IWAHORI-HECKE ALGEBRAS AND KAZHDAN-LUSZTIG POLYNOMIALS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Summer school on
Representations of Algebraic Groups and Lie Algebras
in Characteristic p

Marienheide, Sep 07 – 11, 2015

CONTENTS

- Coxeter Groups
- 2. Iwahori-Hecke Algebras
- 3. Kazhdan-Lusztig Polynomials

COXETER GROUPS

Let S be a finite set and $M = [m_{st}]_{s,t \in S}$ a symmetric matrix with $m_{st} \in \mathbb{Z} \cup \{\infty\}$ satisfying $m_{ss} = 1$ and $m_{st} > 1$ for $s \neq t$. The group W := W(M) with presentation

$$W := \left\langle s \in S \mid s^2 = 1, (st)^{m_{st}} = 1(s \neq t, m_{st} \neq \infty) \right\rangle_{\text{group}},$$

is called the Coxeter group defined by M; the (images of the) elements of S (in W) are the Coxeter generators of W.

The pair (W, S) is called a Coxeter system of rank |S|. The relations $(st)^{m_{st}} = 1$ $(s \neq t)$ are called the braid relations. In view of $s^2 = 1$, they can be written as

$$sts \cdots = tst \cdots$$
 (m_{st} factors on each side).

EXAMPLES

EXAMPLE

The finite symmetric group S_n on n-letters is a Coxeter group: If s_i denotes the transposition (i, i + 1), $1 \le i \le n - 1$, then

$$S_n = \langle s_i \mid s_i^2 = 1, (s_i s_{i+1})^3 = 1, (s_i s_j)^2 = 1(|i-j| \ge 2) \rangle.$$

EXAMPLE

PGL(2, \mathbb{Z}) is a Coxeter group: Let r, s, t denote the images of $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ in PGL(2, \mathbb{Z}), respectively.

Then

$$PGL(2,\mathbb{Z}) = \langle r, s, t \mid r^2 = s^2 = t^2 = 1, (rs)^3 = (rt)^2 = 1 \rangle.$$

THE COXETER DIAGRAM

The matrix *M* is usually encoded in a Coxeter diagram, e.g.

$$M := B_n := \begin{bmatrix} 1 & 4 & 2 & 2 & \cdots & 2 \\ 4 & 1 & 3 & 2 & \cdots & 2 \\ 2 & 3 & 1 & 3 & & 2 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 2 & \cdots & 2 & 3 & 1 & 3 \\ 2 & \cdots & 2 & 2 & 3 & 1 \end{bmatrix}$$

is displayed as

$$B_n$$
: S_1 S_2 S_3 \cdots S_n

with $m_{s_i s_j}$ – 2 edges between s_i, s_j ($i \neq j$).

WEYL GROUPS AND FINITE REFLECTION GROUPS

A Weyl group of a reductive algebraic group is a Coxeter group with Coxeter generators s_{α} , where α runs through a set of simple roots.

Let (W, S) be a Coxeter system with W = W(M), $M = [m_{st}]$. Let V be an \mathbb{R} -vector space of dimension |S|, and B the symmetric bilinear form on V with Gram matrix $[-\cos(\pi/m_{st})]$.

FACTS

- 1. W acts faithfully on V, preserves B, and the elements of S act as reflections (w.r.t. B).
- 2. W is finite if and only if B is positive definite.

Thus *W* is finite if and only if it is a finite reflection group, i.e. a finite group generated by reflections in a finite-dimensional Euclidean vector space.

EXAMPLE

Consider the Coxeter diagram of type B_2 :

$$s$$
 t

$$B_2 := \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}.$$

 $W := W(B_2) = \{1, s, t, st, ts, sts, tst, stst\}$ is the symmetry group of the unit square, a dihedral group.

s, t, sts and tst are reflections of the square in the indicated lines, st, stst and ts are rotations by 90, 180 and 270 degrees, respectively.

PARABOLIC SUBGROUPS

Let (W, S) be a Coxeter system. For a subset $J \subseteq S$ put

$$W_J := \langle s \mid s \in J \rangle \leq W.$$

Then (W_J, J) is a Coxeter system, more precisely, W_J is the Coxeter group defined by the matrix $M_J := [m_{st}]_{s,t \in J}$.

A subgroup of W of this form is called a parabolic subgroup.

THE LENGTH FUNCTION

Let (W, S) be a Coxeter system, and let $w \in W$.

Suppose that $I \in \mathbb{N}$ is minimal such that there exist $s_1, \ldots, s_l \in S$ with

$$w = s_1 \cdots s_l$$
.

Then $s_1 \cdots s_l$ is called a reduced expression for w, and

$$\ell(w) := I$$

is called the length of w.

Thus 1 is the unique element of W of length 0, and $w \in S$ if and only if $\ell(w) = 1$.

FACT

If W is finite, there is a unique element w_0 of maximal length. It satisfies $w_0^2 = 1$.

THE BRUHAT ORDER

Let (W, S) be a Coxeter system and let $v, w \in W$.

We write

$$v < w$$
,

if $v = s_{i_1} \cdots s_{i_m}$ for some reduced expression $s_1 \cdots s_l$ for w.

This defines a partial order on W, the Bruhat order.

We have $1 \le w$ for all $w \in W$.

If *W* is finite, we have $w \le w_0$ for all $w \in W$.

Example: The Bruhat Order of $W(B_2)$

THE IWAHORI-HECKE ALGEBRA

Let (W, S) be a Coxeter system with W = W(M), $M = [m_{st}]$.

Let A be a commutative ring and $u \in A$. The algebra

$$\mathcal{H}_{A,u}(\textit{W}) := \left\langle \textit{T}_{\textit{s}}, \textit{s} \in \textit{S} \mid \textit{T}_{\textit{s}}^2 = \textit{u}\,\mathbf{1} + (\textit{u}-1)\textit{T}_{\textit{s}}, \text{ braid rel's }
ight
angle_{A ext{-alg.}}$$

is called the (one-parameter) Iwahori-Hecke algebra of \boldsymbol{W} over \boldsymbol{A} with parameter \boldsymbol{u} .

(The symbol **1** denotes the unit element of $\mathcal{H}_{A,u}(W)$. Braid rel's: $T_sT_tT_s\cdots = T_tT_sT_t\cdots (m_{st} \text{ factors on each side})$)

 $T_s \mapsto -1$ and $T_s \mapsto u$ define two A-algebra homomorphisms $\mathcal{H}_{A,u}(W) \to A$ (from defining relations).

THE THEOREM OF IWAHORI

Let $G := GL_n(q)$ denote the general linear group over the finite field with q elements.

Let $B \leq G$ denote the group of upper triangular matrices.

Let $\mathbb{C}[G/B]$ denote the permutation module of $\mathbb{C}G$ on the set G/B of left B-cosets in G.

Put $E := \operatorname{End}_{\mathbb{C}G}(\mathbb{C}[G/B])$.

THEOREM (IWAHORI ('64))

$$E\cong \mathcal{H}_{\mathbb{C},q}(\mathcal{S}_n).$$

Notice that the Coxeter group S_n is the Weyl group of G.

A BASIS OF THE IWAHORI-HECKE ALGEBRA

Let $w \in W$. Choose a reduced expression $w = s_1 s_2 \cdots s_l$ and put

$$T_{\mathbf{W}} := T_{s_1} T_{s_2} \cdots T_{s_l} \in \mathcal{H}_{A,u}(\mathbf{W}).$$

FACTS

- 1. T_w is independent of the chosen reduced expression for w.
- 2. $\mathcal{H}_{A,u}(W)$ is a free A-module with A-basis T_w , $w \in W$.

The elements T_w , $w \in W$ are called the standard basis elements of $\mathcal{H}_{A,u}(W)$. Notice that T_1 is the identity of $\mathcal{H}_{A,u}(W)$.

INVERTIBILITY OF THE STANDARD BASIS ELEMENTS

Suppose that $u \in A$ is invertible.

Then T_s is invertible in $\mathcal{H}_{A,U}(W)$.

Indeed
$$T_s^{-1} = u^{-1}T_s + (u^{-1} - 1)T_1$$
.

In turn, the standard basis elements are invertible.

PROPOSITION

For all $w \in W$,

$$(T_{w^{-1}})^{-1} = (-u)^{-\ell(w)} \sum_{y < w} (-1)^{\ell(y)} R_{y,w} T_y,$$

with $R_{y,w} \in \mathbb{Z}[u] \le A$ of degree $\ell(w) - \ell(y)$ in u, and $R_{w,w} = 1$.

This shows the relevance of the Bruhat order.

SPECIALIZATION

Let B be a commutative ring and

$$\varphi: \mathbf{A} \to \mathbf{B}$$

a ring homomorphism.

Consider B as an A-module via φ and put

$$B\mathcal{H}_{A,u}(W) := B \otimes_A \mathcal{H}_{A,u}(W).$$

 $B\mathcal{H}_{A,u}(W)$ is called the specialization of $\mathcal{H}_{A,u}(W)$ via φ .

FACT

$$B\mathcal{H}_{A,u}(W)\cong\mathcal{H}_{B,\varphi(u)}(W).$$

This allows to construct all Iwahori-Hecke algebras of W from a generic one.

THE GENERIC IWAHORI-HECKE ALGEBRA

Let \mathbf{v} be an indeterminate, put $\mathbb{A} := \mathbb{Z}[\mathbf{v}, \mathbf{v}^{-1}]$ and $\mathbf{u} := \mathbf{v}^2$.

Then $\mathcal{H}_{\mathbb{A},\mathbf{u}}(W)$ is called the generic (one-parameter) Iwahori-Hecke algebra of W.

Assume that u has a square root $v \in A$.

By the specialization $\varphi : \mathbb{A} \to A, \mathbf{v} \mapsto \mathbf{v}$, we obtain $\mathcal{H}_{A,u}(\mathbf{W})$.

Note that $\mathcal{H}_{A,1}(W) \cong AW$, so that the group algebra AW is a specialization of $\mathcal{H}_{\mathbb{A},\mathbf{u}}(W)$, or $\mathcal{H}_{\mathbb{A},\mathbf{u}}(W)$ is a (generic) deformation of AW.

KAZHDAN-LUSZTIG POLYNOMIALS

Let (W, S) be a Coxeter system and let $\mathcal{H}_{\mathbb{A}, \mathbf{u}}(W)$ be the generic lwahori-Hecke algebra of W.

There is an involution ι on $\mathcal{H}_{\mathbb{A},\mathbf{u}}(W)$ determined by $\iota(\mathbf{v})=\mathbf{v}^{-1}$ and $\iota(T_w)=(T_{w^{-1}})^{-1}$ for all $w\in W$.

Let \leq denote the Bruhat order on W.

THEOREM (KAZHDAN-LUSZTIG, 1979)

There is a unique basis C_w' , $w \in W$ of $\mathcal{H}_{\mathbb{A},\mathbf{u}}(W)$ such that

- 1. $\iota(C'_w) = C'_w$ for all $w \in W$;
- 2. $C_w' = \mathbf{v}^{-\ell(w)} \sum_{y \le w} P_{y,w} T_w \text{ with } P_{w,w} = 1, P_{y,w} \in \mathbb{Z}[\mathbf{u}], \\ \deg P_{y,w} \le (\ell(w) \ell(y) 1)/2 \text{ for all } y < w \in W.$

The $P_{y,w} \in \mathbb{Z}[\mathbf{u}]$, $y \leq w \in W$, are called the Kazhdan-Lusztig polynomials of W.

EXAMPLE

Let $W := W(B_3)$ with Coxeter diagram

The following table gives all $P_{1,w}$ with $w \in W$ and $P_{1,w} \neq 1$.

$P_{1,w}$
u + 1
$\mathbf{u} + 1$
$u^2 + 1$
$\mathbf{u} + 1$

$P_{1,w}$
u + 1
$\mathbf{u} + 1$
$\mathbf{u} + 1$
$u^2 + u + 1$
$\mathbf{u} + 1$
$\mathbf{u} + 1$
u^2+1

SOME PROPERTIES OF KAZHDAN-LUSZTIG-POLYNOMIALS

Let (W, S) be a Coxeter system and let $y, w \in W$ with $y \leq w$.

- 1. $P_{y,w}$ can be computed recursively (by inducing on the Bruhat order); see Frank's talk.
- 2. $P_{y,w}(0) = 1$ (this follows from the recursion formulae).
- 3. If *W* is finite, then

$$\sum_{y \le z \le w} (-1)^{\ell(z) + \ell(w)} P_{y,z} P_{w_0 w, w_0 z} = \delta_{y,w}.$$

THEOREM (KAZHDAN-LUSZTIG ('79), ..., ELIAS-WILLIAMSON ('14))

The coefficients of $P_{v,w}$ are non-negative integers.

- R.W. CARTER, Simple groups of Lie type, Wiley, 1972.
- M. GECK AND N. JACON, Representations of Hecke Algebras at Roots of Unity, Springer, 2011.
- M. GECK AND G. PFEIFFER, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Oxford University Press, 2000.
- J. E. HUMPHREYS, *Reflection Groups and Coxeter Groups*, Cambridge University Press, 1990.

Thank you for your listening!