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X(R™)

The chromatic number of Euclidean space x(R") is the smallest
number of colors needed to color every point of R”, such that two
points at distance apart 1 receive different colors.

E. Nelson, 1950, introduced x(RR?).
Dimension 1:

x(R) =2

No other value is known!
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Figure: The Moser’s Spindle



The two inequalities:

4 < x(R?) <7

where proved by Nelson and Isbell, 1950. No improvements since
then...



X(R™)

» Other dimensions: lower bounds based on
X(R") > x(G)

for all finite graph G = (V, E) embedded in R" (G — R") i.e.
suchthat V c R"and E = {(x,y) € V?: ||x —y|| = 1}.
» De Bruijn and Erdds (1951):
X(R") = max x(G)

G finite
G—R"

» Good sequences of graphs: Raiski (1970), Larman and Rogers
(1972), Frankl and Wilson (1981), Székely and Wormald (1989).



x(R") for large n

(1.2+0(1))" < x(R") < (3+ o(1))"

» Lower bound : Frankl and Wilson (1981). Use graphs with
vertices in {0, 1}" and the “linear algebra method” to estimate

x(G).
» FW 1.207" is improved to 1.239" by Raigorodskii (2000).

» Upper bound: Larman and Rogers (1972). Use Voronoi
decomposition of lattice packings.
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xm(R")

The measurable chromatic number x,(R™): the color classes are
required to be measurable.

Obviously xm(R") > x(R").
Falconer (1981): xm(R™) > n+ 3. In particular

xm(R?) > 5

The color classes are measurable 1-avoiding sets, i.e. contain no
pair of points at distance apart 1.



m (Rn)

mi(R™) = sup {6(8) . SC R", Smeasurable, avoids 1}
where 4(S) is the density of S:

. vol(SN By(r))
9(8) = lim sup =7 1B.(r))



mH (Rn)

» Obviously

xm(R) 2 my (R")

» Problem: to upper bound my(R").
» Larman and Rogers (1972):

a(G)

n
<
mED =Ty

forall G — R"

where a(G) is the independence number of the graph G i.e. the
max number of vertices pairwise not connected by an edge.



Finite graphs

» An independence set of a graph G = (V, E) is a set of vertices
pairwise not connected by an edge.

» The independence number «(G) of the graph is the number of
elements of a maximal independent set.

@

» A 1-avoiding set in R" is an independent set of the unit distance
graph
V=R" E={(xy):lIx-yl=1}



1-avoiding sets versus packings

S avoids d = 1
5(8) = lim Yz
mi(R") = supg §(S) ?

S avoids d €]0, 2]
SNBy(r
5(8) = lim Lpai)

dn = SUpg 4(S) ?

S avoids d =1
5(8) = 1t
ﬁ =supgd(S) ?



The linear programming method

A general method to obtain upper bounds for densities of
distances avoiding sets.

For packing problems: initiated by Delsarte, Goethels, Seidel on
S"—1 (1977); Kabatianskii and Levenshtein on compact 2-point
homogeneous spaces (1978); Cohn and Elkies on R" (2003).
For finite graphs: Lovasz theta number ¢(G) (1979).

For sets avoiding one distance: B, G. Nebe, F. Oliveira, F.
Vallentin for m(S"~1,6) (2009). F. Oliveira and F. Vallentin for
mi(R") (2010).



Lovasz theta number

» The theta number ¥(G) (L. Lovasz, 1979) satisfies the Sandwich
Theorem:

a(G) < 9(G) < x(G)
» It is the optimal value of a semidefinite program
» |dea: if Sis an independence set of G, consider the matrix

Bs(x,y) :=1s(x)1s(y)/|S|.

Bs = 0, Bs(x, y) = 01if xy € E, S| = X )cve Bs(x.)



9(G)

» Defined by:
9(G) = max{ Y B(x.y) : BERVY, B0,
(x,y)ev?
Z B(x,x) =1,
xeV

B(x,y)=0 xye E}

» Proof of o(G) < 9(G): Let S be an independent set.
Bs(x,y) =1s(x)1s(y)/|S| satisfies the constraints of the above

SDP. Thus
Z Bs(x,y) = |S| < 9(G).

(x,y)eVv2



I(R")

» Over R": take B(x, y) continuous, positive definite, i.e. for all k,

forall xq,..., X, € R, (B(x,-,x,-))1<l.l.<k > 0.
» Assume B is translation invariant: B(x, y) = f(x — y) (the graph

itself is invariant by translation).
> Replace ), ,)cv2 B(X, y) by

1
o(f) :=limsu 7/
(1) =M SUP 1B S



I(R")

» Leads to:

9(R") ::sup{é(f): feCp(RM), =0
f(0) =1,
f(x)=0 x| =1}

Theorem
(Oliveira Vallentin 2010)

m (R") < 9(R")



The computation of ¥(R")

» Bochner characterization of positive definite functions:

feC(RM),f=0+ f(x)= / e*Ydu(y), n>0.

JRN
» f can be assumed to be radial i.e. invariant under O(R"):
o0
0= [ aultixiida(d, a >0
0

where
Qn(t) = (n/2)(2/1) 27D d, 0 _4(1).

» Then take the dual program.



The computation of ¥(R")

» Leads to:

Y(RM) = inf{Zo Dtz > 1
20+ z1Q,(t) >0 forallt >0}

» Explicitly solvable. For n = 4, graphs of Q4(t) and of the optimal
function f; (t) = z5 + 27 Qa(1):

t

The minimum of Q,(t) is reached at j, » 1 the first zero of Jj .



The computation of ¥(R")

» We obtain

Qn(t) - Qr7(jn/2A1)
1— Qn(/‘n/2,1)

» Resulting upper bound for m;(R") (OV 2010):

7Qn 'n
mi(R") < 9(R") = 1_98(_;12/212)

» Decreases exponentially but not as fast as Frankl Wilson
Raigorodskii bound (1.165~" instead of 1.239~"). A weaker
bound, but with the same asymptotic, was obtained in BNOV
2009 through m(S™", 9).



Ja(R")

» To summarize, we have seen two essentially different bounds:

m(R™) < o(G) with FW graphs and lin. alg. bound

4
mi(R") < 9(R") morally encodes 9(G) for every G — R”

» The former is the best asymptotic while the later improves the
previous bounds in the range 3 < n < 24.
» |t is possible to combine the two methods, i.e to insert the

constraint relative to a finite graph G inside ¥(R").
Joint work (in progress) with F. Oliveira and F. Vallentin.



Ja(R")

Let G— R", for x; € V, let r; := || x;||.

Yg(R™) :=inf{zy + 22# : 22>0
Zo0+ 21+ 20> 1
20+ 21Q4(t) + 22( i 124 Qn(rit)) > 0

forall t > 0}.

Theorem

m (Rn) < ﬂG(Rn) < ﬁ(Rn)



Sketch of proof

» Jg(R") < H(R") is obvious: take z; = 0.

» Sketch proof of my(R") < 9g(R"): let S a measurable set
avoiding 1. Let

I(1s—x1s)
3(S)
fs is continuous bounded, fs = 0, f5(0) =1, fs(x) = 0'if | x|| = 1.
Moreover 6(fs) = 4(S).

» Thus fs is feasible for ¢(R"), which proves that 6(S) < J(R").

fs(X) =



Sketch of proof
> IfV={xq,...,xu}, forall y e R
M
Z1s—x,-(y) < Q).

» Leads to the extra condition:

M
Z fs(x;) < a(G).

» Design a linear program, apply Bochner theorem, symmetrize by
O(R™), take the dual.



Ja(R")

» Bad knews: cannot be solved explicitly (we don’t know how to)
» Challenge: to compute good feasible functions.

» First method: to sample an interval [0, M], solve a finite LP, then
adjust the optimal solution (OV, G = simplex).
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Figure: f7 (t) (blue) and f; 5(t)(red) for G = simplex
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Ja(R")

Observation: the optimal has a zero at y > ji,/2 1.

Idea: to parametrize f = zp + z1Q,(t) + 22Q,(rt) with y:
f(y)=f(y) =0, f(0) = 1 determines f.

We solve for:

n+z1+2=1
2o+ Z21Qn(y) + 22Q0(ry) =0
21Q,(y) + rz2Q(ry) =0

Then, starting with y = j, > 1, we move y to the right until
fy(t) == 20(¥) + 21 (¥)Qn(t) + 22(¥)Q(rt) takes negative values.



Numerical results : upper bounds for my(R")

n previous 9 (RM) [OV 2010] Dsimplex (RM) [OV 2010] Iy (R

2 0.279069 0.287120 0.268412

3 0.187500 0.178466 0.165609

4 0.128000 0.116826 0.112937

5 0.0953947 0.0793346 0.0752845

6 0.0708129 0.0553734 0.0515709

7 0.0531136 0.0394820 0.0361271

8 0.0346096 0.0286356 0.0257971

9 0.0288215 0.0210611 0.0187324
10 0.0223483 0.0156717 0.0138079
1 0.0178932 0.0117771 0.0103166
12 0.0143759 0.00892554 0.00780322
13 0.0120332 0.00681436 0.00596811
14 | 0.00981770 0.00523614 0.00461051
15 | 0.00841374 0.00404638 0.00359372 0.00349172
16 | 0.00677838 0.00314283 0.00282332 0.00253343
17 | 0.00577854 0.00245212 0.00223324 0.00188025
18 | 0.00518111 0.00192105 0.00177663 0.00143383
19 | 0.00380311 0.00151057 0.00141992 0.00102386
20 | 0.00318213 0.001191806 0.00113876 0.000729883
21 0.00267706 0.000943209 0.00091531 0.000524659
22 | 0.00190205 0.000748582 0.00073636 0.000392892
23 | 0.00132755 0.000595665 0.00059204 0.000295352
24 | 0.00107286 0.000475128 0.00047489 0.000225128
25 0.000379829 0.000173756
26 0.000304278 0.000135634
27 0.000244227 0.000103665
28 0.000196383 0.0000725347
32 0.0000834258 0.00003061037
36 0.00003621287 0.000010504745
44 0.000007168656 0.0000013007413
52 0.0000014908331 0.00000016991978




Numerical results : lower bounds for x,(R")

n previous 19G(1K”) G
2 5
3 6 7 Simplex
4 8 9
5 11 14
6 15 20
7 19 28
8 30 39
9 35 54
10 48 73
11 64 97
12 85 129
13 113 168
14 147 217
15 191 287 FwW
16 248 395
17 319 532
18 408 698
19 521 977
20 662 1371
21 839 1907
22 1060 2546
23 1336 3386
24 1679 4442




Questions, comments

Exponential behavior of ¥gy (R") ?

Further improvements for small dimensions: change the graph,
consider several graphs. For n = 2, several triangles lead to
0.268412 (OV); several Moser spindles to 0.262387 (F. Oliveira
2011).

Can we reach my(R?) < 0.25 ? (conjectured by Erdés; would
give another proof of x,(R?) > 5).

Applies to other spaces, e.g. m(S"~1,6) (BNOV 2009).

In turn, a bound for m{(S(0, r)) can replace a finite graph G in
Jg(R").

The Lovasz theta method was successfuly adapted to R"”. What
about the linear algebra method (Gil Kalai) ?



