
GAP
Release 4.3

05 May 2002

Extending GAP

The GAP Group

http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Araújo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,

Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,

Volkmar Felsch, Franz Gähler, Greg Gamble, Willem de Graaf,

Burkhard Höfling, Jens Hollmann, Derek Holt, Erzsébet Horváth,

Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,

Frank Lübeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,

Wolfgang Merkwitz, Jürgen Mnich, Robert F. Morse, Scott Murray,

Joachim Neubüser, Max Neunhöffer, Werner Nickel,

Alice Niemeyer, Dima Pasechnik, Götz Pfeiffer, Udo Polis,

Ferenc Rákóczi, Sarah Rees, Edmund Robertson, Ute Schiffer,

Martin Schönert, Ákos Seress, Andrew Solomon,

Heiko Theißen, Rob Wainwright, Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the
current maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and
in contributors. The compilers of the manual apologize for any such errors and promise to rectify them in
future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Lübeck (AM), Werner Nickel (AM), Martin Schönert (A)

Automorphism groups of finite pc groups
Bettina Eick (AM)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Classes in nonsolvable groups
Alexander Hulpke (AM)

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Lübeck (AM), Heiko Theißen (A)

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

4 Acknowledgement

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theißen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A),
Werner Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (AM), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Araújo (AM), Derek Holt (A), Alexander Hulpke (A), Götz Pfeiffer (A), Andrew Solomon (AM)

Group actions
Heiko Theißen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (AM)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Partition Backtrack algorithm
Heiko Theißen (A), Alexander Hulpke (M)

Permutation group composition series
Ákos Seress (AM)

Permutation group homomorphisms
Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theißen (A), Alexander Hulpke (M)

Primitive groups library
Heiko Theißen (A), Alexander Hulpke (M)

Properties and attributes of finite pc groups
Frank Celler (A), Bettina Eick (AM)

Random Schreier-Sims
Ákos Seress (AM)

Acknowledgement 5

Rational Functions
Frank Celler (A) and Alexander Hulpke (AM)

Semigroup relations
Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)

Special Pcgs for finite pc groups
Bettina Eick (AM)

Stabilizer Chains
Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)

Strings and Characters
Martin Schönert (A), Frank Celler (A), Thomas Breuer (A), Frank Lübeck (AM)

Subgroup lattice
Martin Schönert (A), Alexander Hulpke (AM)

Subgroup lattice for solvable groups
Alexander Hulpke (AM)

Subgroup presentations
Volkmar Felsch (AM)

The Help System
Frank Celler (A), Frank Lübeck (AM)

Tietze transformations
Volkmar Felsch (AM)

Transformation semigroups
Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)

Transitive groups library
Alexander Hulpke (AM)

Two-cohomology and extensions of finite pc groups
Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

GAP for MacOS
Burkhard Höfling (AM)

Contents

Copyright Notice 9

1 About: Extending GAP 11

2 The gapmacro.tex Manual
Format 12

2.1 The Main File 12

2.2 Chapters and Sections 15

2.3 Suppressing Indexing and Labelling of a
Section and Resolving Label Clashes 16

2.4 Labels and References 16

2.5 TeX Macros 17

2.6 TeX Macros for Domains 21

2.7 Examples, Lists, and Verbatim . . 21

2.8 Tables, Displayed Mathematics and
Mathematics Alignments 24

2.9 Testing the Examples 25

2.10 Usage of the Percent Symbol . . . 25

2.11 Catering for Plain Text and HTML
Formats 26

2.12 Umlauts 27

2.13 Producing a Manual 27

2.14 Using buildman.pe 28

3 Library Files 33

3.1 File Types 33

3.2 File Structure 33

3.3 Finding Implementations in the Library 34

3.4 Undocumented Variables 34

4 Writing a GAP Package 36

4.1 The Structure of a GAP Package . 36

4.2 The Init File of a GAP Package . . 36

4.3 An Example of a GAP Package . . 38

4.4 Standalone Programs in a GAP
Package 38

4.5 Installation of GAP Package Binaries 39

4.6 Test for the Existence of GAP Package
Binaries 39

4.7 Calling of and Communication with
External Binaries 40

4.8 Requesting one GAP Package from
within Another 40

4.9 Declaration and Implementation Part 41

4.10 Package Completion 41

4.11 Version Numbers 41

4.12 Testing for a GAP Package . . . 42

4.13 Writing Documentation 42

4.14 Wrapping Up a GAP Package . . 42

5 Interface to the GAP Help
System 44

5.1 Installing a Help Book 44

5.2 The manual.six File 45

5.3 The Help Book Handler 45

5.4 Introducing new Viewer for the Online
Help 47

6 Function-Operation-Attribute
Triples 48

Contents 7

6.1 Key Dependent Operations . . . 48

6.2 In Parent Attributes 49

6.3 Operation Functions 50

7 Weak Pointers 53

7.1 Weak Pointer Objects 53

7.2 WeakPointerObj 53

7.3 Low Level Access Functions for Weak
Pointer Objects 54

7.4 Accessing Weak Pointer Objects as
Lists 55

7.5 Copying Weak Pointer Objects . . 55

7.6 The GASMAN Interface for Weak
Pointer Objects 55

8 Stabilizer Chains (preliminary) 56

8.1 Generalized Conjugation Technique 56

8.2 The General Backtrack Algorithm with
Ordered Partitions 57

8.3 Stabilizer Chains for Automorphisms
Acting on Enumerators 63

Bibliography 68

Index 69

Copyright Notice

Copyright c© (1987–2002) by the GAP Group,

incorporating the Copyright c© 1999, 2000 by School of Mathematical and Computational Sciences, Univer-
sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright c© 1992 by Lehrstuhl D für Mathematik, RWTH, 52056 Aachen, Germany, transferred
to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the
copyright of packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. See http://www.gnu.org/licenses/gpl.html or the file ’GPL’ in the etc’ directory of the
GAP distribution for details.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address
gap@dcs.st-and.ac.uk, containing your full name and address. This allows us to keep track of the number
of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would
cite another paper that you used (see below for sample citation). Also we would appreciate if you could
inform us about such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.3; 2002

(http://www.gap-system.org)

(Should the reference style require full addresses please use: “Centre for Interdisciplinary Research in Compu-
tational Algebra, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland; Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany”)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute
GAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,
you assume the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute
GAP as permitted above, be liable to you for damages, including lost profits, lost monies or other special,
incidental or consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.
That is to say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

10 Copyright Notice

If you modify any part of GAP and redistribute it, you must supply a README document. This should
specify what modifications you made in which files. We do not want to take credit or be blamed for your
modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improve-
ments and new functions. So again we would appreciate it if you would inform us about all modifications
you make.

1 About: Extending GAP

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s
introduction to GAP, the GAP Reference Manual, which contains the official definitions of GAP, and
Programming in GAP which also provides information for those who want to write their own GAP exten-
sions.

Extending GAP explains how to create files and functions that will work together with mechanisms built
in GAP.

This manual is divided into chapters. Each chapter is divided into sections, and within each section, impor-
tant definitions are numbered. References therefore are triples.

The first chapters of this manual describe how to write documentation, how to interface packages and
components, and roughly describes the style used for writing the library. This is followed by chapters that
explain advanced programming techniques in GAP. Finally there are chapters (alas, at the moment there is
only one due to a lack of manpower) that describe how internal functions work and how to interface ones
own code to these internal functions.

Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 in
the Reference Manual.

2

The gapmacro.tex
Manual Format

The current GAP manual books and most of the GAP 4 package documentation is written in a restricted
TEX format, using a set of macros defined in the file GAPPATH/doc/gapmacro.tex. This chapter describes
this format and how to create the final documents (which can be printed or used by GAP’s online help) from
it.

See 2.5 and 2.7 for details on the restricted set of available TEX commands.

The first sections 2.1 and 2.2 describe the general layout of the files in case you need to write your own
package documentation.

If you are planning to write new documentation for a GAP package you can either use the format described
in this chapter or use an alternative approach. For example some packages have started to use the GAPDoc
package for their documentation, see Chapter 1 in the GAPDoc manual or type

gap> ?GAPDoc:chapters

in GAP’s online help for a table of contents, or (if it is not available in your installation) see:

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/

If you want to use yet another document format you must provide certain information to the interface of
GAP’s online help. This is described in chapter 5.

2.1 The Main File

The main TEX file is called manual.tex. This file should contain the following commands:

\input ../gapmacro
\Package{package-name}
\BeginningOfBook{name-of-book}
\UseReferences{book1}
...
\UseReferences{bookn}
\TitlePage{title}
\Colophon{text}
\TableOfContents
\FrontMatter
\immediate\write\citeout{\bs bibdata{mybibliography}}
\Input{file1}
...
\Input{filen}

\Chapters
\Input{file1}
...
\Input{filen}

\Appendices

Section 1. The Main File 13

\Input{file1}
...
\Input{filen}
\Bibliography
\Index

\EndOfBook

Now we describe what these commands do:

\input path/gapmacro.tex
inputs the GAP “style” and macros file gapmacro.tex. If you are writing a GAP package either copy
this file or use a relative path. The former method will always work but requires you to keep the file
consistent with the system while the latter forces users to change the manual.tex file if they are
installing a package in a private location. See also Section 9.2 in the Reference Manual.

\Package{package-name}
defines a macro \package-name so that when you type {\package-name} (please include the curly
braces) the text package-name is typeset in the right way for GAP packages, e.g. if you are writing
a package MyPackage then you should include the line

\Package{MyPackage}

in your manual.tex file and then in your chapter files use {\MyPackage} when you refer to My-
Package by name. There is also the command \package{pkg} when you wish to refer to other GAP
packages; don’t confuse the two i.e. \Package{package-name} defines a macro \package-name but
produces no text, and \package{pkg} produces pkg set in the font that is right for GAP packages.

\BeginningOfBook{name-of-book}
starts the book name-of-book . It is used for cross-references, see 2.4. If you are writing a GAP package
use the name of your package here.

\UseReferences{booki}
If your manual cross-refers to another manual, \UseReferences can be used to load the labels of the
other books in case cross-references occur. booki should be the path of the directory containing the
book whose references you want to load. If you are writing a GAP package and you need to reference
the main GAP manual, use \UseReferences for each book you want to reference. However, as said
above this requires changes to the manual.tex file if the package is not installed in the standard
location.
If your manual.tex file lives in pkg/qwer/doc and you want to use references to the tutorial use

\UseReferences{../../../doc/tut}

You may also cross-refer to other package manuals and even GapDoc-produced manuals. Just en-
sure you get the path to the other manual’s directory correct relative to the directory in which
your manual resides, and if it’s a GapDoc-produced manual that you are cross-referring to, use
\UseGapDocReferences instead of \UseReferences.

\TitlePage
produces a page containing the title. Please see the example.

\Colophon
\Colophon produces a page following the title that can be used for more explicit author information,
acknowledgements, dedications or whatsoever.

\TableOfContents
produces a table of contents in double-column format. For short manuals, the double-column format
may be inappropriate; in this case, use \OneColumnTableOfContents instead.

\FrontMatter
starts the front matter chapters such as a copyright notice or a preface.
The line

14 Chapter 2. The gapmacro.tex Manual Format

\immediate\write\citeout{\bs bibdata{mybibliography}}

is for users of BibTEX. It will use the file mybibliography.bib to fetch bibliography information.
\Chapters

starts the chapters of the manual, which are included via \Input. \Input{filei} inputs the file
filei.tex, i.e. filei should be the name of the file without the .tex extension. For the chapter
format, see Section 2.2.

\Appendices
starts the appendices, i.e. it modifies the \Chapter command to use uppercase letters to number
chapters.

\Bibliography
produces a bibliography, i.e. it reads and typesets the manual.bbl file produced by BibTEX.

\Index
produces an index, i.e. it reads and typesets the manual.ind file produced by the external manu-
alindex program.

\EndOfBook
Finally \EndOfBook closes the book.

Example
Assume you have a GAP package qwert with two chapters Qwert and Extending Qwert, a copyright notice,
a preface, no exercises, then your manual.tex would basically look like:

\input ../../../doc/gapmacro % The right path from pkg/qwert/doc
\Package{Qwert} % Defines macro {\Qwert}
\BeginningOfBook{qwert}
\TitlePage{
\centerline{\titlefont Qwert}\medskip % Package name
\centerline{\titlefont ---}\medskip
\centerline{\titlefont A GAP4 Package}\bigskip\bigskip
\centerline{\secfont Version 1.0}\medskip
% If the package interfaces with an external program ...
\centerline{\secfont Based on qwert Standalone Version 3.14}\vfill
\centerline{\secfont by}\vfill
\centerline{\secfont Q. Mustermensch}\medskip % Author
\centerline{Department of Mathematics}\medskip % Affiliation
\centerline{University of Erewhon}\medskip
\centerline{\secfont email: qmuster@erewhon.uxyz.edu.ut} % Email address
\vfill
\centerline{\secfont{\Month} \Year}

}
\TableOfContents
\FrontMatter
\Input{copyright}
\Input{preface}

\Chapters
\Input{qwert}
\Input{extend}

\Appendices
\Index

\EndOfBook

Occasionally there will be the need for additional commands over and above those shown above. The ones
described below should be the only exceptions.

Section 2. Chapters and Sections 15

– There may be other packages that are referred to a lot, so that it’s worthwhile to add more \Package
commands. (There’s nothing special about \Package, you can use it to define macros for other packages
besides the package being documented.)

– Besides the macros {\Month} and {\Year}, which typeset the current month (as an English word) and
the year (all four digits), respectively, there are also {\Day} and {\Today} which are mainly intended
for drafts. {\Day} typesets the day of the month as a number and {\Today} is equivalent to: {\Day}
{\Month} {\Year}.

– Sometimes one desires a chapter to be unnumbered in the TEX-produced manuals, e.g. the Tutorial
manual has GAP’s Copyright Notice as an unnumbered chapter. To achieve this one inputs the file
containing the chapter via TEX’s \input command rather than \Input. However, neither the on-line
help browser nor the HTML converter “sees” such chapters. Thus if it is desired that the on-line help
browser and the HTML manuals should also have such chapters, they must be “input” again via the
\PseudoInput command (not necessarily in the same manual).

– For chapters that should only appear via the on-line help browser or in the HTML manuals, one may use
the \PseudoInput command. Any \PseudoInput commands should come after all \Input commands;
failure to do this will result in different numbering of \Input chapters for TEX-produced and HTML
manuals. The syntax of this command is as follows:

\PseudoInput{filename}{six-entry}{chaptername}

where filename is the name of the file containing the chapter without the .tex extension, as for the
\Input command, six-entry is the section-index-entry for the chapter (written to the manual.six file)
and chaptername is the actual argument of the \Chapter command that appears at the beginning of
filename.tex. The argument six-entry enables the on-line text browser to reference the chapter by a
name other than chaptername. Thus a copyright chapter for the book with name name-of-book might
have chaptername “Copyright Notice” but six-entry “Copyright”, which would enable one to access
the chapter “Copyright Notice” via ?name-of-book:copyright via the on-line browser. The HTML
converter adds an index entry for both six-entry and chaptername.

Note

Usage of the commands \input and \PseudoInput in the way described above will necessitate special treat-
ment of references to such chapters. For such purposes, there is a special variant of the %display environment
(see 2.11), e.g. a copyright notice appearing via \input at the beginning of a TEX-produced manual and
appearing in the non-TEX manuals – the on-line help browser or HTML manual – via a \PseudoInput
command as described above, may be referenced via

%display{tex}
See the copyright notice at the beginning of this book.
%display{nontex}
%See "Copyright".
%enddisplay

2.2 Chapters and Sections

The contents of each chapter must be in its own .tex file. The command \Chapter{chaptername} starts
a new chapter named chaptername; it should constitute the first non-comment (and non-blank) line of the
file containing a chapter. A chapter begins with an introduction to the chapter and is followed by sections
created with the \Section{secname} command. The strings chaptername and secname are automatically
available as references (see Section 2.4).

There must be no further commands on the same line as the \Chapter or \Section line, and there must
be an empty line after a \Chapter or \Section command. This means that \index commands referring to
the chapter or section can be placed only after this empty line.

16 Chapter 2. The gapmacro.tex Manual Format

Finally, the HTML converter requires that each \Section line is preceded by a line starting with at least
16 percentage signs (conventionally, one actually types a full line of percentage signs). The HTML converter
stops converting a section whenever it hits such a line; therefore do not add lines starting with 16 or more %
signs which are not just before a \Section command. Failure to include the line of percentage signs before
a \Section line will cause the converter to crash, due to the discovery of what it sees as two \Section
commands within the one section.

2.3 Suppressing Indexing and Labelling of a Section and Resolving Label Clashes

Sometimes one does not wish a section to be indexed. To suppress the indexing of a section, simply add the
macro \null after the \Section command, e.g.

\Section{section-name}\null

and then section-name will still generate a label (so that you can still refer to it via Section~"section-
name"), but section-name will not appear in the index.

Occasionally, one has a dedicated section for the description of a single function. If the label generated for
the section coincides with the label for a subsection (generated by a \> command) a multiply defined label
results. In these cases, one would generally rather that the section did not generate a label or an index entry.
To suppress the generation of both the label and the index entry of such a section, simply add the macro
\nolabel immediately after the \Section command, e.g. for a section dedicated to the function func:

\Section{func}\nolabel

Note: Labels are generated by converting to lowercase and removing whitespace. So coincidences can occur
when you might not have expected it. An alternative to index suppression to resolve label clashes is to
include a sub-label for the function in the \> command (see Section 2.5).

2.4 Labels and References

Each \Chapter, \Section and \> command generates a (short) label label , which is extended by name-
of-book (the argument of \BeginningOfBook mentioned earlier in Section 2.1), to create a “long label”
long-label , and emitted to a file manual.lab. The construction of long-label is name-of-book:label , where
the label generated by either of the commands \Chapter or \Section is just its chaptername or secname
argument. For \>, there are a few cases to consider, and we’ll consider them in Section 2.5, where we meet
the various forms of the \> command. To see how to resolve problems with label clashes see Section 2.3.

A reference to a label any-label (long or short) is made by enclosing any-label in a pair of double quotation
marks: "any-label"; it is replaced by the number of the \Chapter, \Section or \> command that generated
any-label in the first place. Generally, one only needs to make references to long labels when referring to
other manuals. For references within the same manual, short labels are sufficient, except when the short
label itself contains a colon.

Example

Since the \BeginningOfBook command for this manual defines name-of-book to be ext, the long label for
the current section is ext:Labels and References and so a reference to this section within this manual
might be: Section "Labels and References" (which is typeset as: Section 2.4). From another manual, a
long label reference is required.

Another example

The first chapter of this manual has the title “About: Extending GAP”, which contains a colon. Hence, to
refer to that chapter, one must use a long label:

Chapter "ext:About: Extending GAP"

produces: Chapter 1.

Section 5. TeX Macros 17

Note

In actual fact long labels are first sanitised by conversion to lower case and removal of superfluous white
space (multiple blanks and new lines are converted to a single space). The same sanitisation process is
applied to references. Thus,

Chapter "ext:about: extending
Gap"

also produces: Chapter 1. So, don’t worry about references to labels being broken over lines and think of
them as being case-insensitive, except that the HTML converter requires that one respects case for the
name-of-book component of a long label.

2.5 TeX Macros

As the manual pages are also used as on-line help, and are automatically converted to HTML, the use
of special TEX commands should be avoided. The following macros can be used to structure the text, the
mentioned fonts are used when printing the manual, however the on-line help and HTML are free to use other
fonts or even colour. Since, the plain text on-line help, doesn’t have special fonts, it leaves in much of the
markup, including the left and right quotes that surround something intended to be displayed in typewriter
type, the angle brackets that surround something intended to appear in italics, and the dollar-signs enclosing
mathematics; you will need to keep that in mind when reading the following section.

‘text’
sets text in typewriter style. This is typically used to denote GAP keywords such as for and
false or variables that are not arguments to a function, e.g., ‘for’ produces for. See also <text>.
Use \< to get a “less than” sign.

‘‘text’’
encloses text in double quotes, e.g., ‘‘double-quoted text’’ produces “double-quoted text”. In
particular, ‘‘text’’ does not set ‘text’ in typewriter style; use ‘{‘text’}’ to produce ‘text’.
Double quotes are mainly used to mark a phrase which will be defined later or is used in an
uncommon way.

\lq
sets a single left quote: ‘. For a phrase text that is to be defined later or is used in an uncommon
way, please use ‘‘text’’ (which encloses text in double quotes rather than single quotes).

\rq, \pif
each set a single apostrophe (right quote): ’. For the HTML and on-line manuals \accent19{} also
sets an apostrophe; however the TEX-derived manuals produce an acute-d blankspace (what it in
fact is).

\accent127
sets an umlaut, e.g. \accent127a produces ä. Do not use the shorthand \" (otherwise the HTML
converter will not translate it properly).

<text>
sets text in italics. This can also be used inside $...$ and ‘...’. Use \< to get a “less than” sign.
<...> is used to denote a variable which is an argument of a function; a typical application is the
description of a function:

\>Group(<gens>) F
The function ‘Group’ constructs a group generated by <gens>.

The F at the end of the first line in the above example indicates that Group is a function (see the
\> entry, below).

18 Chapter 2. The gapmacro.tex Manual Format

text
sets text in emphasized style.

$a.b$
Inside math mode, you can use . instead of \cdot (a centred multiplication dot). Use \. for a full
stop inside math mode. For example, $a.b$ produces a · b while $a\.b$ produces a.b.

\cite{...}
produces a reference to a bibliography entry (the \cite[...]{...} option of LaTEX is not sup-
ported).

"label"
produces a reference to label . Labels are generated by the commands \Chapter, \Section (see 2.4),
and \> commands (see below).

\index{index-entry}
defines an index entry index-entry . Besides appearing in the index, index-entry is also written to
the section index file manual.six used by the on-line help. An exclamation mark (!), if present,
is used to partition index-entry into main entry (left part) and subentry (right part) components,
in the index. TEX converts index-entry to lowercase and sets it in roman type, in the index. The
HTML converter respects case and uses the default font, in producing the HTML manual index.
index-entry must be completely free of special characters and font changing commands; if you need
special fonts, characters or commands use one of \indextt or \atindex.
Note that for the HTML converter to process indexing commands (\index, \indextt and \atindex)
correctly they must be on lines of their own. There can be several indexing commands on the same
line, but there should be no horizontal whitespace before each indexing command, and if an indexing
command needs to be broken over lines place a % at the point of the break at the end of the line to
mark a “continuation”.
For the HTML converter it works best to put indexing commands all together at the beginning
of a paragraph, rather than strewn between lines of a paragraph. However, for the TEX-produced
manuals after a maths display one gets a rogue space if you do this (this is a bug); you can work
around the bug by putting at least one word of the paragraph followed by your line(s) of indexing
commands.
Note also that indexing commands do not produce labels for cross-references; they only produce
entries for the index. Labels are only produced by the chapter (\Chapter), section (\Section) and
subsection (\>) commands.

\indextt{index-entry}
is the same as \index{index-entry}, except that index-entry is set by TEX in typewriter style,
respecting case; the HTML converter sets index-entry in the default font. Again, index-entry should
be completely free of special characters and font changing commands, and ! may be used for sub-
entries in the same way as for \index. Note that a sub-entry component, if present, is not set in
typewriter style for the TEX-produced manuals; if you want that it is, use \atindex.

\atindex{sort-entry}{|indexit}
is simply a special form of the \index command that tells TEX to typeset the page number in italics.

\atindex{sort-entry}{@index-entry}
The HTML converter treats this command as if it was \index{index-entry}, except that it strips
out any font information and sets it in the default font, but nevertheless respects case. index-entry
may have |indexit at the end which is ignored by the HTML converter.
The TEX-produced manuals set the index entry as index-entry respecting font and case, and list
it according to sort-entry . If a sub-entry is required then it should be present behind a ! in both
the sort-entry and index-entry ; the only difference between the sub-entry in sort-entry and that
in index-entry , is that the sort-entry sub-entry should be stripped of mark-up and font changing
command. The index-entry component is ignored when constructing the manual.six files, and is

Section 5. TeX Macros 19

also ignored by the HTML converter. Anything after an ! in sort-entry is ignored when constructing
the manual.idx file that is processed by MakeIndex. Macros like {\GAP} are allowed in index-entry .
However, any ‘ that appears in index-entry must be preceded by \noexpand; sort-entry must be
completely free of special characters and font changing commands.
In general, one should make sort-entry the same as index-entry modulo fonts and other mark-up,
e.g.,

\atindex{Fred!Nerk}{@\noexpand‘Fred’!\noexpand‘Nerk’}

{\GAP}
typesets GAP.

\package{pkg}
typesets pkg in the font correct for GAP packages (respecting case). This is intended for cross-
referencing other GAP packages. There is also the command \Package{mypkg} command which
defines a macro \mypkg so that when you type {\mypkg} (please include the curly braces) the
text mypkg is typeset in the right way for GAP packages. The \Package command should normally
be included in one’s manual.tex file (see 2.1) and just allows one to type {\mypkg} rather than
the longer \Package{mypkg} as one is frequently likely to do when formulating one’s own GAP
package documentation. So, just to be clear about the difference between \Package and \package,
\Package{mypkg} defines a macro \mypkg but produces no text, and \package{pkg} produces pkg
set in the font that is right for GAP packages.

\>
produces a subsection. The line following the \> entry must either contain another \> entry (in
which case the further entries are assumed to be variants and do not start a new subsection) or
must be empty. The description text will follow this empty line.
There are several forms of the \> command. In all forms, a label and index entry are generated;
the HTML converter uses the label to form an index entry, respecting case and setting in roman
type. If the next non-space character is not a left quote (‘) it is assumed that the subsection is for
a “function”; we exhibit these forms first.

\>func
While this form is supported; it is discouraged. If func is a 0-argument function, func should be
followed by an empty pair of brackets (see \>func(args) below). If func is actually a global variable
then \>‘global-var’ V should be used instead (see below). In order for this form to be parsed
correctly the remainder of the line to the right of func must be empty. It generates func as both a
label and index entry; func appears as is, in typewriter type in the TEX-derived manual index.

\>func(args)
The macro uses the brackets after func to parse the arguments args. Thus, it is necessary for the
function to use brackets and for the arguments to have none. (We use the term “function” loosely
here to mean “a GAP command with arguments”; we really mean an object that GAP knows as
a: “Function”, “Property”, “Operation”, “Category”, or “Representation” — but not “Variable”,
since a “Variable” does not have arguments.) The label and index entry generated consists of the
text between the > and opening bracket. The index entry is set as is (i.e. without conversion to
lowercase) in typewriter type in the TEX-derived manual index. Here is an example of how to use
\>; the index entry is “Size” (in typewriter type, with mixed case preserved).

\>Size(<obj>) A

The A indicates that Size is an “Attribute”. Instead of A there can be F, P, O, C, or R which
indicate that a command is a “Function” (probably the most common), “Property”, “Operation”,
“Category”, or “Representation”, respectively. For the forms of the \> command followed by a left
quote, V indicating “Variable” (an object without arguments), is also possible. (See Section 1.1 and
Chapter 13 in the reference manual).

20 Chapter 2. The gapmacro.tex Manual Format

\>func(args)!{sub-entry}
This is a special form of the previous command, that forms a label func!sub-entry and an index
entry with main entry func (set in typewriter type and respecting case) and sub-entry sub-entry
(set in roman type but also respecting case).
The remaining forms of the command \> expect to be followed by a ‘.

\>‘command’{label}
works as \> without ‘...’, but will not use bracket matching; it simply displays command as a
header, which appears in typewriter type. It will use label as both the label and index entry, and
the index entry is set in roman type. Whenever label contains a !, it is used to partition label into
main entry (left part) and subentry (right part) components, in the index.

\>‘<a> + ’{addition}
\>‘Size(<obj>)’{size} A

In the first of the examples immediately above, the first form of \> cannot be used because no
brackets occur. Also, observe that there is no command type (it’s not appropriate here); TEX does
not need it to correctly parse a \> entry, in general. The second example differs from our previous
Size example, in that the index entry will be typeset as “size” (in roman type), rather than “Size”.
Also, the index entry is always converted to lowercase, no matter what case or mixed case was used.

\>‘command’{label}!{sub-entry}
is equivalent to: \>‘command’{label!sub-entry}.

\>‘command’{label}@{index-entry}
works as \>‘command’{label}, except that it uses label for sorting the index entry and the index
entry itself is printed as index-entry . References to the subsection use label . (Note that the HTML
converter ignores everything after an @ symbol in these commands, essentially treating the command
as if it were \>‘command’{label}. However, the HTML converter also always preserves the case in
a label.) Here are two examples.

\>‘Size(<obj>)’{size}@{‘Size’} A
\>‘Size(GL(<n>, <q>))’{Size!GL(n, q)}@{‘Size’! ‘GL’(\noexpand<n>, \noexpand<q>)} A

The first of these examples is equivalent to “\>Size(<obj>)”. For the second example, it was
necessary to use ‘ and ’, since the argument contained brackets. Note that \noexpand is needed
before < here, but not needed before ‘ in the index-entry argument. Otherwise, the rules for sub-
entries are the same as for \atindex.

\>‘global-var’ V
This is actually a short-hand for: “\>‘global-var’{global-var}@{‘global-var’} V” to save you some
typing when creating subsections for global variables, i.e., global-var is the label and the index entry
appears in typewriter type, with mixed case preserved.

\){\fmark ...}
is like \> except that it produces no label and index entry. It is \fmark that produces the filled in
right arrow. Omitting it produces a line in typewriter type.

\){\kernttindent ...}
is useful for producing a line in typewriter type, that you might otherwise have typed between
\begintt and \endtt, but where you actually want the TEX macros and variables <...> to be
interpreted.

\URL{url}
prints the WWW URL url . In the HTML version this will be a HREF link.

\Mailto{email}
prints the email address email . In the HTML version this will be a mailto link.

Section 7. Examples, Lists, and Verbatim 21

Note: When a TEX macro is followed by a space, TEX generally swallows up the space; one way, and it is the
GAP-preferred way, of preventing the space being swallowed up, is by enclosing the macro in {...}. When
a macro is often followed by a space, it’s a good habit to get into to always enclose that macro in {...}
(the braces do nothing when the macro is not followed by a space, and prevent TEX from swallowing up the
space, otherwise). Thus the macro for GAP should always be typed {\GAP}. Similarly, macros like \lq, \rq
and \pif should probably always appear in braces; moreover the word “don’t” typeset via “don{\pif}t”
will actually be interpreted correctly by the on-line browser.

2.6 TeX Macros for Domains

The following macros are required for the following common domains:

\N the natural numbers (you should probably indicate whether by your convention N includes zero or not,
when using this);

\Z the integers;

\Q the rational numbers;

\R the real numbers;

\C the complex numbers;

\F a field; and

\calR a general domain e.g. a ring.

2.7 Examples, Lists, and Verbatim

In order to produce a list of items with descriptions use the \beginitems, \enditems environment, i.e. this
is a “description” environment in the parlance of LaTEX and HTML.

For example, the following list describes base, knownBase, and reduced. The different item/description
pairs must be separated by blank lines.

\beginitems
‘base’ &

must be a list of points ...

‘knownBase’ &
If a base for <G> is known in advance ...

‘reduced’ (default ‘true’) &
If this is ‘true’ the resulting stabilizer chain will be ...

\enditems

This will be printed as

base
must be a list of points ...

knownBase
If a base for G is known in advance ...

reduced (default true)
If this is true the resulting stabilizer chain will be ...

In order to produce a list in a more compact format, use the \beginlist, \endlist environment.

An example is the following list.

22 Chapter 2. The gapmacro.tex Manual Format

\beginlist
\item{(a)}

first entry
\item{(b)}

second entry
\itemitem{--}

a sub-item of the second entry
\itemitem{--}

another sub-item of the second entry
\item{(c)}

third entry
\endlist

It is printed as follows.

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

The above example will take advantage of the ordered and unordered list environments in the HTML version,
with the addition of slightly more mark-up. First, we present the example again with that additional mark-
up, and then we explain how it works.

\beginlist%ordered{a}
\item{(a)}

first entry
\item{(b)}

second entry
\itemitem{--}%unordered

a sub-item of the second entry
\itemitem{--}

another sub-item of the second entry
\item{(c)}

third entry
\endlist

It is printed as follows (of course, you should see no difference in the TEX-produced and on-line versions of
this manual).

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

In the HTML version the above example is interpreted as a nested list. The outer list is interpreted as
an ordered list. The HTML standard provides 5 different types of ordered list, and these mirror the
types provided by the enumerate LaTEX package. To signify that the outer list was ordered the comment

Section 7. Examples, Lists, and Verbatim 23

%ordered was added after \beginlist. If there is no further markup the list is numbered in the default
manner, namely with integers. Otherwise, following %ordered there should be one of the following:

{1} indicates the list should be numbered with integers (the default obtained when there is nothing following
%ordered);

{a} indicates the list should be numbered with lowercase letters (a, b, . . .);

{A} indicates the list should be numbered with uppercase letters (A, B, . . .);

{i} indicates the list should be numbered with lowercase roman numerals (i, ii, . . .); and finally

{I} indicates the list should be numbered with uppercase roman numerals (I, II, . . .).

The \beginlist of the above example was followed by %ordered{a} and so the list is numbered using
lowercase letters in the HTML version and using the ordered list environment (rather than the description
environment).

Occasionally, it is necessary to break from a list, add some explanatory text and then restart the list,
and resume numbering the items from where you left off. To do this follow the comment mark-up already
mentioned by an integer in curly braces, i.e. if the outer list should actually start at c then you would
need to have %ordered{a}{3} after \beginlist because c is the 3rd letter of our alphabet. Note that, for
an integer-numbered list not starting at 1, you must have the full markup; you cannot omit the {1} after
%ordered in this case.

The inner list of the above example is an unordered list (this corresponds to a plain itemize environment
in LaTEX). To indicate this the first \itemitem above was followed by %unordered.

Of course, to get an unordered outer list, one would start the list with \beginlist%ordered, and to get
an ordered inner list numbered with lowercase letters the first \itemitem would need to be followed by
%ordered{a}, i.e. the same syntax is used for the comment added after a \beginlist and after the first
\itemitem in a sequence of \itemitems.

Notes

1. Only lists to a maximum depth of two are supported.

2. You cannot change the type of a sublist halfway through. Only the comment after the first \itemitem
in a sequence is interpreted.

There are two types of verbatim environments. Example GAP sessions are typeset in typewriter style using
the \beginexample, \endexample environment.

\beginexample
gap> 1+2;
3
\endexample

typesets the example

gap> 1+2;
3

Examples whose output may vary should use the macro |unstableoutput, e.g.

\beginexample|unstableoutput
gap> Exec("date");
Sun Oct 7 16:23:45 CEST 2001
\endexample

typesets in all manual versions in the same way:

24 Chapter 2. The gapmacro.tex Manual Format

gap> Exec("date");
Sun Oct 7 16:23:45 CEST 2001

but the testexample routine knows to treat the example differently (namely, it ensures there is output but
does not insist on it being the same).

Non-GAP examples are typeset in typewriter style using the \begintt, \endtt environment.

Notes

1. The manual style will automatically indent examples. It also will break examples which become too long
to fit on one page. If you want to encourage breaks at specific points in an example, end the example
with \endexample and immediately start a new example environment with \beginexample on the next
line.

2. To typeset a pipe symbol | in the \begintt, \endtt environment or \beginexample, \endexample you
need to actually type ||.

2.8 Tables, Displayed Mathematics and Mathematics Alignments

Tables should normally be set using the \begintt, \endtt environment. This means that one should enter
the appropriate white space so that columns line up. Note that to get a vertical line | in the \begintt,
\endtt environment one must actually type ||. The reason for setting tables this way is so that both the
HTML converter and GAP’s built-in text browser have no trouble in displaying them correctly.

The HTML converter when used with its -t option (which causes it to use TtH to translate mathematics)
usually does a reasonable job of converting mathematics displays and mathematics alignments. To help
GAP’s built-in text browser, however, one should follow a few rules:

– Place the $$s that begin and end the mathematics display on lines of their own. (If you don’t do this
it will be displayed in the same way as ordinary in-line mathematics.)

– Use only the \matrix{ .. } environment for mathematics alignments. The \matrix{ starting the
alignment should be on a line on its own, (flush left and no trailing whitespace). The } closing the
environment should also be on a line of its own. The built-in browser doesn’t do anything special to
line things up; you must insert the whitespace where it’s needed. Any \hfill macros you add to help
the line things up in the TEX and HTML formats is ignored by the GAP’s built-in text browser. The
\matrix{ .. } environment should be used even when one might like to use TEX’s \cases{ .. }
environment.

The following example shows a typical usage of the \matrix{ .. } environment (in particular, it shows how
one can use it to avoid using the \cases{ .. } environment). Observe, how sufficient whitespace has been
added in order that alignment is maintained by GAP’s built-in text browser. (Recall that \right. which
produces nothing is required to match \left\{.)

From a theorem of Gauss we know that
$$
b_N = \left\{
\matrix{
\frac{1}{2}(-1+\sqrt{N}) &{\rm if} &N \equiv 1 &\pmod 4\cr
\frac{1}{2}(-1+i \sqrt{N}) &{\rm if} &N \equiv -1 &\pmod 4\cr
}
\right.
$$

The example produces . . .

Section 10. Usage of the Percent Symbol 25

From a theorem of Gauss we know that

bN =
{ 1

2 (−1 +
√

N) if N ≡ 1 (mod 4)
1
2 (−1 + i

√
N) if N ≡ −1 (mod 4)

2.9 Testing the Examples

For purposes of automatically checking the manual, the GAP examples in one chapter (the text between
\beginexample and \endexample) should produce the same output, up to line breaks and whitespace,
whenever they are run in the same order immediately after starting GAP (this will ensure that the global
random number generator is initialized to the same values). For more details, see the last paragraph of 2.1
in the Tutorial.
To permit this automatic running, examples that shall produce error messages should be put between
\begintt and \endtt such that they will not be seen by this automatic test.
The automatic test also requires that examples are not indented in the files; in the printed manual, the lines
between \beginexample and \endexample and the lines between \begintt and \endtt are automatically
indented.

2.10 Usage of the Percent Symbol

The % symbol has a number of very specific uses. Take care that you use it correctly. These uses are:

1. A line beginning with 16 (or more) % symbols marks the end of a section, or the end of a chapter
introduction (which may be empty). Such a line must precede every \Section (see 2.2).

2. A % at the beginning of a line tells TEX that the line is a comment and is to be ignored by TEX, ex-
cept in the verbatim environments: \begintt..\endtt and \beginexample..\endexample. However,
%display or %enddisplay commands have special meaning for the on-line text help browser and for the
HTML converter and may temporarily alter the meaning of an initial % for these (see 2.11 for details);
otherwise the meaning of an initial % is the same as for TEX.

3. A % at the end of a line marks a “continuation”, except in the situation mentioned in item 4. A
“continuation” may be needed for lines of indexing commands (\index, \indextt or \atindex). Such
commands must occur on lines of their own (see 2.5), not mixed with text, and there must not be any
superfluous whitespace (modulo the next statement). Occasionally an indexing command is too long to
easily fit on a line; this is where a continuation is desirable; a % at the end of such a line indicates that
the line is to be joined with the next line after removal of the % symbol and any initial whitespace on
the next line (this is what TEX does! . . . and we mimic this behaviour for both the on-line text help
browser and the HTML manuals).
A “continuation” may also be necessary for subsections, i.e. lines beginning with \> or \) (again see 2.5);

the usage is as for indexing line continuations.
4. A line ending with a % that is not an indexing command line or a subsection line that after any initial

whitespace is removed matches exactly {% or }%, or begins with {\ or \ and is followed by a letter,
is ignored by both the on-line browser and the HTML converter. This is intended to screen the on-
line browser and HTML converter from TEX commands such as \obeylines, \begingroup, \def etc.,
without having to resort to using the %display{tex}..%enddisplay environment.

Warning. In view of items 3. and 4. above, avoid using a % at the end of a line unless you really need it,
and it fits into those categories. In particular, do not put a % at the end of an indexing command line that
is immediately followed by a line of text; otherwise, the text line will not appear in the HTML manual or
on-line via the text help browser. Similarly, do not put a % line at the end of a text line that is immediately
followed by an indexing command line; this causes the indexing command line to be ignored by the HTML
converter. For the HTML converter it works best to put indexing commands all together at the beginning
of a paragraph, rather than strewn between lines of a paragraph. However, for the TEX-produced manuals
after a maths display one gets a rogue space if you do this (this is a bug); you can work around the bug by
putting at least one word of the paragraph followed by your lines(s) of indexing commands.

26 Chapter 2. The gapmacro.tex Manual Format

2.11 Catering for Plain Text and HTML Formats

As described in 2.5, the use of macros should be restricted to the ones given in the previous sections. By
doing so, you should find that the documentation you write will still look ok in GAP’s on-line help (plain
text format) and in the translated HTML. However, in rare situations one might be forced to use other
TEX macros, for example in order to typeset a lattice. In this case you should provide an alternative for the
on-line help, and possibly also for the HTML version. This can be done by putting in guiding commands as
TEX comments:

%display{tex}
TeX version (only used by TeX manual)
%display{html}
%HTML version (only used by HTML manual)
%display{text}
%Text version (only used by the built-in manual browser)
%enddisplay

Observe that the lines that should appear only in the TEX-produced manuals do not begin with a %. For the
HTML (resp. text) version the lines begin with a %; each line of a %display{html} (resp. %display{text})
environment is printed verbatim, after removing the initial % symbol. The above example produces:

TeX version (only used by TeX manual)

(Note the above example will vary according to whether you are viewing it as a TEX-produced manual, or
as an HTML manual, or via the built-in manual browser — as it should!)

Sometimes one needs a %display environment to be not seen by TEX, but still interpreted normally (i.e. not
printed verbatim). The following variant of the above provides this capability.

%display{tex}
TeX version (only used by TeX manual)
%display{nontex}
%HTML and Text version (interpreted normally, after removing the \% symbol)
%enddisplay

The above example produces:

TeX version (only used by TeX manual)

It is permissible to abbreviate any of the above by omitting %display{tex}, %display{html}, or %dis-
play{text} if that portion of the environment would be empty.

There are yet two more variants of conditional display. Firstly,

%display{nonhtml}
%Text version (interpreted normally by built-in browser, after removing the
%\% symbol)
%enddisplay

is normally used to ensure text only appears via the on-line help browser. If there is no initial % it also
appears in the TEX-produced manuals. The above example produces:

Finally, there is

%display{nontext}
%HTML version (interpreted normally by HTML converter, after removing the
%\% symbol)
%enddisplay

which excludes text from the on-line help browser. Like the %display{nonhtml} environment, if there is no
initial % it also appears in the TEX-produced manuals. The example produces:

Section 13. Producing a Manual 27

However, the use of these special environments should be avoided as much as possible, since it is much more
difficult to maintain such pseudo-duplicated documentation.

2.12 Umlauts

To produce umlauts, use \accent127 and not the shorthand \" (otherwise the HTML converter will not
translate it properly).

2.13 Producing a Manual

To produce a manual you will need the following files:

manual.tex
contains the body of the manual (as described in Section 2.1) and an \Input command for each
chapter/appendix file.

file1.tex, file2.tex, . . .
the chapter/appendix files. There must be one file for each chapter or appendix, and each such file
should have a \Chapter or \PreliminaryChapter command. Alternatively, one can write .msk files
and use buildman.pe to generate the corresponding .tex files (see 2.14).

gapmacro.tex
contains the macros for the manual. It must be input by an \input statement (not and \Input
statement, which creates a Table of Contents entry) in manual.tex. You can either use the version
in the doc directory of GAP (use a relative path then) or make a copy.

manual.mst
is a “configure” file used by makeindex when processing index information in a TEX-generated and
manualindex-preprocessed manual.idx file. It must reside in your manual directory.

GAPDOCPATH/manualindex
is used to call makeindex. GAPDOCPATH is the path of the doc directory of your GAP distribution.

For bibliography information you will need a file manual.bbl. If you intend to create it with BibTEX, you
will need to indicate the appropriate .bib file (as described in section 2.1). Then after running TEX once
over the manual, run BibTEX to create the manual.bbl file.

Assuming that all necessary files are there (a manual.lab file for each book argument of a \UseReferences
command, mrabbrev.bib and manualindex in the GAP doc directory), on a Unix system the following calls
will then produce a file manual.dvi as well as a file manual.six which is used by the GAP help functions.
If you are missing some of the needed files and don’t have CVS access to GAP, just send an email request for
them to gap-trouble@dcs.st-and.ac.uk.

Go to the directory holding the manual. Call

tex manual

to produce bibliography information. Unless you provide a manual.bbl file which is not produced by BibTEX,
call

bibtex manual

to produce the manual.bbl file. Then run TEX twice over the manual to fill all references and produce a
stable table of contents:

tex manual
tex manual

If you have sections which are named like commands, you may get messages about redefined labels. At this
point you can ignore these.

28 Chapter 2. The gapmacro.tex Manual Format

Now it is time to produce the index. Call

GAPDOCPATH/manualindex manual

which preprocesses the manual.idx file and then runs makeindex. Provided that manual.mst exists, this
produces a file manual.ind. Finally, once again run

tex manual

to incorporate the index. The manual is ready.

2.14 Using buildman.pe

Rather than write the chapter/appendix .tex files directly, one may incorporate one’s documentation in
comments in one’s GAP code. To do it this way, there are four ingredients:

.gd files
GAP files with .gd suffixes that have the documentation in comments (actually files with .g or .gi
or any other extension are also possible, but files with extension .gd are the default);

.msk files
which are just like the .tex files, and must obey all the rules given for .tex files previously, but
additionally may have \FileHeader or \Declaration commands at places where text should be
inserted from a .gd file, and with {{variable}} patterns which are replaced by replacement when
written to the .tex file, if the configuration file configfile has a line of form: variable=replacement ;

configfile
a file which defines msfiles (the list of .msk files), gdfiles (the list of .gd files), LIB (the directory
containing the .gd files), DIR (the directory in which to put the constructed .tex files, one .tex
file for each .msk file), and optionally a line check (see below) and variable=replacement lines; and

buildman.pe
a perl program (in the etc directory for those with CVS access to GAP), which strips the comments
from the .gd files according to the \FileHeader or \Declaration commands in the .msk files,
translates any {{variable}} patterns defined by the file configfile and constructs the .tex files.

If you don’t have CVS access and want to use buildman.pe, just email gap-trouble@dcs.st-and.ac.uk and
ask for it. Please note that there is no obligation for package authors to buildman.pe; nor does it attract
the same level of support as the rest of GAP; in general, bugs can be expected to be fixed (eventually), but
no new features will be added. Also, note that the GAPDoc package provides a similar facility.

The perl program buildman.pe is called as follows:

buildman.pe -f configfile

The form of configfile

There is no restriction on how to name configfile, but by convention it is of form config.something or
buildman.config; configfile should contain lines of form:

msfiles=msfile1,msfile2,...,msfilem;
gdfiles=gdfile1,gdfile2,...,gdfilen;
LIB=gdfile dir;
DIR=TeX dir;

Optionally, as mentioned above, one may also have:

check;

which says to construct a notfound file that lists missing expected data, and any number of lines of form

variable=replacement

Section 14. Using buildman.pe 29

The file configfile should obey the following syntactic rules:

– After msfiles= there should be a comma-separated and semicolon-terminated list of .msk files with
the .msk extensions removed; buildman.pe assumes that the .msk files are all in, or at least have path
relative to, the directory in which buildman.pe is called.

– Similar to the msfiles definition, after gdfiles= there should be a comma-separated and semicolon-
terminated list of “.gd” files. If a “.gd” file really does have a .gd extension, it may be listed without
extension; otherwise the extension must be included. All the “.gd” files must be listed with path
relative to the directory defined by LIB.

– For both the msfiles and gdfiles definitions, the lists following the = may continue over several lines
if necessary, and any whitespace, parentheses (round brackets) or double-quotes characters are ignored.

– The paths after LIB= and DIR= are assumed relative to the “current directory”, i.e. the directory in which
buildman.pe is executed. For each msfilei listed after the msfiles keyword, buildman.pe constructs
from msfilei.msk a corresponding msfilei.tex in TeX dir . The LIB and DIR definitions must be on a
single line.

– The terminating ; is optional on the lines containing the keywords LIB, DIR or check.

– Superfluous characters around any of the keywords msfiles, gdfiles, LIB, DIR or check, but before
the = on the lines where = is required, are ignored. Whitespace and double-quotes characters are ignored,
everywhere.

– The variable=replacement lines (if there are any) should have no other punctuation or whitespace. These
lines direct buildman.pe to replace any string of form {{variable}} in a .msk file with replacement .

Special .msk file commands

Now we describe the special (non-TEX) commands that direct buildman.pe to extract text from “.gd” files.

\FileHeader[n]{gdfile}
This command is replaced by the text following a #n line (for positive integer n) in file gdfile.gd
(or gdfile if gdfile already contains a suffix). The argument [n] of \FileHeader is optional; if
it is omitted n is taken to be 1. See below for the typical form of a fileheader extracted by the
\FileHeader command; the comments in the example describe its required format.

\Declaration{func}[gdfile]{label}!{sub-entry}@{index-entry}
This command is replaced by a \> subsection declaration or block of \> declarations, and their
description extracted from a block in a “.gd” file that starts with a line matching #X func, for
some letter X in F, M, A, P, O, C, R or V. The line “matches” if there is a (, space, or newline after
func. The argument func (in {..}) is the only mandatory argument.
If present, [gdfile], says that func is to be found in the file gdfile.gd (or gdfile if gdfile already
contains a suffix); it is required only if func appears in more than one of the “.gd” files listed in the
file configfile. The gdfile argument is typically required for distinguishing methods of operations.
The remaining arguments (if present) have exactly the purpose that they have in subsection decla-
rations, i.e. lines of the following forms:

\>func!{sub-entry}
\>‘command’{label}
\>‘command’!{sub-entry}
\>‘command’@{index-entry}

(see Section 2.5), and are used to build subsection declaration lines of these forms. Note that the label ,
sub-entry and index-entry arguments, if needed, should follow the \Declaration command (and
not be in the “.gd” file #X func... lines, where they will be indistinguishable from comments).
If in the “.gd” file the #X func line is followed by other #Xi funci lines, then each \> subsection
declaration formed has the same label , sub-entry and index-entry arguments appended.

30 Chapter 2. The gapmacro.tex Manual Format

Corresponding to \FileHeader[n]{gdfile}, in the “.gd” file denoted by gdfile, there should be:

#n
Text for \FileHeader[n]{gdfile}. Each line
should have two # characters followed by 2 blank
space characters at the left margin. The text
can and should include any necessary {\TeX}
mark-up and indexing commands.
##
A fileheader may consist of any number of paragraphs.
It is terminated by a totally empty line (i.e.~a
line devoid even of # characters).
##

Corresponding to each \Declaration{func}... line of a .msk file there should be in one of the “.gd” files,
a block of form:

#X func(args) comment
#Y func2(args2) comment2
.
.
#Z funcn(argsn) commentn
##
description of func, func2, ..., funcn.
##
Declare...("func" ...);
Declare...("func2" ...);
.
.
Declare...("funcn" ...);

The above block should comply with the following syntactic rules. Below we use the term “function” in a
general sense to mean any one of function (in the strict sense), attribute, category, method, representation,
operation, property or variable.

– X ,Y , . . . ,Z ∈ {A, C, F, M, R, O, P, V}. If the letter is V then no parentheses or arguments should follow the
“function name” funci .

– The letters, X , Y , . . . , Z are printed in the manual. If a letter is A or P, then also the letters S and T
are printed if the setter and the tester are available. If the letter is A, then the letter M is printed if the
attribute is mutable.

– The comments comment , comment2 , . . . , commentn (by convention starting with spaced dots) which
do not appear in the manual, are optional.

– The X , Y , . . . , Z “function name” lines must appear on consecutive lines, i.e. not intermingled with
text lines.

– After the “function name” lines there should be text lines describing the “functions”. As with fileheader
text these text lines should contain any TEX mark-up and indexing commands that are necessary, and
there should be two blank space characters between the ## and the text. Lines starting with #T (or
some other non-# character in place of T) are ignored.

– It is assumed that for each “function name” func, func2 , . . . , funcn there is a corresponding GAP
declaration (which need not be via a Declare... command, e.g. it might be BindGlobal) after the ##
text lines (and comment lines), and that they appear in the same order.

Section 14. Using buildman.pe 31

Example

The file lib/algebra.gd contains the following declaration:

###
##
#O DirectSumOfAlgebras(<A1>, <A2>)
#O DirectSumOfAlgebras(<list>)
##
is the direct sum of the two algebras <A1> and <A2> respectively of the
algebras in the list <list>.
##
If all involved algebras are associative algebras then the result is also
known to be associative.
If all involved algebras are Lie algebras then the result is also known
to be a Lie algebra.
##
All involved algebras must have the same left acting domain.
##
The default case is that the result is a structure constants algebra.
If all involved algebras are matrix algebras, and either both are Lie
algebras or both are associative then the result is again a
matrix algebra of the appropriate type.
##
DeclareOperation("DirectSumOfAlgebras", [IsDenseList]);

The file doc/build/algebra.msk contains the line:

\Declaration{DirectSumOfAlgebras}

The “config” file doc/build/config.alg:

@msfiles = ("algebra","algfp","alglie","mgmring");
@gdfiles = ("algebra","alghom","alglie","object","liefam","mgmring","algrep",

"lierep");
DIR = "../ref";
LIB = "../../lib";

specifies algebra.msk via the first entry of msfiles and lib/algebra.gd via the first entry of gdfiles and
(its directory by) the definition of LIB. Observe that there are @ and " symbols, as well as parentheses and
whitespace, in the above “config” file; none of these is necessary, but they don’t do any harm either. Gener-
ally, one calls buildman.pe in the same directory that contains the msfiles (which is why one doesn’t need
to specify the directory containing the msfiles) and the “config” file. Since DIR = "../ref", buildman.pe
constructs algebra.tex from algebra.msk in directory doc/ref. The subsection generated in algebra.tex
by the above \Declaration command starts with the header:

\>DirectSumOfAlgebras(<A1>, <A2>) O
\>DirectSumOfAlgebras(<list>) O

and is followed by its description, i.e. the lines beginning with two hashes and two blanks, but with the
hashes and blanks stripped away, so that when it is processed the resulting subsection appears as:

I DirectSumOfAlgebras(A1, A2) O
I DirectSumOfAlgebras(list) O

is the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list .

32 Chapter 2. The gapmacro.tex Manual Format

If all involved algebras are associative algebras then the result is also known to be associative. If all involved
algebras are Lie algebras then the result is also known to be a Lie algebra.

All involved algebras must have the same left acting domain.

The default case is that the result is a structure constants algebra. If all involved algebras are matrix
algebras, and either both are Lie algebras or both are associative then the result is again a matrix algebra
of the appropriate type.

Variable replacement

As mentioned above the “config” file may also contain lines that assign variables, e.g.

versionnumber=4.3
versionsuffix=4r3

Occurrences of these variables in double curly braces will be replaced by their value. For example the lines

When ‘unzoo -x’ is applied to {\GAP}~{{versionnumber}}’s ‘zoo’ file
‘gap{{versionsuffix}}.zoo’ a directory ‘gap{{versionsuffix}}’ is formed.

in a .msk file will be replaced by:

When ‘unzoo -x’ is applied to {\GAP}~4.3’s ‘zoo’ file
‘gap4r3.zoo’ a directory ‘gap4r3’ is formed.

in the corresponding .tex file. This feature is very handy for information that changes over time.

Final note

There is a document for version 0.0 of buildman.pe that describes features that have either never been
used or have since been disabled. Only the features described in this section can be relied upon to have
currency.

3 Library Files

This chapter describes some of the conventions used in the GAP library files. These conventions are intended
as a help on how to read library files and how to find information in them. So everybody is recommended
to follow these conventions, although they do not prescribe a compulsory programming style – GAP itself
will not bother with the formatting of files.

Filenames have traditionally GAP adhered to the 8+3 convention (to make it possible to use the same
filenames even on a MS-DOS file system) and been in lower case (systems that do not recognize lower case
in file names will convert them automatically to upper case). It is no longer so important to adhere to
these conventions, but at the very least filenames should adhere to a 16+5 convention, and be distinct even
after identifying upper and lower case. Directory names of packages, however, must be in lower case (the
RequirePackage command (see 74.3.1 in the Reference manual) assumes this).

3.1 File Types

The GAP library consists of the following types of files, distinguished by their suffixes:

.g
Files which contain parts of the “inner workings” of GAP. These files usually do not contain math-
ematical functionality, except for providing links to kernel functions.

.gd
Declaration files. These files contain declarations of all categories, attributes, operations, and global
functions. These files also contain the operation definitions in comments.

.gi
Implementation files. These files contain all installations of methods and global functions. Usually
declarations of representations are also considered to be part of the implementation and are therefore
found in the .gi files.
As a rule of thumb, all .gd files are read in before the .gi files are read. Therefore a .gi file usually
may use any operation or global function (it has been declared before), and no care has to be taken
towards the order in which the .gi files are read.

.co
Completion files. They are used only to speed up loading (see 3.5 in the Reference Manual).

3.2 File Structure

Every file starts with a header that lists the filename, copyright, a short description of the file contents and
the original authors of this file.

This is followed by a revision entry:

Revision.file_suf :=
"@(#)$Id: libform.tex,v 4.12 2001/12/03 07:35:26 gap Exp $";

where file.suf is the file name. The revision control system used for the development will automatically
append text to the string “Id: ” which indicates the version number. The reason for these revision entries

34 Chapter 3. Library Files

is to give the possibility to check from within GAP for revision numbers of a file. (Do not mistake these
revision numbers for the version number of GAP itself.)

Global comments usually are indented by two hash marks and two blanks. If a section of such a comment
is introduced by a line containing a hash mark and a number it will be used for the manual (stripped of the
hash marks and leading two blanks; see Section 2.14).

Every declaration or method or function installation which is not only of local scope is introduced by a
function header of the following type.

###
##
#X ExampleFunction(<A>,)
##
This function does nothing.

The X in the example is one of the letters: F, A, P, O, C, R or V, and has the same meaning as at the end of a
declaration line in the Reference Manual (see 1.1 in the Reference Manual); it indicates whether the object
declared will be a function, attribute, property, operation, category, representation or variable, respectively.
Additionally M is used in .gi files for method installations. The line then gives a sample usage of the function.
This is followed by a comment which describes the identifier. This description will automatically be extracted
to build the Reference Manual source, if there is a \Declaration line in some .msk file together with an
appropriate configuration file (see Section 2.14).

Indentation in functions and the use of decorative spaces in the code are left to the decision of the authors
of each file.

The file ends with an

#E

comment section that may be used to store formatting descriptions for an editor.

3.3 Finding Implementations in the Library

There is no general browsing tool that would point you to the place in the library where a certain method
or global function is installed. However the following remarks might be of help:

You can use ApplicableMethod (see 7.2.1 in the reference manual) to get the function which implements a
method for specific arguments. Setting its print level higher will also give you the installation string for this
method.

To find the occurrence of functions and methods in the library, one can use the grep tool under UNIX. To
find a function, search for the function name in the .gd files (as it is declared only once, only one file will
show up), the function installation is likely to occur in the corresponding .gi file.

To find a method search for Method((this catches InstallMethod and InstallOtherMethod) and the
installation string or the operation name.

3.4 Undocumented Variables

For several global variables in GAP, no information is available via the help system (see Section 2.7 in the
Tutorial, for a quick overview of the help system, or Chapter 2 in the reference manual, for details). There
are various reasons for “hiding” a variable from the user; namely, the variable may be regarded as of minor
importance (for example, it may be a function called by documented GAP functions that first compute many
input parameters for the undocumented function), or it belongs to a part of GAP that is still experimental
in the sense that the meaning of the variable has not yet been fixed or even that it is not clear whether the
variable will vanish in a more developed version.

Section 4. Undocumented Variables 35

As a consequence, it is dangerous to use undocumented variables because they are not guaranteed to exist
or to behave the same in future versions of GAP.

Conversely, for documented variables, the definitions in the GAP manual can be relied on for future GAP
versions (unless they turn out to be erroneous); if the GAP developers find that some piece of minor, but
documented functionality is an insurmountable obstacle to important developments, they may make the
smallest possible incompatible change to the functionality at the time of a major release. However, in any
such case it will be announced clearly in the GAP Forum what has been changed and why.

So on the one hand, the developers of GAP want to keep the freedom of changing undocumented GAP code.
On the other hand, users may be interested in using undocumented variables.

In this case, whenever you write GAP code involving undocumented variables, and want to make sure that
this code will work in future versions of GAP, you may ask at gap-trouble@dcs.st-and.ac.uk
for documentation about the variables in question. The GAP developers then decide whether these variables
shall be documented or not, and if yes, what the definitions shall be.

In the former case, the new documentation is added to the GAP manual, this means that from then on, this
definition is protected against changes.

In the latter case (which may occur for example if the variables in question are still experimental), you may
add the current values of these variables to your private code if you want to be sure that nothing will be
broken later due to changes in GAP.

4 Writing a GAP Package

This chapter explains the basics of how to write a GAP package so that it interfaces properly to GAP. For
the role of GAP packages and the ways to load them, see Chapter 74 in the Reference Manual.

4.1 The Structure of a GAP Package

Every GAP package is in a subdirectory of the directory pkg which itself is a subdirectory of a GAP root
directory (see Section 9.2 in the Reference Manual). This directory is called the home directory of the GAP
package. The name of this directory (modulo case) is the name of the package. (The package
name may have mixed case; but the directory must be all lower case.)

The home directory of the GAP package must contain a file init.g. This file contains the necessary GAP
code to set up all that the package needs. Section 4.2 explains how such an init file must look. If declaration
and implementation are separated (see 4.9) or if completion (see 4.10) is used there also will be a second file
read.g which reads in further files.)

In addition, the home directory can contain other files and subdirectories. It is usually a good idea to follow
the general example of the subdirectory structure of the GAP root directory. Although this is not strictly
necessary, it makes it easier to look through a GAP package and some administrative functions for GAP
packages rely on it.

Typically there are at least two subdirectories called lib and doc. The first contains files with GAP code
and corresponds to the GAP library directory. The second contains the manual and documentation of the
package.

If the GAP package has stand-alone programs, it should have a subdirectory called bin that contains the
executables. This directory is subdivided into several others. Refer to section 4.4 on stand-alone programs
for a more detailed explanation. In this case there might also be a directory called src containing the source
code of the stand-alone programs and instructions for their compilation.

4.2 The Init File of a GAP Package

The initialization file of a GAP package is a file init.g in the home directory of the package. This file tells
GAP about the version number of the GAP package, about the documentation and about the actual code.
It is a proper GAP file (so syntax and comments are standard), but only the following GAP functions may
be called (if further functions are called the loading process, which proceeds in two stages, may not work):

The first command in the file will be a call to DeclarePackage (see 74.4.1 in the Reference Manual). This
indicates the package’s version number and permits to test whether necessary external binaries or other
GAP packages are installed. If instead DeclareAutoPackage (see 74.4.1 in the Reference Manual) is called,
the package will be loaded automatically when GAP has started. (To be exact: GAP loads the library, then
reads the users .gaprc or gap.rc file and then loads the GAP packages which are intended for automatic
loading and which are not yet loaded via the users .gaprc or gap.rc file.)

At the moment automatic loading is only available for the packages listed in the file pkg/ALLPKG. This is
due to the fact that there is no standard C-Function that will list the contents of a subdirectory.

Section 2. The Init File of a GAP Package 37

The next command will be a call to DeclarePackageDocumentation (see 74.4.2 in the Reference Manual) to
indicate the location of the packages documentation to GAP. If instead DeclarePackageAutoDocumentation
(see 74.4.2 in the Reference Manual) is called, the documentation will be read automatically when GAP starts
(however RequirePackage still has to be used to load the actual package in case the first command in the
file is DeclarePackage).

If the package requires other GAP packages (see 4.8) this is followed by calls to RequirePackage.

Finally, calls to ReadPkg (see 74.4.3 in the Reference Manual) will read files which contain the actual GAP
functions the package provides.

To separate declaration and implementation parts, for larger packages it is recommended to only load the
declaration part from within init.g and to use the separate read.g file to load the implementation part.
See sections 4.9 and 4.10 for details.

For example this is the init.g file of a simple “test” GAP package:

announce the package version
DeclarePackage("test","1.0",ReturnTrue);

install the documentation
DeclarePackageDocumentation("test", "doc");

read the actual code.
ReadPkg("test", "gap/code.g");

This file installs the GAP package “test” in version 1.0. There are no requirements that have to be tested,
so ReturnTrue (see 5.3.1 in the Reference Manual) is used as test function. It then installs documentation
for the package, which can be found in the doc subdirectory. Finally, it reads the file code.g in the gap
subdirectory, which contains the actual code.

If the package author wants the GAP package to display a separate banner the printing of the banner must
be issued from within a file which will be read via ReadPkg from the init.g file. If the package is intended
for automatic loading we however recommend not to print any separate banner as the user will get a list of
the loaded GAP packages at the end of the initialization process.

A GAP package which has been loaded once cannot be unloaded and also cannot be loaded again. However,
as with any file individual files may be “reread”.

1I RereadPkg(pkg, file) F
I RereadPkg(pkg-file) F

In the first form, RereadPkg rereads the file file of the GAP package pkg , where file is given as a relative
path to the directory of pkg . In the second form where only one argument pkg-file is given, pkg-file should
be the complete path of a file relative to a pkg subdirectory of a GAP root path (see 9.2 in the Reference
Manual). Each of pkg , file and pkg-file should be a string.

When writing (and debugging) a GAP package it may be therefore helpful to use RereadPkg on single files
or to use a separate “reader” file which does not use the RequirePackage mechanism.

38 Chapter 4. Writing a GAP Package

4.3 An Example of a GAP Package

We illustrate the creation of a GAP package by an example of a basic package. (The following assumes that
you are using GAP under UNIX.)

Create the following directories in your home area: pkg and pkg/test. Inside the directory test create the
file init.g with the lines

DeclarePackage("test","1.0",ReturnTrue);
ReadPkg("test", "banner.g");

and create a file banner.g containing the single line

Print("#I reading the GAP package ‘‘test’’\n");

The next bit is a bit tricky because you have to find out what the root directories of GAP on your system
are. This is done by starting GAP and looking at the variable GAP ROOT PATHS. This a list of directories
which GAP searches upon startup for things like the GAP library.

gap> GAP_ROOT_PATHS;
["/gap/4.0/"]

Now start GAP with the command

gap -l "./;/gap/4.0/"

The string between the pair of double quotes gives the components of GAP ROOT PATHS separated by semi-
colons. We have added at the beginning the string ./ denoting the current directory. This adds the current
directory to the list of GAP root directories. Now you can load your GAP package test:

gap> RequirePackage("test");
#I reading the GAP package ‘‘test’’
true

This GAP package is too simple to be useful, but we have succeeded in loading it via RequirePackage().

4.4 Standalone Programs in a GAP Package

GAP packages that involve stand-alone programs are fundamentally different from GAP packages that consist
entirely of GAP code.

This difference is threefold: A user who installs the GAP package must also compile (or install) the packages
binaries, the package must check whether the binaries are indeed available and finally the GAP code of the
package has to start the external binary and to communicate with it. We will treat these three points in the
following sections.

If the package does not solely consist of an interface to an external binary and if the external program called
is not just special-purpose code, but a generally available program, chances are high that sooner or later
other GAP packages might also require this program.

We therefore strongly suggest to provide a documented GAP function that will call the external binary. We
also suggest to create actually two GAP packages; the first providing only the binary and the interface and
the second (requiring the first, see 4.8) being the actual GAP package.

Section 6. Test for the Existence of GAP Package Binaries 39

4.5 Installation of GAP Package Binaries

The scheme for the installation of package binaries which is described further on is intended to permit
the installation on different architectures which share a common file system (and share the architecture
independent file).

A GAP package which includes external binaries contains a bin subdirectory. This subdirectory in turn
contains subdirectories for the different architectures on which the GAP package binaries are installed. The
names of these directories must be the same as the names of the architecture dependent subdirectories of
the main bin directory. Unless you use a tool like autoconf yourself, you must obtain the correct name
of the binary directory from the main GAP branch. To help with this, the main GAP directory contains
a file sysinfo.gap which assigns the shell variable GAParch to the proper name as determined by GAP’s
configure process. For example on a Linux system, the file sysinfo.gap may look like this:

GAParch=i586-unknown-linux2.0.31-gcc

We suggest that your GAP package contains a file configure which is called with the path of the GAP root
directory as parameter. This file then will read sysinfo.gap and set up everything for compiling under the
given architecture (for example creating a Makefile from Makefile.in.

The standard GAP distribution contains a GAP package “example” whose installation script shows an ex-
ample way of how to do this.

4.6 Test for the Existence of GAP Package Binaries

If an external binary is essential for the workings of a GAP package, the test function called from De-
clarePackage should test whether the program has been compiled on the architecture (and inhibit package
loading if this is not the case). This is especially important if the package is loaded automatically.

The easiest way to accomplish this is to use Filename (see 9.4.1 in the Reference Manual) for checking for
the actual binaries in the path given by DirectoriesPackagePrograms (see 74.4.7 in the Reference Manual)
for the respective package. For example the “example” GAP package uses the following commands to test
whether the binary hello has been compiled, it issues a warning if not and will only load if it is indeed
available.

DeclarePackage("example","1.0",
function()
local path,file;
test for existence of the compiled binary
path:=DirectoriesPackagePrograms("example");
file:=Filename(path,"hello");
if file=fail then
Info(InfoWarning,1,
"Package ‘‘example’’: The program ‘hello’ is not compiled");

fi;
return file<>fail;

end);

You might also have to cope with the situation that external binaries will only run under UNIX (and not,
say on a Macintosh). See section 73.15 in the reference manual for information on how to test for the
architecture.

40 Chapter 4. Writing a GAP Package

4.7 Calling of and Communication with External Binaries

There are two reasons for this: the input data has to be passed on to the stand-alone program and the
stand-alone program has to be started from within GAP.

There are two principal ways of doing this.

The first possibility is to write all the data for the stand-alone to one or several files, then start the stand-
alone which then writes the output data to file and finally read in the standalone’s output file.

The second way is interfacing via iostreams (see Section 10.8 in the Reference Manual). The support for this
is in its infancy.

4.8 Requesting one GAP Package from within Another

It is possible for one GAP package to require another. In principle this can be simply done by calling
RequirePackage from the init file of the one package. However, the other package might be essential and
we might want to fail loading if the other package is not available. To achieve this, the tester function in
DeclarePackage can call TestPackageAvailability (see 74.4.4) and check, whether it returns fail or not.

(If the other GAP package is not compulsory, it is also possible to leave out the TestPackageAvailability
command and only to call RequirePackage later in the init.g file. In this case the other GAP package will
be loaded if available but if this is not the case this will not inhibit loading of the first package. See 4.12.)

Even if we tested the availability of another package this way, we still need to eventually load the other
package using RequirePackage. This might initially look like having to do the same work twice. The reason
of this split between testing availability and package loading is to ensure the possibility of two GAP packages
compulsory requesting each other.

For example, the init.g file of a GAP package “test”, which requires the GAP package “example” in at least
version 2.3 would look like:

DeclarePackage("test","1.0",
function()
local a;
a:=TestPackageAvailability("example","2.3");
if a=fail then
Info(InfoWarning,1,"required GAP package ‘‘example’’ not available");

fi;
return a<>fail;

end
);

DeclarePackageDocumentation("test", "doc");

RequirePackage("example","2.3");

ReadPkg("test", "gap/read.g");

If the GAP package “example” was not available (or only available in an older version), the installation of
the package “test” would fail, no code would be read in and no documentation would be installed.

Section 11. Version Numbers 41

4.9 Declaration and Implementation Part

When GAP packages require each other in a circular way, a “bootstrapping” problem arises of defining
functions before they are called. The same problem occurs in the library, it is resolved there by separating
declarations (which define categories, operations etc.) and implementations (which install methods) in differ-
ent files. An implementation file may use declarations defined in any declaration file. GAP initially reads all
declaration files (in the library they have a .gd suffix) and afterwards reads all implementation files (which
have a .gi suffix).
Something similar is possible for GAP packages: if a file read.g exists in the same place as init.g, this
read.g file is read only after all the init.g files of all (implicitly) required GAP packages are read. Therefore
it is possible to separate declaration and implementation for a GAP package in the same way as done for the
library by creating such a file read.g, and restricting the ReadPkg statements in init.g to only load those
files of the package which provide declaration and to load the implementation files from read.g.
See Section 3.16 in the Programmers’ Tutorial which discusses further the commands that should appear in
the declaration part (in init.g) and the implementation part (in read.g) of a package.

4.10 Package Completion

Reading a larger package can take a few moments and will take up user workspace. This might be a nuisance
to users, especially if the package is loaded automatically. The same problem of course affects the library,
the problem there is solved using completion files (see 3.5 in the reference manual).
Completion files make it possible to read only short function headers initially which are completed to full
functions only if the functions are actually called. This section explains how to set up completion for a GAP
package:
Completion works for those files which are read (using ReadPkg) from the read.g file. (This is no real
restriction as completion affects only the implementation part.) To create completion files, load the GAP
package. Then use the following command.

1I CreateCompletionFilesPkg(pkgname)

This will create a new file read.co in the GAP package’s home directory pkgname (so you must have write
permissions there). When reading the GAP package this file is used in place of read.g if it exists and
automatically takes care of completion.
When you change files which are completed, GAP will complain about non-matching CRC files and will not
load them. In this case remove the read.co file and create it anew.
As a GAP package author you should consider including a completion file with the package.
If you start GAP with the command line option -D, it displays information about reading and completion,
the command line option -N turns completion off (as if all .co files were erased). (Section 3.2 in the Reference
Manual describes the options -D and -N.)

4.11 Version Numbers

A version number is a string which contains nonnegative integers separated by non-numeric characters.
Examples of valid version numbers are for example:

"1.0" "3.141.59" "2-7-8.3" "5 release 2 patchlevel 666"

Version numbers are interpreted as lists of integers and are compared in that way. Thus version "2-3" is
larger than version "2-2-5" but smaller than "11.0".
It is possible for code to require GAP packages in certain versions. In this case, all versions, whose number
is equal or larger than the requested number are acceptable. It is the task of the package author to provide
upwards compatibility.
The global variable VERSION contains the version number of the version of GAP and also can be checked
against (using CompareVersionNumbers, see 74.4.8 in the Reference Manual).

42 Chapter 4. Writing a GAP Package

4.12 Testing for a GAP Package

There are two ways in which one might want to test for a GAP package.

The first is whether a package is available for loading or has been loaded. This can be done via the function
TestPackageAvailability (see 74.4.4 in the Reference Manual).

In order to test whether a GAP package name has been loaded already, you can check the global variable
LOADED PACKAGES for a record component LOADED PACKAGES.(name).

4.13 Writing Documentation

There are now two recognised ways of producing GAP package documentation. There is the method that has
been used to produce the main manuals for GAP which requires the documentation to be written in TEX
according to the format described in chapter 2. There is now also an XML-based documentation method
that uses the GAPDoc package (see 1). Documentation written according to the format described in chapter
2 must include a manual.tex file to actually run TEX over the manual, the separate TEX files for the manual
chapters and the file manual.six, produced by running TEX. Whatever system that is used to produce the
documentation, there must be a manual.six file, since this file is used by the online help to get the index
information. If you choose to use a method other than the two methods described above then you need to
read chapter 5 to find out how to provide the necessary help handler functions and manual.six file. By the
way, this does not mean that it is in anyway acceptable to provide documentation in just MSWord .doc
format. Whatever, system you use to produce documentation, the output format must be one or more of
plain text, TEX dvi, PostScript, PDF, or HTML, and preferably at least both plain text and TEX dvi. It
may also be helpful to add a preTEXed dvi or ps file of the package’s manual.

The main directory of the GAP package should also contain a file INSTALL or README that briefly tells the
user what the package does and (if applicable) how to compile and install binaries.

4.14 Wrapping Up a GAP Package

The releases of GAP packages are independent of releases of GAP. Therefore GAP packages should be wrapped
up in separate files that can be installed onto any version of GAP. Similarly a GAP package can be upgraded
any time without the need to wait for new releases of GAP.

Because it is independent of the version of GAP a GAP package should be archived from the GAP pkg
directory, that is all files are archived with the path starting the package’s name.

The archive of a GAP package should contain all files necessary for the package to work. This includes a
manual.six file in the documentation subdirectory which is created by TEXing the documentation. If the
package provides a substantial amount of code, especially if it is intended to be loaded automatically, create
a completion file (see 4.10) and include it with the package.

We use the zoo archiver to provide GAP archives and we ask you to use this format for your GAP packages.
If zoo is not installed on your system, you can get source code for example at

ftp://ftp.tex.ac.uk/pub/archive/tools/zoo

or try a search engine like Google

http://www.google.com

with the keywords: zoo archiving software.

zoo by itself archives all files as binary files. This may lead to minor problems when viewing files on DOS
or Macintosh systems, which use a different textfile format (CRLF versus LF). To overcome such problems
we use the following mechanism for the GAP archive files, which is supported by the unzoo we are providing
(but is unfortunately not part of the standard zoo format):

Section 14. Wrapping Up a GAP Package 43

All files are archived as Unix versions. (If you are using a Windows PC or a Macintosh the easiest way to
achieve this is to ftp the files in text mode to a Unix machine and do the archiving there.)

When using zoo one can add comments to files. Whenever a file gets a comment !TEXT! this file will be
considered as text (respectively one can enforce binary mode by a !BINARY comment) and unzoo will extract
it accordingly, adding a CR on non-Unix systems.

If you are using the standard UNIX version of zoo the command

zoo c archive.zoo filename

will prompt you for a comment to add to the file filename in the archive archive.zoo. You will enter for
example

!TEXT!
/END

Normally, all files of a GAP package except dvi files or special binary files are text files.

If you are unsure about the format, you can use the “list” feature of zoo on an existing package (for example
XGAP) to see all files with comments:

zoo lc xgap.zoo

5

Interface to the
GAP Help System

In this chapter we describe which information the help system needs about a manual book and how to tell
it this information. The code which implements this interface can be found in lib/helpbase.gi.

If you are intending to use a documentation format that is already used by some other help book you
probably don’t need to know anything from this chapter. However, if you want to create a new format and
make it available to GAP then hopefully you will find the necessary information here.

The basic idea of the help system is as follows: One tells GAP a directory which contains a file manual.six,
see 5.1. When the GAP help is asked something about this book it reads in some basic information from
the file manual.six: strings like section headers, function names, and index entries to be searched by the
online help; information about the available formats of this book like text, html, dvi, and pdf; the actual
files containing the documentation, corresponding section numbers, and page numbers: and so on. See 5.2
for a description of the format of the manual.six file.

It turns out that there is almost no restriction on the format of the manual.six file, except that it
must provide a string, say "myownformat" which identifies the format of the help book. Then the ba-
sic actions on a help book are delegated by the help system to handler functions stored in a record
HELP BOOK HANDLER.myownformat. See 5.3 for information which functions must be provided by the handler
and what they are supposed to do. The main work to teach GAP to use a new document format is to write
these handler functions and to produce an appropriate manual.six file.

5.1 Installing a Help Book

1I HELP ADD BOOK(short, long, dir)

This command tells GAP that in directory dir (given as either a string describing the path relative to the
GAP root directory GAP ROOT PATHS[1] or as directory object) contains the basic information about a help
book. The string short is used as an identifying name for that book by the online help. The string long
should be a short explanation of the content of the book. Both strings together should easily fit on a line,
since they are displayed with ?books.

It is possible to reinstall a book with different strings short , long ; (for example, documentation of a not-
loaded GAP package indicates this in the string short and if you later load the package, GAP quietly changes
the string short as it reinstalls its documentation).

The only condition necessary to make the installation of a book valid is that the directory dir must contain
a file manual.six. The next section explains how this file must look.

Section 3. The Help Book Handler 45

5.2 The manual.six File

If a manual.six file for a help book is not in the format of the gapmacro.tex macros, explained in chapter
The gapmacro.tex Manual Format (see 2), the first non-empty line of manual.six must be of the form

#SIXFORMAT myownformat

where myownformat is an identifying string for this format. The reading of the (remainder of the) file is then
delegated to the function HELP BOOK HANDLER.myownformat.ReadSix which must exist. Thus there are no
further regulations for the format of the manual.six file, other that what you yourself impose. If such a
line is missing then it is assumed that the manual.six file complies with the gapmacro.tex documentation
format which is the default format.

The next section explains what the return value of HELP BOOK HANDLER.myownformat.ReadSix should look
like and which further function should be contained in HELP BOOK HANDLER.myownformat .

5.3 The Help Book Handler

For each document format myownformat there must be a record HELP BOOK HANDLER.myownformat of func-
tions with the following names and functionality.

An implementation example of such a set of handler functions is the default format, which is the format
name used for the gapmacro.tex documentation format, and this is contained in the file lib/helpdef.gi.

The package GapDoc (see Chapter 1) also defines a format (as it should) which is called: GapDocGAP (the
case is significant).

As you can see by the above two examples, the name for a document format can be anything, but it should
be in some way meaningful.

ReadSix(stream)
For an input text stream stream to a manual.six file, this must return a record info which has at
least the following two components: bookname which is the short identifying name of the help book,
and entries. Here info.entries must be a list with one entry per search string (which can be a
section header, function name, index entry, or whatever seems sensible to be searched for matching
a help query). A match for the GAP help is a pair (info, i) where i refers to an index for the
list info.entries and this corresponds to a certain position in the document. There is one further
regulation for the format of the entries of info.entries. They must be lists and the first element of
such a list must be a string which is printed by GAP for example when several matches are found
for a query (so it should essentially be the string which is searched for the match, except that it
may contain upper and lower case letters or some markup). There may be other components in
info which are needed by the functions below, but their names and formats are not prescribed. The
stream argument is typically generated using InputTextFile (see 10.5.1), e.g.

gap> dirs := DirectoriesPackageLibrary("gapdoc", "doc");;
gap> file := Filename(dirs, "manual.six");;
gap> stream := InputTextFile(file);;

ShowChapters(info)
This must return a text string or list of text lines which contains the chapter headers of the book
info.bookname.

ShowSection(info)
This must return a text string or list of text lines which contains the section (and chapter) headers
of the book info.bookname.

46 Chapter 5. Interface to the GAP Help System

SearchMatches(info, topic, frombegin)
This function must return a list of indices of info.entries for entries which match the search
string topic. If frombegin is true then those parts of topic which are separated by spaces should be
considered as the beginnings of words to decide the matching. It frombegin is false, a substring
search should be performed. The string topic can be assumed to be already normalized (transformed
to lower case, and whitespace normalized). The function must return a list with two entries [exact,
match] where exact is the list of indices for exact matches and match a list of indices of the remaining
matches.

MatchPrevChap(info, i)
This should return the match [info, j] which points to the beginning of the chapter containing match
[info, i], respectively to the beginning of the previous chapter if [info, i] is already the beginning of
a chapter. (Corresponds to ?<<.)

MatchNextChap(info, i)
Like the previous function except that it should return the match for the beginning of the next
chapter. (Corresponds to ?>>.)

MatchPrev(info, i)
This should return the previous section (or appropriate portion of the document). (Corresponds to
?<.)

MatchNext(info, i)
Like the previous function except that it should return the next section (or appropriate portion of
the document). (Corresponds to ?>.)

HelpData(info, i, type)
This returns for match [info, i] some data whose format depends on the string type, or fail if these
data are not available. The values of type which currently must be handled and the corresponding
result format are described in the list below.

The HELP BOOK HANDLER.myownformat.HelpData function must recognize the following values of the type
argument.

"text"
This must return a corresponding text string in a format which can be fed into the Pager, see 2.4.1.

"url"
If the help book is available in HTML format this must return an URL as a string (Probably a
file:// URL containing a label for the exact start position in that file). Otherwise it returns fail.

"dvi"
If the help book is available in dvi-format this must return a record of form rec(file := filename,
page := pagenumber). Otherwise it returns fail.

"pdf"
Same as case "dvi", but for the corresponding pdf-file.

"secnr"
This must return a pair like [[3,3,1], "3.3.1"] which gives the section number as chapter number,
section number, subsection number triple and a corresponding string (a chapter itself is encoded
like [[4,0,0], "4."]). Useful for cross-referencing between help books.

Section 4. Introducing new Viewer for the Online Help 47

5.4 Introducing new Viewer for the Online Help

There is a record HELP VIEWER INFO which contains one component for each help viewer. Such a record
contains two components.

The component .type refers to one of the types recognized by the HelpData handler function explained in
the previous section (currently one of "text", "url", "dvi", or "pdf").

The component .show is a function which gets as input the result of a corresponding HelpData handler call,
if it was not fail. This function has to perform the actual display of the data. (E.g., by calling a function
like Pager or by starting up an external viewer program.)

6

Function-
Operation-Attribute

Triples

GAP is eager to maintain information that it has gathered about an object, possibly by lengthy calculations.
The most important mechanism for information maintenance is the automatic storage and look-up that
takes place for attributes; and this was already mentioned in section 8.1 in the tutorial. In this chapter we
will describe further mechanisms that allow storage of results that are not values of attributes.

The idea which is common to all sections is that certain operations, which are not themselves attributes,
have an attribute associated with them. To automatically delegate tasks to the attribute, GAP knows, in
addition to the operation and the attributes also a function, which is “wrapped around” the other two.
This “wrapper function” is called by the user and decides whether to call the operation or the attribute or
possibly both. The whole function-operation-attribute triple (or FOA triple) is set up by a single GAP
command which writes the wrapper function and already installs some methods, e.g., for the attribute to fall
back on the operation. The idea is then that subsequent methods, which perform the actual computation,
are installed only for the operation, whereas the wrapper function remains unaltered, and in general no
additional methods for the attribute are required either.

6.1 Key Dependent Operations

There are several functions that require as first argument a domain, e.g., a group, and as second argument
something much simpler, e.g., a prime. SylowSubgroup is an example. Since its value depends on two
arguments, it cannot be an attribute, yet one would like to store Sylow subgroups once they have been
computed.

The idea is to provide an attribute of the group, called ComputedSylowSubgroups, and to store the groups
in this list. The name implies that the value of this attribute may change in the course of a GAP session,
whenever a newly-computed Sylow subgroup is put into the list. Therefore, this is a mutable attribute
(see 3.3 in “Programming in GAP”). The list contains primes in each bound odd position and a corresponding
Sylow subgroup in the following even position. More precisely, if p = ComputedSylowSubgroups(G)[
even - 1] then ComputedSylowSubgroups(G)[even] holds the value of SylowSubgroup(G, p).
The pairs are sorted in increasing order of p, in particular at most one Sylow p subgroup of G is stored for
each prime p. This attribute value is maintained by the operation SylowSubgroup, which calls the operation
SylowSubgroupOp(G, p) to do the real work, if the prime p cannot be found in the list. So methods
that do the real work should be installed for SylowSubgroupOp and not for SylowSubgroup.

The same mechanism works for other functions as well, e.g., for PCore, but also for HallSubgroup, where
the second argument is not a prime but a set of primes.

1I KeyDependentOperation(name, dom-req, key-req, key-test)

declares at the same time all three: two operations with names name and nameOp, respectively, and an
attribute with name and the attribute as described above, with names name, nameOp, and Computednames.
dom-req and key-req specify the required filters for the first and second argument of the operation nameOp,

Section 2. In Parent Attributes 49

which are needed to create this operation with NewOperation (see 3.5.1). dom-req is also the required filter
for the corresponding attribute Computednames. The fourth argument key-test is in general a function to
which the second argument info of name(D, info) will be passed. This function can perform tests on
info, and raise an error if appropriate.

For example, to set up the three objects SylowSubgroup, SylowSubgroupOp, and ComputedSylowSubgroups
together, the declaration file “lib/grp.gd” contains the following line of code.

KeyDependentOperation("SylowSubgroup", IsGroup, IsPosInt, "prime");

In this example, key-test has the value "prime", which is silently replaced by a function that tests whether
its argument is a prime.

gap> s4 := Group((1,2,3,4),(1,2));;
gap> SylowSubgroup(s4, 5);; ComputedSylowSubgroups(s4);
[5, Group(())]
gap> SylowSubgroup(s4, 2);; ComputedSylowSubgroups(s4);
[2, Group([(3,4),(1,4)(2,3),(1,3)(2,4)]), 5, Group(())]

gap> SylowSubgroup(s4, 6);
Error, SylowSubgroup: <p> must be a prime called from
<compiled or corrupted call value> called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

Thus the prime test need not be repeated in the methods for the operation SylowSubgroupOp (which are
installed to do the real work). Note that no methods need be installed for SylowSubgroup and ComputedSy-
lowSubgroups. If a method is installed with InstallMethod for a wrapper operation such as SylowSubgroup
then a warning is signalled provided the InfoWarning level is at least 1. (Use InstallOtherMethod in order
to suppress the warning.)

6.2 In Parent Attributes

This section describes how you can add new “in parent attributes” (see 30.8 and 30.7 in the Reference
Manual). As an example, we describe how Index and its related functions are implemented.

There are two operations Index and IndexOp, and an attribute IndexInParent. They are created together
as shown below, and after they have been created, methods need be installed only for IndexOp. In the
creation process, IndexInParent already gets one default method installed (in addition to the usual system
getter of each attribute, see 13.5 in the Reference Manual), namely D -> IndexOp(Parent(D), D).

The operation Index proceeds as follows.

• If it is called with the two arguments super and sub, and if HasParent(sub) and IsIdenticalObj(
super, Parent(sub)) are true, IndexInParent is called with argument sub, and the result is
returned.

• Otherwise, IndexOp is called with the same arguments that Index was called with, and the result is
returned.

(Note that it is in principle possible to install even Index and IndexOp methods for a number of arguments
different from two, with InstallOtherMethod, see 3.3 in “Programming in GAP”).

50 Chapter 6. Function-Operation-Attribute Triples

1I InParentFOA(name, super-req, sub-req, DeclareAttribute)
I InParentFOA(name, super-req, sub-req, DeclareProperty)

declares the operations and the attribute as described above, with names name, nameOp, and nameInParent.
super-req and sub-req specify the required filters for the first and second argument of the operation nameOp,
which are needed to create this operation with NewOperation (see 3.5.1). sub-req is also the required filter
for the corresponding attribute nameInParent; note that HasParent is not required for the argument U
of nameInParent, because even without a parent stored, Parent(U) is legal, meaning U itself (see 30.7
in the Reference Manual). The fourth argument is DeclareProperty if nameInParent takes only boolean
values (for example in the case IsNormalInParent), and DeclareAttribute otherwise.

For example, to set up the three objects Index, IndexOp, and IndexInParent together, the declaration file
“lib/domain.gd” contains the following line of code.

InParentFOA("Index", IsGroup, IsGroup, DeclareAttribute);

Note that no methods need be installed for Index and IndexInParent.

6.3 Operation Functions

Chapter 39 of the Reference Manual and, in particular, the Section 39.1 explain that certain operations
such as Orbits (see 39.3), besides their usual usage with arguments G , D , and opr , can also be applied
to an external set (G-set), in which case they can be interpreted as attributes. Moreover, they can also be
interpreted as attributes for permutation group, meaning the natural action on the set of its moved points.

The definition of Orbits says that a method should be a function with arguments G , D , gens, oprs, and opr ,
as in the case of the operation ExternalSet when specified via gens and oprs (see 39.11 in the Reference
Manual). All other syntax variants allowed for Orbits (e.g., leaving out gens and oprs) are handled by
default methods.

The default methods for Orbits support the following behaviour.

1. If the only argument is an external set xset and the attribute tester HasOrbits(xset) returns true,
the stored value of that attribute is returned.

2. If the only argument is an external set xset and the attribute value is not known, the default arguments
are obtained from the data of xset .

3. If gens and oprs are not specified, gens is set to Pcgs(G) if CanEasilyComputePcgs(G) is true,
and to GeneratorsOfGroup(G) otherwise; oprs is set to gens.

4. The default value of opr is OnPoints.

5. In the case of an operation of a permutation group G on MovedPoints(G) via OnPoints, if the
attribute tester HasOrbits(G) returns true, the stored attribute value is returned.

6. The operation is called as result:= Orbits(G, D, gens, oprs, opr).

7. In the case of an external set xset or a permutation group G in its natural action, the attribute setter
is called to store result .

8. result is returned.

The declaration of operations that match the above pattern is done as follows.

1I OrbitsishOperation(name, reqs, usetype, NewAttribute) F
I OrbitsishOperation(name, reqs, usetype, NewProperty) F

declares an attribute op as described above, with name name. The second argument reqs specifies the list
of required filters for the usual (five-argument) methods that do the real work.

Section 3. Operation Functions 51

If the third argument usetype is true, the function call op(xset) will — if the value of op for xset is
not yet known — delegate to the five-argument call of op with second argument xset rather than with D
(cf. step 6 above). This allows certain methods for op to make use of the type of xset , in which the types of
the external subsets of xset and of the external orbits in xset are stored. (This is used to avoid repeated calls
of NewType in functions like ExternalOrbits(xset), which call ExternalOrbit(xset, pnt) for several
values of pnt .)

For property testing functions such as IsTransitive, the fourth argument is NewProperty, otherwise it is
NewAttribute.

For example, to set up the operation Orbits, the declaration file “lib/oprt.gd” contains the following line
of code:

OrbitsishOperation("Orbits", OrbitsishReq, false, NewAttribute);

The variable OrbitsishReq contains the standard requirements

OrbitsishReq := [IsGroup, IsList,
IsList,
IsList,
IsFunction];

which are usually entered in calls to OrbitsishOperation.

A similar mechanism is provided for operations such as Orbit that do not have an associated attribute but
still need a wrapper function to standardize the arguments for the associated operation.

2I OrbitishFO(name, reqs, famrel, usetype) F

declares a wrapper function and its operation, with names name and nameOp. The second argument reqs
specifies the list of required filters for the operation nameOp.

The third argument famrel is used to test the family relation between the second and third argument of
name(G, D, elm). For example, in the call Orbit(G, D, pnt), pnt must be an element of D , so
famrel = IsCollsElms is appropriate, and in the call Blocks(G, D, seed), seed must be a subset of
D , and the family relation is IsIdenticalObj. The fourth argument usetype serves the same purpose as in
the case of OrbitsishOperation.

For example, to setup the function Orbit and its operation OrbitOp, the declaration file “lib/oprt.gd”
contains the following line of code:

OrbitishFO("Orbit", OrbitishReq, IsCollsElms, false);

The variable OrbitishReq contains the standard requirements

OrbitishReq := [IsGroup, IsList, IsObject,
IsList,
IsList,
IsFunction];

which are usually entered in calls to OrbitishFO.

The relation test via famrel is used to provide a uniform construction of the wrapper functions created by
OrbitishFO, in spite of the different syntax of the specific functions. For example, Orbit admits the calls
Orbit(G, D, pnt, opr) and Orbit(G, pnt, opr), i.e., the second argument D may be omitted;
Blocks admits the calls Blocks(G, D, seed, opr) and Blocks(G, D, opr), i.e., the third argu-
ment may be omitted. The translation to the appropriate call of OrbitOp or BlocksOp, for either operation
with five or six arguments, is handled via famrel .

As a consequence, there must not only be methods for OrbitOp with the six arguments corresponding to
OrbitishReq, but also methods for only five arguments (i.e., without D). Plenty of examples are contained
in the implementation file “lib/oprt.gi”.

52 Chapter 6. Function-Operation-Attribute Triples

In order to handle a few special cases (currently Blocks and MaximalBlocks), also the following form is
supported.

OrbitishFO(name, reqs, famrel, attr) F

The functions in question depend upon an argument seed , so they cannot be regarded as attributes. However,
they are most often called without giving seed , meaning “choose any minimal resp. maximal block system”.
In this case, the result can be stored as the value of the attribute attr that was entered as fourth argument
of OrbitishFO. This attribute is considered by a call Blocks(G, D, opr) (i.e., without seed) in the
same way as Orbits considers OrbitsAttr.

To set this up, the declaration file “lib/oprt.gd” contains the following lines:

DeclareAttribute("BlocksAttr", IsExternalSet);
OrbitishFO("Blocks",

[IsGroup, IsList, IsList,
IsList,
IsList,
IsFunction], IsIdenticalObj, BlocksAttr);

And this extraordinary FOA triple works as follows:

gap> s4 := Group((1,2,3,4),(1,2));; Blocks(s4, MovedPoints(s4), [1,2]);
[[1, 2, 3, 4]]
gap> Tester(BlocksAttr)(s4);
false

gap> Blocks(s4, MovedPoints(s4));
[[1, 2, 3, 4]]
gap> Tester(BlocksAttr)(s4); BlocksAttr(s4);
true
[[1, 2, 3, 4]]

7 Weak Pointers

This chapter describes the use of the kernel feature of weak pointers. This feature is intended for use only
in GAP internals, and is not recommended for use in GAP packages, user code, or at the higher levels of
the library.

The GASMAN garbage collector is the part of the kernel that manages memory in the users workspace. It
will normally only reclaim the storage used by an object when the object cannot be reached as a subobject
of any GAP variable, or from any reference in the kernel. We say that any link to object a from object b
“keeps object a alive”, as long as b is alive. It is occasionally convenient, however to have a link to an object
which does not keep it alive, and this is a weak pointer. The most common use is in caches, and similar
structures, where it is only necessary to remember how to solve problem x as long as some other link to x
exists.

The following section 7.1 describes the semantics of the objects that contain weak pointers. Following sections
describe the functions available to manipulate them.

7.1 Weak Pointer Objects

A weak pointer object is similar to a mutable plain list, except that it does not keep its subobjects alive
during a garbage collection. From the GAP viewpoint this means that its entries may become unbound,
apparently spontaneously, at any time. Considerable care is therefore needed in programming with such an
object.

7.2 WeakPointerObj

1I WeakPointerObj(list)

WeakPointerObj returns a weak pointer object which contains the same subobjects as list , that is it returns
a shallow weak copy of list .

gap> w := WeakPointerObj([1, , [2,3], fail, rec()]);
WeakPointerObj([1, , [2, 3], fail, rec()])
gap> GASMAN("collect");
gap> w;
WeakPointerObj([1, , , fail])

Note that w has failed to keep its list and record subobjects alive during the garbage collection. Certain
subobjects, such as small integers and elements of small finite fields, are not stored in the workspace, and
so are not subject to garbage collection, while certain other objects, such as the Boolean values, are always
reachable from global variables or the kernel and so are never garbage collected.

Subobjects reachable without going through a weak pointer object do not evaporate, as in:

54 Chapter 7. Weak Pointers

gap> l := [1,2,3];;
gap> w[1] := l;;
gap> w;
WeakPointerObj([[1, 2, 3], , , fail])
gap> GASMAN("collect");
gap> w;
eakPointerObj([[1, 2, 3], , , fail])

Note also that the global variables last, last2 and last3 will keep things alive – this can be confusing
when debugging.

7.3 Low Level Access Functions for Weak Pointer Objects

1I SetElmWPObj(wp,pos,val)
I UnbindElmWPObj(wp,pos)
I ElmWPObj(wp, pos)
I IsBOundElmWPObj(wp,pos)
I LengthWPObj(wp)

The functions SetElmWPObj(wp,pos,val) and UnbindElmWPObj(wp,pos) set and unbind entries in a weak
pointer object.

The function ElmWPObj(wp, pos) returns the element at position pos of the weak pointer object wp, if
there is one, and fail otherwise. A return value of fail can thus arise either because (a) the value fail
is stored at position pos, or (b) no value is stored at position pos. Since fail cannot vanish in a garbage
collection, these two cases can safely be distinguished by a subsequent call to IsBoundElmWPObj(wp,pos),
which returns true if there is currently a value bound at position pos of wp and false otherwise.

Note that it is not safe to write: if IsBoundElmWpObj(w,i) then x:= ElmWPObj(w,i); fi; and treat x
as reliably containing a value taken from w, as a badly timed garbage collection could leave x containing
fail. Instead use x := ElmWPObj(w,i); if x <> fail or IsBoundElmWPObj(w,i) then

gap> w := WeakPointerObj([1, , [2,3], fail, rec()]);
WeakPointerObj([1, , [2, 3], fail, rec()])
gap> SetElmWPObj(w,5,[]);
gap> w;
WeakPointerObj([1, , [2, 3], fail, []])
gap> UnbindElmWPObj(w,1);
gap> w;
WeakPointerObj([, , [2, 3], fail, []])
gap> ElmWPObj(w,3);
[2, 3]
gap> ElmWPObj(w,1);
fail
gap> 2;;3;;4;;GASMAN("collect"); # clear last etc.
gap> ElmWPObj(w,3);
fail
gap> w;
WeakPointerObj([, , , fail, []])
gap> ElmWPObj(w,4);
fail
gap> IsBoundElmWPObj(w,3);
false
gap> IsBoundElmWPObj(w,4);
true

Section 6. The GASMAN Interface for Weak Pointer Objects 55

7.4 Accessing Weak Pointer Objects as Lists

Weak pointer objects are members of ListsFamily and the categories IsList and IsMutable. Methods
based on the low-level functions in the previous section, are installed for the list access operations, enabling
them to be used as lists. However, it is not recommended that these be used in programming. They are
supplied mainly as a convenience for interactive working, and may not be safe, since functions and methods
for lists may assume that after IsBound(w[i]) returns true, access to w[i] is safe.

7.5 Copying Weak Pointer Objects

A ShallowCopy method is installed, which makes a new weak pointer object containing the same objects as
the original.

It is possible to apply StructuralCopy to a weak pointer object, obtaining a new weak pointer object
containing copies of the objects in the original. This may not be safe if a badly timed garbage collection
occurs during copying.

Applying Immutable to a weak pointer object produces an immutable plain list containing immutable copies
of the objects contained in the weak pointer object. An immutable weak pointer object is a contradiction in
terms.

7.6 The GASMAN Interface for Weak Pointer Objects

The key support for weak pointers is in gasman.c and gasman.h. This document assumes familiarity with
the rest of the operation of GASMAN. A kernel type (tnum) of bags which are intended to act as weak
pointers to their subobjects must meet three conditions. Firstly, the marking function installed for that
tnum must use MarkBagWeakly for those subbags, rather than MARK BAG. Secondly, before any access to such
a subbag, it must be checked with IS WEAK DEAD BAG. If that returns true, then the subbag has evaporated
in a recent garbage collection and must not be accessed. Typically the reference to it should be removed.
Thirdly, a sweeping function must be installed for that tnum which copies the bag, removing all references
to dead weakly held subbags.

The files weakptr.c and weakptr.h use this interface to support weak pointer objects. Other objects with
weak behaviour could be implemented in a similar way.

8

Stabilizer Chains
(preliminary)

This chapter contains some rather technical complements to the material handled in the chapters 40 and 41
of the reference manual.

8.1 Generalized Conjugation Technique

The command ConjugateGroup(G, p) (see 37.2.5 in the reference manual) for a permutation group G
with stabilizer chain equips its result also with a stabilizer chain, namely with the chain of G conjugate by
p. Conjugating a stabilizer chain by a permutation p means replacing all the points which appear in the
orbit components by their images under p and replacing every permutation g which appears in a labels
or transversal component by its conjugate gp . The conjugate gp acts on the mapped points exactly as g
did on the original points, i.e., (pnt · p) · gp = (pnt · g) · p. Since the entries in the translabels components
are integers pointing to positions of the labels list, the translabels lists just have to be permuted by p for
the conjugated stabilizer. Then generators is reconstructed as labels{ genlabels } and transversal{
orbit } as labels{ translabels{ orbit } }.

This conjugation technique can be generalized. Instead of mapping points and permutations under the same
permutation p, it is sometimes desirable (e.g., in the context of permutation group homomorphisms) to map
the points with an arbitrary mapping map and the permutations with a homomorphism hom such that
the compatibility of the actions is still valid: map(pnt) · hom(g) = map(pnt · g). (Of course the ordinary
conjugation is a special case of this, with map(pnt) = pnt · p and hom(g) = gp .)

In the generalized case, the “conjugated” chain need not be a stabilizer chain for the image of hom, since the
“preimage” of the stabilizer of map(b) (where b is a base point) need not fix b, but only fixes the preimage
map−1(map(b)) setwise. Therefore the method can be applied only to one level and the next stabilizer
must be computed explicitly. But if map is injective, we have map(b) · hom(g) = map(b) ⇐⇒ b · g = b,
and if this holds, then g = w(g1, . . . , gn) is a word in the generators g1, . . . , gn of the stabilizer of b and
hom(g) =∗ w(hom(g1), . . . , hom(gn)) is in the “conjugated” stabilizer. If, more generally, hom is a right
inverse to a homomorphism ϕ (i.e., ϕ(hom(g)) = g ∀g), equality ∗ holds modulo Kerϕ; in this case the
“conjugated” chain can be made into a real stabilizer chain by extending each level with the generators
Kerϕ and appending a proper stabilizer chain of Kerϕ at the end. These special cases will occur in the
algorithms for permutation group homomorphisms (see 38 in the reference manual).

To “conjugate” the points (i.e., orbit) and permutations (i.e., labels) of the Schreier tree, a loop is set up
over the orbit list constructed during the orbit algorithm, and for each vertex b with unique edge a(l)b
ending at b, the label l is mapped with hom and b with map. We assume that the orbit list was built
w.r.t. a certain ordering of the labels, where l ′ < l means that every point in the orbit was mapped with l ′

before it was mapped with l . This shape of the orbit list is guaranteed if the Schreier tree is extended only
by AddGeneratorsExtendSchreierTree, and it is then also guaranteed for the “conjugated” Schreier tree.
(The ordering of the labels cannot be read from the Schreier tree, however.)

In the generalized case, it can happen that the edge a(l)b bears a label l whose image is “old”, i.e., equal
to the image of an earlier label l ′ < l . Because of the compatibility of the actions we then have map(b) =
map(a) · hom(l)−1 = map(a) · hom(l ′)−1 = map(al ′−1), so map(b) is already equal to the image of the
vertex al ′−1. This vertex must have been encountered before b = al−1 because l ′ < l . We conclude that the

Section 2. The General Backtrack Algorithm with Ordered Partitions 57

image of a label can be “old” only if the vertex at the end of the corresponding edge has an “old” image,
too, but then it need not be “conjugated” at all. A similar remark applies to labels which map under hom
to the identity.

8.2 The General Backtrack Algorithm with Ordered Partitions

Section 41.11 in the reference manual describes the basic functions for a backtrack search. The purpose of
this section is to document how the general backtrack algorithm is implemented in GAP and which parts
you have to modify if you want to write your own backtrack routines.

Internal representation of ordered partitions. GAP represents an ordered partition as a record with the following
components.

points
a list of all points contained in the partition, such that the points of each cell from lie consecutively,

cellno
a list whose ith entry is the number of the cell which contains the point i ,

firsts
a list such that points[firsts[j]] is the first point in points which is in cell j ,

lengths
a list of the cell lengths.

Some of the information is redundant, e.g., the lengths could also be read off the firsts list, but since
this need not be increasing, it would require some searching. Similar for cellno, which could be replaced
by a systematic search of points, keeping track of what cell is currently being traversed. With the above
components, the mth cell of a partition P is expressed as P.points [P.firsts[m] .. P.firsts[m] +
P.lengths[m] - 1] . The most important operations, however, to be performed upon P are the splitting
of a cell and the reuniting of the two parts. Following the strategy of J. Leon, this is done as follows:

(1) The points which make up the cell that is to be split are sorted so that the ones that remain inside
occupy positions [P.firsts[m] .. last] in the list P.points (for a suitable value of last).

(2) The points at positions [last + 1 .. P.firsts[m] + P.lengths[m] - 1] will form the addi-
tional cell. For this new cell requires additional entries are added to the lists P.firsts (namely, last+1)
and P.lengths (namely, P.firsts[m] + P.lengths[m] - last - 1).

(3) The entries of the sublist P.cellno [last+1 .. P.firsts[m] + P.lengths[m]-1] must be set
to the number of the new cell.

(4) The entry P.lengths[m] must be reduced to last - P.firsts[m] + 1.

Then reuniting the two cells requires only the reversal of steps 2 to 4 above. The list P.points need not be
rearranged.

Functions for setting up an R-base. This subsection explains some GAP functions which are local to the library
file lib/stbcbckt.gi which contains the code for backtracking in permutation groups. They are mentioned
here because you might find them helpful when you want to implement you own backtracking function based
on the partition concept. An important argument to most of the functions is the R-base R, which you should
regard as a black box. We will tell you how to set it up, how to maintain it and where to pass it as argument,
but it is not necessary for you to know its internal representation. However, if you insist to learn the whole
story: Here are the record components from which an R-base is made up:

domain
the set Ω on which the group G operates

58 Chapter 8. Stabilizer Chains (preliminary)

base
the sequence (a1, . . . , ar) of base points

partition
an ordered partition, initially Π0, this will be refined to Π1, . . . ,Πr during the backtrack algorithm

where
a list such that ai lies in cell number where[i] of Πi

rfm
a list whose ith entry is a list of refinements which take Σi to Σi+1; the structure of a refinement is
described below

chain
a (copy of a) stabilizer chain for G (not if G is a symmetric group)

fix
only if G is a symmetric group: a list whose i entry contains Fixcells(Πi)

level
initially equal to chain, this will be changed to chains for the stabilizers Ga1...ai for i = 1, . . . , r
during the backtrack algorithm; if G is a symmetric group, only the number of moved points is
stored for each stabilizer

lev
a list whose ith entry remembers the level entry for Ga1...ai−1

level2, lev2
a similar construction for a second group (used in intersection calculations), false otherwise. This
second group H activated if the R-base is constructed as EmptyRBase([G, H], Ω, Π0) (if
G = H , GAP sets level2 = true instead).

nextLevel
this is described below

As our guiding example, we present code for the function Centralizer which calculates the centralizer of
an element g in the group G . (The real code is more general and has a few more subtleties.)

1 Π0 := TrivialPartition(Ω);
2 R := EmptyRBase(G, Ω, Π0);
3 R.nextLevel := function(Π, rbase)
4 local fix, p, q, where;
5 NextRBasePoint(Π, rbase);
6 fix := Fixcells(Π);
7 for p in fix do
8 q := p ^ g;
9 where := IsolatePoint(Π, q);
10 if where <> false then
12 Add(fix, q);
13 ProcessFixpoint(R, q);
14 AddRefinement(R, "Centralizer", [Π.cellno[p], q, where]);
15 if Π.lengths[where] = 1 then
16 p := FixpointCellNo(Π, where);
17 ProcessFixpoint(R, p);
18 AddRefinement(R, "ProcessFixpoint", [p, where]);
19 fi;
20 fi;
21 od;

Section 2. The General Backtrack Algorithm with Ordered Partitions 59

22 end;
23 return PartitionBacktrack(
24 G,
25 c -> g ^ c = g,
26 false,
27 R,
28 [Π0, g],
29 L, R);

The list numbers below refer to the line numbers of the code above.

1. Ω is the set on which G acts and Π0 is the first member of the decreasing sequence of partitions men-
tioned in 41.11 in the reference manual. We set Π0 = (Ω), which is constructed as TrivialPartition(
Ω)), but we could have started with a finer partition, e.g., into unions of g-cycles of the same length.

2. This statement sets up the R-base in the variable R.

3. – 21. These lines define a function R.nextLevel which is called whenever an additional member in
the sequence Π0 ≥ Π1 ≥ . . . of partitions is needed. If Πi does not yet contain enough base points in
one-point cells, GAP will call R.nextLevel(Πi, R), and this function will choose a new base point
ai+1, refine Πi to Πi+1 (thereby changing the first argument) and store all necessary information in R.

5. This statement selects a new base point ai+1, which is not yet in a one-point cell of Π and still moved
by the stabilizer Ga1...ai of the earlier base points. If certain points of Ω should are preferred as base
point (e.g., because they belong to long cycles of g), a list of points starting with the most wanted ones,
can be given as an optional third argument to NextRBasePoint (actually, this is done in the real code
for Centralizer).

6. Fixcells(Π) returns the list of points in one-point cells of Π (ordered as the cells are ordered in Π).

7. For every point p ∈ fix , if we know the image p ^ g under c ∈ CG(e), we also know (p ^ g) ^ c =
(p ^ c) ^ g . We therefore want to isolate these extra points in Π.

9. This statement puts point q in a cell of its own, returning in where the number of the cell of Π from
which q was taken. If q was already the only point in its cell, where = false instead.

12. This command does the necessary bookkeeping for the extra base point q : It prescribes q as next base in
the stabilizer chain for G (needed, e.g., in line 5) and returns false if q was already fixed the stabilizer
of the earlier base points (and true otherwise; this is not used here). Another call to ProcessFixpoint
like this was implicitly made by the function NextRBasePoint to register the chosen base point. By
contrast, the point q was not chosen this way, so ProcessFixpoint must be called explicitly for q .

13. This statement registers the function which will be used during the backtrack search to perform the
corresponding refinements on the “image partition” Σi (to yield the refined Σi+1). After choosing
an image bi+1 for the base point ai+1, GAP will compute Σi ∧ ({bi+1},Ω − {bi+1}) and store this
partition in I.partition, where I is a black box similar to R, but corresponding to the current
“image partition” (hence it is an “R-image” in analogy to the R-base). Then GAP will call the function
Refinements.Centralizer(R, I, Π.cellno[p], p, where), with the then current values of
R and I, but where Π.cellno[p], p, where still have the values they have at the time of this
AddRefinement command. This function call will further refine I.partition to yield Σi+1 as it is
programmed in the function Refinements.Centralizer, which is described below. (The global variable
Refinements is a record which contains all refinement functions for all backtracking procedures.)

14. – 19. If the cell from which q was taken out had only two points, we now have an additional one-
point cell. This condition is checked in line 13 and if it is true, this extra fixpoint p is taken (line 15),

60 Chapter 8. Stabilizer Chains (preliminary)

processed like q before (line 16) and is then (line 17) passed to another refinement function Refine-
ments.ProcessFixpoint(R, I, p, where), which is also described below.

23. – 29. This command starts the backtrack search. Its result will be the centralizer as a subgroup of G .
Its arguments are

24. the group we want to run through,

25. the property we want to test, as a GAP function,

26. false if we are looking for a subgroup, true in the case of a representative search (when the result
would be one representative),

27. the R-base,

28. a list of data, to be stored in I.data, which has in position 1 the first member Σ0 of the decreasing
sequence of “image partitions” mentioned in 41.11 in the reference manual. In the centralizer example,
position 2 contains the element that is to be centralized. In the case of a representative search, i.e., a
conjugacy test g ^ c ?= h, we would have h instead of g here, and possibly a Σ0 different from Π0

(e.g., a partition into unions of h-cycles of same length).

29. two subgroups L ≤ CG(g) and R ≤ CG(h) known in advance (we have L = R in the centralizer case).

Refinement functions for the backtrack search. The last subsection showed how the refinement process leading
from Πi to Πi+1 is coded in the function R.nextLevel, this has to be executed once the base point ai+1.
The analogous refinement step from Σi to Σi+1 must be performed for each choice of an image bi+1 for ai+1,
and it will depend on the corresponding value of Σi ∧ ({bi+1},Ω− {bi+1}). But before we can continue our
centralizer example, we must, for the interested reader, document the record components of the other black
box I, as we did above for the R-base black box R. Most of the components change as GAP walks up and
down the levels of the search tree.

data
this will be mentioned below

depth
the level i in the search tree of the current node Σi

bimg
a list of images of the points in R.base

partition
the partition Σi of the current node

level
the stabilizer chain R.lev[i] at the current level

perm
a permutation mapping Fixcells(Πi) to Fixcells(Σi) (this implies mapping (a1, . . . , ai) to
(b1, . . . , bi))

level2, perm2
a similar construction for the second stabilizer chain, false otherwise (and true if R.level2 =
true)

As declared in the above code for Centralizer, the refinement is performed by the function Refine-
ment.Centralizer(R, I, Π.cellno[p], p, where). The functions in the record Refinement al-
ways take two additional arguments before the ones specified in the AddRefinement call (in line 13 above),
namely the R-base R and the current value I of the “R-image”. In our example, p is a fixpoint of
Π = Πi ∧ ({ai+1},Ω − {ai+1}) such that where = Π.cellno[p ^ g]. The Refinement functions must

Section 2. The General Backtrack Algorithm with Ordered Partitions 61

return false if the refinement is unsuccessful (e.g., because it leads to Σi+1 having different cell sizes from
Πi+1) and true otherwise. Our particular function looks like this.

1 Refinements.Centralizer := function(R, I, cellno, p, where)
2 local Σ, q;
3 Σ := I.partition;
4 q := FixpointCellNo(Σ, cellno) ^ I.data[2];
5 return IsolatePoint(Σ, q) = where and ProcessFixpoint(I, p, q);
6 end;

The list numbers below refer to the line numbers of the code immediately above.

3. The current value of Σi ∧ ({bi+1},Ω− {bi+1}) is always found in I.partition.

4. The image of the only point in cell number cellno = Πi.cellno[p] in Σ under g = I.data[2] is
calculated.

5. The function returns true only if the image q has the same cell number in Σ as p had in Π (i.e., where)
and if q can be prescribed as an image for p under the coset of the stabilizer Ga1...ai+1 ·c where c ∈ G is an
(already constructed) element mapping the earlier base points a1, . . . , ai+1 to the already chosen images
b1, . . . , bi+1. This latter condition is tested by ProcessFixpoint(I, p, q) which, if successful, also
does the necessary bookkeeping in I. In analogy to the remark about line 12 in the program above,
the chosen image bi+1 for the base point ai+1 has already been processed implicitly by the function
PartitionBacktrack, and this processing includes the construction of an element c ∈ G which maps
Fixcells(Πi) to Fixcells(Σi) and ai+1 to bi+1. By contrast, the extra fixpoints p and q in Πi+1

and Σi+1 were not chosen automatically, so they require an explicit call of ProcessFixpoint, which
replaces the element c by some c′ · c (with c′ ∈ Ga1...ai+1) which in addition maps p to q , or returns
false if this is impossible.

You should now be able to guess what Refinements.ProcessFixpoint(R, I, p, where) does: it simply
returns ProcessFixpoint(I, p, FixpointCellNo(I.partition, where)).

Summary. When you write your own backtrack functions using the partition technique, you have to supply
an R-base, including a component nextLevel, and the functions in the Refinements record which you need.
Then you can start the backtrack by passing the R-base and the additional data (for the data component
of the “R-image”) to PartitionBacktrack.

Functions for meeting ordered partitions. A kind of refinement that occurs in particular in the normalizer
calculation involves computing the meet of Π (cf. lines 6ff. above) with an arbitrary other partition Λ, not
just with one point. To do this efficiently, GAP uses the following two functions.

1I StratMeetPartition(R, Π, Λ [, g])
I MeetPartitionStrat(R, I, Λ′ [, g ′], strat)

Such a StratMeetPartition command would typically appear in the function call R.nextLevel(Π, R
) (during the refinement of Πi to Πi+1). This command replaces Π by Π∧Λ (thereby changing the second
argument) and returns a “meet strategy” strat . This is (for us) a black box which serves two purposes: First,
it allows GAP to calculate faster the corresponding meet Σ∧Λ′, which must then appear in a Refinements
function (during the refinement of Σi to Σi+1). It is faster to compute Σ ∧ Λ′ with the “meet strategy” of
Π ∧ Λ because if the refinement of Σ is successful at all, the intersection of a cell from the left hand side of
the ∧ sign with a cell from the right hand side must have the same size in both cases (and strat records these
sizes, so that only non-empty intersections must be calculated for Σ ∧ Λ′). Second, if there is a discrepancy
between the behaviour prescribed by strat and the behaviour observed when refining Σ, the refinement can
immediately be abandoned.

62 Chapter 8. Stabilizer Chains (preliminary)

On the other hand, if you only want to meet a partition Π with Λ for a one-time use, without recording
a strategy, you can simply type StratMeetPartition(Π, Λ) as in the following example, which also
demonstrates some other partition-related commands.

gap> P := Partition([[1,2],[3,4,5],[6]]);; Cells(P);
[[1, 2], [3, 4, 5], [6]]
gap> Q := OnPartitions(P, (1,3,6));; Cells(Q);
[[3, 2], [6, 4, 5], [1]]
gap> StratMeetPartition(P, Q);
[] # the ‘‘meet strategy’’ was not recorded, ignore this result
gap> Cells(P);
[[1], [5, 4], [6], [2], [3]]

You can even say StratMeetPartition(Π, ∆) where ∆ is simple a subset of Ω, it will then be interpreted
as the partition (∆,Ω−∆).

GAP makes use of the advantages of a “meet strategy” if the refinement function in Refinements contains
a MeetPartitionStrat command where strat is the “meet strategy” calculated by StratMeetPartition
before. Such a command replaces I.partition by its meet with Λ′, again changing the argument I. The
necessary reversal of these changes when backtracking from a node (and prescribing the next possible image
for a base point) is automatically done by the function PartitionBacktrack.

In all cases, an additional argument g means that the meet is to be taken not with Λ, but instead with
Λ · g−1, where operation on ordered partitions is meant cellwise (and setwise on each cell). (Analogously for
the primed arguments.)

gap> P := Partition([[1,2],[3,4,5],[6]]);;
gap> StratMeetPartition(P, P, (1,6,3));; Cells(P);
[[1], [5, 4], [6], [2], [3]] # P · (1, 3, 6) = Q

Avoiding multiplication of permutations. In the description of the last subsections, the backtrack algorithm
constructs an element c ∈ G mapping the base points to the prescribed images and finally tests the property
in question for that element. During the construction, c is obtained as a product of transversal elements
from the stabilizer chain for G , and so multiplications of permutations are required for every c submitted
to the test, even if the test fails (i.e., in our centralizer example, if g ^ c <> g). Even if the construction of
c stops before images for all base points have been chosen, because a refinement was unsuccessful, several
multiplications will already have been performed by (explicit or implicit) calls of ProcessFixpoint, and,
actually, the general backtrack procedure implemented in GAP avoids this.

For this purpose, GAP does not actually multiply the permutations but rather stores all the factors of the
product in a list. Specifically, instead of carrying out the multiplication in c 7→ c′ · c mentioned in the
comment to line 5 of the above program — where c′ ∈ Ga1...ai+1 is a product of factorized inverse transversal
elements, see 41.8 in the reference manual — GAP appends the list of these factorized inverse transversal
elements (giving c′) to the list of factors already collected for c. Here c′ is multiplied from the left and is
itself a product of inverses of strong generators of G , but GAP simply spares itself all the work of inverting
permutations and stores only a “list of inverses”, whose product is then (c′ · c)−1 (which is the new value of
c−1). The “list of inverses” is extended this way whenever ProcessFixpoint is called to improve c.

The product has to be multiplied out only when the property is finally tested for the element c. But it is
often possible to delay the multiplication even further, namely until after the test, so that no multiplication
is required in the case of an unsuccessful test. Then the test itself must be carried out with the factorized
version of the element c. For this purpose, PartitionBacktrack can be passed its second argument (the
property in question) in a different way, not as a single GAP function, but as a list like in lines 2–4 of the
following alternative excerpt from the code for Centralizer.

1 return PartitionBacktrack(G,

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 63

2 [g, g,
3 OnPoints,
4 c -> c!.lftObj = c!.rgtObj],
5 false, R, [Π0, g], L, R);

The test for c to have the property in question is of the form opr(left, c) = right where opr is an
operation function as explained in 39.11 in the reference manual. In other words, c passes the test if and
only if it maps a “left object” to a “right object” under a certain operation. In the centralizer example, we
have opr = OnPoints and left = right = g , but in a conjugacy test, we would have right = h.

2. Two first two entries (here g and g) are the values of left and right .

3. The third entry (here OnPoints) is the operation opr .

4. The fourth entry is the test to be performed upon the mapped left object left and preimage of the
right object opr(right, c^-1). Here GAP operates with the inverse of c because this is the product
of the permutations stored in the “list of inverses”. The preimage of right under c is then calculated
by mapping right with the factors of c−1 one by one, without the need to multiply these factors. This
mapping of right is automatically done by the ProcessFixpoint function whenever c is extended, the
current value of right is always stored in c!.rgtObj. When the test given by the fourth entry is finally
performed, the element c has two components c!.lftObj = left and c!.rgtObj = opr(right, c^-1
), which must be used to express the desired relation as a function of c. In our centralizer example, we
simply have to test whether they are equal.

8.3 Stabilizer Chains for Automorphisms Acting on Enumerators

This section describes a way of representing the automorphism group of a group as permutation group,
following [Sim97]. The code however is not yet included in the GAP library.

In this section we present an example in which objects we already know (namely, automorphisms of solvable
groups) are equipped with the permutation-like operations ^ and / for action on positive integers. To achieve
this, we must define a new type of objects which behave like permutations but are represented as automor-
phisms acting on an enumerator. Our goal is to generalize the Schreier-Sims algorithm for construction of a
stabilizer chain to groups of such new automorphisms.

An operation domain for automorphisms. The idea we describe here is due to C. Sims. We consider a group
A of automorphisms of a group G , given by generators, and we would like to know its order. Of course
we could follow the strategy of the Schreier-Sims algorithm (described in 41.5 in the reference manual)
for A acting on G . This would involve a call of StabChainStrong(EmptyStabChain([], One(A)),
GroupGenerators(A)) where StabChainStrong is a function as the one described in the pseudo-code
below:

StabChainStrong := function(S, newgens)
Extend the Schreier tree of S with newgens.
for sch in Schreier generators do
if sch /∈ S.stabilizer then
StabChainStrong(S.stabilizer, [sch]);

fi;
od;

end;

The membership test sch /∈ S.stabilizer can be performed because the stabilizer chain of S.stabilizer
is already correct at that moment. We even know a base in advance, namely any generating set for G . Fix
such a generating set (g1, . . . , gd) and observe that this base is generally very short compared to the degree
|G | of the operation. The problem with the Schreier-Sims algorithm, however, is then that the length of the
first basic orbit g1 ·A would already have the magnitude of |G |, and the basic orbits at deeper levels would

64 Chapter 8. Stabilizer Chains (preliminary)

not be much shorter. For the advantage of a short base we pay the high price of long basic orbits, since the
product of the (few) basic orbit lengths must equal |A|. Such long orbits make the Schreier-Sims algorithm
infeasible, so we have to look for a longer base with shorter basic orbits.

Assume that G is solvable and choose a characteristic series with elementary abelian factors. For the sake of
simplicity we assume that N < G is an elementary abelian characteristic subgroup with elementary abelian
factor group G/N . Since N is characteristic, A also acts as a group of automorphisms on the factor group
G/N , but of course not necessarily faithfully. To retain a faithful action, we let A act on the disjoint union
G/N with G , and choose as base (g1N , . . . , gd N , g1, . . . , gd). Now the first d basic orbits lie inside G/N
and can have length at most [G : N]. Since the base points g1N , . . . , gd N form a generating set for G/N ,
their iterated stabilizer A(d+1) acts trivially on the factor group G/N , i.e., it leaves the cosets gi N invariant.
Accordingly, the next d basic orbits lie inside gi N (for i = 1, . . . , d) and can have length at most |N |.
Generalizing this method to a characteristic series G = N0 > N1 > . . . > Nl = {1} of length l > 2, we
can always find a base of length l · d such that each basic orbit is contained in a coset of a characteristic
factor, i.e. in a set of the form gi Nj−1/Nj (where gi is one of the generators of G and 1 ≤ j ≤ l). In
particular, the length of the basic orbits is bounded by the size of the corresponding characteristic factors.
To implement a Schreier-Sims algorithm for such a base, we must be able to let automorphisms act on cosets
of characteristic factors gi Nj−1/Nj , for varying i and j . We would like to translate each such action into an
action on {1, . . . , [Nj−1 : Nj]}, because then we need not enumerate the operation domain

G/N1 ∪̇G/N2 ∪̇ . . . ∪̇G/Nl

as a whole. Enumerating it as a whole would result in basic orbits like orbit ⊆ {1001, . . . , 1100} with
a transversal list whose first 1000 entries would be unbound, but still require 4 bytes of memory each
(see 41.8 in the reference manual).

Identifying each coset gi Nj−1/Nj into {1, . . . , [Nj−1 : Nj]} of course means that we have to change the action
of the automorphisms on every level of the stabilizer chain. Such flexibility is not possible with permutations
because their effect on positive integers is “hardwired” into them, but we can install new operations for
automorphisms.

Enumerators for cosets of characteristic factors. So far we have not used the fact that the characteristic factors
are elementary abelian, but we will do so from here on. Our first task is to implement an enumerator (see
28.2.6 and 21.23 in the reference manual) for a coset of a characteristic factor in a solvable group G . We
assume that such a coset gN /M is given by

(1) a pcgs for the group G (see 43.2.1 in the reference manual), let n = Length(pcgs);

(2) a range range = [start .. stop] indicating that N = 〈pcgs{ [start .. n] } 〉 and M = 〈pcgs{
[stop + 1 .. n] } 〉, i.e., the cosets of pcgs{ range } form a base for the vector space N /M ;

(3) the representative g .

We first define a new representation for such enumerators and then construct them by simply putting
these three pieces of data into a record object. The enumerator should behave as a list of group elements
(representing cosets modulo M), consequently, its family will be the family of the pcgs itself.

IsCosetSolvableFactorEnumeratorRep := NewRepresentation
("isCosetSolvableFactorEnumerator", IsEnumerator,

["pcgs", "range", "representative"]);

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 65

EnumeratorCosetSolvableFactor := function(pcgs, range, g)
return Objectify(NewKind(FamilyObj(pcgs),

IsCosetSolvableFactorEnumeratorRep),
rec(pcgs := pcgs,

range := range,
representative := g));

end;

The definition of the operations Length, \[\] and Position is now straightforward. The code has sometimes
been abbreviated and is meant “cum grano salis”, e.g., the declaration of the local variables has been left
out.

InstallMethod(Length, [IsCosetSolvableFactorEnumeratorRep],
enum -> Product(RelativeOrdersPcgs(enum!.pcgs){ enum!.range }));

InstallMethod(\[\], [IsCosetSolvableFactorEnumeratorRep,
IsPosRat and IsInt],

function(enum, pos)
elm := ();
pos := pos - 1;
for i in Reversed(enum!.range) do

p := RelativeOrderOfPcElement(enum!.pcgs, i);
elm := enum!.pcgs[i] ^ (pos mod p) * elm;
pos := QuoInt(pos, p);

od;
return enum!.representative * elm;

end);

InstallMethod(Position, [IsCosetSolvableFactorEnumeratorRep,
IsObject, IsZeroCyc],

function(enum, elm, zero)
exp := ExponentsOfPcElement(enum!.pcgs,

LeftQuotient(enum!.representative, elm));
pos := 0;
for i in enum!.range do

pos := pos * RelativeOrderOfPcElement(pcgs, i) + exp[i];
od;
return pos + 1;

end);

Making automorphisms act on such enumerators. Our next task is to make automorphisms of the solvable
group pcgs!.group act on [1 .. Length(enum)] for such an enumerator enum. We achieve this by
introducing a new representation of automorphisms on enumerators and by putting the enumerator together
with the automorphism into an object which behaves like a permutation. Turning an ordinary automorphism
into such a special automorphism requires then the construction of a new object which has the new kind.
We provide an operation PermOnEnumerator(model, aut) which constructs such a new object having the
same kind as model , but representing the automorphism aut . So aut can be either an ordinary automorphism
or one which already has an enumerator in its kind, but perhaps different from the one we want (i.e. from
the one in model).

66 Chapter 8. Stabilizer Chains (preliminary)

IsPermOnEnumerator := NewCategory("IsPermOnEnumerator",
IsMultiplicativeElementWithInverse and IsPerm);

IsPermOnEnumeratorDefaultRep := NewRepresentation
("IsPermOnEnumeratorDefaultRep",
IsPermOnEnumerator and IsAttributeStoringRep,
["perm"]);

PermOnEnumerator := NewOperation("PermOnEnumerator",
[IsEnumerator, IsObject]);

InstallMethod(PermOnEnumerator,
[IsEnumerator, IsObject],

function(enum, a)
SetFilterObj(a, IsMultiplicativeElementWithInverse);
a := Objectify(NewKind(PermutationsOnEnumeratorsFamily,

IsPermOnEnumeratorDefaultRep),
rec(perm := a));

SetEnumerator(a, enum);
return a;

end);

InstallMethod(PermOnEnumerator,
[IsEnumerator, IsPermOnEnumeratorDefaultRep],

function(enum, a)
a := Objectify(TypeObj(a), rec(perm := a!.perm));
SetEnumerator(a, enum);
return a;

end);

Next we have to install new methods for the operations which calculate the product of two automorphisms,
because this product must again have the right kind. We also have to write a function which uses the
enumerators to apply such an automorphism to positive integers.

InstallMethod(*, IsIdenticalObj,
[IsPermOnEnumeratorDefaultRep, IsPermOnEnumeratorDefaultRep],

function(a, b)
perm := a!.perm * b!.perm;
SetIsBijective(perm, true);
return PermOnEnumerator(Enumerator(a), perm);

end);

InstallMethod(\^,
[IsPosRat and IsInt, IsPermOnEnumeratorDefaultRep],

function(p, a)
return PositionCanonical(Enumerator(a),

Enumerator(a)[p] ^ a!.perm);
end);

How the corresponding methods for p / aut and aut ^ n look like is obvious.

Now we can formulate the recursive procedure StabChainStrong which extends the stabilizer chain by
adding in new generators newgens. We content ourselves again with pseudo-code, emphasizing only the lines
which set the EnumeratorDomainPermutation. We assume that initially S is a stabilizer chain for the trivial

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 67

subgroup with a level for each pair (range, g) characterizing an enumerator (as described above). We also
assume that the identity element at each level already has the kind corresponding to that level.

StabChainStrong := function(S, newgens)
for i in [1 .. Length(newgens)] do

newgens[i] := AutomorphismOnEnumerator(S.identity, newgens[i]);
od;
Extend the Schreier tree of S with newgens.
for sch in Schreier generators do
if sch /∈ S.stabilizer then
StabChainStrong(S.stabilizer, [sch]);

fi;
od;

end;

Bibliography

[Sim97] Charles C. Sims. Computing with subgroups of automorphism groups of finite groups. In Wolfgang
Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, pages 40–403. The Association for Computing Machinery, ACM Press, 1997.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

., 17
%, 25
%display, 25
%enddisplay, 25
\., 17
\>, 17
\Appendices, 12, 14
\BeginningOfBook, 12, 13
\Bibliography, 12, 14
\C, 21
\Chapter, 15
\Chapters, 12, 13
\Colophon, 12, 13
\Day, 14
\Declaration, 28
\EndOfBook, 12, 14
\F, 21
\FileHeader, 28
\FrontMatter, 12, 13
\Index, 12, 14
\Mailto, 17
\Month, 14
\N, 21
\OneColumnTableOfContents, 12, 13
\Package, 12, 13, 17
\PseudoInput, 14
\Q, 21
\R, 21
\Section, 15
\TableOfContents, 12, 13
\TitlePage, 12, 13
\Today, 14
\URL, 17
\UseGapDocReferences, 13
\UseReferences, 12, 13
\Year, 14
\Z, 21
\accent127, 17

\atindex, 17
\beginexample, 23

indicating unstable output, 23
\beginitems, 21
\beginlist, 21
\begintt, 23
\calR, 21
\endexample, 23
\enditems, 21
\endlist, 21
\endtt, 23
\fmark, 17
\index, 17
\indextt, 17
\item, 21
\itemitem, 21
\kernttindent, 17
\lq, 17
\matrix, 24
\nolabel, use in index and label suppression, 16
\null, use in index suppression, 16
\package, 12, 17
\pif, 17
\rq, 17

A
A, Attribute mark-up, 17
Accessing Weak Pointer Objects as Lists, 54
ALLPKG, 36
An Example of a GAP Package, 37

B
bibtex, 27
buildman.pe, 28

C
C, Category mark-up, 17
Calling of and Communication with External

Binaries, 39
Catering for Plain Text and HTML Formats, 25

70 Index

Chapters and Sections, 15
command mark-up, 17
continuation, 25
Copying Weak Pointer Objects, 55
CreateCompletionFilesPkg, 41

D
Declaration and Implementation Part, 40
document formats, for help books, 45

E
ElmWPObj, 54
Examples, Lists, and Verbatim, 21
ExternalSet, 50

F
F, Function mark-up, 17
File Structure, 33
File Types, 33
Finding Implementations in the Library, 34
foa triples, 48

G
G-sets, 50
GAP ROOT PATHS, 37
gapmacro.tex, 12
Generalized Conjugation Technique, 56
generalized conjugation technique, 56

H
HELP ADD BOOK, 44

I
indexing commands, 17
init.g, for a GAP package, 36, 40
In Parent Attributes, 49
InParentFOA, 49
Installation of GAP Package Binaries, 38
Installing a Help Book, 44
Introducing new Viewer for the Online Help, 46
IsBOundElmWPObj, 54

K
KeyDependentOperation, 48
Key Dependent Operations, 48

L
Labels and References, 16
LengthWPObj, 54
list environment, compact description, 21

description, 21
ordered, 22

unordered, 22
LOADED PACKAGES, 41
Low Level Access Functions for Weak Pointer

Objects, 54

M
makeindex, 27
manual.bbl, 27
manual.bib, 27
manual.dvi, 27
manual.lab, 27
manual.mst, 27
manual.six, 27
manual.tex, 27
manualindex, 27
mathematics alignments, 24
mathematics displays, 24
MeetPartitionStrat, 61
meet strategy, 61

O
O, Operation mark-up, 17
Operation Functions, 50
OrbitishFO, 51
Orbits, 50
OrbitsishOperation, 50
ordered partitions, 57

P
P, Property mark-up, 17
Package Completion, 41
Producing a Manual, 27

R
R, Representation mark-up, 17
read.g, for a GAP package, 40
README, for a GAP package, 42
reference to a label, 16
Requesting one GAP Package from within Another,

40
RereadPkg, 37

S
SetElmWPObj, 54
Stabilizer Chains for Automorphisms Acting on

Enumerators, 63
Standalone Programs in a GAP Package, 38
StratMeetPartition, 61
subsection mark-up, 17

Index 71

Suppressing Indexing and Labelling of a Section and
Resolving Label Clashes, 16

T
tables, 24
Tables, Displayed Mathematics and Mathematics

Alignments, 24
Test for the Existence of GAP Package Binaries, 39
Testing for a GAP Package, 41
Testing the Examples, 24
TeX Macros, 17
TeX Macros for Domains, 21
The GASMAN Interface for Weak Pointer Objects,

55
The General Backtrack Algorithm with Ordered

Partitions, 57
The Help Book Handler, 45
The Init File of a GAP Package, 36
The Main File, 12
The manual.six File, 44
The Structure of a GAP Package, 36

U
Umlauts, 27
UnbindElmWPObj, 54
Undocumented Variables, 34
Usage of the Percent Symbol, 25
Using buildman.pe, 28

V
V, (global) Variable mark-up, 17
verbatim environments, 23
VERSION, 41
Version Numbers, 41

W
WeakPointerObj, 53
WeakPointerObj, 53
Weak Pointer Objects, 53
Wrapping Up a GAP Package, 42
Writing Documentation, 42

Z
zoo, 42

	
	Acknowledgement
	Contents
	Copyright Notice
	About: Extending GAP
	The gapmacro.tex Manual Format
	The Main File
	Chapters and Sections
	Suppressing Indexing and Labelling of a Section and Resolving Label Clashes
	Labels and References
	TeX Macros
	TeX Macros for Domains
	Examples, Lists, and Verbatim
	Tables, Displayed Mathematics and Mathematics Alignments
	Testing the Examples
	Usage of the Percent Symbol
	Catering for Plain Text and HTML Formats
	Umlauts
	Producing a Manual
	Using buildman.pe

	Library Files
	File Types
	File Structure
	Finding Implementations in the Library
	Undocumented Variables

	Writing a GAP Package
	The Structure of a GAP Package
	The Init File of a GAP Package
	An Example of a GAP Package
	Standalone Programs in a GAP Package
	Installation of GAP Package Binaries
	Test for the Existence of GAP Package Binaries
	Calling of and Communication with External Binaries
	Requesting one GAP Package from within Another
	Declaration and Implementation Part
	Package Completion
	Version Numbers
	Testing for a GAP Package
	Writing Documentation
	Wrapping Up a GAP Package

	Interface to the GAP Help System
	Installing a Help Book
	The manual.six File
	The Help Book Handler
	Introducing new Viewer for the Online Help

	Function-Operation-Attribute Triples
	Key Dependent Operations
	In Parent Attributes
	Operation Functions

	Weak Pointers
	Weak Pointer Objects
	WeakPointerObj
	Low Level Access Functions for Weak Pointer Objects
	Accessing Weak Pointer Objects as Lists
	Copying Weak Pointer Objects
	The GASMAN Interface for Weak Pointer Objects

	Stabilizer Chains
	Generalized Conjugation Technique
	The General Backtrack Algorithm with Ordered Partitions
	Stabilizer Chains for Automorphisms Acting on Enumerators

	Bibliography
	Index
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

