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Linear groups

Let g = p? for some prime p and F = I, a field with q elements.
Consider the vector space Fy.

@ GL(n, q): the group of all invertible n x n matrices with
entries in IF,. The general linear group.

@ SL(n, q): the group of all invertible n x n matrices with
entries in I, and determinant 1. The special linear group.

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 2/60



|
Invariant Forms

Let g = p? for some prime p and F = I, a field with g elements.
Consider the vector space V = FFg. Let G < GL(n, q).
Define a bilinear form f = (.,.) on V.

Definition

fis invariant under Gif f(ug, vg) = f(u, v) for all g € G.

f is invariant modulo scalars under G if for any g € G there
exists ¢, € Iy with f(ug, vg) = c4f(u, v).

There is a matrix M; such that f(v, w) = vMw .

f is invariant under G if gM;g” = M for all g € G.
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The symplectic group

Let g = p? for some prime p and F = I, a field with q elements.
Consider the vector space V = Iy,
Define a bilinear form f = (.,.) on V.

@ fis non-degenerateifVvwe V f(v,w)=0=v =0

e fis alternating if f(v,v) =0forallv e V.

e if f is alternating then f(v,w) = —f(w, v), i.e. f
skew-symmetric.

@ if V has a non-deg., alternating bilinear form, then n even

@ any two non-degenerate, alternating bilinear forms on V are
equivalent up to a change of basis
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I
The symplectic Group

Symplectic Group
Let f be a non-degenerate, alternating bilinear form on V = IFg”.

@ The symplectic group Sp(2n, q) is the group of all invertible
(2n) x (2n) matrices with entries in F, which leave f
invariant.

@ The general symplectic group GSp(2n, q) is the group of all
invertible (2n) x (2n) matrices with entries in [F, which leave
f invariant modulo scalars.

v
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I
The symplectic group

Example

Let g = p? for some prime p and F = F,. Let V = ;.
Let

0O 0 0 1
0 0 10
A=lo 100
1 0 00

Define f: V x V — Fq by f(v,w) = vAw'. Then f is a
non-degenerate, alternating bilinear form on V.
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I
The symplectic group

Example

_L_Lo

Sp(4,17) = (

OO OoOwWw
oo —+0
o+ 00
o O OO
SO o=
—

(o))

o - 0O =
O O OO
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-
Summary

Some of the finite classical groups of Lie type are:
@ linear groups: SL(n,q).
@ symplectic groups: Sp(n,q), neven.
@ orthogonal groups: Q¢(n,q),
_J£ neven
““ Yo nodd (and hence also q)

@ unitary groups: SU(n, q).
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-
The groups Q2 and A

Name Q A Note
linear groups SL(n,q) GL(n.q)
symplectic groups S

p(n,q) GSp(n,q) neven
( . + neven

o n odd '
unitary groups Su(n,q) GU(n,q) V=TFp

orthogonal groups  Q¢(n,q) GO*(n, q)

M
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N
formulas for the orders of Q

Theorem

Let Q2 be one of the groups of Lie type in characteristic p with

q = p? given before and n > 2. Then

1
Q] = ;a"P(q),
Q ¢ h P(q)
SL(n,q) (2) [172(q' = 1)
Sp(2m, q) m? [174(g% - 1)
Q°(2m+1,q) 2 m? [174(q% — 1)
Q*@2m.q)  (2,9-1) mm-1) (@"-D)II%"(¢¥ -1)
Q-(2mq)  (2.9-1) mm—1) (@"+1D)I1%"(@? - 1)
Su(n, q) (2) [To(g’ = (=1))

v
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N
Goal

Question

NeubuUser asked in 1988: Given G < GL(n, q) give an algorithm
to decide whether SL(n, q) < G.

A first answer

Algorithm by Neumann and Praeger (1992). “A recognition
algorithm for special linear groups.” Proc. London Math. Soc. (3)
65 (1992), no. 3, 555-603.

Runtime: O(n*log(q)).
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-
Today’s aim

Introduce an algorithm by N. and Praeger that answers the
question whether a group G < GL(n, q) acting absolutely
irreducibly on the underlying vector space with knowledge about
all preserved forms contains a corresponding classical group.

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 12/60



I
Background from Number Theory

Let a and m be positive integers. The least positive integer e
with @® =1 (mod m) is called the order of a modulo m, denoted
ordm(a).

If gcd(a, m) = 1 then e = |(a)| in Z%,. In particular, e | ¢(m) and
e = ¢(m) if and only if ais a primitive root modulo m.
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]
Primitive Prime Divisor Elements

Let b and m be positive integers with gcd(b, m) = 1 and

e = ordny(b).

Then b =1 (mod m) if and only if ¢ = ce for some positive
integer c.

S prime
b*~' =1 (mod s) thus e divides s — 1. In particular, s = ce + 1. J

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 14 /60



Definition

For positive integers b,ewith b > 1, e > 1, a prime s is called a
primitive prime divisor (or ppd) of b® — 1, if b® — 1 is divisible by
S, but s does not divide b’ — 1 for i < e. A ppd s is called large if
either

(a) s>2e+1,o0r

(b) s= e+ 1 and s? divides b® — 1.

Thus s is a ppd of b¢, if and only if e = ordg(b).
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Example

Consider b = 7. Then
7"-1 = 2.3
72-1 = 2*.3
7°-1 = 2.32.19
74—1 = 25.3.52
7°-1 = 2.3.2801

75—1 = 24.32.19.43

@ 19is appd of b* — 1 but 19 is not a ppd of b® — 1.
@ 19is a large ppd of b — 1 because 19 > 2 x 3 + 1.
@ 5is appd of b* — 1

@ 5is a large ppd of b* — 1 because, even though 5 = 4 + 1,
we have 52 divides b* — 1.
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Definition

For a prime p and positive integers z, e withz>1,e > 1, and

q = p?, aprime s is called a basic primitive prime divisor (or
ppd) of g¢ — 1, if g° — 1 is divisible by s, but p’ — 1 is not divisible
by s for i < ze.
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-
Example

Letqg=72,so0p=7and z=2.

77-1 = 2.3

72-1 = 2¢.3 = 49-1=¢qg—-1
7.1 = 2.32.19

741 = 25.3.52 = 492 1=q®—1

751 = 2.3.2801
761 = 24.32.19.43 = 493 —1=¢q°—1

Thus 19 is a ppd of 492 — 1 but 19 is not a basic ppd.
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I
Existence of primitive prime divisors

Theorem (Zsigmondy 1892)

Let b, e be positive integers withb > 2, e > 3 and (b, e) # (2, 6),
then b® — 1 has a primitive prime divisor.

Theorem (Hering and Feit (1974, 1988))

Ifb>2,e> 3 then b®— 1 has a large prime primitive divisor,
except when

,6,10,12,18
6

ow N
o~ Mo
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-
ppd-elements

Definition

Let g be a prime power. Then g € GL(n, q) is called a
ppd(n,qg;e)-element if n/2 < e < nand g° — 1 has a ppd s that
divides o(9).
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|
Generic Parameters

Definition
We say that (X, n, q) are genericif Q < X < Aand nand g are
such that

@ Q contains a ppd(n, g; e;) and a ppd(n, g; e;)-elements for
some n/2 < e; < e < n.

@ (2 contains a basic ppd(n, g; e)-element for some
n/2 <e<n.

@ Q contains a large ppd(n, g; e)-element for some
n/2 <e<n.
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-
Recognition Theorem

hypotheses
Let G < A(n, q) with g = p? and p prime, n > 3 and (2, n, q)
generic.
@ G acts absolutely irreducibly on V = Fg
@ G leaves invariant only the forms corresponding to Q(n, q)
@ G contains ppd(n, g; e1) and a ppd(n, q; e2)-element with
nf2<e <e<n
@ there are e;, e, with n/2 < e3, €4 < d such that G contains a
large ppd(n, q; es)-element and a basic
ppd(n, g; e4)-element.
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Recognition Theorem

Theorem [N., Praeger [5] ]

Suppose G satisfies the hypotheses. Then one of the following
holds:

@ [Classical Group]: G contains Q

@ [extension field example]: there is a prime divisor b of n
and G ~ H < GL(n/b, g°).b.

@ [nearly simple example]: G = PSL(2,r), for a prime r with
n="=1 e =52 e =" withppds s; = 5 and s, = r,
or G is one of the groups in Table 1.
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N
Table 1

G nie |e|n|r|p=q
2-A, 141347 |5 |p>23
A7 4 13|47 5| p=2
M;4 5145|711 p=3
2-Mo| 64|57 11| p=3
Moz |11 (1011|1123 | p=2
My |11 (101111 (23| p=2
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The proof is based on:
Guralnick, Penttila, Praeger, Saxl. “Linear groups with orders

having certain large prime divisors”. J Proc. London Math. Soc.
(3) 78, 1999.
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Properties of ppd-elements

Let g be a ppd(n, g; e)-element in GL(n, q). Let f(x) be its
characteristic polynomial. Then

@ f(x) has an irreducible factor of degree e.

@ V as (g)-module has an irreducible (g)-submodule W of
dimension e.
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Test whether a matrix is a ppd(n,q;e)-element

Algorithm 1: ISPPD
Input: g and g € GL(n, q)
Output: (e,large) or (e,not large) or false, e > n/2
if CHAR(g) has no irr. fact. ¢ of deg. e > n/2 then return false;
PPDs := q° — 1;
fori=1...e—1do
m := GCD(PPDs,q' —1);
PPDs := PPDs/m;
end
# PPDs contains all ppds with multiplicity; # M contains no pdds;
M := (g —1)/PPDs; y :=xM (mod c(x));
if y = 1 then return false;
if y(¢+1) £ 1 then return e, /arge;
return e, not large ;
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Satz
The costs of ISPPD are:
@ O(r?log?(q)) per GCD computation
@ O(n?log®(q)) for the loop for PPDs and M
© O(n®log(q)) for the characteristic polynomial
@ O(n*log(q)) to factor the char. pol.

© O(log(M)) polynomial multiplications for xM. As M < q" — 1
these are at most O(nlog(q)) polynomial multiplications.

© O(log(n)) polynomial multiplications for y(e+1).

v

As we work in F[x]/(c(x)), polynomials have degree e <
n. Polynomial multiplication and reduction modulo c(x) costs

O(n? log(q)).
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The costs of ISPPD are:
@ O(n?log?(q)) per GCD computation
@ O(r?log?(q)) for the loop for PPDs and M
© O(n?log(q)) for the characteristic polynomial
@ O(nlog(q)) to factor the char. pol.

@ O(log(M)) polynomial multiplications for x". As M < g" — 1
these are at most O(nlog(q)) polynomial multiplications.

© O(log(n)) polynomial multiplications for y(e+1).

—_

Total costs

O(n®log(q)?)
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I
Proportion of ppd(n, g; e)-elements

Theorem [N. & Praeger]
Let n/2 < e < n.LetQ < G < A. The proportion pypd(n,g:e) Of

ppd(n, g; e)-elements in G satisfies

1
Popd(n.gie) < e

— <
e+1—
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Theorem

RECOGNISES? is a 1-sided Monte-Carlo algorithm with error
probability . If the algorithm is called with G < A and ¢ and

@ G fixes only the forms corresponding to
@ G acts absolutely irreducibly
@ (2, n, q) are generic

and returns true, then Q < G. The probability that the algorithm
returns false even though Q < G is at most «.
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Complexity
The complexity of the algorithm is

O(log(e")(& + n’log?(q))),

where ¢ is the cost for selecting a random element.
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Black Box recognition of classical groups

A Monte-Carlo algorithm of Babai, Kantor, Palfy and Seress [2]
for:

Input: Gandp.

G a Black-box group isomorphic to a finite, simple group of Lie
type in characteristic p and N an upper bound for the length of
the input.

Output: The name of G.

runtime: polynomial in the length the input.
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generic version for classical groups

Definition

Let G be isomorphic to a finite simple classical group of Lie
type. Let n be the natural dimension of the underlying vector
space of characteristic p. Suppose p is known. We call G
generic, if p>2,n> 12 and if G=SL(n, q), then g > 4.
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Problem

We cannot derive any information about a black-box group from
the operation on the underlying vector space.
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The groups

The finite, simple classical groups of Lie type are:
@ linear groups: PSL(n, q).
@ symplectic groups: PSp(n,q), neven.
@ orthogonal groups: PQ°(n,q),
o + neven

o nodd (then also q)
@ unitary groups: PSU(n, q), over F .
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Black Box Recognition

Compute invariants of the groups, which assist in differentiating
between the groups.
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Black Box Recognition

formulas for the orders of P2

Theorem

Let P2 be one of the finite simple classical groups of Lie type in

characteristic p with g = p? given before and n > 2. Then

1
PQ| = q"P(q),

PQ ¢ h P(q
PSL(n, q) (n,g—1) (3 [17Lo(q — 1
PSp(2m, q) (2,9-1) m? 174 (q% — 1
PQ°(2m+1,q) (2,gq—1) mP [1724(q? —1
PQ*(2m,q)  (4,9"—1) m(m- - DI (g% -1
PQ™(2m, q) (4.9"—=1) mm-1) (@"+ 1) (¢% -1
PSU(n, q) (ng+1) (3 [Teo(g’ = (—1)

v
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Black Box Recognition

Definition
A ppd(p, k)-element in G is an element of order divisible by a
primitive prime divisor r of pk — 1.
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The Invariants

1
G| = zth(Q)

Then we define

e; largest k, for which G has ppd(p, k)-elements
e, 2. largest k, for which G has ppd(p, k)-elements
w €4 /(61 — eg)

In particular, z divides all the e;.
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Invariants for PSL(n, g) and PSp(n, 2)

group e e (S%) w
PSL(n,q) n n—1 n—-2 n
PSp(n,q) n n—-2 n—4 n/2

Tabelle: Extract from Table 1 in [2], g = p?
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Proposition 3 in [2]

Proposition
There are at most 7 groups with the same invariants e; and e.. J
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Black Box Recognition

Hence except for PSp(2m, p?) and PQ°(2m+1, p?) Babai et al.
can distinguish all groups. For these two there exists an
algorithm of Altseimer and Borovik.
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Black Box Recognition

The total cost is dominated by
@ costs to compute e; and e,

@ cost to choose Nlog(s~') random elements which need to
be tested for the ppd-property.

The cost to compute ey is
O(V'Nlog(s~ )¢ + VN(N? log(p) + Nz? log(p)) ).

u is to cost of a Black-Box operation and ¢ is the cost for
selecting a random element.

Total Cost
is polynomial in N, log(p), log(¢~') and p. J
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Finding the characteristic

Liebeck & O’Brien [4] and Kantor & Seress [3] introduce
algorithms which determine the characteristic of a finite, simple
group G of Lie-type .

Let ch(G) the characteristic of G.
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Finding the characteristic

Liebeck & O’Brien [4] prove that in a black box group G with
input length N and an order oracle, the characteristic of G can
be determined using O(N) random elements. The order oracle
is only sometimes required.
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The three largest element orders

Now we present the idea of the algorithm in [3].

Let m(G), mx(G) and m3(G) be the largest, second largest and
third largest element orders in a finite, simple group G of Lie
type. Then Kantor and Seress proved:

Theorem [Kantor and Seress [3]

Let G and H be finite, simple groups of Lie type. If
mi(G) = m;(H) for i = 1,2,3, then ch(G) = ch(H).

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 46/ 60



The characteristic

The algorithm of Kantor and Seress is a Monte Carlo algorithm
which

@ takes as input an absolutely irreducible subgroup G of
GL(n, p?) such that G/Z(G) a finite simple group of Lie type

@ returns a list of numbers containing the characteristic of G

@ uses O(log?(n)loglog(n)) random elements

@ uses O~(n) field operations in Fpa

@ supposes all primes at most 3n are known.

The list might have O(n) elements. For n < 3 -10° it only has 1
entry.
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Introduction

Ces: Normalisers of extra special groups
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Extra Special Groups

Let r be a prime. (Here r odd.)
Definition
Let R be an r-group. Then
@ Ris extra special if Z(R) = ¢(R) = R' = Z,.

@ R is of symplectic-type if all of its characteristic abelian
subgroups are cyclic.

One can prove that |G| = r2™*' for some positive integer m.
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Extra Special Groups of exponent r

Let r be a prime. (Here r odd.)
@ There are (up to isomorphism) two extra-special groups of
order r2, namely one of exponent r and one of exponent r2.

@ Extra special groups of exponent r and order r>™+' are
central products of m extra special groups of order r® and
exponent r.

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 52 /60



Introduction

Cs

The groups G we consider here are subgroups of GL(n, q) are
normalisers of extra-special r groups R of symplectic-type of
order r'+2m (when r odd) with

@ exponentof Ris r

@ R acts absolutely irreducibly on V,i.e. n=r"

@ G not conjugate to a subgroup defined over a smaller field
When r is odd, the groups are subgroups of R.Sp(2m, r)

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 53/60



Introduction

The case for m = 1 treated in [3].
e If G < R.Sp(2, r) use knowledge of all subgroups of Sp(2, r)
to construct element a € R\Z(R).

@ Construct a generating set (a, b) for R using commutators
of a with particularly chosen other elements.

@ change basis of V
@ test whether G normalises R

@ complexity O(log(s~")(¢ + loglog(r) + log(q))u + w), where
¢ cost of random element, 1 group operation and w finding
r-th root in Iy,
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Introduction

The case for m > 1 treated in [2].
It uses an idea by Babai & Beals [1] called Blind Descent

Alice Niemeyer (UWA, RWTH Aachen) Matrix Groups Sommerschule 2011 55/60



Blind Descent

Let G be a black box group. Goal: construct an element g € G
which lies in a proper normal subgroup N of G but not in Z(G).
Algorithm 2: BLINDDESCENT
Input: G Black Box Group
Output: g€ G
Co := Random(G); (notin Z(G));
fori=1toMdo
gi := Random(G);
¢ = [ci_1, gil;
if c; € Z(G) then
Find random x € G such that ¢; := [¢i_1, 9/] & Z(G);
end
end
return cy;
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Blind Descent

@ if any g; belongs to a proper normal subgroup, then so does
the output of BLINDDESCENT.
@ if the probability in G of finding an element in a proper

normal subgroup is ¢ then the algorithm succeeds in time
O(log(e~")c™).
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Introduction

@ Las Vegas reduction algorithm in [2], i.e. the algorithm
computes ¢ : G — H where here H < G/Z(G).

@ The case for m > 1 uses an adaption of BLINDDESCENT to
find an element in R but not in Z(R).

@ Analysed when full symplectic group on top. Then

@ Complexity O(log(s~")(¢ + n*pr)), where ¢ cost of obtaining
a random element and pr the cost of a field operation.
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