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FIRST PART

Geometry of Numbers and Algebraic Number Theory

We briefly discuss some problems in the “classical” geometry of numbers, on
which we hope that progress may be made nowadays.
More details can be read on my homepage
http://math.u-bordeaux.fr/̃ martinet/, On the Minkowski Constants for Class
Groups, Section “other texts”.

In 2009, one century and a few days after Minkowski’s death, I delivered a talk
on his life in Besançon. The corresponding slides can be downloaded from
my homepage, Hermann Minkowski, 1864-1909, Section “a few slides”.
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From positive definite quadratic forms
to Euclidean lattices

Let q := X A X tr be a positive definite quadratic form on Rn

(X = (x1, . . . , xn) , A ∈ Symn(R)), of discriminant and minimum

disc(q) = det(A) and min q = min
X 6=0

q(X ) .

We would like to bound from above quotient γ(q) =
min q

disc(q)1/n

(the future Hermite invariant). The history begins with
LAGRANGE (1770) : n = 2. Then:
GAUSS (1831) : n = 3.
HERMITE (1845) : Explicit bound (exponential in n).
KORKINE–ZOLOTAREFF (1873, 1877) : n = 4, 5.

Then MINKOWSKI found a completely new point of view, introducing lattices in
the problem.
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The birth of Geometry of Numbers

A lattice in an n-dimensional Euclidean space E (' Rn) is a subgroup of E
having a basis over Z which is a basis for E .

Basic idea.
it amounts to the same to consider the minimum
• of all forms on the lattice Zn ;
• of all forms on all lattices ;
• of one form — the Euclidean structure — on all lattices ;
and one gets a bound for the Hermite constant γn = supq γ(q) by writing
that the lattice packs the balls of radius half the minimal distance
of two points of the lattice,
then bounding by 1 the density of a lattice packing of spheres.
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... Geometry of Numbers (continuation)

MINKOWSKI soon discovered that spheres could be replaced by any
symmetric convex body, proving his famous theorem, which allowed him to
deduce important inequalities from volume computations.

His theory was later christened and developed in his book
Geometrie der Zahlen (Teubner, Leipzig, 1896).

HILBERT (Gedächtnis Rede):
Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes

ohne rechnerische Hilfmittel
wesentlich auf Grund einer geometrisch anschaulichen Betrachtung
ist eine perle Minkowskischer Erfindungskunst.

Actually Minkowski’s proof needs the evaluation of a density. The really simple
proof we know, replacing this evaluation by an easy argument of measure
theory, was discovered by BLICHFELDT a few years after Minkowski’s death.
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Lattice constants for homogeneous problems
A lattice Λ is admissible for A ⊂ E if Λ ∩ A = {0} (or = ∅).
The lattice constant of A is

κ(A) = inf
Λ admissible

det(Λ)

(+∞ if admissible lattices do not exist). [Warning. The determinant det(Λ) is
the square of Minkowski’s discriminant ∆(Λ).]

Finding good lower bounds for suitably chosen subsets A of E can be used
to prove useful inequalities in various domains of number theory,
e.g., diophantine approximations, algebraic number theory, ...

We now restrict ourselves to homogeneous problems,
those for which

A = AF = {x ∈ E | F (x) < 1} ,

where F is a distance function, that is, satisfies a “homogeneity” condition of
the form

F (λ x) = |λ|δF (x)

for some strictly positive degree δ.
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Basic examples

1. Take for F a non-degenerate quadratic form q.
When q is positive definite, it suffices to consider q(x) = x · x . This is the
problem of spheres.

2. Chose a decomposition n = r1 + 2r2, and consider on E = Rn the function

Fr1,r2 (x) =
1

2r2
|x1 · · · xr1 | (y2

1 + z2
1 ) · · · (y2

r2
+ z2

r2
) .

Set κr1,r2 = κ(AF ).

The fundamental theorem of Minkowski on class groups can be stated,
bounding from below κr1,r2 by a lower bound of the lattice constant of the
largest convex body it contains, obtained by a volume computation.
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The Minkowski theorem on class groups (1)

Theorem
Let K be a number field of signature (r1, r2) (and degree n = r1 + 2r2).
Then any class of ideal of K contains an integral ideal a such that

NK/Q(a) ≤
(
|dK |
κr1,r2

)1/2

.

Set
Br1,r2 =

{
x ∈ E

∣∣ |x1|+ · · ·+ |xr1 |+ 2|z1|+ · · ·+ 2|zr2 | < 1
}
.

This is a convex set, and the arithmetico-geometric inequality shows that AF
contains n 2r2/nBr1,r2 . Calculating the volume of B, one obtains the famous
bound

NK/Q(a) ≤
(

4
π

)r2 n!

nn

√
|dK | .
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The Minkowski theorem on class groups (2)
The result is announced in a letter to HILBERT (December 22nd, 1890)
and proved in a letter to Hermite (January 15th, 1891), in its simplified
form which only asserts that one has |dK | > 1 if K 6= Q and thus solves
a 1874 conjecture of KRONECKER ; Hermite extracted from Minkowski’s
letter a Notes aux Comptes Rendus Acad. Sc. Paris.

The main problem is to find good lower bounds for κr1,r2 .

A first trick is suggested by Minkowski in his letter to Hermite: to include balls
inside AF . The result solely depends on n, and is thus interesting only for
small r1 (Γn is the lattice constant of the unit ball):

κr1,r2 ≥ nn/2Γn =

(
n
γn

)n/2

.

Lower bounds for κ (r1 ≤ 1).
n 3 4 5 6 8

Minkowski 12 43 258 985 25067
Sphere 13 64 390 2187 65536

Conjectural 23 117 1609 9747 1257728
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The Minkowski theorem on class groups (3)

Just some data for totally real domains:

n 2 3 4 5
Minkowski 4 20.25 113.7... 678.16...

Known 5 49 ≥ 500 ≥ 3251.2...
Conjectural 725 14641

Known. n = 4: P. Noordzij, 1967; n = 5: H.J. Godwin, 1950.
Conjectural. n = 4: Q(

√
7 + 2

√
5) ; n = 5: Q(ζ11 + ζ−1

11 ).

Warning. For larger n, better use R. ZIMMERT’s analytic bounds
(Ideale kleiner Norm in Idealklassen und eine Regulator Abschätzung,
Invent. Math. 62 (1981), 367–380).

Jacques Martinet (Université de Bordeaux, IMB) Aachen, September 26th, 2010 10 / 1



Isolation phenomena and successive minima

With F , A = AF as above, we say that an admissible lattice Λ for A is
isolated if in a small enough neighbourhood of Λ, the only admissible lattices
are of the form Λ′ = λu(Λ) with u ∈ Aut(A) and λ ≥ 1. We may restrict
ourselves to minimal-admissible lattices, those for which λΛ is not admissible
if λ < 1.
This notion looks pertinent for domains associated with totally real fields; in
general, one should consider less restrictive isolation conditions
(CASSELS for n = 3 ; SKUBENKO, AKRAMOV for all n ≥ 3).

The set of determinants of minimal-admissible lattices we shall call the
spectrum of F (or of A). Isolation phenomena imply the existence of discrete
subsets in the spectrum.
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Real quadratic domains

Up to a normalization, we recover the notion of
the Markoff spectrum in the theory of approximation of real numbers by
rational numbers;
dictionary in Cassels’s Cambridge tract.
All determinants d < 9 of minimal-admissible lattices are isolated
(the Markoff chain).

=⇒ (e.g.)
if the discriminant of a quadratic field has a prime factor p ≡ 3 mod 4, one
may replace the class bound

N(a) ≤
(
|dK |

5

)1/2

by N(a) <

(
|dK |

9

)1/2

.

The spectrum is very complicated near 9 on the right;
it contains an interval [M,+∞) (the Marshall Hall bound M has been
determined by FREIMAN); it is very chaotic in [9,M], except for a few easily
determined gaps, such as (12,13).
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Totally real cubic domains (results)

A remarkably short proof that κ3,0 = 49, attained uniquely on K = Q(ζ7 + ζ−1
7 ),

was found by DAVENPORT in 1941. He later proved that this value is isolated,
as well as the next value, namely 81, also isolated, attained uniquely on
K = Q(ζ9 + ζ−1

9 ). This time Davenport’s proof is extremely difficult.

In 1971, SWINNERTON-DYER wrote a computer program to deal with totally
real cubic domains. He was able to list all equivalence classes of
minimal-admissible lattices for A3,0 up to the determinant 289 = 172.

He proved the existence of 19 rank-3 submodules M1, . . . ,M19 of real cubic
fields such that the minimal-admissible lattices of determinant d ≤ 289 are
“algebraic lattices” associated with one of the Mi .

It would be interesting to push further these 1971 computations, taking into
account the improvements of both the computers and the convexity programs.
This could give new support for the following conjecture:
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Totally real cubic domains (conjecture)
Swinnerton-Dyer did not put forward any conjecture, but it seems clear that he
believed that what follows might well be true.

Conjecture
There exists a sequence M1, . . . ,Mk , . . . of modules in real cubic fields with
increasing discriminants such that every admissible lattice for A3,0 is of the
form Λk = λu(Mk ) for some λ > 1 and some u ∈ Aut(A3,0).

Thanks to a 1955 theorem of Cassels and Swinnerton-Dyer, the conjecture
above implies that det(Λk )→∞,
which would show that there exists a Minkowski class bound in o(|dK |1/2).

But the conjecture must be very difficult, since it implies
Littlewood’s conjecture: For any (α,β) ∈ R, we have

lim inf q ||qα|| ||qβ|| = 0 .

What about totally real domains in dimension 4 ?
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Connection with diophantine approximations (1)

The sequence of determinants d1 = 5, d2 = 8, d3 = 221
25 , . . . , with lim dn = 9

(the Markoff chain) is well known in the theory of continued fractions: for every
irrational θ, there are infinitely many rationals p

q such that θ − p
q <

1√
5q2 ; and if

θ is not equivalent to 1+
√

5
2 , then such approximations exist in 1√

8q2 ; and if ...

An analogue: given an imaginary quadratic field K0, one wishes to
approximate an irrational complex number θ by elements of K0. This problem
was considered in detail by DESCOMBES and POITOU in the fifties; there has
not been much work since.

These approximations are connected with minimal-admissible lattices Λ for
the totally imaginary quartic domain A0,2 such that R⊗ Λ contains the image
of K0, corresponding to quadratic extensions K/K0.

.../...
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Connection with diophantine approximations (2)

Now K0 is quadratic real; and we consider the totally real quartic domain A4,0;
and more precisely minimal-admissible lattices for A4,0 such that R⊗ Λ
contains the image of K0.

What about approximations of pairs (θ1, θ2) of real numbers by pairs (α, α) of
conjugate elements in K0 ?
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SECOND PART

Some problems related to spheres,

with emphasis on minimal classes.

The notion of a minimal class is the subject of Section 9 of my Springer book
Perfect Lattices in Euclidean Spaces.

The papers with ACHILL SCHÜRMANN and / or WOLFGANG KELLER can be
downloaded from Arxiv or from my homepage.
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Minimal classes (1)

Minimal classes are the classes for the equivalence relation

Λ ∼ Λ′ ⇐⇒ ∃u ∈ GL(E) | u(Λ) = Λ′ and u(S(Λ)) = S(Λ′) ;

they are equipped with the ordering

C ≺ C′ ⇐⇒ ∃Λ ∈ C, ∃Λ′ ∈ C′ | S(Λ) ⊂ S(Λ′) .

Besides s, the number of pairs ±x of minimal vectors
[the (half-)kissing number ],
the most important invariant of a class C is its perfection rank r ,
the rank in Ends(E) of the set of orthogonal projections px to the minimal
vectors of any lattice Λ ∈ C.

In practice we may restrict ourselves to well-rounded lattices (those which
have n independent minimal vectors)
and to the corresponding well-rounded classes.
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Minimal classes (2).

For well-rounded classes, we have n ≤ r ≤ n(n + 1)

2
.

Lattices (and classes) with s = n(n+1)
2 are called perfect.

The dimension of a class C is its perfection co-rank
n(n + 1)

2
− r ; a class of

dimension k consists of isometry classes of lattices depending affinely on k
parameters. Thus classes of dimension zero are the similarity classes of
perfect lattices. In general classes can be viewed as convex polytopes, the
extremal points of which correspond to perfect classes in their closure.

Two classes C and C′ � C may be connected by a chain
C0 = C ≺ C1 ≺ · · · ≺ Cm = C′
such that perf rank of Ci+1 = perf rank of Ci + 1.
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Minimal classes (3).
On the side of (positive, definite) quadratic forms, the space of forms having a
fixed minimum carries a structure of an (infinite) cell complex, and minimal
classes appear as equivalence classes of cells. This correspondence
preserves dimensions, which can be viewed as the number of parameters on
which a minimal class depends.
The 0-cells are the perfect forms.
The 1-cells are the Voronoi paths connecting perfect forms.
One can extract (ASH, MUMFORD, RAPOPORT, TAI; 1975) a finite complex
from the infinite one, which allows the computation of various K -groups. This
motivated ELBAZ-VINCENT, GANGL and SOULÉ to construct explicitly such a
complex in dimensions 6 and 7, and in particular to list all classes.
(Dimension n ≤ 4: easy; dimension 5: Batut.)

n 2 3 4 5 6 7 8 9
Perfect 1 1 2 3 7 33 10 916 > 530 000
Edges 1 1 2 4 18 357 83 092
Total 2 5 18 136 5 634 10 722 899

Table: Number of classes
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Minimal classes: identification.

Attaching to a well-rounded lattice the matrix A = S Str induces an injective
map from

minimal classes to equivalence classes of positive, definite, integral matrices;

otherwise stated, to isometry classes of integral lattices.
The matrix Bc(S) = SStr is called the Bacher or barycenter matrix.

Problem
Can one deduce invariants of a minimal class from those of this matrix (or
lattice) ?
Can one find restrictions on the invariants of such a lattice ?

I have not a lot to say about it, except what concerns spherical 3-designs.
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Weak eutaxy.

A eutaxy relation is an equality Id =
∑

x∈S/±1 ρx px with real coefficients ρx .

Given a basis B = (e1, . . . ,en) for Λ, and a column X of components of x ,
one has

Gram(B) = Mat(Id,B,B∗) and XX tr = Mat(px ,B∗,B) .
Hence in terms of quadratic forms, a eutaxy relation reads

A−1 =
∑

X∈S/±1 ρ
′
x XX tr .

Weak eutaxy : existence of a eutaxy relation.
Semi-eutaxy : ρx ≥ 0.
Eutaxy : ρx > 0.
Strong eutaxy : equal ρx ⇐⇒ S is a 3-design. [ =⇒ ρx > 0 .]

It is known (A.-M.B + J.M.) that a class C contains at most one weakly
eutactic lattice, that on which γ attains a minimum.
(Otherwise the minimum is attained on C = ∪C′�C C′ .)
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one has

Gram(B) = Mat(Id,B,B∗) and XX tr = Mat(px ,B∗,B) .
Hence in terms of quadratic forms, a eutaxy relation reads

A−1 =
∑

X∈S/±1 ρ
′
x XX tr .

Weak eutaxy : existence of a eutaxy relation.
Semi-eutaxy : ρx ≥ 0.
Eutaxy : ρx > 0.
Strong eutaxy : equal ρx ⇐⇒ S is a 3-design. [ =⇒ ρx > 0 .]

It is known (A.-M.B + J.M.) that a class C contains at most one weakly
eutactic lattice, that on which γ attains a minimum.
(Otherwise the minimum is attained on C = ∪C′�C C′ .)
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Strong eutaxy.

Obvious: C contains a “streut” lattice⇐⇒ (SStr )−1 is streut.
Generalization: equal non-zero coefficients in case of semi-eutaxy.
The set of x with ρx 6= 0 is then a 3 -design (“strong semi-eutaxy property”).

Data of Elbaz-Vincent and Gangl allowed the classification of strongly
semi-eutactic lattices up to dimension 6; see my home page, where I have
also listed examples for n = 7 — 10.

Question
Can one forecast (weak) eutaxy of a class from the barycenter matrix ?

Other invariants are discussed in the next slide.
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The index structure (1).
We consider pairs (Λ,Λ′) where Λ is well rounded and Λ′ has a basis of
minimal vectors of Λ.
[More generally, one can consider pairs of any lattice and a “Minkowskian
sublattice” – generated by successive minima in the sense of Minkowski; this
boils down to the well-rounded case.]

One has [Λ : Λ′] ≤ γn/2
n (use the Hadamard inequality).

The maximal index of Λ is ı(Λ) = max [Λ : Λ′].

Problem
Given n, what are the possible structures of Λ/Λ′ for [Λ : Λ′] = ı(Λ) ?

The annihilator d of Λ/Λ′ is also bounded by γn/2
n . On a basis of Λ′, vectors

x ∈ Λ are of the form
a1e1 + · · ·+ anen

d
.

Such systems (a1, . . . ,an) mod d are the words of a code over Z/dZ.

Problem
Given n, classify these codes.
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The index structure (2).

The question was first considered by Watson in 1971, and his results were
then extended by Ryshkov and Zahareva. I gave in 2001 a complete picture
up to dimension 8, where I introduced new invariants.

The case of dimension 9 was solved very recently
(W. Keller, J. M., A. Schürmann; to appear in Math. comp.).

n ≤ 3 4 5 6 7 8 9
bγn/2c 1 2 2 4 8 16 30-22

bound (∗) 1 1 2 3 4 8
ı = 1 1 2 4 8 16 16

nb. of new codes 1 1 3 7 28 134

Table: Bounds for the index; (∗): not D4, D6, E7, E8

[n = 9: 30 by Cohn-Elkies’s bound for γ9, 22 if γ9 = γ(Λ9).]
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The index structure (3).

Main difficulty in large dimensions: enormous waste of time to get rid of
large indices that we (almost surely know) not to exist.

Example (n = 9).
Proved bound for bγn/2

n c : ımax ≤ 30.
Conjectural bound for bγn/2

n c : ımax ≤ 22. [Λ9]
Actual value : ımax = 16.

Example (n = 10).
Proved bound for bγn/2

n c : ımax ≤ 59.
Conjectural bound for bγn/2

n c : ımax ≤ 36. [Λ10]
Expected value : ımax = 32. [several perfect lattices]

A complete classification in dimension n = 10 looks out of the today
computational devices.

Remark. For n = 24, the bound γ12
24 = 224 is attained on the Leech lattice.
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The index structure (4).

Any structure which exists for Λ/Λ′ in some dimension n exists in all larger
dimensions (consider orthogonal sums).
Thus it suffices to list new structures in each dimension.
• n = 1 : {1}.
• n = 4 : {2}.
• n = 6 : {3}, {22}.
• n = 7 : {4}, {23}.
• n = 8 : {5}, {6}, {4 · 2}, {32}, {24}.
• n = 9 : {7}, {8}, {9}, {10}, {12}, {6 · 2}, {4 · 22}, {42}.

Many new structures are expected to exist in dimension 10; we have met
• {11}, {25}, {42 · 2} and {4 · 23}.
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Applications.
1. Bases of minimal vectors. We can answer the following

Question
Does a lattice which is generated by its minimal vectors necessarily has a
basis of minimal vectors ?

Conway and Sloane (1995): NO if n ≥ 11.
JM (2007): YES if n ≤ 8;

Moreover a counter-example with n < 11 must have ı ≥ 5.
JM and AC: YES if n ≤ 9; a counter-example exists with n = 10 and ı = 5.

2. Ratio Hermite /// Minkowski. Obviously 1 if n ≤ 4. Let n ≥ 5.

van der Waerden (Acta. Math., 1956):
H
M
≤
(5

4

)n−4
.

AC (conjecture, 2007): for n ≤ 8 ,
H
M
≤ n

4
.

JM (2007, unpublished): TRUE, attained uniquely on the centred cubic lattice.
n ≥ 10: FALSE. n=9: ??; at any rate, not attained uniquely on the centred
cubic lattice.
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THE END

Jacques Martinet (Université de Bordeaux, IMB) Aachen, September 26th, 2010 29 / 1


