solutions from given ones. Moreover there
is a less obvious (but also familiar) benefit, since one may employ symmetry
reduction. As representatives of the many publications on the subject we
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mention only Field [7] (for compact groups), and Cushman and Bates [4]
(for reductive groups).

In the present paper we first focus on the conceptually straightforward
approach to reduction via the Hilbert map which is constructed from poly-
nomial invariants of G. (To avoid further technicalities we will discuss only
polynomial vector fields here.) The survey article by Chossat [3] provides a
very good introduction to this method for compact G, as well as a number
of examples. Chossat also points out the limitations of the approach: There
may be problems with its feasibility, since (even minimal) generator systems
of polynomial invariants may be very large. The main purpose of the present
paper is to suggest a possible escape from such feasibility problems. Roughly
speaking, we will introduce a refinement of orbit space reduction via polyno-
mials by introducing carefully chosen denominators to achieve a reduction
via rational functions. Using a theorem due to Grosshans [8], we show that
the necessary number of generators is at most two higher than the number
dictated by dimensions of group orbits. In our proofs we will make use of
some results and tools from commutative algebra and elementary algebraic
geometry. A few examples illlustrate the reduction method.

2 An overview of the orbit space method

2.1 Blanket assumptions and notation

We first introduce some notions and hypotheses which will be kept through-
out the paper. Some of the assumptions as stated are more restrictive than
necessary; our focus is on reduction mechanisms and we want to keep tech-
nicalities to a minumum.

• K stands as an abbreviation for R or C.

• G ⊆ GL(n,K) is a linear algebraic group (i.e. a subgroup of GL(n,K)
defined by polynomial equations) which acts naturally on Kn.

• Furthermore the orbits of G have generic dimension s > 0.

• We restrict attention to the case of polynomial vector fields, thus f
has polynomial entries (unless specified otherwise).

• The differential equation (1) is symmetric (equivariant) with respect
to G; i.e., T−1fT = f for all T ∈ G.
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Recall that a polynomial ψ ∈ K [x1, . . . , xn] is called G-invariant if ψ ◦ T =
ψ for all T ∈ G. The G-invariant polynomials form a subalgebra of the
polynomial algebra which is denoted K [x1, . . . , xn]G. We add one more
hypothesis.

• We assume that K [x1, . . . , xn]G 6= K admits a finite set γ1, . . . , γr of
generators.

• Accordingly we define the Hilbert map

Γ :=

γ1...
γr

 : Kn → Kr.

The choice of G as a linear group is not as restrictive as it may initially
seem: There are local linearization theorems for compact groups (Bochner;
see e.g. Duistermaat and Kolk [6]) and for semisimple Lie groups (see e.g.
Kushnirenko [13]). The choice of f as a polynomial is restrictive, but one
may think of Taylor expansions and results e.g. by Schwarz [21], Luna [15]
and Poenaru [19] which guarantee extensions to the smooth and analytic
case.

2.2 The basic reduction mechanism

There is one more notion we need to introduce.

Definition 1. The Lie derivative of a scalar valued function φ with respect
to a vector field g is defined by

φ 7→ Lg(φ); Lg(φ)(x) := Dφ(x)g(x).

The Lie derivative describes the rate of change of φ along solutions of
the differential equation ẋ = g(x). A fundamental fact (with straightforward
proof) is the following.

Lemma 1. If the differential equation (1) is G-symmetric and ψ is G-
invariant then Lf (ψ) is G-invariant.

From this observation one obtains a reduction map as follows.

Proposition 1. If K [x1, . . . , xn]G admits the finite set γ1, . . . , γr of gener-
ators then the Hilbert map Γ = (γ1, . . . , γr)

tr sends the G-symmetric vector
field f to some vector field h on Kr. The equation ẋ = h(x) admits as an
invariant set the algebraic variety Y := Γ(Kr) (Zariski closure) which is
defined by the polynomial relations between γ1, . . . , γr.
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Sketch of proof. By Lemma 1 there exist polynomials ηi in r variables such
that

Lf (γi) = ηi(γ1, . . . , γr).

See e.g. [20] for more details.

This procedure is also known as orbit space reduction; see Chossat [3].
To explain the name, note that all invariants are constant on G-orbits. For
compact groups there is a 1-1 correspondence between G-orbits and points
in the image of the Hilbert map (see e.g. Field [7]). For more general classes
of groups such a strict correspondence does not hold but Y is the “best
possible quotient” of the group action that is still an algebraic variety; see
Popov and Vinberg [18], subsection 4.3.

There is a fundamental a priori obstruction to this approach, since the
polynomial invariant algebra of certain linear algebraic groups is not finitely
generated; see Nagata [16]. (According to our blanket hypotheses we will
not consider such groups.) This does not seem to be much of an obstacle
in practice, since for many interesting cases (e.g. all semisimple and, more
generally, all reductive groups) finite generation of K [x1, . . . , xn]G is guar-
anteed. On the other hand there is a practical obstruction which may be
quite annoying: The minimal number of generators for K [x1, . . . , xn]G may
be quite large even if the group is reductive and the action seems harmless.

Example 1. (a) Let m ∈ N, Em the m×m identity matrix and

G =

{(
a · Em 0

0 a−1 · Em

)
; a ∈ K∗

}
⊆ GL(2m, K).

One can verify that the invariant algebra admits the smallest generator
set

{γij := xixm+j ; 1 ≤ i, j ≤ m}

with m2 elements. There are many relations between these generators,
viz.

γij · γk` = γi` · γkj .

One can show that these, with all indices running from 1 to m, actually
generate the ideal of relations. Thus one cannot avoid dealing with a
high dimensional embedding space, and with a rather complicated image
of the Hilbert map.
(Note that for K = C this group is the complexification of the diagonal
action of SO(2, R) on R2 × R2 × R2.)
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(b) The irreducible 11-dimensional representation of SL(2,C) requires a
generator system with 106 elements; see Brouwer and Popoviciu [2];
thus the embedding space of the variety Y (which has dimension 8) is
106-dimensional. No relations between the generators are given in [2].

Some general remarks on constructive invariant theory and estimates
can be found in Derksen and Kraft [5].

2.3 Rational reduction

A possible alternative is to consider the field K (x1, . . . , xn)G of rational
invariants. The following fact is well-known; see e.g. Popov and Vinberg
[18] §2.

Proposition 2. The field K (x1, . . . , xn)G has transcendence degree n − s
over K, with s the generic orbit dimension of the group action. It admits a
generator set with at most n− s+ 1 elements.

Sketch of proof. We refer e.g. to Lang [14] for the necessary results from
algebra. A subfield of a finitely generated extension of K is also finitely
generated. The transcendence degree of K (x1, . . . , xn)G is equal to n − s;
see Borel [1], Ch. AG.10. Let ψ1, . . . , ψn−s be a transcendence basis of the
invariant field. Then K (x1, . . . , xn)G is a finitely generated (hence finite)
algebraic extension of K (ψ1, . . . , ψn−s), which can be generated by a single
element due to the primitive element theorem.

Remark 1. The computation of generators for K (x1, . . . , xn)G is algorith-
mically accessible; see Hubert and Kogan [11].

Example 2. We continue Example 1(a), thus

G =

{(
a · Em 0

0 a−1 · Em

)}
with generic orbit dimension one. Here the 2m− 1 generators

γ1,1, γ1,2, . . . , γ1,m,
γ2,1, γ3,2, . . . , γm,m−1

suffice, due to γi,j = γi,i−1γ1,j/γ1,i−1.

Remark 2. We want to exhibit one class of groups for which the invariant
algebra and the invariant field are relatively easy to characterize; for the sake
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of simplicity we restrict attention to complex groups. An algebraic torus is
a connected diagonal (more generally, a diagonalizable) subgroup of some
GL(n,C); see e.g. Humphreys [12], Section 16. (Example 2 falls in this
class.) For an algebraic torus the polynomial invariant algebra is generated
by invariant monomials, and the field of invariants is generated by invariant
Laurent monomials. Pars pro toto, we verify this fact for a one-parameter
torus. Thus let

d1, . . . , dn ∈ Z; Ta := diag (ad1 , . . . , adn) for a 6= 0; G := {Ta; a ∈ C∗} .

For a Laurent monomial φ := xm1
1 · · ·xmn

n one computes

φ(Tax) = φ(x) · a
∑
dimi ,

hence each Laurent monomial lies in an eigenspace of the corresponding
action of Ta, with eigenvalue a

∑
dimi. Therefore polynomial invariants must

be linear combinations of invariant monomials; for rational invariants one
shows with a bit more effort that they are quotients of linear combinations
of Laurent monomials. In either case the condition for invariance is∑

dimi = 0.

Over the integers this condition (with fixed di) defines a Z-module which is
free of rank n−1, thus has a basis with n−1 elements (which are easy to com-
pute). The corresponding Laurent monomials generate the invariant field
C(x1, . . . , xn)G, which is purely transcendental. (With regard to invariant
polynomials, the conditions remain the same but now only nonnegative inte-
ger solutions are admissible, which makes theory and computations harder.
However, the invariant algebra is generated by finitely many monomials; see
e.g. [22].)

From the rational analogue of the Hilbert map one obtains a reduction
method for symmetric vector fields; the closure of the image is Kn−s or a
subvariety of codimension one in Kn−s+1. The problem lies in the behavior
of denominators, whence the domain of definition of a Hilbert map is just
an open subset of Kn. Even worse, one cannot guarantee the existence of a
reduction near some specific point, and one generally loses information about
interesting invariant sets (such as lower-dimensional strata in the compact
group case) that are common to all G-symmetric vector fields. Therefore
some kind of middle ground between rational reduction via generators of the
invariant field K (x1, . . . , xn)G on the one hand, and polynomial reduction
via generators of the invariant algebra K [x1, . . . , xn]G on the other hand
would be preferable.
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3 Invariant sets

As noted above, common invariant sets of all G-symmetric vector fields
(which are called invariant sets forced by symmetry in [10]) are of particular
interest for applications. From a different perspective, such invariant sets
may also be seen as a cause for the problems with reduction by polynomial
invariants, viz., the high dimension of the embedding space for the variety
Y = Γ(Kn).

Example 3. We continue Example 2, with

G =

{(
a · Em 0

0 a−1 · Em

)
; a ∈ K∗

}
⊆ GL(2m, K).

The closure Y of the image of the Hilbert map in the m2 dimensional affine
space with (conveniently chosen) coordinates yij, 1 ≤ i, j ≤ m, is defined by
the equations

yij · yk` − yi` · ykj = 0.

Since 0 ∈ Y and all the defining polynomials have zero derivative at 0, the
tangent space to Y at 0 (in the sense of algebraic geometry, see Humphreys
[12], Ch. I, §5) has dimension m2. Therefore it is impossible to embed Y
into an affine space of smaller dimension. (Since any other image of Kn

under a Hilbert map induced by G is isomorphic to Y , a different choice of
generators cannot remedy this problem.)

Thus a closer look at the singular points of Y seems in order. The set of
singular points of Y is invariant for the reduced vector field (see e.g. [22],
Prop. 3.11), and its inverse image in Kn is an invariant set of the original
symmetric differential equation (1). Therefore we now focus on common
invariant sets of G-symmetric vector fields.

Definition 2. (a) We denote by DG the set of all G-symmetric polynomial
vector fields on Kn.

(b) A set Y ⊆ Kn is called DG-invariant if it is an invariant set for every
G-symmetric polynomial differential equation.

One easily verifies that DG is a Lie algebra with the usual composi-
tions. Moreover one sees that unions, intersections and complements of
DG-invariant sets are DG-invariant. In particular, for every v ∈ Kn there
exists a minimal DG-invariant set containing v. By continuous dependence
properties the closure, boundary and interior (with respect to the norm
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topology) of a DG-invariant set is DG-invariant. Moreover, every connected
component (with respect to the norm topology) of a DG-invariant set is ob-
viously DG-invariant.
The following results (some of which are commonly known) are quoted from
[10], where proofs are given when necessary. We start with some basic ob-
servations that also establish a connection to the familiar stratification of
orbit space for compact groups.

Proposition 3. (a) Let H be a (closed) subgroup of G. Then every DH-
invariant set is also DG-invariant.

(b) Given f ∈ DG, all points on a trajectory of ẋ = f(x) have the same
isotropy subgroup.

(c) Given any (closed) subgroup H of G, the fixed point subspace

Fix(H) := {z : Tz = z for all T ∈ H}

is DG-invariant. In particular, for v ∈ Kn the fixed point space Fix(Gv)
of its isotropy group is DG-invariant.

We note that for compact groups, and more generally for proper group
actions (see e.g. Cushman and Bates [4]), singular points of Γ(Rn) corre-
spond to points in Rn with an isotropy group that is not minimal.
For a comprehensive characterization of DG-invariant sets the following no-
tions are useful.

Definition 3. (a) The evaluation map at v ∈ Kn is defined by

εv : DG → Kn, f 7→ f(v).

(b) For a nonnegative integer m let

Zm = Zm(G) := {y ∈ Kn : dim(εy(DG)) ≤ m} and Z∗m+1 := Zm+1\Zm.

Now we can state the principal results.

Theorem 1. (a) For every y ∈ Kn the subspace εy(DG) is DG-invariant.

(b) For every m ≥ 0 the sets Zm and Z∗m+1 are DG-invariant, and also
stable with respect to the group action.

Theorem 2. Let y ∈ Z∗m. The smallest DG-invariant set containing y is the
connected component, in the norm topology, of y in εy(DG) \ Zm−1. More-
over, εy(DG) is the smallest Zariski-closed DG-invariant set which contains
y.
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Theorem 3. One has Z∗n = ∅ if and only if there exists a nonconstant
rational function that is a first integral for all elements of DG on Kn.

Remark 3. For reductive G, these results carry over to vector fields on ar-
bitrary affine subvarieties that are G-stable (i.e., are mapped to themselves
by any transformation in G). The underlying reason is that every invari-
ant of the G-action on the subvariety is the restriction of some element
of K[x1, . . . , xn]G (see e.g. Panyushev [17]). By the same token every G-
symmetric vector field on the subvariety is the restriction of some element
of DG.

For special classes of groups one can determine the minimal Zariski-
closed DG-invariant subsets. We collect some results in a rather informal
manner.

Examples. (a) Groups of diagonal matrices: All minimal Zariski-closed
DG-invariant sets are coordinate subspaces, thus equal to the common
zero set of certain coordinate functions xi1 , . . . , xim. There is a precise
description (depending on the characters of the group) of those coordi-
nate subspaces which are DG-invariant.

(b) Compact groups: The familiar stratification (see e.g. Field [7]) is re-
covered; all minimal Z-closed DG-invariant sets are isotropy fixed point
spaces.

(c) Reductive groups: In case K = C the set εy(DG) is equal to the isotropy
fixed point space whenever the G-orbit of y is closed. Matters are less
clear for non-closed orbits; here one should note recent work by Gross-
hans and Kraft [9]. In case K = R the statement regarding closed orbits
remains valid, but one has to consider the isotropy fixed point space in
the complexification and intersect this with Rn.

4 Reduction via localizations

4.1 Motivation

The dilemma with orbit space reduction, as evident from Section 2, is
twofold. Reduction via polynomial invariants is often not manageable, but
reduction via rational invariants may be too coarse. Using localizations
seems to open a feasible alternative.
Denote by Q be the quotient field of K [x1, . . . , xn]G and let q be its tran-
scendence degree over K. Then the dimension of Y = Γ(Kn) is equal to q
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(see e.g. Borel [1], Ch. AG.10), hence one needs at least q generators for
K [x1, . . . , xn]G. By the primitive element theorem one sees that at most
q + 1 suitable elements generate Q, and there exists a rational Hilbert map
to Kq+1. Grosshans [8] proved that there exists a suitable denominator
ψ ∈ K [x1, . . . , xn]G such that at most q + 3 generators (including ψ) suffice

for K [x1, . . . , xn]G
[
1
ψ

]
. The corresponding Hilbert map is polynomial and

sends Kn to a q-dimensional subvariety of Kq+3. Thus one could say that one
needs at most three generators in excess of what the transcendence degree of
Q dictates. For our purpose, Grosshans’ result needs some refinement, since
we want to keep control over the points where such a reduction is possible
(in other words, where there is some denominator which does not vanish
at the point in question). Moreover we establish a slight (but welcome)
improvement concerning the number of generators by showing that q + 2
suitable generators suffice.

4.2 The main result

From now on we assume that Z∗n 6= ∅, so there exist points with surjective
evaluation map. We will show that there exists a “suitable denominator”
for reduction at each point in Z∗n.

Proposition 4. Denote by Q be the quotient field of K [x1, . . . , xn]G and let
q be its transcendence degree over K.

(a) For any m ∈ N the set

Ym := {y ∈ Kn : rankDΓ(y) ≤ m}

is DG-invariant.

(b) The maximal rank of DΓ(y), y ∈ Kn, equals q, and rankDΓ(v) = q for
every v ∈ Z∗n.

Proof. (a) We include a proof of this known result (see e.g. [23], Prop. 3.4)
for the reader’s convenience. Let f ∈ DG. Γ is solution-preserving from
ẋ = f(x) to ẋ = h(x) for some vector field h on Kr. Therefore the
equation

Γ(F (t, y)) = H(t,Γ(y))
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holds, with F (t, y) and H(t,Γ(y)) being the solutions of the initial value
problems ẋ = f(x), x(0) = y and ẋ = h(x), x(0) = Γ(y), respectively.
Differentiating with respect to y, one finds

DΓ(F (t, y))D2F (t, y) = D2H(t,Γ(y))DΓ(y).

Since D2F (t, y) and D2H(t,Γ(y)) are invertible (being solutions of the
variational equations associated to ẋ = f(x) resp. ẋ = h(x)), DΓ(F (t, y))
and DΓ(y) have the same rank for all t. This argument actually shows
that {y ∈ Kn : rankDΓ(y) = m} is DG-invariant.

(b) By general properties of morphisms of algebraic varieties (see e.g. Borel
[1] Ch. AG.17), one has that rankDΓ(y) ≤ q for all y ∈ Kn, with
equality holding on a nonempty Zariski open set.
Let v ∈ Z∗n. Suppose that

v ∈ Yq−1 = {y ∈ Kn : rankDΓ(y) ≤ q − 1}.

Yq−1 is DG-invariant by part (a), and Zariski-closed. The smallest
Zariski-closedDG-invariant set which contains v is εv(DG), thus εv(DG) ⊆
Yq−1. Because v ∈ Z∗n, we have Kn = εv(DG) = Yq−1; a contradiction to
Yq \ Yq−1 6= ∅. Thus v ∈ Yq \ Yq−1.

Remark 4. Since Q is a subfield of K(x1, . . . , xn)G, the transcendence de-
gree q is at most equal to n − s, with s the generic orbit dimension of the
group action. For many group actions one has Q = K(x1, . . . , xn)G. Exam-
ples include algebraic one-parameter tori which admit nonconstant polyno-
mial invariants, and also groups which admit no nontrivial homomorphism
to C∗ (such as simple groups).

Next we show that suitable localizations yield a feasible local reduction
method near any point of Z∗n. The proof builds on the work of Grosshans
[8] (specifically the Theorem in Section 3 and Theorem 1 in Section 4). For
our particular setting we need to adjust some arguments.

Theorem 4. Denote by Q the quotient field of K [x1, . . . , xn]G and let q be
its transcendence degree over K. For any v ∈ Z∗n there exist an integer `
with q ≤ ` ≤ q + 1 and ψ,ψ1, . . . , ψ` ∈ K [x1, . . . , xn]G such that

K [x1, . . . , xn]G
[

1

ψ

]
= K [ψ1, . . . , ψ`]

[
1

ψ

]
and ψ(v) 6= 0.

(The possibility that ψ ∈ K∗ is included in this statement.)
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Proof. We first discuss the case K = C. By Proposition 4, DΓ(v) has
rank q, hence there exist q of the γi (denoted by ψ1, . . . , ψq) such that

Ψ̃ := (ψ1, . . . , ψq)
tr satisfies rankDΨ̃(v) = q, and ψ1, . . . , ψq form a tran-

scendence basis of Q. If Q = K(ψ1, . . . , ψq) then we are done. Otherwise,
since Q is an algebraic extension of K (ψ1, . . . , ψq) which is generated by
γ1, . . . , γr, there exists a polynomial generator for Q of the form

∑
ciγi with

integer coefficients ci; see the argument in the proof of the primitive element
theorem V.4.6 in Lang [14]. In conclusion, Q is generated by polynomial in-
variants ψ1, . . . , ψ`, and for Ψ := (ψ1, . . . , ψ`)

tr one has rankDΨ(v) = q.

Let Ŷ be the Zariski closure of Ψ(Cn); this is an irreducible affine variety.
For v ∈ Z∗n we first show that there is a neighborhood (with respect to
the norm topology) Ũ of v in Cn such that Ψ(Ũ) is a neighborhood (with
respect to the relative topology induced by the norm topology) of Ψ(v) in
Ŷ . To verify this, recall that rankDΨ(v) = q, hence one may assume (by

numbering the xj appropriately) that
(
∂ψi

∂xj
(v)
)
1≤i≤`,1≤j≤q

has rank q. This

implies that

Kq → K`, (x1, . . . , xq)
tr 7→ Ψ(x1, . . . , xq, vq+1, . . . , vn)

is an immersion near (v1, . . . , vq)
tr, with the image being a local analytic

manifold of dimension q that contains Ψ(v) and is contained in the irre-
ducible q-dimensional variety Ŷ . Therefore some (“relative norm topology”)
neighborhood of Ψ(v) in Ŷ coincides with this local analytic manifold. We
conclude that Ψ(v) is not contained in the Zariski closure Y ∗ of Ŷ \Ψ(Cn),
since the complement V of Y ∗ in Ŷ is open and dense with respect to the
relative norm topology as well as the Zariski topology. (See e.g. Humphreys
[12], Ch. I, 4.4.) Thus Ψ(v) ∈ V , and v is contained in the Zariski-open
subset U := Ψ−1(V ) of Cn. The existence of the local immersion also shows
that the tangent space to Ŷ at Ψ(v) has dimension q, hence Ψ(v) is a simple
point.

Now the facts and arguments in [8] (Theorem in Section 3 and Theorem
1 in Section 4) can be applied verbatim to show the following.

(i) If Ψ(U) = Ŷ , then Ψ(Cn) = Ŷ and

C [x1, . . . , xn]G = C
[
Ŷ
]

= C [ψ1, . . . , ψ`] .

(ii) Otherwise, there exists a nonzero element ρ ∈ C
[
Ŷ
]

such that ρ van-

ishes on Ŷ \ Ψ(U) and ρ(Ψ(v)) 6= 0. Thus there is a nonzero element
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ψ := ρ ◦ Ψ in C [x1, . . . , xn]G such that ψ vanishes on Cn \ U and
ψ(v) 6= 0. Then

C [x1, . . . , xn]G
[

1

ψ

]
= C [ψ1, . . . , ψ`]

[
1

ψ

]
.

This finishes the proof for the complex case.

For K = R, the generators γi and ψj may be taken in R[x1, . . . , xn].

Complexification yields Ŷ being defined over R. Since v ∈ Rn, whenever
ρ does not vanish at Ψ(v) then the same holds for the complex conjugate
ρ, and one may proceed with σ := ρ · ρ instead of ρ for the rest of the
argument.

Remark 5. Relations satisfied by the ψi and ψ can (in principle) be obtained
from the proofs. If Q 6= K(ψ1, . . . , ψq) then the minimum polynomial of ψq+1

provides a nontrivial relation between ψ1 . . . , ψq+1. Moreover, if Ψ(U) 6= Ŷ
then by the last step (item (ii)) in the proof of Theorem 4 one has

ψ = ρ(ψ1, . . . , ψ`) ∈ K[ψ1, . . . , ψ`].

Corollary 1. Let the setting and notation of Theorem 4 be given.

(a) The map

Ψ̂ : Kn → K`+1, x 7→


ψ1(x)

...
ψ`(x)
ψ(x)


sends any G-symmetric polynomial vector field f to a vector field h with
entries in K[y1, . . . , y`, y`+1][1/y`+1], and h is regular at Ψ̂(v).

(b) If ψ ∈ K[ψ1, . . . , ψ`], one may instead employ the reduction map

̂̂
Ψ : Kn → K`, x 7→

ψ1(x)
...

ψ`(x)

 .

The reduced vector field then has entries in K[y1, . . . , y`][1/θ0(y1, . . . , y`)],
using the notation from Remark 5.
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The image of Ψ̂ (resp.
̂̂
Ψ) may (in principle) be determined via Remark

5. Note that Z∗n can be covered by finitely many Zariski open sets Ui such
that reduction in the sense of the Corollary works on each Ui.

Example 4. We specialize Example 3 to m = 4, i.e.

G =

{(
a · E4 0

0 a−1 · E4

)
; a ∈ K∗

}
.

One can show (using [10], Prop. 4.3) that

Z7 =
{
x ∈ K8 | x1 = x2 = x3 = x4 = 0

}
∪
{
x ∈ K8 | x5 = x6 = x7 = x8 = 0

}
.

We consider v := (v1, 0, 0, 0, v5, 0, 0, 0) ∈ Z∗8 .
Recall that the invariant algebra can be generated by the 16 elements

γij := xix4+j ; 1 ≤ i, j ≤ 4,

and let
Ψ := (x1x5, x2x5, x3x5, x4x5, x1x6, x1x7, x1x8)

tr.

Invoking Remark 2 one verifies that the entries of Ψ already suffice to gen-
erate Q, which has transcendence degree 7 over K. Since

DΨ(v) =

v5 0 v1 0
0 v5E3 0 0
0 0 0 v1E3


has rank 7, we know from the proof that Ψ will work for the given v. One
finds

Ψ(K8) =
{
y ∈ K7 | y1 6= 0 ∨ y1 = y2 = y3 = y4 = 0 ∨ y1 = y5 = y6 = y7 = 0

}
with Zariski closure Ŷ = K7. The Zariski closure of the complement of
Ψ(K8) in K7 equals Y ∗ =

{
y ∈ K7 | y1 = 0

}
, thus V =

{
y ∈ K7 | y1 6= 0

}
and U = Ψ−1(V ) =

{
x ∈ K8 | x1 6= 0, x5 6= 0

}
.

Obviously Ψ(U) 6= K7, so we are in case (ii) of the proof of Theorem 4 and
find that ρ := y1 vanishes on K7 \Ψ(U) and ρ(Ψ(v)) 6= 0. Thus ψ := ρ◦Ψ =
x1x5 vanishes on K8 \ U with ψ(v) 6= 0, and therefore

K [x1, . . . , x8]
G

[
1

x1x5

]
= K [x1x5, x2x5, x3x5, x4x5, x1x6, x1x7, x1x8]

[
1

x1x5

]
.

This localization works for the entire set U1 := U . In the same way we find
e.g. for U2 :=

{
x ∈ K8 | x2 6= 0, x6 6= 0

}
⊆ Z∗8 that a suitable localization is

K [x1, . . . , x8]
G

[
1

x2x6

]
= K [x1x6, x2x6, x3x6, x4x6, x2x5, x2x7, x2x8]

[
1

x2x6

]
.
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4.3 Symmetric vector fields

To apply orbit space reduction to general G-symmetric polynomial vector
fields, we also need an explicit representation of such vector fields. While DG
is clearly a module over the invariant algebra, the minimal number of module
generators may be quite large, similar to the problem for K [x1, . . . , xn]G.
Making use of suitable localizations again, one finds that the number of
generators required equals n (which is as small as possible in view of Z∗n 6= ∅),
provided that we impose one more condition on the group.

Theorem 5. Let Q be the quotient field of K [x1, . . . , xn]G and q its tran-
scendence degree over K. Assume, in addition, that G is a subgroup of
SL(n,K), or that Q = K (x1, . . . , xn)G. Moreover let v ∈ Z∗n.
Then there exist ` ∈ {q, q + 1} and φ, ψ1, . . . , ψ` ∈ K [x1, . . . , xn]G with
φ(v) 6= 0 and f1, . . . , fn ∈ DG such that every f ∈ DG can be written as

f = µ1f1 + . . .+ µnfn,

with µi ∈ K[ψ1, . . . , ψ`] [1/φ], 1 ≤ i ≤ n, and moreover

K[x1, . . . , xn]G[1/φ] = K[ψ1, . . . , ψ`] [1/φ].

Proof. Let v ∈ Z∗n, and ψ,ψ1, . . . , ψ` as in Theorem 4. Since εv(DG) = Kn,
there exist f1, . . . , fn ∈ DG such that f1(v), . . . , fn(v) form a K-basis of Kn.
Then the polynomial

θ : x 7→ det(f1(x), . . . , fn(x))

satisfies θ(v) 6= 0, hence θ 6= 0 and f1, . . . , fn form a K(x1, . . . , xn)-basis of
K(x1, . . . , xn)n. In particular any polynomial vector field f can be written
as f = µ1f1 + . . . + µnfn with suitable µi ∈ K (x1, . . . , xn). If f ∈ DG, one
verifies that the µi are G-invariant, and by Cramer’s rule we have µi = σi/θ.

(i) In case G ⊆ SL(n, K) one has

θ(Tx) = det(f1(Tx), . . . , fn(Tx))
= det(Tf1(x), . . . , T fn(x))
= det(T ) · θ(x) = θ(x)

for all T ∈ G, and all x ∈ Kn. Hence θ and every σi are G-invariant
polynomials.
Therefore f is a linear combination of the fi with coefficients in

K[ψ1, . . . , ψ`] [1/ψ] [1/θ],
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and ψ ∈ K[ψ1, . . . , ψ`] by Remark 5. Moreover θ ∈ K[x1, . . . , xn]G,
whence θ = γ/ψj with some γ ∈ K[ψ1, . . . , ψ`] and some integer j ≥ 0.
Let φ := γ · ψ. Then φ(v) 6= 0 and a standard argument (using that
ψ ∈ K[ψ1, . . . , ψ`]) shows that

K[ψ1, . . . , ψ`] [1/ψ] [1/θ] ⊆ K[ψ1, . . . , ψ`] [1/φ].

(ii) If Q = K (x1, . . . , xn)G one can write µi = σ̃i/θ̃ with G-invariant poly-
nomials σ̃i and θ̃, and then proceed as above.

Example 5. Continuing Example 4, let

G =

{(
a · E4 0

0 a−1 · E4

)
; a ∈ K∗

}
⊆ SL(8,K)

and v := (v1, 0, 0, 0, v5, 0, 0, 0) ∈ Z∗8 , v1, v5 6= 0. We have already seen that

K [x1, . . . , x8]
G

[
1

x1x5

]
= K [x1x5, x2x5, x3x5, x4x5, x1x6, x1x7, x1x8]

[
1

x1x5

]
,

with x1x5(v) 6= 0.

Denote by ei ∈ K8 the standard basis vectors. Then

fi := x1ei, 1 ≤ i ≤ 4 and fi := x5ei, 5 ≤ i ≤ 8

are G-symmetric vector fields such that f1(v), . . . , f8(v) span K8, and we find
θ := det(f1, . . . , f8) = x41x

4
5, so we may choose φ = ψ, using the notation in

the proof of Theorem 5. Thus every f ∈ DG can be written on U as

f = µ1f1 + . . .+ µ8f8 = (µ1x1, µ2x1, µ3x1, µ4x1, µ5x5, µ6x5, µ7x5, µ8x5),

µi ∈ K [x1x5, x2x5, x3x5, x4x5, x1x6, x1x7, x1x8]
[

1
x1x5

]
.

For the reduction of ẋ = f(x), f ∈ DG, we may use the Hilbert map
from Corollary 1, i.e.

̂̂
Ψ := (x1x5, x2x5, x3x5, x4x5, x1x6, x1x7, x1x8)

tr.
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The reduced differential equation ẏ = g(y) is obtained from the identity
g(Ψ(x)) = DΨ(x) · f(x), thus

g(y) =



(µ̃1 + µ̃5)y1
µ̃2y1 + µ̃5y2
µ̃3y1 + µ̃5y3
µ̃4y1 + µ̃5y4
µ̃6y1 + µ̃1y5
µ̃7y1 + µ̃1y6
µ̃8y1 + µ̃1y7


,

with µ̃i ∈ K [y1, . . . , y7]
[

1
y1

]
defined by µ̃i ◦Ψ = µi, 1 ≤ i ≤ 8.

Generally, it can be shown that for toral groups one always obtains a

reduction map
̂̂
Ψ to Kn−s; hence the best possible scenario occurs.

4.4 Concluding remarks

• In the present note, our results were based on the assumption that
Z∗n 6= ∅, and we focussed on reduction near points of Z∗n. We did not
discuss the case when Z∗n = ∅. In this case it is natural to consider the
largest integer m such that Z∗m 6= 0, and v ∈ Z∗m. As noted above (see
Theorem 3), then there exist common rational first integrals for the
elements of DG which (loosely speaking) make up for the deficiency in
dim εv(DG).

• Moreover we did not discuss reduction near w ∈ Zr, with r < m
(including the case m = n). Here, some of the results and arguments
from Sections 3 and 4 can be salvaged at least for reductive groups (in
view of Remark 3), but matters become more complicated. We refer
to (yet unpublished) work by Grosshans [9] on algebraic aspects.

• Finally one should not belittle the computational and algorithmic
problems. While our approach does yield a reduction to a variety
of codimension ≤ 2 in its ambient space, the ingredients may still be
hard to obtain. This refers in particular to finding a primitive ele-
ment as in the proof of Theorem 4. As it stands, our approach still
requires knowledge of a generator set for K[x1, . . . , xn]G. For toral
groups, however, computations are quite straightforward.

• The main results (Theorems 4 and 5), as well as some facts mentioned
here without proof, are taken from the first named author’s upcoming
doctoral thesis.
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