The measurable chromatic number of Euclidean space

Christine Bachoc

Université Bordeaux I, IMB

Codes, lattices and modular forms
Aachen, September 26-29, 2011
The chromatic number of Euclidean space $\chi(\mathbb{R}^n)$ is the smallest number of colors needed to color every point of \mathbb{R}^n, such that two points at distance apart 1 receive different colors.

E. Nelson, 1950, introduced $\chi(\mathbb{R}^2)$.

Dimension 1:

$\chi(\mathbb{R}) = 2$

No other value is known!
\(\chi(\mathbb{R}^2) \leq 7 \)
\(\chi(\mathbb{R}^2) \leq 7 \)
\(\chi(\mathbb{R}^2) \leq 7 \)
\(\chi(\mathbb{R}^2) \geq 4 \)

Figure: The Moser’s Spindle
The two inequalities:

$$4 \leq \chi(\mathbb{R}^2) \leq 7$$

where proved by Nelson and Isbell, 1950. No improvements since then...
\(\chi(\mathbb{R}^n) \)

- Other dimensions: lower bounds based on

\[
\chi(\mathbb{R}^n) \geq \chi(G)
\]

for all finite graph \(G = (V, E) \) embedded in \(\mathbb{R}^n \) (\(G \rightarrow \mathbb{R}^n \)) i.e. such that \(V \subset \mathbb{R}^n \) and \(E = \{ (x, y) \in V^2 : \|x - y\| = 1 \} \).

- De Bruijn and Erdös (1951):

\[
\chi(\mathbb{R}^n) = \max_{G \text{ finite } G \rightarrow \mathbb{R}^n} \chi(G)
\]

\(\chi(\mathbb{R}^n)\) for large \(n\)

\[(1.2 + o(1))^n \leq \chi(\mathbb{R}^n) \leq (3 + o(1))^n\]

- Lower bound: Frankl and Wilson (1981). Use graphs with vertices in \(\{0, 1\}^n\) and the “linear algebra method” to estimate \(\chi(G)\).
- FW 1.207\(n\) is improved to 1.239\(n\) by Raigorodskii (2000).
The measurable chromatic number $\chi_m(\mathbb{R}^n)$: the color classes are required to be measurable.

Obviously $\chi_m(\mathbb{R}^n) \geq \chi(\mathbb{R}^n)$.

Falconer (1981): $\chi_m(\mathbb{R}^n) \geq n + 3$. In particular

$$\chi_m(\mathbb{R}^2) \geq 5$$

The color classes are measurable 1-avoiding sets, i.e. contain no pair of points at distance apart 1.
\[m_1(\mathbb{R}^n) = \sup \left\{ \delta(S) : S \subset \mathbb{R}^n, \ S \text{ measurable, avoids 1} \right\} \]

where \(\delta(S) \) is the density of \(S \):

\[\delta(S) = \lim_{r \to +\infty} \sup \frac{\text{vol}(S \cap B_n(r))}{\text{vol}(B_n(r))}. \]

\[\delta = 1/7 \]
Obviously

\[\chi_m(\mathbb{R}^n) \geq \frac{1}{m_1(\mathbb{R}^n)} \]

Problem: to upper bound \(m_1(\mathbb{R}^n) \).

Larman and Rogers (1972):

\[m_1(\mathbb{R}^n) \leq \frac{\alpha(G)}{|V|} \quad \text{for all } G \hookrightarrow \mathbb{R}^n \]

where \(\alpha(G) \) is the independence number of the graph \(G \) i.e. the max number of vertices pairwise not connected by an edge.
Finite graphs

- An independence set of a graph $G = (V, E)$ is a set of vertices pairwise not connected by an edge.
- The independence number $\alpha(G)$ of the graph is the number of elements of a maximal independent set.

- A 1-avoiding set in \mathbb{R}^n is an independent set of the unit distance graph $V = \mathbb{R}^n$, $E = \{(x, y) : \|x - y\| = 1\}$.
1-avoiding sets versus packings

S avoids $d = 1$

$\delta(S) = \lim \frac{\text{vol}(S \cap B_n(r))}{\text{vol}(B_n(r))}$

$m_1(\mathbb{R}^n) = \sup_S \delta(S)$?

S avoids $d \in]0, 2[$

$\delta(S) = \lim \frac{|S \cap B_n(r)|}{\text{vol}(B_n(r))}$

$\delta_n = \sup_S \delta(S)$?

S avoids $d = 1$

$\delta(S) = \frac{|S|}{|V|}$

$\frac{\alpha(G)}{|V|} = \sup_S \delta(S)$?
The linear programming method

- A general method to obtain upper bounds for densities of distances avoiding sets.
- **For packing problems:** initiated by Delsarte, Goethels, Seidel on S^{n-1} (1977); Kabatianskii and Levenshtein on compact 2-point homogeneous spaces (1978); Cohn and Elkies on \mathbb{R}^n (2003).
- **For finite graphs:** Lovász theta number $\vartheta(G)$ (1979).
- **For sets avoiding one distance:** B. G. Nebe, F. Oliveira, F. Vallentin for $m(S^{n-1}, \theta)$ (2009). F. Oliveira and F. Vallentin for $m_1(\mathbb{R}^n)$ (2010).
Lovász theta number

The theta number $\vartheta(G)$ (L. Lovász, 1979) satisfies the Sandwich Theorem:

$$\alpha(G) \leq \vartheta(G) \leq \chi(\overline{G})$$

It is the optimal value of a semidefinite program

Idea: if S is an independence set of G, consider the matrix

$$B_S(x, y) := \mathbf{1}_S(x) \mathbf{1}_S(y)/|S|.$$

$B_S \succeq 0$, $B_S(x, y) = 0$ if $xy \in E$, $|S| = \sum_{(x,y) \in V^2} B_S(x, y)$.
\(\vartheta(G) \)

- Defined by:

\[
\vartheta(G) = \max \left\{ \sum_{(x,y) \in V^2} B(x, y) : B \in \mathbb{R}^{V \times V}, B \succeq 0, \right. \\
\left. \sum_{x \in V} B(x, x) = 1, \right. \\
B(x, y) = 0 \quad xy \in E \right\}
\]

- Proof of \(\alpha(G) \leq \vartheta(G) \): Let \(S \) be an independent set. \(B_S(x, y) = \mathbf{1}_S(x) \mathbf{1}_S(y) / |S| \) satisfies the constraints of the above SDP. Thus

\[
\sum_{(x,y) \in V^2} B_S(x, y) = |S| \leq \vartheta(G).
\]
Over \mathbb{R}^n: take $B(x, y)$ continuous, positive definite, i.e. for all k, for all $x_1, \ldots, x_k \in \mathbb{R}^n$, $(B(x_i, x_j))_{1 \leq i, j \leq k} \succeq 0$.

Assume B is translation invariant: $B(x, y) = f(x - y)$ (the graph itself is invariant by translation).

Replace $\sum_{(x,y) \in V^2} B(x, y)$ by

$$\delta(f) := \limsup_{r \to +\infty} \frac{1}{\text{vol}(B_n(r))} \int_{B_n(r)} f(z)dz.$$
leads to:

\[\vartheta(\mathbb{R}^n) := \sup \left\{ \delta(f) : f \in C_b(\mathbb{R}^n), f \succeq 0, f(0) = 1, f(x) = 0 \quad \|x\| = 1 \right\} \]

Theorem
(Oliveira Vallentin 2010)

\[m_1(\mathbb{R}^n) \leq \vartheta(\mathbb{R}^n) \]
The computation of $\mathcal{V}(\mathbb{R}^n)$

- Bochner characterization of positive definite functions:

$$f \in C(\mathbb{R}^n), f \succeq 0 \iff f(x) = \int_{\mathbb{R}^n} e^{ix \cdot y} d\mu(y), \mu \geq 0.$$

- f can be assumed to be radial i.e. invariant under $O(\mathbb{R}^n)$:

$$f(x) = \int_0^{+\infty} \Omega_n(t\|x\|)d\alpha(t), \alpha \geq 0.$$

where

$$\Omega_n(t) = \Gamma(n/2)(2/t)^{(n/2-1)}J_{n/2-1}(t).$$

- Then take the dual program.
The computation of $\vartheta(\mathbb{R}^n)$

- Leads to:

$$\vartheta(\mathbb{R}^n) = \inf \{ z_0 : \quad z_0 + z_1 \geq 1 $$
$$z_0 + z_1 \Omega_n(t) \geq 0 \quad \text{for all } t > 0 \}$$

- Explicitly solvable. For $n = 4$, graphs of $\Omega_4(t)$ and of the optimal function $f_4^*(t) = z_0^* + z_1^* \Omega_4(t)$:

The minimum of $\Omega_n(t)$ is reached at $j_{n/2,1}$ the first zero of $J_{n/2}$.
The computation of $\mathcal{V}(\mathbb{R}^n)$

- We obtain

$$f_n^*(t) = \frac{\Omega_n(t) - \Omega_n(j_{n/2}, 1)}{1 - \Omega_n(j_{n/2}, 1)}$$

$$\mathcal{V}(\mathbb{R}^n) = \frac{-\Omega_n(j_{n/2}, 1)}{1 - \Omega_n(j_{n/2}, 1)}.$$

- Resulting upper bound for $m_1(\mathbb{R}^n)$ (OV 2010):

$$m_1(\mathbb{R}^n) \leq \mathcal{V}(\mathbb{R}^n) = \frac{-\Omega_n(j_{n/2}, 1)}{1 - \Omega_n(j_{n/2}, 1)}.$$

- Decreases exponentially but not as fast as Frankl Wilson Raigorodskii bound (1.165^{-n} instead of 1.239^{-n}). A weaker bound, but with the same asymptotic, was obtained in BNOV 2009 through $m(S^{n-1}, \theta)$.
To summarize, we have seen two essentially different bounds:

\[m_1(\mathbb{R}^n) \leq \frac{\alpha(G)}{|V|} \quad \text{with FW graphs and lin. alg. bound} \]

\[m_1(\mathbb{R}^n) \leq \vartheta(\mathbb{R}^n) \quad \text{morally encodes } \vartheta(G) \text{ for every } G \hookrightarrow \mathbb{R}^n \]

The former is the best asymptotic while the later improves the previous bounds in the range \(3 \leq n \leq 24\).

It is possible to combine the two methods, i.e. to insert the constraint relative to a finite graph \(G\) inside \(\vartheta(\mathbb{R}^n)\). Joint work (in progress) with F. Oliveira and F. Vallentin.
Let $G \hookrightarrow \mathbb{R}^n$, for $x_i \in V$, let $r_i := \|x_i\|$.

$$\vartheta_G(\mathbb{R}^n) := \inf \{ z_0 + z_2 \frac{\alpha(G)}{|V|} : z_2 \geq 0 $$
$$z_0 + z_1 + z_2 \geq 1 $$
$$z_0 + z_1 \Omega_n(t) + z_2(\frac{1}{|V|} \sum_{i=1}^{|V|} \Omega_n(r_i t)) \geq 0 $$
for all $t > 0 \}$.

Theorem

$$m_1(\mathbb{R}^n) \leq \vartheta_G(\mathbb{R}^n) \leq \vartheta(\mathbb{R}^n)$$
Sketch of proof

- \(\vartheta_G(\mathbb{R}^n) \leq \vartheta(\mathbb{R}^n) \) is obvious: take \(z_2 = 0 \).
- Sketch proof of \(m_1(\mathbb{R}^n) \leq \vartheta_G(\mathbb{R}^n) \): let \(S \) a measurable set avoiding 1. Let
 \[f_S(x) := \frac{\delta(1_{S-x} 1_S)}{\delta(S)}. \]
 \(f_S \) is continuous bounded, \(f_S \geq 0 \), \(f_S(0) = 1 \), \(f_S(x) = 0 \) if \(\|x\| = 1 \). Moreover \(\delta(f_S) = \delta(S) \).
- Thus \(f_S \) is feasible for \(\vartheta(\mathbb{R}^n) \), which proves that \(\delta(S) \leq \vartheta(\mathbb{R}^n) \).
Sketch of proof

- If $V = \{x_1, \ldots, x_M\}$, for all $y \in \mathbb{R}^n$,

$$\sum_{i=1}^{M} 1_{S-x_i}(y) \leq \alpha(G).$$

- Leads to the extra condition:

$$\sum_{i=1}^{M} f_S(x_i) \leq \alpha(G).$$

- Design a linear program, apply Bochner theorem, symmetrize by $O(\mathbb{R}^n)$, take the dual.
Bad news: cannot be solved explicitly (we don’t know how to)
Challenge: to compute good feasible functions.
First method: to sample an interval $[0, M]$, solve a finite LP, then adjust the optimal solution ($OV, G = simplex$).

Figure: $f^*_4(t)$ (blue) and $f^*_{4, G}(t)$ (red) for $G = simplex$
Observation: the optimal has a zero at $y > \frac{j_{n/2,1}}{2}$.

Idea: to parametrize $f = z_0 + z_1 \Omega_n(t) + z_2 \Omega_n(rt)$ with y:

$f(y) = f'(y) = 0$, $f(0) = 1$ determines f.

We solve for:

$$\begin{cases}
 z_0 + z_1 + z_2 = 1 \\
 z_0 + z_1 \Omega_n(y) + z_2 \Omega_n(ry) = 0 \\
 z_1 \Omega'_n(y) + rz_2 \Omega'_n(ry) = 0
\end{cases}$$

Then, starting with $y = j_{n/2,1}$, we move y to the right until $f_y(t) := z_0(y) + z_1(y)\Omega_n(t) + z_2(y)\Omega_n(rt)$ takes negative values.
Numerical results: upper bounds for $m_1(\mathbb{R}^n)$

<table>
<thead>
<tr>
<th>n</th>
<th>previous $\vartheta(\mathbb{R}^n)$ [OV 2010]</th>
<th>$\vartheta_{\text{simplex}}(\mathbb{R}^n)$ [OV 2010]</th>
<th>$\vartheta_{\text{FW}}(\mathbb{R}^n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.279069</td>
<td>0.287120</td>
<td>0.268412</td>
</tr>
<tr>
<td>3</td>
<td>0.187500</td>
<td>0.178466</td>
<td>0.165609</td>
</tr>
<tr>
<td>4</td>
<td>0.128000</td>
<td>0.116826</td>
<td>0.112937</td>
</tr>
<tr>
<td>5</td>
<td>0.0953947</td>
<td>0.0793346</td>
<td>0.0752845</td>
</tr>
<tr>
<td>6</td>
<td>0.0708129</td>
<td>0.0553734</td>
<td>0.0515709</td>
</tr>
<tr>
<td>7</td>
<td>0.0531136</td>
<td>0.0394820</td>
<td>0.0361271</td>
</tr>
<tr>
<td>8</td>
<td>0.0346096</td>
<td>0.0286356</td>
<td>0.0257971</td>
</tr>
<tr>
<td>9</td>
<td>0.0288215</td>
<td>0.0210611</td>
<td>0.0187324</td>
</tr>
<tr>
<td>10</td>
<td>0.0223483</td>
<td>0.0156717</td>
<td>0.0138079</td>
</tr>
<tr>
<td>11</td>
<td>0.0178932</td>
<td>0.0117771</td>
<td>0.0103166</td>
</tr>
<tr>
<td>12</td>
<td>0.0143759</td>
<td>0.00892554</td>
<td>0.00780322</td>
</tr>
<tr>
<td>13</td>
<td>0.0120332</td>
<td>0.00681436</td>
<td>0.00596811</td>
</tr>
<tr>
<td>14</td>
<td>0.00981770</td>
<td>0.00523614</td>
<td>0.00461051</td>
</tr>
<tr>
<td>15</td>
<td>0.00841374</td>
<td>0.00404638</td>
<td>0.00359372</td>
</tr>
<tr>
<td>16</td>
<td>0.00677838</td>
<td>0.00314283</td>
<td>0.00282332</td>
</tr>
<tr>
<td>17</td>
<td>0.00577854</td>
<td>0.00245212</td>
<td>0.00223324</td>
</tr>
<tr>
<td>18</td>
<td>0.00518111</td>
<td>0.00192105</td>
<td>0.00177663</td>
</tr>
<tr>
<td>19</td>
<td>0.00380311</td>
<td>0.00151057</td>
<td>0.00141992</td>
</tr>
<tr>
<td>20</td>
<td>0.00318213</td>
<td>0.001191806</td>
<td>0.00113876</td>
</tr>
<tr>
<td>21</td>
<td>0.00267706</td>
<td>0.000943209</td>
<td>0.00091531</td>
</tr>
<tr>
<td>22</td>
<td>0.00190205</td>
<td>0.000748582</td>
<td>0.00073636</td>
</tr>
<tr>
<td>23</td>
<td>0.00132755</td>
<td>0.000595665</td>
<td>0.00059204</td>
</tr>
<tr>
<td>24</td>
<td>0.00107286</td>
<td>0.000475128</td>
<td>0.00047489</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.000379829</td>
<td>0.000173756</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>0.000304278</td>
<td>0.000135634</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>0.000244227</td>
<td>0.000103665</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0.000196383</td>
<td>0.0000725347</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>0.0000834258</td>
<td>0.00003061037</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>0.00003621287</td>
<td>0.000010504745</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>0.000007168656</td>
<td>0.000001307413</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>0.0000014908331</td>
<td>0.00000016991978</td>
</tr>
</tbody>
</table>
Numerical results: lower bounds for $\chi_m(\mathbb{R}^n)$

<table>
<thead>
<tr>
<th>n</th>
<th>previous</th>
<th>$\vartheta_{G(\mathbb{R}^n)}$</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>Simplex</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>48</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>85</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>113</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>147</td>
<td>287</td>
<td>FW</td>
</tr>
<tr>
<td>15</td>
<td>191</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>248</td>
<td>532</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>319</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>408</td>
<td>977</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>521</td>
<td>1371</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>662</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>839</td>
<td>2546</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1060</td>
<td>3386</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1336</td>
<td>4442</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1679</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions, comments

- Exponential behavior of $\vartheta_{FW}(\mathbb{R}^n)$?
- Further improvements for small dimensions: change the graph, consider several graphs. For $n = 2$, several triangles lead to 0.268412 (OV); several Moser spindles to 0.262387 (F. Oliveira 2011).
- Can we reach $m_1(\mathbb{R}^2) < 0.25$? (conjectured by Erdös; would give another proof of $\chi_{m}(\mathbb{R}^2) \geq 5$).
- Applies to other spaces, e.g. $m(S^{n-1}, \theta)$ (BNOV 2009).
- In turn, a bound for $m_1(S(0, r))$ can replace a finite graph G in $\vartheta_G(\mathbb{R}^n)$.
- The Lovász theta method was successfully adapted to \mathbb{R}^n. What about the linear algebra method (Gil Kalai)?