
ACE
—

A GAP4 Package
Version 3.003pre

Based on ACE Standalone Version 3.001

by

George Havas and Colin Ramsay

Centre for Discrete Mathematics and Computing

Department of Information Technology and Electrical Engineering

The University of Queensland, St. Lucia 4072, Australia

GAP interface code by

Alexander Hulpke

Department of Mathematics, Colorado State University

Weber Building, Fort Collins, CO 80523, USA

and

Greg Gamble

Centre for Discrete Mathematics and Computing

Department of Information Technology and Electrical Engineering

The University of Queensland, St. Lucia 4072, Australia

email: gregg@itee.uq.edu.au

May 2002

Contents

1 The ACE Package 5

1.1 Using ACE as a Default for Coset
Enumerations 5

1.2 Using ACE Directly to Generate a
Coset Table 6

1.3 Using ACE Directly to Test whether a
Coset Enumeration Terminates . . 9

1.4 Writing ACE Standalone Input Files to
Generate a Coset Table 10

1.5 Using ACE Interactively 10

1.6 Accessing ACE Examples with
ACEExample and
ACEReadResearchExample . . . 11

1.7 General Warnings regarding the Use of
Options 12

1.8 The ACEData Record 13

1.9 Setting the Verbosity of ACE via Info
and InfoACE 14

1.10 Acknowledgements 15

1.11 Changes from earlier versions . . 15

2 Installing and Loading the ACE
Package 16

2.1 Installing the ACE Package . . . 16

2.2 Loading the ACE Package 17

3 Some Basics 18

3.1 Enumeration Style 19

3.2 Finding Deductions, Coincidences, and
Preferred Definitions 20

3.3 Finding Subgroups 21

3.4 Coset Table Standardisation Schemes 21

3.5 Coset Statistics Terminology . . . 23

3.6 Other Terminology 23

4 Options for ACE 24

4.1 Passing ACE Options 24

4.2 Warnings regarding Options . . . 25

4.3 Abbreviations and mixed case for ACE
Options 25

4.4 Honouring of the order in which ACE
Options are passed 26

4.5 What happens if no ACE Strategy
Option or if no ACE Option is passed 26

4.6 Interpretation of ACE Options . . 26

4.7 An Example of passing Options . . 28

4.8 The KnownACEOptions Record . 28

4.9 The ACEStrategyOptions List . . 29

4.10 ACE Option Synonyms 29

4.11 Non-ACE-binary Options 30

4.12 ACE Parameter Options 32

4.13 General ACE Parameter Options that
Modify the Enumeration Process . 33

4.14 ACE Parameter Options Modifying C
Style Definitions 34

4.15 ACE Parameter Options for R Style
Definitions 35

4.16 ACE Parameter Options for Deduction
Handling 36

Contents 3

4.17 Technical ACE Parameter Options . 36

4.18 ACE Parameter Options controlling
ACE Output 39

4.19 ACE Parameter Options that give
Names to the Group and Subgroup 39

4.20 Options for redirection of ACE Output 39

4.21 Other Options 40

5 Strategy Options for ACE 41

5.1 The Strategies in Detail 42

6 Functions for Using ACE
Interactively 44

6.1 Starting and Stopping Interactive ACE
Processes 44

6.2 General ACE Modes 46

6.3 Interactive ACE Process Utility
Functions and Interruption of an
Interactive ACE Process 47

6.4 Experimentation ACE Modes . . 49

6.5 Interactive Query Functions and an
Option Setting Function 51

6.6 Interactive Versions of Non-interactive
ACE Functions 57

6.7 Steering ACE Interactively . . . 57

6.8 Primitive ACE Read/Write Functions 61

A The Meanings of ACE’s output
messages 63

A.1 Progress Messages 65

A.2 Results Messages 65

B Examples 66

B.1 Example where ACE is made the
Standard Coset Enumerator . . . 66

B.2 Example of Using
ACECosetTableFromGensAndRels . 68

B.3 Example of Using ACE Interactively
(Using ACEStart) 69

B.4 Fun with ACEExample 70

B.5 Using ACEReadResearchExample . 77

C Finer Points with Examples 79

C.1 Getting Started 79

C.2 Emulating Sims 92

D Other ACE Options 94

D.1 Experimentation Options 94

D.2 Options that Modify a Presentation 96

D.3 Mode Options 98

D.4 Options that Interact with the
Operating System 99

D.5 Query Options 99

D.6 Options that Modify the Coset Table 102

D.7 Options for Comments 103

Bibliography 104

Index 105

1 The ACE Package

The “Advanced Coset Enumerator” ACE:

ACE coset enumerator (C) 1995-2001 by George Havas and Colin Ramsay

http://www.itee.uq.edu.au/~cram/ce.html

can be called from within GAP through an interface, written by Alexander Hulpke and Greg Gamble, which
is described in this manual.
The interface links to an external binary and therefore is only usable under UNIX (see Section 2.1 for how
to install ACE). It will not work on Windows or the Macintosh. It requires at least GAP 4.2. Examples,
where they occur, show results and output from GAP 4.3, which may differ slightly from what is obtained
with GAP 4.2. ACE can be used through this interface in a variety of ways:

– one may supplant the usual GAP coset enumerator (see Section 1.1),
– one may generate a coset table using ACE without redefining the usual GAP coset enumerator (see

Section 1.2),
– one may simply test whether a coset enumeration will terminate (see Section 1.3),
– one may use GAP to write a script for the ACE standalone (see Section 1.4), and
– one may interact with the ACE standalone from within GAP (see Section 1.5). Among other things, the

interactive ACE interface functions (described in Chapter 6) enable the user to search for subgroups of
a group (see the note of Section 1.5).

Each of these ways gives the user access to a welter of options, which are discussed in full in Chapters 4
and 5. Yet more options are provided in Appendix D, but please take note of the Appendix’s introductory
paragraph. Check out Appendix B for numerous examples of the ACE commands.
Note: Some care needs to be taken with options; be sure to read Section 1.7 and the introductory sections
of Chapter 4 for some warnings regarding them and a general discussion of their use, before using any of
the functions provided by this interface to the ACE binary.

1.1 Using ACE as a Default for Coset Enumerations

After loading ACE (see Section 2.2), if you want to use the ACE coset enumerator as a default for all coset
enumerations done by GAP (which may also get called indirectly), you can achieve this by setting the global
variable TCENUM to ACETCENUM.

gap> TCENUM:=ACETCENUM;;

This sets the function CosetTableFromGensAndRels (see Section 45.5 in the GAP Reference Manual) to
be the function ACECosetTableFromGensAndRels (described in Section 1.2), which then can be called with
all the options defined for the ACE interface, not just the options max and silent. If TCENUM is set to
ACETCENUM without any further action, the default strategy (option) of the ACE enumerator will be used
(see Chapter 5).
You can switch back to the coset enumerator built into the GAP library by assigning TCENUM to GAPTCENUM.

gap> TCENUM:=GAPTCENUM;;

6 Chapter 1. The ACE Package

1.2 Using ACE Directly to Generate a Coset Table

If, on the other hand you do not want to set up ACE globally for your coset enumerations, you may call the
ACE interface directly, which will allow you to decide for yourself, for each such call, which options you want
to use for running ACE. Please note the warnings regarding options in Section 1.7. The functions discussed in
this and the following section (ACECosetTableFromGensAndRels and ACEStats) are non-interactive, i.e. by
their use, a file with your input data in ACE readable format will be handed to ACE and you will get the
answer back in GAP format. At that moment however the ACE job is terminated, that is, you cannot send
any further questions or requests about the result of that job to ACE. For an interactive use of ACE from
GAP see Section 1.5 and Chapter 6.

Using the ACE interface directly to generate a coset table is done by either of

1I ACECosetTableFromGensAndRels(fgens, rels, sgens [: options]) F
I ACECosetTable(fgens, rels, sgens [: options]) F

Here fgens is a list of free generators, rels a list of words in these generators giving relators for a finitely
presented group, and sgens the list of subgroup generators, again expressed as words in the free generators.
All these are given in the standard GAP format (see Chapter 45 of the GAP Reference Manual). Note that
the 3-argument form of ACECosetTable described here is merely a synonym for ACECosetTableFromGen-
sAndRels, and that ACECosetTable may be called in a different way in an interactive ACE session (see
Sections 1.5 and 6.6.1).

Behind the colon any selection of the options available for the interface (see Chapters 4 and 5) can be given,
separated by commas like record components. These can be used e.g. to preset limits of space and time to
be used, to modify input and output and to modify the enumeration procedure. Note that strategies are
simply special options that set a number of the options, detailed in Chapter 4, all at once.

Please see Section 1.7 for a discussion regarding global and local passing of options, and the non-orthogonal
nature of ACE’s options.

Each of ACECosetTableFromGensAndRels and ACECosetTable calls the ACE binary and, if successful, re-
turns a standard coset table, as a GAP list of lists. At the time of writing, two coset table standardisations
schemes were possible: lenlex and semilenlex (see Section 3.4). The user may control which standardisation
scheme is used by selecting either the lenlex (see 4.11.4) or semilenlex (see 4.11.5) option; otherwise the
table is standardised according to GAP’s default standardisation scheme which is semilenlex for GAP 4.2,
or the value of CosetTableStandard (which by default is lenlex) for GAP 4.3 (or later). We provide
IsACEStandardCosetTable (see 1.2.2) to determine whether a table (list of lists) is standard relative to
GAP’s default standardisation scheme, or with the use of options (e.g. lenlex or semilenlex) to another
standardisation scheme.

If the determination of a coset table is unsuccessful, then one of the following occurs:

– with the incomplete option (see 4.11.6) an incomplete coset table is returned (as a list of lists), with
zeros in positions where valid coset numbers could not be determined; or

– with the silent option (see 4.11.3), fail is returned; or

– a break-loop is entered. This last possibility is discussed in detail via the example that follows.

The example given below is the call for a presentation of the Fibonacci group F(2,7) for which we shall
discuss the impact of various options in Section B.4. Observe that in the example, no options are passed,
which means that ACE uses the default strategy (see Chapter 5).

Section 2. Using ACE Directly to Generate a Coset Table 7

gap> F:= FreeGroup("a", "b", "c", "d", "e", "x", "y");;
gap> a:= F.1;; b:= F.2;; c:= F.3;; d:= F.4;; e:= F.5;; x:= F.6;; y:= F.7;;
gap> fgens:= [a, b, c, d, e, x, y,];;
gap> rels:= [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1,
> e*x*y^-1, x*y*a^-1, y*a*b^-1];;
gap> ACECosetTable(fgens, rels, [c]);;

In computing the coset table, ACECosetTableFromGensAndRels must first do a coset enumeration (which is
where ACE comes in!). If the coset enumeration does not finish in the preset limits a break-loop is entered,
unless the incomplete (see 4.11.6) or silent (see 4.11.3) options is set. In the event that a break-loop is
entered, don’t despair or be frightened by the word Error; by tweaking ACE’s options via the SetACEOptions
function that becomes available in the break-loop and then typing return; it may be possible to help ACE
complete the coset enumeration (and hence successfully compute the coset table); if not, you will end up in
the break-loop again, and you can have another go (or quit; if you’ve had enough). The SetACEOptions
function is a no-argument function; it’s there purely to pass options (which, of course, are listed behind
a colon (:) with record components syntax). Let’s continue the Fibonacci example above, redoing the last
command but with the option max := 2 (see 4.17.6), so that the coset enumeration has only two coset
numbers to play with and hence is bound to fail to complete, putting us in a break-loop.

gap> ACECosetTable(fgens, rels, [c] : max := 2);
Error, no coset table ...
the ‘ACE’ coset enumeration failed with the result:
OVERFLOW (a=2 r=1 h=1 n=3; l=5 c=0.00; m=2 t=2)
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
try relaxing any restrictive options
e.g. try the ‘hard’ strategy or increasing ‘workspace’
type: ’?strategy options’ for info on strategies
type: ’?options for ACE’ for info on options
type: ’DisplayACEOptions();’ to see current ACE options;
type: ’SetACEOptions(:<option1> := <value1>, ...);’
to set <option1> to <value1> etc.
(i.e. pass options after the ’:’ in the usual way)
... and then, type: ’return;’ to continue.
Otherwise, type: ’quit;’ to quit to outer loop.
brk> SetACEOptions(: max := 0);
brk> return;
[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1],
[1], [1], [1], [1]]

Observe how the lines after the “Entering break read-eval-print loop” announcement tell you exactly
what to do (for GAP 4.2 these lines are instead Info-ed before the break-loop announcement). At the break-
loop prompt brk> we relaxed all restrictions on max (by re-setting it to 0) and typed return; to leave the
break-loop. The coset enumeration was then successful, allowing the computation of what turned out to be
a trivial coset table. Despite the fact that the eventual coset table only has one line (i.e. there is exactly one
coset number) ACE did need to define more than 2 coset numbers. To find out just how many were required
before the final collapse, let’s set the InfoLevel of InfoACE (see 1.9.3) to 2, so that the ACE enumeration
result is printed.

8 Chapter 1. The ACE Package

gap> SetInfoACELevel(2);
gap> ACECosetTable(fgens, rels, [c]);
#I INDEX = 1 (a=1 r=2 h=2 n=2; l=6 c=0.01; m=2049 t=3127)
[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1],
[1], [1], [1], [1]]

The enumeration result line is the Info line beginning “#I ”. Appendix A explains how to interpret such
output messages from ACE. In particular, it explains that t=3127 tells us that a total number of 3127 coset
numbers needed to be defined before the final collapse to 1 coset number. Using some of the many options
that ACE provides, one may achieve this result more efficiently, e.g. with the purec strategy (see 5.1.6):

gap> ACECosetTable(fgens, rels, [c] : purec);
#I INDEX = 1 (a=1 r=2 h=2 n=2; l=4 c=0.00; m=332 t=332)
[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1],
[1], [1], [1], [1]]

ACE needs to define a total number of only (relatively-speaking) 332 coset numbers before the final collapse
to 1 coset number.

Notes: To initiate the coset enumeration, the start option (see D.3.2) is quietly inserted after the user’s
supplied options, unless the user herself supplies one of the enumeration-invoking options, which are: start,
or one of its synonyms, aep (see D.1.1) or rep (see D.1.2).

When a user calls ACECosetTable with the lenlex option (see 4.11.4), occasionally it is necessary to
enforce asis = 1 (see 4.13.1), which may be counter to the desires of the user. The occasions where
this action is necessary are precisely those for which, for the arguments gens and rels of ACECosetTable,
IsACEGeneratorsInPreferredOrder would return false.

The non-interactive ACECosetTable and ACECosetTableFromGensAndRels now use an iostream to commu-
nicate with the ACE binary in order to avoid filling up a temporary directory with an incomplete coset table
in the case where an enumeration overflows. This is generally advantageous. However, on some systems, it
may not be advisable to repeatedly call ACECosetTable or ACECosetTableFromGensAndRels (e.g. in a loop),
since one may run out of the pseudo ttys used for iostreams. If you encounter this problem, consider using
an adaptation of the usage of the interactive forms of ACECosetTable and ACEStats (see 6.6.1 and 6.6.2),
together with ACEStart initialisation steps, that is sketched in the schema below. For the following code, it
is imagined the scenario is one of looping over several possibilities of fgens, rels and sgens; the two special
forms of ACEStart used, allow one to continually re-use a single interactive ACE process (i.e. only one
iostream is used).

start the interactive ACE process with no group information
procId := ACEStart(0);
while expr do
fgens := ...; rels := ...; sgens := ...;
ACEStart(procId, fgens, rels, sgens : options);
if ACEStats(procId).index > 0 then
table := ACECosetTable(procId);
...

fi;
od;

For an already calculated coset table, we provide the following function to determine whether or not it has
been standardised.

Section 3. Using ACE Directly to Test whether a Coset Enumeration Terminates 9

2I IsACEStandardCosetTable(table [: option]) F

returns true if table (a list of lists of integers) is standard according to GAP’s default or the option (either
lenlex or semilenlex) standardisation scheme, or false otherwise. See Section 3.4 for a detailed discussion
of the lenlex and semilenlex standardisation schemes.
Note: Essentially, IsACEStandardCosetTable extends the GAP function IsStandardized.
Users who wish their coset tables to use ACECosetTable with the lenlex (see 4.11.4) option, which causes
lenlex standardisation to occur at the ACE (rather than GAP) level, should be aquainted with the following
function.

3I IsACEGeneratorsInPreferredOrder(gens, rels) F

returns true if gens, a list of free group generators, are in an order which will not be changed by ACE, for
the group with presentation 〈gens | rels〉, where rels is a list of relators (i.e. words in the generators gens).
IsACEGeneratorsInPreferredOrder may also be called in a different way for interactive ACE processes
(see 6.6.3).
For a presentation with more than one generator, the first generator of which is an involution and the second
is not, ACE prefers to switch the first two generators. IsACEGeneratorsInPreferredOrder returns true if
the order of the generators gens would not be changed within ACE and false, otherwise. (Technically, by
“involution” above, we really mean “a generator x for which there is a relator in rels of form x*x or x^2”.
Such a generator may, of course, turn out to actually be the identity.)
Guru Notes: If IsACEGeneratorsInPreferredOrder(gens, rels) would return false, it is possible to
enforce a user’s order of the generators within ACE, by setting the option asis (see 4.13.1) to 1 and, by
passing the relator that determines that gens[1] (which we will assume is x) has order at most 2, as: x*x
(rather than x^2). Behind the scenes this is precisely what is done, if necessary, when ACECosetTable is
called with the lenlex option.
The user may avoid all the technicalities by either not using the lenlex option (and in GAP 4.3 or later,
allowing GAP to take care of the lenlex standardisation), or by swapping the first two generators in those
cases where IsACEGeneratorsInPreferredOrder(gens, rels) would return false.

1.3 Using ACE Directly to Test whether a Coset Enumeration Terminates

If you only want to test, whether a coset enumeration terminates, and don’t want to transfer the whole coset
table to GAP, you can call

1I ACEStats(fgens, rels, sgens [: options]) F

which calls ACE non-interactively to do the coset enumeration, the result of which is parsed and returned
as a GAP record with fields

index
the index of the subgroup 〈sgens〉 in 〈fgens | rels〉, or 0 if the enumeration does not succeed;

cputime
the total CPU time used as an integer number of cputimeUnits (the next field);

cputimeUnits
the units of the cputime field, e.g. "10^-2 seconds";

activecosets
the number of currently active (i.e. alive) coset numbers (see Section 3.5);

maxcosets
the maximum number of alive coset numbers at any one time in the enumeration (see Section 3.5);
and

totcosets
the total number of coset numbers that were defined in the enumeration (see Section 3.5).

10 Chapter 1. The ACE Package

Options (see Chapters 4 and 5) are used in exactly the same way as for ACECosetTableFromGensAndRels,
discussed in the previous section; and the same warnings alluded to previously, regarding options (see
Section 1.7), apply.

Notes: To initiate the coset enumeration, the start option (see D.3.2) is quietly inserted after the user’s
supplied options, unless the user herself supplies one of the enumeration-invoking options, which are: start,
or one of its synonyms, aep (see D.1.1) or rep (see D.1.2).

The fields of the ACEStats record are determined by parsing a “results message” (see Appendix A) from
ACE.

ACEStats may also be called in a different way in an interactive ACE session (see 6.6.2).

1.4 Writing ACE Standalone Input Files to Generate a Coset Table

If you want to use ACE as a standalone with its own syntax, you can write an ACE standalone input
file by calling ACECosetTable with three arguments (see 1.2.1) and the option aceinfile := filename
(see 4.11.7). This will keep the input file for the ACE standalone produced by the GAP interface under the
file name filename (and just return) so that you can perform interactive work in the standalone.

1.5 Using ACE Interactively

An interactive ACE process is initiated with the command

1I ACEStart(fgens, rels, sgens [:options]) F

whose arguments and options are exactly as for ACECosetTableFromGensAndRels and ACEStats, as dis-
cussed in Sections 1.2 and 1.3. The usual warnings regarding options apply (see Section 1.7). ACEStart has
a number of other forms (see 6.1.1).

The return value is an integer (numbering from 1) which represents the running process. (It is possible to
have more than one interactive process running at once.) The integer returned may be used to index which
of these processes an interactive ACE function should be applied to.

An interactive ACE process is terminated with the command

2I ACEQuit(i) F

where i is the integer returned by ACEStart when the process was begun. ACEQuit may also be called with
no arguments (see 6.1.2).

We discuss each of these commands, as well as the range of functions which enable one to access features of
the ACE standalone not available non-interactively, in depth, in Chapter 6.

Note:

ACE not only allows one to do a coset enumeration of a group by a given (and then fixed) subgroup but it also
allows one to search for subgroups by starting from a given one (possibly the trivial subgroup) and then aug-
menting it by adding new subgroup generators either explicitly via ACEAddSubgroupGenerators (see 6.7.4)
or implicitly by introducing coincidences (see ACECosetCoincidence: 6.7.7, or ACERandomCoincidences:
6.7.8); or one can find smaller subgroups by deleting subgroup generators via ACEDeleteSubgroupGenera-
tors (see 6.7.6).

Section 6. Accessing ACE Examples with ACEExample and ACEReadResearchExample 11

1.6 Accessing ACE Examples with ACEExample and ACEReadResearchExample

There are a number of examples available in the examples directory, which may be accessed via

1I ACEExample() F
I ACEExample(examplename [:options]) F
I ACEExample(examplename, ACEfunc [:options]) F

where examplename is a string, the name of an example (and corresponding file in the examples directory);
and ACEfunc is the ACE function with which the example is to be executed.

If ACEExample is called with no arguments, or with the argument: "index" (meant in the sense of “list”),
or with a non-existent example name, a list of available examples is displayed. See Section B.4 where the
list is displayed.

By default, examples are executed via ACEStats. However, if ACEExample is called with a second argument
(choose from the (other) alternatives: ACECosetTableFromGensAndRels (or, equivalently ACECosetTable),
or ACEStart), the example is executed using that function, instead. Note that, whereas the first argument
appears in double quotes (since it’s a string), the second argument does not (since it’s a function); e.g. to ex-
ecute example "A5" with function ACECosetTable, one would type: ACEExample("A5", ACECosetTable);.

ACEExample also accepts user options, which may be passed either globally (i.e. by using PushOptions to
push them onto the OptionsStack) or locally behind a colon after the ACEExample arguments, and they are
passed to ACEStats or ACEfunc as if they were appended to the existing options of examplename; in this
way, the user may over-ride any or all of the options of examplename. This is done by passing an option
aceexampleoptions (see 4.11.15), which sets up a mechanism to reverse the usual order in which options
of recursively called functions are pushed onto the OptionsStack. The option aceexampleoptions is not a
user option; it is intended only for internal use by ACEExample, for the above purpose. In the portion of the
output due to the echo option, if one has passed options to ACEExample, one will see aceexampleoptions
listed first and the result of the interaction of examplename’s options and the additional options.

Consider the example "A5". The effect of running

gap> ACEExample("A5", ACEStart);

is essentially equivalent to executing:

gap> file := Filename(DirectoriesPackageLibrary("ace", "examples"), "A5");;
gap> ACEfunc := ACEStart;;
gap> ReadAsFunction(file)();

except that some internal “magic” of ACEExample edits the example file and displays equivalent commands
a user “would” execute. If the user has passed options to ACEExample these appear in a “# User Options”
block after the original options of the example in the Info portion of the output. By comparing with the
portion of the output from the echo option (unless the user has over-ridden the echo option), the user may
directly observe any over-riding effects of user-passed options.

Please see Section B.4 for some sample interactions with ACEExample.

Notes

Most examples use the mess (= messages) option. To see the effect of this, it is recommended to do:
SetInfoACELevel(3); before calling ACEExample, with an example.

The coset table output from ACEExample, when called with many of the examples and with the ACE function
ACECosetTableFromGensAndRels is often quite long. Recall that the output may be suppressed by following
the (ACEExample) command with a double semicolon (;;).

Also, try SetInfoACELevel(2); before calling ACEExample, with an example.

12 Chapter 1. The ACE Package

If you unexpectedly observe aceexampleoptions in your output, then most probably you have unintention-
ally passed options by the global method, by having a non-empty OptionsStack. One possible remedy is to
use FlushOptionsStack(); (see 4.2.1), before trying your ACEExample call again.

As discussed in Section 4.6, there is generally no sensible meaning that can be attributed to setting a strategy
option (see Chapter 5) to false; if you wish to nullify the effect of a strategy option, pass another strategy
option, e.g. pass the default (see 5.1.1) strategy option.

Also provided are:

2I ACEReadResearchExample(filename) F
I ACEReadResearchExample() F

which perform Read (see Section 9.7.1 in the GAP Reference Manual) on filename or, with no argument, the
file with filename "pgrelfind.g" in the res-examples directory; e.g. the effect of running

gap> ACEReadResearchExample("pgrelfind.g");

is equivalent to executing:

gap> Read(Filename(DirectoriesPackageLibrary("ace", "res-examples"),
> "pgrelfind.g"));

The examples provided in the res-examples directory were used to solve a genuine research problem, the
results of which are reported in [CHHR01]. Please see Section B.5 for a detailed description and examples
of its use.

3I ACEPrintResearchExample(example-filename) F
I ACEPrintResearchExample(example-filename, output-filename) F

print the “essential” contents of the file example-filename in the res-examples directory to the terminal,
or with two arguments to the file output-filename; example-filename and output-filename should be strings.
ACEPrintResearchExample is provided to make it easy for users to copy and edit the examples for their
own purposes.

1.7 General Warnings regarding the Use of Options

Firstly, let us mention (and we will remind you later) that an ACE strategy is merely a special option of ACE
that sets a number of the options described in Chapter 4 all at once. The strategy options are discussed in
their own chapter (Chapter 5).

In Section 4.1, we describe the two means provided by GAP by which ACE options may be passed. In
Section 4.2, we discuss how options “left over” from previous calculations can upset subsequent calculations;
and hence, to “clear the decks” in such circumstances, why we have provided FlushOptionsStack (see 4.2.1).
However, removing OptionsStack options does not remove the options previously passed to an interactive
ACE process; Section 4.2 discusses that too.

Note, that the ACE package treatment of options is an “enhancement” over the general way GAP treats
options. Firstly, the ACE binary allows abbreviations and mixed case of options and so the ACE package
does also, as much as is possible (see 4.3). Secondly, since ACE’s options are in general not orthogonal, the
order in which they are put to ACE is, in general, honoured (see 4.4). Thirdly, the ACE binary’s concept of
a boolean option is slightly different to that of GAP’s; Section 4.6 discusses, in particular, how an option
detected by GAP as true is passed to the ACE binary.

Finally, Section 4.5 discusses what happens if no option is selected.

Section 8. The ACEData Record 13

1.8 The ACEData Record

1I ACEData V

is a GAP record in which the essential data for an ACE session within GAP is stored; its fields are:

binary
the path of the ACE binary;

tmpdir
the path of the temporary directory containing the non-interactive ACE input and output files (also
see 1.8.2 below);

ni
the data record for a non-interactive ACE process;

io
list of data records for ACEStart (see below and 6.1.1) processes;

infile
the full path of the ACE input file;

outfile
the full path of the ACE output file; and

version
the version of the current ACE binary. More detailed information regarding the compilation of the
binary is given by ACEBinaryVersion (see 6.5.25).

Non-interactive processes used to use files rather than streams (hence the fields infile and outfile above;
these may disappear in a later version of the ACE package).

Each time an interactive ACE process is initiated via ACEStart (see 6.1.1), an identifying number ioIndex is
generated for the interactive process and a record ACEData.io[ioIndex] with the following fields is created.
A non-interactive process has similar fields but is stored in the record ACEData.ni.

procId
the identifying number of the process (ioIndex for interactive processes, and 0 for a non-interactive
process);

args
a record with fields: fgens, rels, sgens whose values are the corresponding arguments passed
originally to ACEStart;

options
the current options record of the interactive process;

acegens
a list of strings representing the generators used by ACE (if the names of the generators passed via
the first argument fgens of ACEStart were all lowercase alphabetic characters, then acegens is the
String equivalent of fgens, i.e. acegens[1] = String(fgens[1]) etc.);

stream
the IOStream opened for an interactive ACE process initiated via ACEStart; and

enumResult
the enumeration result (string) without the trailing newline, output from ACE;

stats
a record as output by the function ACEStats.

14 Chapter 1. The ACE Package

enforceAsis
a boolean that is set to true whenever the asis option (see 4.13.1) must be set to 1. It is usually
false. See 1.2.3 Guru Notes for the details.

2I ACEDirectoryTemporary(dir) F

calls the UNIX command mkdir to create dir , which must be a string, and if successful a directory object for
dir is both assigned to ACEData.tmpdir and returned. The fields ACEData.infile and ACEData.outfile
are also set to be files in ACEData.tmpdir, and on exit from GAP dir is removed. Most users will never need
this command; by default, GAP typically chooses a “random” subdirectory of /tmp for ACEData.tmpdir
which may occasionally have limits on what may be written there. ACEDirectoryTemporary permits the
user to choose a directory (object) where one is not so limited.

1.9 Setting the Verbosity of ACE via Info and InfoACE

1I InfoACE V

The output of the ACE binary is, by default, not displayed. However the user may choose to see some, or all,
of this output. This is done via the Info mechanism (see Chapter 7.4 in the GAP Reference Manual). For
this purpose, there is the InfoClass InfoACE. Each line of output from ACE is directed to a call to Info and
will be displayed for the user to see if the InfoLevel of InfoACE is high enough. By default, the InfoLevel
of InfoACE is 1, and it is recommended that you leave it at this level, or higher. Only messages which we
think that the user will really want to see are directed to Info at InfoACE level 1. To turn off all InfoACE
messaging, set the InfoACE level to 0 (see 1.9.3). For convenience, we provide the function

2I InfoACELevel() F

which returns the current InfoLevel of InfoACE, i.e. it is simply a shorthand for InfoLevel(InfoACE).

To set the InfoLevel of InfoACE we also provide

3I SetInfoACELevel(level) F
I SetInfoACELevel() F

which for a non-negative integer level , sets the InfoLevel of InfoACE to level (i.e. it is a shorthand for Set-
InfoLevel(InfoACE, level)), or with no arguments sets the InfoACE level to the default value 1. Currently,
information from ACE is directed to Info at four InfoACE levels: 1, 2, 3 and 4. The command

gap> SetInfoACELevel(2);

enables the display of the results line of an enumeration from ACE, whereas

gap> SetInfoACELevel(3);

enables the display of all of the output from ACE (including ACE’s banner, containing the host machine
information); in particular, the progress messages, emitted by ACE when the messages option (see 4.18.1)
is set to a non-zero value, will be displayed via Info. Finally,

gap> SetInfoACELevel(4);

enables the display of all the input directed to ACE (behind a “ToACE> ” prompt, so you can distinguish it
from other output). The InfoACE level of 4 is really for gurus who are familiar with the ACE standalone.

Section 11. Changes from earlier versions 15

1.10 Acknowledgements

Large parts of this manual, in particular the description of the options for running ACE, are directly copied
from the respective descriptions in the manual [Ram99] for the standalone version of ACE by Colin Ramsay.
Most of the examples, in the examples directory and accessed via the ACEExample function, are direct
translations of Colin Ramsay’s test###.in files in the src directory.

Many thanks to Joachim Neubüser who not only provided one of the early manual drafts and hence a
template for the style of the manual and conceptual hooks for the design of the Package code, but also
meticulously proof-read all drafts and made many insightful comments.

Many thanks also to Volkmar Felsch who, in testing the ACE Package, discovered a number of bugs, made a
number of important suggestions on code improvement, thoroughly checked all the examples, and provided
the example found at the end of Section 6.7 which demonstrates rather nicely how one can use the function
ACEConjugatesForSubgroupNormalClosure.

Finally, we wish to acknowledge the contribution of Charles Sims. The inclusion of the incomplete (see
4.11.6) and lenlex (see 4.11.4) options, were made in response to requests to the GAP developers to include
such options for coset table functions. Also, the definition of lenlex standardisation of coset tables (see
Section 3.4), is due to him.

1.11 Changes from earlier versions

A reasonably comprehensive history of the evolution of pre-release versions of the ACE Package, is contained
in the file CHANGES in the gap directory.

The ACE Package is compatible with GAP 4.2, but has been built for use with GAP 4.3. One important
change in GAP from GAP 4.2 to GAP 4.3 that has relevance for ACE Package users is the change of the
default standard for the numbering of cosets in a coset table (see Section 3.4).

1I ACEPackageVersion() F

gives the current version of the ACE Package (i.e. the GAP code component; the function ACEBinaryVersion
(see 6.5.25) gives details of the C code compilation).

History of release versions

3.001 First release.

3.002 ACEIgnoreUnknownDefault (see 4.11.2) added.

Option continue changed to continu (see D.3.4) – continue is a keyword in GAP 4.3.

3.003 Initial value of ACEIgnoreUnknownDefault is now true (previously it was false).

ACECosetTableFromGensAndRels and the non-interactive ACECosetTable (except when producing an
input script via option ACEinfile), and the non-interactive ACEStats which previously used files all
now invoke iostreams .

2

Installing and Loading
the ACE Package

2.1 Installing the ACE Package

To install, unpack the archive file, which should have a name of form ace-XXX .zoo for some package
version number XXX , as a sub-directory in the pkg hierarchy of your version of GAP 4. This might be the
pkg directory of the GAP 4 home directory; it is however also possible to keep an additional pkg directory in
your private directories, see Section 74.2. (The only essential difference with installing ACE in a pkg directory
different to the GAP 4 home directory is that one must start GAP with the -l switch, e.g. if your private
pkg directory is a subdirectory of mygap in your home directory you might type:

gap -l ";myhomedir/mygap"

where myhomedir is the path to your home directory, which may be replaced by a tilde in GAP 4.3. The
empty path before the semicolon is filled in by the default path of the GAP 4 home directory.)
After unpacking the archive, go to the newly created ace directory and call ./configure path where path
is the path to the GAP home directory. So for example if you install the package in the main pkg directory
call

./configure ../..

This will fetch the architecture type for which GAP has been compiled last and create a Makefile. Now
simply call

make

to compile the binary and to install it in the appropriate place.
Note that the current version of the configuration process only sets up directory paths. If you need a different
compiler or different compiler options, you need to edit src/Makefile.in yourself, prior to calling make.
If you use this installation of GAP on different hardware platforms you will have to compile the binary for
each platform separately. This is done by calling configure, editing src/Makefile.in possibly, and calling
make for the package anew immediately after compiling GAP itself for the respective architecture. If your
version of GAP is already compiled (and has last been compiled on the same architecture) you do not need
to compile GAP again, it is sufficient to call the configure script in the GAP home directory.
The manual you are currently reading describes how to use the ACE Package; it can be found in the doc
subdirectory of the package. If your manual does not have a table of contents or index, or has these but
with invalid page numbers please re-generate the manual by executing

./make_doc

in the doc subdirectory.
The subdirectory standalone-doc contains the file ace3001.ps which holds a version of the user manual
for the ACE standalone; it forms part of [Ram99]). You should consult it if you are going to switch to the
ACE standalone, e.g. in order to directly use interactive facilities.
The src subdirectory contains a copy of the original source of ACE. (The only modification is that a file
Makefile.in was obtained from the different make.xyz and will be used to create a Makefile.) You can
replace the source by a newer version before compiling.
If you encounter problems in installation please read the README.

Section 2. Loading the ACE Package 17

2.2 Loading the ACE Package

To use the ACE Package you have to request it explicitly. This is done by calling

gap> RequirePackage("ace");
#I The ACE (Advanced Coset Enumerator) Package
#I C code by George Havas <havas@itee.uq.edu.au> and
#I Colin Ramsay <cram@itee.uq.edu.au>
#I ACE binary version: 3.001
#I GAP code by Greg Gamble <gregg@itee.uq.edu.au> and
#I Alexander Hulpke <hulpke@math.colostate.edu>
#I ACE package version: 3.003
#I
#I For help, type: ?ACE
true

The RequirePackage command is described in Section 74.3.1 in the GAP Reference Manual.

If GAP cannot find a working binary, the call to RequirePackage will fail.

If you know you have a working ACE binary, as well as a correctly installed ACE Package, it is possible to
suppress the Info messages by temporarily setting the InfoLevel of InfoWarning to 0, and a duplicated
semicolon will suppress the true result:

gap> SetInfoLevel(InfoWarning, 0); RequirePackage("ace");;
gap> SetInfoLevel(InfoWarning, 1);

The banner is also suppressed if the global GAP variable QUIET is true or BANNER is false (these conditions
occur if GAP is invoked with the -q or -b command line switches, respectively). If you want to load the ACE
package by default, you can put the RequirePackage command into your .gaprc file (see Section 3.4 in the
GAP Reference Manual).

3 Some Basics

Throughout this manual for the use of ACE as a GAP share package, we shall assume that the reader already
knows the basic ideas of coset enumeration, as can be found for example in [Neu82]. There, a simple proof is
given for the fact that a coset enumeration for a subgroup of finite index in a finitely presented group must
eventually terminate with the correct result, provided the enumeration process obeys a simple condition
(Mendelsohn’s condition) formulated in Lemma 1 and Theorem 2 of [Neu82]. This basic condition leaves
room for a great variety of strategies for coset enumeration; two “classical” ones have been known for a
long time as the Felsch strategy and the HLT strategy (for Haselgrove, Leech and Trotter). Extensive
experimental studies on many strategies can be found in [CDHW73], [Hav91], [HR99], and [HR01], in
particular.

A few basic points should be particularly understood:

– “Subgroup (generator) and relator tables” that are used in the description of coset enumeration in
[Neu82], and to which we will also occasionally refer in this manual, do not physically exist in the im-
plementation of coset enumeration in ACE. For a terminology that is closer to the actual implementation
and also to the formulations in the manual for the ACE standalone see [CDHW73] and [Hav91].

– Coset enumeration proceeds by defining coset numbers that really denote possible representatives for
cosets written as words in the generators of the group. At the time of their generation it is not guaranteed
that any two of these words do indeed represent different cosets. The state of an enumeration at any time
is stored in a 2-dimensional array known as a coset table whose rows are indexed by coset numbers and
whose columns are indexed by the group generators and their inverses. Entries of the coset table that
are not yet defined are known as holes (typically they are filled with 0, i.e. an invalid coset number).

– It is customary in talking about coset enumeration to speak of cosets when really coset numbers are
meant. While we try to avoid this in this interface manual, in certain word combinations such as coset
application we will follow this custom.

– The definition of a coset number may lead to deductions from the “closing of rows in subgroup or
relator tables”. These are kept in a deduction stack.

– Also it may be found that (different) words in the generators defining different coset numbers really lie
in the same coset of the given subgroup. This is called a coincidence and will eventually lead to the
elimination of the larger of the two coset numbers. Until this elimination has been performed pending
coincidences are kept in a queue of coincidences.

– A definition that will actually close a row in a subgroup or relator table will immediately yield twice as
many entries in the coset table as other definitions. Such definitions are called preferred definitions,
the places in rows of a subgroup or relator table that they close are also referred to as “gaps of length
one” or minimal gaps. Such gaps can be found at little extra cost when “relators are traced from a
given coset number”. ACE keeps a selection of them in a preferred definition stack for use in some
definition strategies (see [Hav91]).

It will also be necessary to understand some further basic features of the implementation and the corre-
sponding terminology which we will explain in the sequel.

Section 1. Enumeration Style 19

3.1 Enumeration Style

The first main decision for any coset enumeration is in which sequence to make definitions. When a new
coset number has to be defined, in ACE there are basically three possible methods to choose from:

– One may fill the next empty entry in the coset table by scanning from the left/top of the coset table
towards the right/bottom – that is, in order row by row. This is called C style definition (for Coset
Table Based definition) of coset numbers. In fact a procedure needs to follow a method like this to
some extent for the proofs that coset enumeration eventually terminates in the case of finite index
(see [Neu82]).

– For an R style definition (for Relator Based definition), the order in which coset numbers are defined
is explicitly prescribed by the order in which rows of (the subgroup generator tables and) the relator
tables are filled by making definitions.

– One may choose definitions from a Preferred Definition Stack. In this stack possibilities for definition
of coset numbers are stored that will close a certain row of a relator table. Using these preferred
definitions is sometimes also referred to as a minimal gaps strategy. The idea of using these is that
by closing a row in a relator table, thus, one will immediately get a consequence. We will come back to
the obvious question of where one obtains this “preferred definition stack”.

The enumeration style is mainly determined by the balance between C style and R style definitions, which
is controlled by the values of the ct and rt options (see 4.13.2 and 4.13.3).

However this still leaves us with plenty of freedom for the design of definition strategies, freedom which can,
for example, be used to great advantage in Felsch-type strategies. Though it is not strictly necessary, before
embarking on further enumeration, Felsch-type programs generally start off by ensuring that each of the
given subgroup generators produces a cycle of coset numbers at coset 1. To explain the idea, an example
may help. Suppose a, b are the group generators and w = Abab is a subgroup generator, where A represents
the inverse of a; then to say that “(1, i , j , k) is a cycle of coset numbers produced at coset 1 by w” means
that the successive application of the “letters” A, b, a, b of w takes one successively from coset 1, through
cosets i , j and k , and back to coset 1, i.e. A applied to coset 1 results in coset i , b applied to coset i results
in coset j , a applied to coset j results in coset k , and finally b applied to coset k takes us back to coset 1.
In this way, a hypothetical subgroup table is filled first. The use of this and other possibilities leads to the
following table of enumeration styles.

Rt value Ct value style name

0 >0 C
<0 >0 Cr
>0 >0 CR

>0 0 R
<0 0 R*
>0 <0 Rc
<0 <0 R/C
0 0 R/C (defaulted)

C style
In this style, most definitions are made in the next empty coset table slot and are (in principle)
tested in all essentially different positions in the relators; i.e. this is a Felsch-like style.

20 Chapter 3. Some Basics

However, in C style, some definitions may be made following a preferred definition strategy, controlled by
the pmode and psize options (see 4.14.2 and 4.14.3).

Cr style
is like C style except that a single R style pass is done after the initial C style pass.

CR style
In this style, alternate passes of C style and R style are performed.

R style
In this style, all the definitions are made via relator scans; i.e. this is an HLT-like style.

R* style
makes definitions the same as R style, but tests all definitions as for C style.

Rc style
is like R style, except that a single C style pass is done after the initial R style pass.

R/C style
In this style, we run in R style until an overflow, perform a lookahead on the entire table, and then
switch to CR style.

Defaulted R/C (= R/C (defaulted)) style
is the default style used if you call ACE without specifying options. In it, we use R/C style with
ct set to 1000 and rt set to approximately 2000 divided by the total length of the relators in an
attempt to balance R style and C style definitions when we switch to CR style.

3.2 Finding Deductions, Coincidences, and Preferred Definitions

First, let us broadly discuss strategies and how they influence “definitions”. By definition we mean the
allocation of a coset number. In a complete coset table each group relator produces a cycle of cosets numbers
at each coset number, in particular, at coset 1; i.e. for each relator w , and for each coset number i , successive
application of the letters of w trace through a sequence of coset numbers that begins and ends in i (see
Section 3.1 for an example). It has been found to be a good general rule to use the given group relators as
subgroup generators. This ensures the early definition of some useful coset numbers, and is the basis of the
default strategy (see 5.1.1). The number of group relators included as subgroup generators is determined
by the no option (see 4.13.4). Over a wide range of examples the use of group relators in this way has been
shown to produce generally beneficial results in terms of the maximum number of cosets numbers defined
at any one time and the total number of coset numbers defined. In [CDHW73], it was reported that for
some Macdonald group G(α, β) examples, (pure) Felsch-type strategies (that don’t include the given group
relators as subgroup generators) e.g. the felsch := 0 strategy (see 5.1.3) defined significantly more coset
numbers than HLT-type (e.g. the hlt strategy, see 5.1.5) strategies. The comparison of these strategies in
terms of total number of coset numbers defined, in [Hav91], for the enumeration of the cosets of a certain
index 40 subgroup of the G(3, 21) Macdonald group were 91 for HLT versus 16067 for a pure Felsch-type
strategy. For the Felsch strategy with the group relators included as subgroup generators, as for the felsch
:= 1 strategy (see 5.1.3) the total number of coset numbers defined reduced markedly to 59.

A deduction occurs when the scanning of a relator results in the assignment of a coset table body entry. A
completed table is only valid if every table entry has been tested in all essentially different positions in all
relators. This testing can either be done directly (Felsch strategy) or via relator scanning (HLT strategy).
If it is done directly, then more than one deduction can be waiting to be processed at any one time. The
untested deductions are stored in a stack. How this stack is managed is determined by the dmode option
(see 4.16.1), and its size is controlled by the dsize option (see 4.16.2).

As already mentioned a coincidence occurs when it is determined that two coset numbers in fact repre-
sent the same coset. When this occurs the larger coset number becomes a dead coset number and the
coincidence is placed in a queue. When and how these dead coset numbers are eventually eliminated is

Section 4. Coset Table Standardisation Schemes 21

controlled by the options dmode, path and compaction (see 4.16.1, 4.17.4 and 4.17.5). The user may also
force coincidences to occur (see Section 3.3), which, however, may change the subgroup whose cosets are
enumerated.

The key to performance of coset enumeration procedures is good selection of the next coset number to be
defined. Leech in [Lee77] and [Lee84] showed how a number of coset enumerations could be simplified by
removing coset numbers needlessly defined by computer implementations. Human enumerators intelligently
choose which coset number should be defined next, based on the value of each potential definition. In
particular, definitions which close relator cycles (or at least shorten gaps in cycles) are favoured. A definition
which actually closes a relator cycle immediately yields twice as many table entries (deductions) as other
definitions. The value of the pmode option (see 4.14.2) determines which definitions are preferred; if the
value of the pmode option is non-zero, depending on the pmode value, gaps of length one found during relator
C style (i.e. Felsch-like) scans are either filled immediately (subject to the value of fill) or noted in the
preferred definition stack. The preferred definition stack is implemented as a ring of size determined by
the psize option (see 4.14.3). However, making preferred definitions carelessly can violate the conditions
required for guaranteed termination of the coset enumeration procedure in the case of finite index. To avoid
such a violation ACE ensures a fraction of the coset table is filled before a preferred definition is made; the
reciprocal of this fraction, the fill factor, is manipulated via the fill option (see 4.14.1). In [Hav91], the
felsch := 1 type enumeration of the cosets of the certain index 40 subgroup of the G(3, 21) Macdonald
group was further improved to require a total number of coset numbers of just 43 by incorporating the use
of preferred definitions.

3.3 Finding Subgroups

The ACE Share Package, via its interactive ACE interface functions (described in Chapter 6), provides the
possibility of searching for subgroups. To do this one starts at a known subgroup (possibly the trivial
subgroup). Then one may augment it by adding new subgroup generators either explicitly via ACEAddSub-
groupGenerators (see 6.7.4) or implicitly by introducing coincidences (see ACECosetCoincidence: 6.7.7,
or ACERandomCoincidences: 6.7.8). Also, one may descend to smaller subgroups by deleting subgroup gen-
erators via ACEDeleteSubgroupGenerators (see 6.7.6).

3.4 Coset Table Standardisation Schemes

The default standardisation scheme for GAP from GAP 4.3 and the standardisation scheme provided by ACE
is the lenlex scheme, of Charles Sims [Sim94]. This scheme numbers cosets first according to word-length
and then according to a lexical ordering of coset representatives. Each coset representative is a word in an
alphabet consisting of the user-supplied generators and their inverses, and the lexical ordering of lenlex is
that implied by ordering that alphabet so that each generator is followed by its inverse, and the generators
appear in user-supplied order. See below for an example which gives the first 20 lines of the lenlex standard
coset table of the (infinite) group with presentation 〈x , y , a, b | x 2, y3, a4, b2〉.
In the table each inverse of a generator is represented by the corresponding uppercase letter (X represents
the inverse of x etc.), and the lexical ordering of the representatives is that implied by defining an ordering
of the alphabet of user-supplied generators and their inverses to be x < X < y < Y < a < A < b < B .

A lenlex standard coset table whose columns correspond, in order, to the already-described alphabet, of
generators and their inverses, has an important property: a scan of the body of the table row by row from
left to right, encounters new coset numbers in numeric order. Observe that the table below has this property:
the definition of coset 1 is implicit; the first coset number we encounter in the table body is 2, then 2 again,
3, 4, 5, 6, 7, then 7 again, etc.

With the lenlex option (see 4.11.4), the coset table output by ACECosetTable or ACECosetTableFromGen-
sAndRels is standardised according to the lenlex scheme.

22 Chapter 3. Some Basics

coset no. | x X y Y a A b B rep’ve
-----------+--

1 | 2 2 3 4 5 6 7 7
2 | 1 1 8 9 10 11 12 12 x
3 | 13 13 4 1 14 15 16 16 y
4 | 17 17 1 3 18 19 20 20 Y
5 | 21 21 22 23 24 1 25 25 a
6 | 26 26 27 28 1 24 29 29 A
7 | 30 30 31 32 33 34 1 1 b
8 | 35 35 9 2 36 37 38 38 xy
9 | 39 39 2 8 40 41 42 42 xY

10 | 43 43 44 45 46 2 47 47 xa
11 | 48 48 49 50 2 46 51 51 xA
12 | 52 52 53 54 55 56 2 2 xb
13 | 3 3 57 58 59 60 61 61 yx
14 | 62 62 63 64 65 3 66 66 ya
15 | 67 67 68 69 3 65 70 70 yA
16 | 71 71 72 73 74 75 3 3 yb
17 | 4 4 76 77 78 79 80 80 Yx
18 | 81 81 82 83 84 4 85 85 Ya
19 | 86 86 87 88 4 84 89 89 YA
20 | 90 90 91 92 93 94 4 4 Yb

Another standardisation scheme for coset tables (the default scheme of versions of GAP up to GAP 4.2),
numbers cosets according to coset representative word-length in the group generators and lexical ordering
imposed by the user-supplied ordering of the group generators; it is known as semilenlex since though
like lenlex, generator inverses do not feature. Here again is 20 lines of the coset table of the group with
presentation 〈x , y , a, b | x 2, y3, a4, b2〉, this time semilenlex standardised.

coset no. | x y a b rep’ve
-----------+--------------------------------------

1 | 2 3 4 5
2 | 1 6 7 8 x
3 | 9 10 11 12 y
4 | 13 14 15 16 a
5 | 17 18 19 1 b
6 | 20 21 22 23 xy
7 | 24 25 2 26 xa
8 | 27 28 29 2 xb
9 | 3 30 31 32 yx

10 | 33 1 34 35 yy
11 | 36 37 38 39 ya
12 | 40 41 42 3 yb
13 | 4 43 44 45 ax
14 | 46 47 48 49 ay
15 | 50 51 52 53 aa
16 | 54 55 56 4 ab
17 | 5 57 58 59 bx
18 | 60 61 62 63 by
19 | 64 65 66 67 ba
20 | 6 68 69 70 xyx

Section 6. Other Terminology 23

The term semilenlex was coined by Edmund Robertson and Joachim Neubüser, for the scheme’s appli-
cability to semigroups where generator inverses need not exist. This scheme ensures that as one scans the
columns corresponding to the group generators (in user-supplied order) row by row, one encounters new
coset numbers in numeric order.

Observe that the representatives are ordered according to length and then the lexical ordering implied by
defining x < y < a < b (with some words omitted due to their equivalence to words that precede them in
the ordering). Also observe that as one scans the body of the table row by row from left to right new coset
numbers appear in numeric order without gaps (2, 3, 4, 5, then 1 which we have implicitly already seen, 6,
7, etc.).

3.5 Coset Statistics Terminology

There are three statistics involved in the counting of coset number definitions: activecosets, maxcosets
and totcosets; these are three of the fields of the record returned by ACEStats (see Section 1.3), and they
correspond to the a, m and t statistics of an ACE “results message” (see Appendix A). As already described,
coset enumeration proceeds by defining coset numbers; totcosets counts all such definitions made during
an enumeration. During the coset enumeration process, coincidences usually occur, resulting in the larger
of each coincident pair becoming a dead coset number. The statistic activecosets is the count of coset
numbers left alive (i.e. not dead) at the end of an enumeration; and maxcosets is the maximum number of
alive cosets at any point of an enumeration.

In practice, the statistics maxcosets and totcosets tend to be of a similar order, though, of course, max-
cosets can never be more than totcosets.

3.6 Other Terminology

In various places in this manual, we will refer to a (main) loop or a pass through such a loop. We don’t
intend to give a precise meaning to these terms. The reader will need to forgive us for giving somewhat
circular definitions in our attempt to make these terms less nebulous. It is sufficient to appreciate that the
ACE enumerator is organised as a state machine, where each state is a value of the coset table held internally
by ACE at the end of each “main loop”. Each step from one state to the next (i.e. each passage through the
main loop) performs an “action” (i.e., lookahead, compaction; see 4.15.2 and 4.17.5) or a block of actions
(i.e., |ct| coset number definitions, |rt| coset number applications). ACE counts the number of passes
through the main loop; if the option loop (see 4.17.3) is set to a positive integer, ACE makes an early return
when the loop count hits the value of loop.

4 Options for ACE

ACE offers a wide range of options to direct and guide a coset enumeration, most of which are available
from GAP through the interface provided by the ACE Package. We describe most of the options available
via the interface in this chapter; other options, termed strategies, are defined in Chapter 5. (Strategies are
merely special options of ACE that set a number of options described in this chapter, all at once.) Yet other
options, for which interactive function alternatives are provided in Chapter 6, or which most GAP users are
unlikely to need, are described in Appendix D. From within a GAP session, one may see the complete list of
ACE options, after loading the ACE Package (see Section 2.2), by typing

gap> RecNames(KnownACEOptions);
["aceinfile", "aceignore", "aceignoreunknown", "acenowarnings", "aceecho",
"aceincomment", "aceexampleoptions", "silent", "lenlex", "semilenlex",
"incomplete", "sg", "rl", "aep", "ai", "ao", "aceoutfile", "asis", "begin",
"start", "bye", "exit", "qui", "cc", "cfactor", "ct", "check", "redo",
"compaction", "continu", "cycles", "dmode", "dsize", "default", "ds", "dr",
"dump", "easy", "echo", "enumeration", "felsch", "ffactor", "fill",
"group", "generators", "relators", "hard", "help", "hlt", "hole",
"lookahead", "loop", "max", "mendelsohn", "messages", "monitor", "mode",
"nc", "normal", "no", "options", "oo", "order", "path", "pmode", "psize",
"sr", "print", "purec", "purer", "rc", "recover", "contiguous", "rep",
"rfactor", "rt", "row", "sc", "stabilising", "sims", "standard",
"statistics", "stats", "style", "subgroup", "system", "text", "time", "tw",
"trace", "workspace"]

(See Section 4.8.) Also, from within a GAP session, you may use GAP’s help browser (see Chapter 2 in
the GAP Reference Manual); to find out about any particular ACE option, simply type: “?option option”,
where option is one of the options listed above without any quotes, e.g.

gap> ?option echo

will display the section in this manual that describes the echo option.

We begin this chapter with several sections discussing the nature of the options provided. Please spend some
time reading these sections. To continue onto the next section on-line using GAP’s help browser, type:

gap> ?>

4.1 Passing ACE Options

Options are passed to the ACE interface functions in either of the two usual mechanisms provided by GAP,
namely:

– options may be set globally using the function PushOptions (see Chapter 8 in the GAP Reference
Manual); or

Section 3. Abbreviations and mixed case for ACE Options 25

– options may be appended to the argument list of any function call, separated by a colon from the
argument list (see 4.10 in the GAP Reference Manual), in which case they are then passed on recursively
to any subsequent inner function call, which may in turn have options of their own.

In general, if ACE is to be used interactively one should avoid using the global method of passing options.
In fact, it is recommended that prior to calling ACEStart the OptionsStack be empty.

4.2 Warnings regarding Options

As mentioned above, one can set options globally using the function PushOptions (see Chapter 8 in the
GAP Reference Manual); however, options pushed onto OptionsStack, in this way, remain there until an
explicit PopOptions() call is made. In contrast, options passed in the usual way behind a colon following a
function’s arguments (see 4.10 in the GAP Reference Manual) are local, and disappear from OptionsStack
after the function has executed successfully; nevertheless, a function, that is passed options this way, will
also see any global options or any options passed down recursively from functions calling that function,
unless those options are over-ridden by options passed via the function. Also note that duplication of option
names for different programs may lead to misinterpretations. Since a non-empty OptionsStack is potentially
a mine-field for the unwary user, the function ResetOptionsStack (see 8 in the Reference Manual) is now
in the GAP library and

1I FlushOptionsStack() F

introduced in version 3.001 of the ACE Package to perform the same function, is now a synonym for Rese-
tOptionsStack; it simply executes PopOptions() until OptionsStack is empty.
However, ResetOptionsStack (or FlushOptionsStack) does not wipe out the options already passed to an
interactive ACE process. We have provided GetACEOptions (see 6.5.7) to keep track of options that the
ACE binary process still considers active, which may or may not be still on the OptionsStack. There is
the interactive SetACEOptions (see 6.5.8) to change such options, or, of course, you can always elect to use
ACEQuit (see 6.1.2) and then start a new interactive ACE process.
Finally, if ACEIgnoreUnknownDefault := false (see 4.11.2), there will be situations where an ACE interface
function needs to be told explicitly to ignore options passed down recursively to it from calling functions.
For this purpose we have provided the options aceignore (see 4.11.9) and aceignoreunknown (see 4.11.10).

4.3 Abbreviations and mixed case for ACE Options

Except for limitations imposed by GAP e.g. clashes with GAP keywords and blank spaces not allowed in
keywords, the options of the ACE interface are the same as for the binary; so, for example, the options can
appear in upper or lower case (or indeed, mixed case) and most may be abbreviated. Below we only list
the options in all lower case, and in their longest form; where abbreviation is possible we give the shortest
abbreviation in the option’s description e.g. for the mendelsohn option we state that its shortest abbreviation
is mend, which means mende, mendel etc., and indeed, Mend and MeND, are all valid abbreviations of that
option. Some options have synonyms e.g. cfactor is an alternative for ct.
The complete list of ACE options known to the ACE interface functions, their abbreviations and the values
that they are known to take may be gleaned from the KnownACEOptions record (see Section 4.8).
Options for the ACE interface functions ACECosetTableFromGensAndRels, ACECosetTable, ACEStats and
ACEStart (see Chapter 6), comprise the few non-ACE-binary options (silent, aceinfile, aceoutfile,
aceignore, aceignoreunknown, acenowarnings, aceincomment, aceecho and echo) discussed in Section
4.11, (almost) all single-word ACE binary options and purer and purec. The options purer and purec
give the ACE binary options pure r and pure c, respectively; (they are the only multiple-word ACE binary
options that do not have a single word alternative). The only single-word ACE binary options that are not
available via the ACE interface are abbreviations that clash with GAP keywords (e.g. fi for fill, rec for
recover and continu for continue). The detail of this paragraph is probably of little importance to the GAP
user; these comments have been included for the user who wishes to reconcile the respective functionalities
of the ACE interface and the ACE standalone, and are probably of most value to standalone users.

26 Chapter 4. Options for ACE

4.4 Honouring of the order in which ACE Options are passed

It is important to realize that ACE’s options (even the non-strategy options) are not orthogonal, i.e. the order
in which they are put to ACE can be important. For this reason, except for a few options that have no effect
on the course of an enumeration, the order in which options are passed to the ACE interface is preserved when
those same options are passed to the ACE binary. One of the reasons for the non-orthogonality of options is
to protect the user from obtaining invalid enumerations from bad combinations of options; another reason is
that commonly one may specify a strategy option and override some of that strategy’s defaults; the general
rule is that the later option prevails. By the way, it’s not illegal to select more than one strategy, but it’s
not sensible; as just mentioned, the later one prevails.

4.5 What happens if no ACE Strategy Option or if no ACE Option is passed

If an ACE interface function (ACECosetTableFromGensAndRels, ACEStats, ACECosetTable or ACEStart) is
given no strategy option, the default strategy (see Chapter 5) is selected, and a number of options that
ACE needs to have a value for are given default values, prior to the execution of any user options, if any.
This ensures that ACE has a value for all its “run parameters”; three of these are defined from the ACE
interface function arguments; and the remaining “run parameters”, we denote by “ACE Parameter Options”.
For user convenience, we have provided the ACEParameterOptions record (see 4.12.1), the fields of which
are the “ACE Parameter Options”. The value of each field (option) of the ACEParameterOptions record is
either a default value or (in the case of an option that is set by a strategy) a record of default values that
ACE assumes when the user does not define a value for the option (either indirectly by selecting a strategy
option or directly).

If the default strategy does not suffice, most usually a user will select one of the other strategies from
among the ones listed in Chapter 5, and possibly modify some of the options by selecting from the options
in this chapter. It’s not illegal to select more than one strategy, but it’s not sensible; as mentioned above,
the later one prevails.

4.6 Interpretation of ACE Options

Options may be given a value by an assignment to the name (such as time := val); or be passed without
assigning a value, in which case GAP treats the option as boolean and sets the option to the value true,
which is then interpreted by the ACE interface functions. Technically speaking the ACE binary itself does not
have boolean options, though it does have some options which are declared by passing without a value (e.g.
the hard strategy option) and others that are boolean in the C-sense (taking on just the values 0 or 1). The
behaviour of the ACE interface functions (ACECosetTableFromGensAndRels, ACEStats, ACECosetTable or
ACEStart) is essentially to restore as much as is possible a behaviour that mimics the ACE standalone; a
false value is always translated to 0 and true may be translated to any of no-value, 0 or 1. Any option
passed with an assigned value val other than false or true is passed with the value val to the ACE binary.
Since this may appear confusing, let’s consider some examples.

– The hard strategy option (see 5.1.4) should be passed without a value, which in turn is passed to the ACE
binary without a value. However, the ACE interface function cannot distinguish the option hard being
passed without a value, from it being passed via hard := true. Passing hard := false or hard :=
val for any non-true val will however produce a warning message (unless the option acenowarnings
is passed) that the value 0 (for false) or val is unknown for that option. Nevertheless, despite the
warning, in this event, the ACE interface function passes the value to the ACE binary. When the ACE
binary sees a line that it doesn’t understand it prints a warning and simply ignores it. (So passing hard
:= false will produce warnings, but will have no ill effects.) The reason we still pass unknown values
to the ACE binary is that it’s conceivable a future version of the ACE binary might have several hard
strategies, in which case the ACE interface function will still complain (until it’s made aware of the

Section 6. Interpretation of ACE Options 27

new possible values) but it will perform in the correct manner if a value expected by the ACE binary is
passed.

– The felsch strategy option (see 5.1.3) may be passed without a value (which chooses the felsch 0
strategy) or with the values 0 or 1. Despite the fact that GAP sees this option as boolean; it is not.
There are two Felsch strategies: felsch 0 and felsch 1. To get the felsch 1 strategy, the user must
pass felsch := 1. If the user were to pass felsch := false the result would be the felsch 0 strategy
(since false is always translated to 0), i.e. the same as how felsch := true would be interpreted. We
could protect the user more from such ideosyncrasies, but we have erred on the side of simplicity in
order to make the interface less vulnerable to upgrades of the ACE binary.

The lesson from the two examples is: check the documentation for an option to see how it will be
interpreted. In general, options documented (in this chapter) as only being no-value options can be safely
thought of as boolean (i.e. you will get what you expect by assigning true or false), whereas strategy
(no-value) options should not be thought of as boolean (a false assignment will not give you what you
might have expected).

Options that are unknown to the ACE interface functions and not ignored (see below), that are passed without
a value, are always passed to the ACE binary as no-value options (except when the options are ignored);
the user can over-ride this behaviour simply by assigning the intended value. Note that it is perfectly safe to
allow the ACE binary to be passed unknown options, since ACE simply ignores options it doesn’t understand,
issues an error message (which is just a warning and is output by GAP unless acenowarnings (see 4.11.11) is
passed) and continues on with any other options passed in exactly the way it would have if the “unknown”
options had not been passed.

An option is ignored if it is unknown to the ACE interface functions and one of the following is true:

– the global variable ACEIgnoreUnknownDefault is set to false (see 4.11.2) or,

– the aceignoreunknown option (see 4.11.10) is passed, or

– the aceignore option is passed and the option is an element of the list value of aceignore (see 4.11.9).

It is actually recommended that the user set ACEIgnoreUnknownDefault to false, since this will allow
the user to see when ACE functions have been passed options that are “unknown” to the ACE package. In
this way the user will be informed about misspelt options, for example. So it’s a good debugging tool. Also,
if the ACE binary is updated with a version with new options then these will not be known by the package
(the GAP part) and it will be necessary to set ACEIgnoreUnknownDefault to false in order for the new
options to be passed to the binary. When an ACE function is invoked indirectly by some function that was
called with non-ACE options the warning messages may begin to be annoying, and it’s then a simple matter
to set ACEIgnoreUnknownDefault back to the ACE 3.003 default value of true.

Warning messages regarding unknown options are printed unless the acenowarnings (see 4.11.11) is passed
or the option is ignored.

To see how options are interpreted by an ACE interface function, pass the echo option.

As mentioned above, any option that the ACE binary doesn’t understand is simply ignored and a warning
appears in the output from ACE. If this occurs, you may wish to check the input fed to ACE and the output
from ACE, which when ACE is run non-interactively are stored in files whose full path names are recorded
in the record fields ACEData.infile and ACEData.outfile, respectively. Alternatively, both interactively
and non-interactively one can set the InfoLevel of InfoACE to 3 (see 1.9.3), to see the output from ACE,
or to 4 to also see the commands directed to ACE.

28 Chapter 4. Options for ACE

4.7 An Example of passing Options

Continuing with the example of Section 1.2, one could set the echo option to be true, use the hard strategy
option, increase the workspace to 107 words and turn messaging on (but to be fairly infrequent) by setting
messages to a large positive value as follows:

gap> ACECosetTable(fgens, rels, [c]
> : echo, hard, Wo := 10^7, mess := 10000);;

As mentioned in the previous section, echo may be thought of as a boolean option, whereas hard is a
strategy option (and hence should be thought of as a no-value option). Also, observe that two options have
been abbreviated: Wo is a mixed case abbreviation of workspace, and mess is an abbreviation of messages.

4.8 The KnownACEOptions Record

1I KnownACEOptions V

is a GAP record whose fields are the ACE options known to the ACE interface; each field (known ACE option)
is assigned to a list of the form [i, ListOrFunction], where i is an integer representing the length of the
shortest abbreviation of the option and ListOrFunction is either a list of (known) allowed values or a boolean
function that may be used to determine if the given value is a (known) valid value e.g.

gap> KnownACEOptions.compaction;
[3, [0 .. 100]]

indicates that the option compaction may be abbreviated to com and the (known) valid values are in the
(integer) range 0 to 100; and

gap> KnownACEOptions.ct;
[2, <Operation "IS_INT">]

indicates that there is essentially no abbreviation of ct (since its shortest abbreviation is of length 2), and
a value of ct is known to be valid if IsInt returns true for that value.

For user convenience, we provide the function

2I ACEOptionData(optname) F

which for a string optname representing an ACE option (or a guess of one) returns a record with the following
fields:

name
optname (unchanged);

known
true if optname is a valid mixed case abbreviation of a known ACE option, and false otherwise;

fullname
the lower case unabbreviated form of optname if the known field is set true, or optname in all lower
case, otherwise;

synonyms
a list of known ACE options synonymous with optname, in lowercase unabbreviated form, if the
known field is set true, or a list containing just optname in all lower case, otherwise;

abbrev
the shortest lowercase abbreviation of optname if the known field is set true, or optname in all lower
case, otherwise.

For more on synonyms of ACE options, see 4.10.1.

Section 10. ACE Option Synonyms 29

The function ACEOptionData provides the user with all the query facility she should ever need; nevertheless,
we provide the following functions.

3I IsKnownACEOption(optname) F

returns true if optname is a mixed case abbreviation of a field of KnownACEOptions, or false otherwise.
IsKnownACEOption(optname); is equivalent to

ACEOptionData(optname).known;

4I ACEPreferredOptionName(optname) F

returns the lowercase unabbreviated first alternative of optname if it is a known ACE option, or optname in
lowercase, otherwise. ACEPreferredOptionName(optname); is equivalent to

ACEOptionData(optname).synonyms[1];

5I IsACEParameterOption(optname) F

returns true if optname is an “ACE parameter option”. (ACE Parameter Options are described in Sec-
tion 4.12.1). IsACEParameterOption(optname); is equivalent to

ACEPreferredOptionName(optname) in RecNames(ACEParameterOptions);

6I IsACEStrategyOption(optname) F

returns true if optname is an “ACE strategy option” (see Section 4.9). IsACEStrategyOption(optname);
is equivalent to

ACEPreferredOptionName(optname) in ACEStrategyOptions;

4.9 The ACEStrategyOptions List

1I ACEStrategyOptions V

is a GAP list that contains the strategy options known to the ACE interface functions:

gap> ACEStrategyOptions;
["default", "easy", "felsch", "hard", "hlt", "purec", "purer", "sims"]

See Chapter 5 for details regarding the ACE strategy options.

4.10 ACE Option Synonyms

1I ACEOptionSynonyms V

is a GAP record. A number of known ACE options have synonyms. The fields of the ACEOptionSynonyms
record are the “preferred” option names and the values assigned to the fields are the lists of synonyms of those
option names. What makes an option name “preferred” is somewhat arbitrary (in most cases, it is simply
the shortest of a list of synonyms). For a “preferred” option name optname that has synonyms, the complete
list of synonyms may be obtained by concatenating [optname] and ACEOptionSynonyms.(optname), e.g.

gap> Concatenation(["messages"], ACEOptionSynonyms.("messages"));
["messages", "monitor"]

More generally, for an arbitrary option name optname its list of synonyms (which may be a list of one element)
may be obtained as the synonyms field of the record returned by ACEOptionData(optname) (see 4.8.2).

30 Chapter 4. Options for ACE

4.11 Non-ACE-binary Options

1I NonACEbinOptions V

is a GAP list of options that have meaning only for the ACE Package interface, i.e. options in KnownACEOp-
tions that are not ACE binary options; each such option is described in detail below. Except for the options
listed in NonACEbinOptions and those options that are excluded via the aceignore and aceignoreunknown
options (described below), all options that are on the OptionsStack when an ACE interface function is
called, are passed to the ACE binary. Even options that produce the warning message: “unknown (maybe
new) or bad”, by virtue of not being a field of KnownACEOptions, are passed to the ACE binary (except
that the options purer and purec are first translated to pure r and pure c, respectively). When the ACE
binary encounters an option that it doesn’t understand it issues a warning and simply ignores it; so options
accidentally passed to ACE are unlikely to pose problems.

We also mention here, since it is related to an option of this section, the following.

2I ACEIgnoreUnknownDefault V

is a global variable (not an option) that is initially set by the ACE package to true, and is the default action
that ACE takes for options that are unknown to the ACE package (but may be new options provided in a
new version of the ACE binary). Despite the fact that it is normally set true, it is recommended (especially
for the novice user of the ACE package) to set ACEIgnoreUnknownDefault := false; the worst that can
happen is being annoyed by a profusion of warnings of unknown options. For individual functions, the user
may use the option aceignoreunknown (see 4.11.10) to over-ride the setting of ACEIgnoreUnknownDefault.

Here now, are the few options that are available to the GAP interface to ACE that have no counterpart in
the ACE standalone:

3I silent

Inhibits an Error return when generating a coset table.

If a coset enumeration that invokes ACECosetTableFromGensAndRels does not finish within the preset lim-
its, an error is raised by the interface to GAP, unless the option silent or incomplete (see 4.11.6) has
been set; in the former case, fail is returned. This option is included to make the behaviour of ACECoset-
TableFromGensAndRels compatible with that of the function CosetTableFromGensAndRels it replaces. If
the option incomplete is also set, it overrides option silent.

4I lenlex

Ensures that ACECosetTable and ACECosetTableFromGensAndRels output a coset table that is
lenlex standardised.

The lenlex scheme, numbers cosets in such a way that their “preferred” (coset) representatives, in an
alphabet consisting of the user-submitted generators and their inverses, are ordered first according to length
and then according to a lexical ordering. In order to describe what the lenlex scheme’s lexical ordering
is, let us consider an example. Suppose the generators submitted by the user are, in user-supplied order, [x,
y, a, b], and represent the inverses of these generators by the corresponding uppercase letters: [X, Y, A,
B], then the lexical ordering of lenlex is that derived from defining x < X < y < Y < a < A < b < B.

Notes: In some circumstances, ACE prefers to swap the first two generators; such cases are detected by
the function IsACEGeneratorsInPreferredOrder (see 1.2.3). In such cases, special action is taken to avoid
ACE swapping the first two generators; this action is described in the notes for ACEStandardCosetNumbering
(see 6.7.2). When this special action is invoked, a side-effect is that any setting of the asis (see 4.13.1) option
by the user is ignored.

The lenlex standardisation scheme is the default coset table standardisation scheme of GAP 4.3. However,
semilenlex was the standardisation scheme for versions of GAP up to GAP 4.2. Both schemes are described
in detail in Section 3.4.

Section 11. Non-ACE-binary Options 31

5I semilenlex

Ensures that ACECosetTable and ACECosetTableFromGensAndRels output a coset table that is
semilenlex standardised.

The semilenlex scheme, numbers cosets in such a way that their “preferred” (coset) representatives, in an
alphabet consisting of only the user-submitted generators, are ordered first according to length and then
according to a lexical ordering.

Note: Up to GAP 4.2, semilenlex was the default standardisation scheme used by GAP (see also 4.11.4).

6I incomplete

Allows the return of an incomplete coset table, when a coset enumeration does not finish within
preset limits.

If a coset enumeration that invokes ACECosetTableFromGensAndRels or ACECosetTable does not finish
within the preset limits, an error is raised by the interface to GAP, unless the option silent (see 4.11.3) or
incomplete has been set; in the latter case, a partial coset table, that is a valid GAP list of lists, is returned.
Each position of the table without a valid coset number entry is filled with a zero. If the option silent
is also set, incomplete prevails. For GAP 4.3 and later, an incomplete table is returned reduced (i.e. with
insignificant coset numbers — those appearing only in their place of definition — removed) and lenlex
standardised (regardless of whether the semilenlex option is in force). For GAP 4.2, an incomplete table is
returned unstandardised unless the lenlex option (see 4.11.4) is also set, and the table is also not reduced.
When an incomplete table is returned, a warning is emitted at InfoACE or InfoWarning level 1.

7I aceinfile:=filename

Creates an ACE input file filename for use with the standalone only; filename should be a string.
(Shortest abbreviation: acein.)

This option is only relevant to ACECosetTableFromGensAndRels and is ignored if included as an option
for invocations of ACEStats and ACEStart. If this option is used, GAP creates an input file with filename
filename only, and then exits (i.e. the ACE binary is not called). This option is provided for users who wish
to work directly with the ACE standalone. The full path to the input file normally used by ACE (i.e. when
option aceinfile is not used) is stored in ACEData.infile.

8I aceoutfile:=filename

Redirects ACE output to file filename; filename should be a string. (Shortest abbreviation: aceo.)

This is actually a synonym for the ao option. Please refer to 4.20.1, for further discussion of this option.

9I aceignore:=optionList

Directs an ACE function to ignore the options in optionList ; optionList should be a list of strings.
(Shortest abbreviation: aceig.)

If a function called with its own options, in turn calls an ACE function for which those options are not
intended, the ACE function will pass those options to the ACE binary. If those options are unknown to the
ACE interface (and ACEIgnoreUnknownDefault := false and aceignoreunknown is not passed; see 4.11.2
and 4.11.10) a warning is issued. Options that are unknown to the ACE binary are simply ignored by ACE
(and a warning that the option was ignored appears in the ACE output, which the user will not see unless
the InfoLevel of InfoACE or InfoWarning is set to 1). This option enables the user to avoid such options
being passed at all, thus avoiding the warning messages and also any options that coincidentally are ACE
options but are not intended for the ACE function being called.

10I aceignoreunknown

Directs an ACE function to ignore any options not known to the ACE interface. (Shortest abbrevia-
tion: aceignoreu.)

32 Chapter 4. Options for ACE

This option is provided for similar reasons to aceignore. Normally, it is safe to include it, to avoid aberrant
warning messages from the ACE interface. However, fairly obviously, it should not be passed without a value
(or set to true) in the situation where a new ACE binary has been installed with new options that are
not listed among the fields of KnownACEOptions, which you intend to use. Omitting the aceignoreunknown
option is equivalent to setting it to the value of ACEIgnoreUnknownDefault (see 4.11.2); i.e. it is superfluous
if ACEIgnoreUnknownDefault := true unless aceignoreunknown is set to false.

11I acenowarnings

Inhibits the warning message “unknown (maybe new) or bad option” for options not listed in
KnownACEOptions. (Shortest abbreviation: acenow.)

This option suppresses the warning messages for unknown options (to the ACE interface), but unlike
aceignore and aceignoreunknown still allows them to be passed to the ACE binary.

12I echo
I echo:=2

Echoes arguments and options (and indicates how options were handled).

Unlike the previous options of this section, there is an ACE binary option echo. However, the echo option is
handled by the ACE interface and is not passed to the ACE binary. (If you wish to put echo in a standalone
script use the aceecho option following.) If echo is passed with the value 2 then a list of the options (together
with their values) that are set via ACE defaults are also echoed to the screen.

13I aceecho

The ACE binary’s echo command.

This option is only included so that a user can put an echo statement in an ACE standalone script. Otherwise,
use echo (above).

14I aceincomment:=string

Print comment string in the ACE input; string must be a string. (Shortest abbreviation: aceinc.)

This option prints the comment string behind a sharp sign (#) in the input to ACE. Only useful for adding
comments (that ACE ignores) to standalone input files.

15I aceexampleoptions

An internal option for ACEExample.

This option is passed internally by ACEExample to the ACE interface function it calls, when one invokes
ACEExample with options. Its purpose is to provide a mechanism for the over-riding of an example’s options
by the user. The option name is deliberately long and has no abbreviation to discourage user use.

4.12 ACE Parameter Options

1I ACEParameterOptions V

is a GAP record, whose fields are the “ACE Parameter Options”. The “ACE Parameter Options” are options
which, if not supplied a value by the user, are supplied a default value by ACE. In fact, the “ACE Parameter
Options” are those options that appear (along with Group Generators, Group Relators and Subgroup
Generators, which are defined from ACE interface function arguments) in the “Run Parameters” block of
ACE output, when, for example, the messages option is non-zero.

For each field (ACE parameter option) of the ACEParameterOptions record, the value assigned is the default
value (or a record of default values) that are supplied by ACE when the option is not given a value by the
user (either indirectly by selecting a strategy option or directly).

Section 13. General ACE Parameter Options that Modify the Enumeration Process 33

In the cases where the value of a field of the ACEParameterOptions record is itself a record, the fields of that
record are default and strategies for which the value assigned by that strategy differs from the default
strategy. A “strategy”, here, is the strategy option itself, if it is only a no-value option, or the strategy option
concatenated with any of its integer values (as strings), otherwise (e.g. felsch0 and sims9 are strategies,
and hlt is both a strategy and a strategy option). As an exercise, the reader might like to try to reproduce
the table at the beginning of Chapter 5 using the ACEParameterOptions record. (Hint: you first need to
select those fields of the ACEParameterOptions record whose values are records with at least two fields.)

Note: Where an “ACE Parameter Option” has synonyms, only the “preferred” option name (see 4.10.1)
appears as a field of ACEParameterOptions. The complete list of “ACE Parameter Options” may be obtained
by

gap> Concatenation(List(RecNames(ACEParameterOptions),
> optname -> ACEOptionData(optname).synonyms));
["asis", "ct", "cfactor", "compaction", "dmode", "dsize", "enumeration",
"fill", "ffactor", "hole", "lookahead", "loop", "max", "mendelsohn",
"messages", "monitor", "no", "path", "pmode", "psize", "rt", "rfactor",
"row", "subgroup", "time", "workspace"]

We describe the “ACE Parameter Options” in the Sections 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19,
following.

4.13 General ACE Parameter Options that Modify the Enumeration Process

1I asis

Do not reduce relators. (Shortest abbreviation: as.)

By default, ACE freely and cyclically reduces the relators, freely reduces the subgroup generators, and sorts
relators and subgroup generators in length-increasing order. If you do not want this, you can switch it off
by setting the asis option.

Notes: As well as allowing you to use the presentation as it is given, this is useful for forcing definitions
to be made in a prespecified order, by introducing dummy (i.e., freely trivial) subgroup generators. (Note
that the exact form of the presentation can have a significant impact on the enumeration statistics.) For
some fine points of the influence of asis being set on the treatment of involutory generators see the ACE
standalone manual.

2I ct:=val
I cfactor:=val

Number of C style definitions per pass; val should be an integer. (Shortest abbreviation of cfactor
is c.)

The absolute value of val sets the number of C style definitions per pass through the enumerator’s main
loop. The sign of val sets the style. The possible combinations of the values of ct and rt (described below)
are given in the table of enumeration styles in Section 3.1.

3I rt:=val
I rfactor:=val

Number of R style definitions per pass; val should be an integer. (Shortest abbreviation of rfactor
is r.)

The absolute value of val sets the number of R style definitions per pass through the enumerator’s main
loop. The sign of val sets the style. The possible combinations of the values of ct (described above) and rt
are given in the table of enumeration styles in Section 3.1.

34 Chapter 4. Options for ACE

4I no:=val

The number of group relators to include in the subgroup; val should be an integer greater than or
equal to −1.

It is sometimes helpful to include the group relators into the list of the subgroup generators, in the sense
that they are applied to coset number 1 at the start of an enumeration. A value of 0 for this option turns
this feature off and the (default) argument of −1 includes all the relators. A positive argument includes the
specified number of relators, in order. The no option affects only the C style procedures.

5I mendelsohn

Turns on mendelsohn processing. (Shortest abbreviation: mend.)

Mendelsohn style processing during relator scanning/closing is turned on by giving this option. Off is the
default, and here relators are scanned only from the start (and end) of a relator. Mendelsohn “on” means
that all (different) cyclic permutations of a relator are scanned.

The effect of Mendelsohn style processing is case-specific. It can mean the difference between success or
failure, or it can impact the number of coset numbers required, or it can have no effect on an enumeration’s
statistics.

Note: Processing all cyclic permutations of the relators can be very time-consuming, especially if the
presentation is large. So, all other things being equal, the Mendelsohn flag should normally be left off.

4.14 ACE Parameter Options Modifying C Style Definitions

The next three options are relevant only for making C style definitions (see Section 3.1). Making definitions
in C style, that is filling the coset table line by line, it can be very advantageous to switch to making definitions
from the preferred definition stack. Possible definitions can be extracted from this stack in various ways and
the two options pmode and psize (see 4.14.2 and 4.14.3 respectively) regulate this. However it should be
clearly understood that making all definitions from a preferred definition stack one may violate the condition
of Mendelsohn’s theorem, and the option fill (see 4.14.1) can be used to avoid this.

1I fill:=val
I ffactor:=val

Controls the preferred definition strategy by setting the fill factor; val must be a non-negative
integer. (Shortest abbreviation of fill is fil, and shortest abbreviation of ffactor is f.)

Unless prevented by the fill factor, gaps of length one found during deduction testing are preferentially filled
(see [Hav91]). However, this potentially violates the formal requirement that all rows in the coset table
are eventually filled (and tested against the relators). The fill factor is used to ensure that some constant
proportion of the coset table is always kept filled. Before defining a coset number to fill a gap of length one,
the enumerator checks whether fill times the completed part of the table is at least the total size of the
table and, if not, fills coset table rows in standard order (i.e. C style; see Section 3.1) instead of filling gaps.

An argument of 0 selects the default value of b5(n + 2)/4c, where n is the number of columns in the table.
This default fill factor allows a moderate amount of gap-filling. If fill is 1, then there is no gap-filling. A
large value of fill can cause what is in effect infinite looping (resolved by the coset enumeration failing).
However, in general, a large value does work well. The effects of the various gap-filling strategies vary widely.
It is not clear which values are good general defaults or, indeed, whether any strategy is always “not too
bad”.

This option is identified as Fi in the “Run Parameters” block (obtained when messages is non-zero) of the
ACE output, since for the ACE binary, fi is an allowed abbreviation of fill. However, fi is a GAP keyword
and so the shortest abbreviation of fill allowed by the interface functions is fil.

Section 15. ACE Parameter Options for R Style Definitions 35

2I pmode:=val

Option for preferred definitions; val should be in the integer range 0 to 3. (Shortest abbreviation:
pmod.)

The value of the pmode option determines which definitions are preferred. If the argument is 0, then Felsch
style definitions are made using the next empty table slot. If the argument is non-zero, then gaps of length
one found during relator scans in Felsch style are preferentially filled (subject to the value of fill). If the
argument is 1, they are filled immediately, and if it is 2, the consequent deduction is also made immediately
(of course, these are also put on the deduction stack). If the argument is 3, then the gaps of length one are
noted in the preferred definition queue.
Provided such a gap survives (and no coincidence occurs, which causes the queue to be discarded) the next
coset number will be defined to fill the oldest gap of length one. The default value is either 0 or 3, depending
on the strategy selected (see Chapter 5). If you want to know more details, read the code.

3I psize:=val

Size of preferred definition queue; val must be 0 or 2n , for some integer n > 0. (Shortest abbrevia-
tion: psiz.)

The preferred definition queue is implemented as a ring, dropping earliest entries. An argument of 0 selects
the default size of 256. Each queue slot takes two words (i.e., 8 bytes), and the queue can store up to 2n − 1
entries.

4.15 ACE Parameter Options for R Style Definitions

1I row:=val

Set the “row filling” option; val is either 0 or 1.
By default, “row filling” is on (i.e. true or 1). To turn it off set row to false or 0 (both are translated to 0
when passed to the ACE binary). When making HLT style (i.e. R style; see Section 3.1) definitions, rows of
the coset table are scanned for holes after its coset number has been applied to all relators, and definitions
are made to fill any holes encountered. This will, in particular, guarantee fulfilment of the condition of
Mendelsohn’s Theorem. Failure to do so can cause even simple enumerations to overflow.

2I lookahead:=val

Lookahead; val should be in the integer range 0 to 4. (Shortest abbreviation: look.)
Although HLT style strategies are fast, they are local, in the sense that the implications of any defini-
tions/deductions made while applying coset numbers may not become apparent until much later. One way
to alleviate this problem is to perform lookaheads occasionally; that is, to test the information in the table,
looking for deductions or concidences. ACE can perform a lookahead when the table overflows, before the
compaction routine is called. Lookahead can be done using the entire table or only that part of the table
above the current coset number, and it can be done R style (scanning coset numbers from the beginning of
relators) or C style (testing all definitions in all essentially different positions).
The following are the effects of the possible values of lookahead:

– 0 disables lookahead;
– 1 does a partial table lookahead, R style;
– 2 does a whole table lookahead, C style;
– 3 does a whole table lookahead, R style; and
– 4 does a partial table lookahead, C style.

The default is 1 if the hlt strategy is used and 0 otherwise; see Chapter 5.
Section 3.1 describes the various enumeration styles, and, in particular, R style and C style.

36 Chapter 4. Options for ACE

4.16 ACE Parameter Options for Deduction Handling

1I dmode:=val

Deduction mode; val should be in the integer range 0 to 4. (Shortest abbreviation: dmod.)

A completed table is only valid if every table entry has been tested in all essentially different positions in all
relators. This testing can either be done directly (felsch strategy; see 5.1.3) or via relator scanning (hlt
strategy; see 5.1.5). If it is done directly, then more than one deduction (i.e., table entry) can be waiting to
be processed at any one time. So the untested deductions are stored in a stack. Normally this stack is fairly
small but, during a collapse, it can become very large.

This command allows the user to specify how deductions should be handled. The value val has the following
interpretations:

– 0: discard deductions if there is no stack space left;

– 1: as for 0, but purge any redundant coset numbers on the top of the stack at every coincidence;

– 2: as for 0, but purge all redundant coset numbers from the stack at every coincidence;

– 3: discard the entire stack if it overflows; and

– 4: if the stack overflows, double the stack size and purge all redundant coset numbers from the stack.

The default deduction mode is either 0 or 4, depending on the strategy selected (see Chapter 5), and it is
recommended that you stay with the default. If you want to know more details, read the well-commented C
code.

Notes: If deductions are discarded for any reason, then a final relator check phase will be run automatically
at the end of the enumeration, if necessary, to check the result.

2I dsize:=val

Deduction stack size; val should be a non-negative integer. (Shortest abbreviation: dsiz.)

Sets the size of the (initial) allocation for the deduction stack. The size is in terms of the number of
deductions, with one deduction taking two words (i.e., 8 bytes). The default size, of 1000, can be selected
by a value of 0. See the dmode entry for a (brief) discussion of deduction handling.

4.17 Technical ACE Parameter Options

The following options do not affect how the coset enumeration is done, but how it uses the computer’s
resources. They might thus affect the runtime as well as the range of problems that can be tackled on a
given machine.

1I workspace:=val

Workspace size in words (default 106); val should be an expression that evaluates to a positive
integer, or a string of digits ending in a k, M or G representing a multiplication factor of 103, 106 or
109, respectively e.g. both workspace := 2 * 10^6 and workspace := "2M" specify a workspace
of 2× 106 words. Actually, if the value of workspace is entered as a string, each of k, M or G will be
accepted in either upper or lower case. (Shortest abbreviation: wo.)

By default, ACE has a physical table size of 106 words (i.e., 4×106 bytes in the default 32-bit environment).
The number of coset numbers in the table is the table size divided by the number of columns. Although the
number of coset numbers is limited to 231 − 1 (if the C int type is 32 bits), the table size can exceed the
4GByte 32-bit limit if a suitable machine is used.

Section 17. Technical ACE Parameter Options 37

2I time:=val

Maximum execution time in seconds; val must be an integer greater than or equal to −1. (Shortest
abbreviation: ti.)

The time command puts a time limit (in seconds) on the length of a run. The default is −1 which is no
time limit. If the argument is ≥ 0 then the total elapsed time for this call is checked at the end of each pass
through the enumerator’s main loop, and if it’s more than the limit the run is stopped and the current table
returned.

Note that a limit of 0 performs exactly one pass through the main loop, since 0 ≥ 0.

The time limit is approximate, in the sense that the enumerator may run for a longer, but never a shorter,
time. So, if there is, e.g., a big collapse (so that the time round the loop becomes very long), then the run
may run over the limit by a large amount.

Notes: The time limit is CPU-time, not wall-time. As in all timing under UNIX, the clock’s granularity
(usually 10 milliseconds) and the system load can affect the timing; so the number of main loop iterations
in a given time may vary.

3I loop:=val

Loop limit; val should be a non-negative integer.

The core enumerator is organised as a state machine, with each step performing an “action” (i.e., lookahead,
compaction) or a block of actions (i.e., |ct| coset number definitions, |rt| coset number applications). The
number of passes through the main loop (i.e., steps) is counted, and the enumerator can make an early
return when this count hits the value of loop. A value of 0, the default, turns this feature off.

Guru Notes: You can do lots of really neat things using this feature, but you need some understanding of
the internals of ACE to get real benefit from it.

4I path

Turns on path compression.

To correctly process multiple concidences, a union-find must be performed. If both path compression and
weighted union are used, then this can be done in essentially linear time (see, e.g., [CLR90]). Weighted union
alone, in the worst-case, is worse than linear, but is subquadratic. In practice, path compression is expensive,
since it involves many coset table accesses. So, by default, path compression is turned off; it can be turned
on by path. It has no effect on the result, but may affect the running time and the internal statistics.

Guru Notes: The whole question of the best way to handle large coincidence forests is problematic.
Formally, ACE does not do a weighted union, since it is constrained to replace the higher-numbered of
a coincident pair. In practice, this seems to amount to much the same thing! Turning path compression on
cuts down the amount of data movement during coincidence processing at the expense of having to trace
the paths and compress them. In general, it does not seem to be worthwhile.

5I compaction:=val

Percentage of dead coset numbers to trigger compaction; val should be an integer (percentage) in
the integer range 0 to 100. (Shortest abbreviation: com.)

The option compaction sets the percentage of dead coset numbers needed to trigger compaction of the
coset table, during an enumeration. A dead coset (number) is a coset number found to be coincident with
a smaller coset number. The default is 10 or 100, depending on the strategy used (see Chapter 5).

Compaction recovers the space allocated to coset numbers which are flagged as dead. It results in a table
where all the active coset numbers are numbered contiguously from 1, and with the remainder of the table
available for new coset numbers.

The coset table is compacted when a definition of a coset number is required, there is no space for a new coset
number available, and provided that the given percentage of the coset table contains dead coset numbers.

38 Chapter 4. Options for ACE

For example, if compaction = 20 then compaction will occur only if 20% or more of the coset numbers in
the table are dead. An argument of 100 means that compaction is never performed, while an argument of 0
means always compact, no matter how few dead coset numbers there are (provided there is at least one, of
course).

Compaction may be performed multiple times during an enumeration, and the table that results from an
enumeration may or may not be compact, depending on whether or not there have been any coincidences
since the last compaction (or from the start of the enumeration, if there have been no compactions).

Notes: In some strategies (e.g., hlt; see 5.1.5) a lookahead phase may be run before compaction is attempted.
In other strategies (e.g., sims := 3; see 5.1.8) compaction may be performed while there are outstanding
deductions; since deductions are discarded during compaction, a final lookahead phase will (automatically)
be performed.

Compacting a table “destroys” information and history, in the sense that the coincidence list is deleted, and
the table entries for any dead coset numbers are deleted.

6I max:=val

Sets the maximum coset number that can be defined; val should be 0 or an integer greater than or
equal to 2.

By default (which is the case max = 0), all of the workspace is used, if necessary, in building the coset table.
So the table size (in terms of the number of rows) is an upper bound on how many coset numbers can be
alive at any one time. The max option allows a limit to be placed on how much physical table space is made
available to the enumerator. Enough space for at least two coset numbers (i.e., the subgroup and one other)
must be made available.

Notes: If the easy strategy (see 5.1.2) is selected, so that compaction (see 4.17.5) is off (i.e. set to 100)
and lookahead (see 4.15.2) is off (i.e. set to 0), and max is set to a positive integer, then coset numbers are
not reused, and hence max bounds the total number totcosets (see Section 3.5) of coset numbers defined
during an enumeration.

On the other hand, if one (or both) of compaction or lookahead is not off, then some reuse of coset numbers
may occur, so that, for the case where max is a positive integer, the value of totcosets may be greater than
max.

However, whenever max is set to a positive integer, both activecosets (the number of alive coset numbers
at the end of an enumeration) and maxcosets (the maximum number of alive coset numbers at any point
of an enumeration) are bounded by max. See Section 3.5, for a discussion of the terminology: activecosets
and maxcosets.

7I hole:=val

Maximum percentage of holes allowed during an enumeration; val should be an integer in the range
−1 to 100. (Shortest abbreviation: ho.)

This is an experimental feature which allows an enumeration to be terminated when the percentage of holes
in the table exceeds a given value. In practice, calculating this is very expensive, and it tends to remain
constant or decrease throughout an enumeration. So the feature doesn’t seem very useful. The default value
of −1 turns this feature off. If you want more details, read the source code.

Section 20. Options for redirection of ACE Output 39

4.18 ACE Parameter Options controlling ACE Output

1I messages:=val
I monitor:=val

Sets the verbosity of output from ACE; val should be an integer. (Shortest abbreviation of messages
is mess, and shortest abbreviation of monitor is mon.)

By default, val = 0, for which ACE prints out only a single line of information, giving the result of each
enumeration. If val is non-zero then the presentation and the parameters are echoed at the start of the run,
and messages on the enumeration’s status as it progresses are also printed out. The absolute value of val
sets the frequency of the progress messages, with a negative sign turning hole monitoring on. Note that,
hole monitoring is expensive, so don’t turn it on unless you really need it.

Note that, ordinarily, one will not see these messages: non-interactively, these messages are directed to file
ACEData.outfile (or filename, if option aceoutfile := filename, or ao := filename, is used), and inter-
actively these messages are simply not displayed. However, one can change this situation both interactively
and non-interactively by setting the InfoLevel of InfoACE to 3 via

gap> SetInfoACELevel(3);

Then ACE’s messages are displayed prepended with “#I ”. Please refer to Appendix A, where the meanings
of ACE’s output messages are fully discussed.

4.19 ACE Parameter Options that give Names to the Group and Subgroup

These options may be safely ignored; they only give names to the group or subgroup within the ACE output,
and have no effect on the enumeration itself.

1I enumeration:=string

Sets the Group Name to string ; string , must of course be a string. (Shortest abbreviation: enum.)

The ACE binary has a two-word synonym for this option: Group Name and this is how it is identified in the
“Run Parameters” block of the ACE output when messages has a non-zero value. The default Group Name
is "G".

2I subgroup:=string

Sets the Subgroup Name to string ; string must of course be a string. (Shortest abbreviation: subg.)

The default Subgroup Name is "H".

4.20 Options for redirection of ACE Output

1I ao:=filename
I aceoutfile:=filename

Redirects (alters) output to filename; filename should be a string.

Non-interactively, ACE’s output is normally directed to a temporary file whose full path is stored in ACE-
Data.outfile, which is parsed to produce a coset table or a list of statistics. This option causes ACE’s
output to be directed to filename instead, presumably because the user wishes to see (and keep) data out-
put by the ACE binary, other than the coset table output from ACECosetTableFromGensAndRels or the
statistics output by ACEStats. Please refer to Appendix A, where we discuss the meaning of the additional
data to be found in the ACE binary’s output. The option aceoutfile is a GAP-introduced synonym for ao,
that is translated to ao before submission to the ACE binary. Do not use option aceoutfile when running
the standalone directly. Happily, ao can also be regarded as mnemonical for aceoutfile.

40 Chapter 4. Options for ACE

4.21 Other Options

ACE has a number of other options, but the GAP user will not ordinarily need them, since, in most cases,
alternative interactive functions exist. These remaining options have been relegated to Appendix D. The
options listed there may be used both interactively and non-interactively, but many are probably best used
directly via the ACE standalone.

5

Strategy
Options for ACE

It can be difficult to select appropriate options when presented with a new enumeration. The problem is
compounded by the fact that no generally applicable rules exist to predict, given a presentation, which
option settings are “good”. To help overcome this problem, ACE contains various commands which select
particular enumeration strategies. One or other of these strategies may work and, if not, the results may
indicate how the options can be varied to obtain a successful enumeration.

If no strategy option is passed to ACE, the default strategy is assumed, which starts out presuming that
the enumeration will be easy, and if it turns out not to be so, ACE switches to a strategy designed for more
difficult enumerations. The other straightforward options for beginning users are easy and hard. Thus, easy
will quickly succeed or fail (in the context of the given resources); default may succeed quickly, or if not
will try the hard strategy; and hard will run more slowly, from the beginning trying to succeed.

Strategy options are merely options that set a number of the options seen in Chapter 4, all at once; they
are parsed in exactly the same way as other options; order is important. It is usual to specify one strategy
option and possibly follow it with a number of options defined in Chapter 4, some of which may over-ride
those options set by the strategy option. Please refer to the introductory sections of Chapter 4, paying
particular attention to Sections 4.2, 4.5, and 4.6, which give various warnings, hints and information on the
interpretation of options.

There are eight strategy options. Each is passed without a value (see Section 4.6) except for sims which
expects one of the integer values: 1, 3, 5, 7, or 9; and, felsch can accept a value of 0 or 1, where 0 has
the same effect as passing felsch with no value. Thus the eight strategy options define thirteen standard
strategies; these are listed in the table below, along with all but three of the options (of Chapter 4) that they
set. Additionally, each strategy sets path = 0, psize = 256, and dsize = 1000. Recall mend, look and com
abbreviate mendelsohn (see 4.13.5), lookahead (see 4.15.2) and compaction (see 4.17.5), respectively.

option

strategy row mend no look com ct rt fill pmode dmode

default 1 0 -1 0 10 0 0 0 3 4
easy 1 0 0 0 100 0 1000 1 0 0
felsch := 0 0 0 0 0 10 1000 0 1 0 4
felsch := 1 0 0 -1 0 10 1000 0 0 3 4
hard 1 0 -1 0 10 1000 1 0 3 4
hlt 1 0 0 1 10 0 1000 1 0 0
purec 0 0 0 0 100 1000 0 1 0 4
purer 0 0 0 0 100 0 1000 1 0 0
sims := 1 1 0 0 0 10 0 1000 1 0 0
sims := 3 1 0 0 0 10 0 -1000 1 0 4
sims := 5 1 1 0 0 10 0 1000 1 0 0
sims := 7 1 1 0 0 10 0 -1000 1 0 4
sims := 9 0 0 0 0 10 1000 0 1 0 4

42 Chapter 5. Strategy Options for ACE

Note that we explicitly (re)set all of the listed enumerator options in all of the predefined strategies, even
though some of them have no effect. For example, the fill value is irrelevant in HLT-type enumeration (see
Section 3.1). The idea behind this is that, if you later change some options individually, then the enumeration
retains the “flavour” of the last selected predefined strategy.

Note also that other options which may effect an enumeration are left untouched by setting one of the
predefined strategies; for example, the values of max (see 4.17.6) and asis (see 4.13.1). These options have
an effect which is independent of the selected strategy.

Note that, apart from the felsch := 0 and sims := 9 strategies, all of the strategies are distinct, although
some are very similar.

5.1 The Strategies in Detail

Please note that the strategies are based on various enumeration styles: C style, Cr style, CR style,
R style, R* style, Rc style, R/C style and defaulted R/C style, all of which are described in detail
in Section 3.1.

1I default

Selects the default strategy. (Shortest abbreviation: def.)

This strategy is based on the defaulted R/C style (see Section 3.1). The idea here is that we assume that
the enumeration is “easy” and start out in R style. If it turns out not to be easy, then we regard it as
“hard”, and switch to CR style, after performing a lookahead (see 4.15.2) on the entire table.

2I easy

Selects an “easy” R style strategy.

If this strategy is selected, we follow a HLT-type enumeration style, i.e. R style (see Section 3.1), but turn
lookahead (see 4.15.2) and compaction (see 4.17.5) off. For small and/or easy enumerations, this strategy
is likely to be the fastest.

3I felsch
I felsch:=val

Selects a Felsch strategy; val should be 0 or 1. (Shortest abbreviation: fel.)

Here a C style (see Section 3.1) enumeration is selected. Assigning felsch 0 or no value selects a pure
Felsch strategy, and a value of 1 selects a Felsch strategy with all relators in the subgroup, i.e. no = −1
(see 4.13.4), and turns gap-filling (see 4.14.1) on.

4I hard

Selects a mixed R style and C style strategy.

In many “hard” enumerations, a mixture of R style and C style (see Section 3.1) definitions, all tested in
all essentially different positions, is appropriate. This option selects such a mixed strategy. The idea here is
that most of the work is done C style (with the relators in the subgroup, i.e. no = −1 (see 4.13.4), and with
gap-filling (see 4.14.1) on), but that every 1000 C style definitions a further coset number is applied to all
relators.

Guru Notes: The 1000/1 mix is not necessarily optimal, and some experimentation may be needed to
find an acceptable balance (see, for example, [HR01]). Note also that, the longer the total length of the
presentation, the more work needs to be done for each coset number application to the relators; one coset
number application can result in more than 1000 definitions, reversing the balance between R style and C
style definitions.

Section 1. The Strategies in Detail 43

5I hlt

Selects ACE’s standard HLT strategy.

Unlike Sims’ [Sim94] default HLT strategy, hlt sets the lookahead option (see 4.15.2). However, the option
sequence “hlt, lookahead := 0” easily achieves Sims’ default HLT strategy (recall, the ordering of options
is respected; see Section 4.4).

This is an R style (see Section 3.1) strategy.

6I purec

Sets the strategy to basic C style (see Section 3.1).

In this strategy there is no compaction (see 4.17.5), no gap-filling (see 4.14.1) and no relators in subgroup,
i.e. no = 0 (see 4.13.4).

7I purer

Sets the strategy to basic R style (see Section 3.1).

In this strategy there is no mendelsohn (see 4.13.5), no compaction (see 4.17.5), no lookahead (see 4.15.2)
and no row-filling (see 4.15.1).

8I sims:=val

Sets a Sims strategy; val should be one of 1, 3, 5, 7 or 9.

In his book [Sim94], Sims discusses (and lists in Table 5.5.1) ten standard enumeration strategies. The
Sims’ strategies are effectively hlt (see 5.1.5) without lookahead (see 4.15.2), with or without mendelsohn
(see 4.13.5) set, in R (rt positive, ct := 0) or R* style (rt negative, ct := 0); and felsch (see 5.1.3); all
either with or without (lenlex) table standardisation (see Section 3.4 and 6.7.2 or D.6.2) as the enumeration
proceeds. ACE does not implement table standardisation during an enumeration, and so only provides the
odd-numbered strategies of Sims (ACE’s numbering coincides with that of Sims).

With care, it is often possible to duplicate the statistics given in [Sim94] for his odd-numbered strategies and
it is also possible (using the interactive facilities) to approximate his even-numbered strategies. Examples
and a more detailed exposition of the Sims strategies are given in Section C.2.

6

Functions for Using
ACE Interactively

The user will probably benefit most from interactive use of ACE by setting the InfoLevel of InfoACE to at
least 3 (see 1.9.3), particularly if she uses the messages option with a non-zero value.

Have you read the various options warnings yet? If not, please take the time to read Section 1.7 which directs
you to various important sections of Chapter 4.

We describe in this chapter the functions that manipulate and initiate interactive ACE processes.

An interactive ACE process is initiated by ACEStart and terminated via ACEQuit; these functions are de-
scribed in Section 6.1. ACEStart also has forms that manipulate an already started interactive ACE process.
ACEStart always returns a positive integer i , which identifies the interactive ACE process that was initiated
or manipulated.

Most functions (there is one ACEStart exception), that manipulate an already started interactive ACE
process, have a form where the first argument is the integer i returned by the initiating ACEStart command,
and a second form with one argument fewer (where the integer i is discovered by a default mechanism,
namely by determining the least integer i for which there is a currently active interactive ACE process). We
will thus commonly say that “for the ith (or default) interactive ACE process” a certain function performs
a given action. In each case, it is an error, if i is not the index of an active interactive process, or there are
no current active interactive processes.

Notes: The global method of passing options (via PushOptions), should not be used with any of the
interactive functions. In fact, the OptionsStack should be empty at the time any of the interactive functions
is called.

On quitting GAP, ACEQuitAll(); is executed, which terminates all active interactive ACE processes. If
GAP is killed without quitting, before all interactive ACE processes are terminated, zombie processes (still
living child processes whose parents have died), will result. Since zombie processes do consume resources,
in such an event, the responsible computer user should seek out and kill the still living ace children (e.g. by
piping the output of a ps with appropriate options, usually aux or ef, to grep ace, to find the process ids,
and then using kill; try man ps and man kill if these hints are unhelpful).

6.1 Starting and Stopping Interactive ACE Processes

1I ACEStart(fgens, rels, sgens [:options]) F
I ACEStart(i [:options]) F
I ACEStart([:options]) F
I ACEStart(i, fgens, rels, sgens [:options]) F
I ACEStart(0 [:options]) F
I ACEStart(0, fgens, rels, sgens [:options]) F
I ACEStart(0, i [:options]) F
I ACEStart(0, i, fgens, rels, sgens [:options]) F

The variables are: i , a positive integer numbering from 1 that represents (indexes) an already running
interactive ACE process; fgens, a list of free generators; rels, a list of words in the generators fgens giving
relators for a finitely presented group; and sgens, a list of subgroup generators, again expressed as words in

Section 1. Starting and Stopping Interactive ACE Processes 45

the free generators fgens. Each of fgens, rels and sgens are given in the standard GAP format for finitely
presented groups (See Chapter 45 of the GAP Reference Manual).

All forms of ACEStart accept options described in Chapters 4 and 5, and Appendix D, which are listed behind
a colon in the usual way (see 4.10 in the GAP Reference Manual). The reader is strongly encouraged to read
the introductory sections of Chapter 4, with regard to options. The global mechanism (via PushOptions) of
passing options is not recommended for use with the interactive ACE interface functions; please ensure the
OptionsStack is empty before calling an interactive ACE interface function.

The return value (for all forms of ACEStart) is an integer (numbering from 1) which represents the running
process. It is possible to have more than one interactive process running at once. The integer returned may
be used to index which of these processes an interactive ACE interface function should be applied to.

The first four forms of ACEStart insert a start (see D.3.2) directive after the user’s options to invoke an
enumeration. The last four forms, with 0 as first argument, do not insert a start directive. Moreover, the
last 3 forms of ACEStart, with 0 as first argument only differ from the corresponding forms of ACEStart
without the 0 argument, in that they do not insert a start directive. ACEStart(0), however, is special;
unlike the no-argument form of ACEStart it invokes a new interactive ACE process. We will now further
describe each form of ACEStart, in the order they appear above.

The first form of ACEStart (on three arguments) is the usual way to start an interactive ACE process.

When ACEStart is called with one positive integer argument i it starts a new enumeration on the ith
running process, i.e. it scrubs a previously generated table and starts from scratch with the same parameters
(i.e. the same arguments and options); except that if new options are included these will modify those given
previously. The only reason for doing such a thing, without new options, is to perhaps compare timings of
runs (a second run is quicker because memory has already been allocated). If you are interested in this sort
of information, however, you may be better off dealing directly with the standalone.

When ACEStart is called with no arguments it finds the least positive integer i for which an interactive
process is running and applies ACEStart(i). (Most users will only run one interactive process at a time.
Hence, ACEStart() will be a useful shortcut for ACEStart(1).)

The fourth form of ACEStart on four arguments, invokes a new enumeration on the ith running process, with
new generators fgens, relators rels and subgroup generators sgens. This is provided so a user can re-use an
already running process, rather than start a new process. This may be useful when pseudo-ttys are a scarce
resource. See the notes for the non-interactive ACECosetTable (1.2.1) which demonstrates an application of
a usage of this and the following form of ACEStart in a loop.

The fifth form of ACEStart (on the one argument: 0) initiates an interactive ACE process, processes any user
options, but does not insert a start (see D.3.2) directive. This form is mainly for gurus who are familiar with
the ACE standalone and who wish, at least initially, to communicate with ACE using the primitive read/write
tools of Section 6.8. In this case, after the group generators, relators, and subgroup generators have been
set in the ACE process, invocations of any of ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2),
ACESubgroupGenerators (see 6.5.3), or ACEParameters (see 6.5.10) will establish the corresponding GAP
values. Be warned, though, that unless one of the general ACE modes (see Section 6.2): ACEStart (without
a zero argument), ACERedo (see 6.2.3) or ACEContinue (see 6.2.2), or one of the mode options: start
(see D.3.2), redo (see D.3.3) or continu (see D.3.4), has been invoked since the last change of any parameter
options (see 4.12.1), some of the values reported by ACEParameters may well be incorrect.

The sixth form of ACEStart (on four arguments), is like the first form of ACEStart (on three arguments),
except that it does not insert a start (see D.3.2) directive. It initiates an interactive ACE process, with a
presentation defined by its last 3 arguments.

The seventh form of ACEStart (on two arguments), is like the second form of ACEStart (on one argument),
except that it does not insert a start (see D.3.2) directive. It processes any new options for the ith interactive
ACE process. ACEStart(0, i [: options]), is similar to SetACEOptions(i [: options]) (see 6.5.8),
but unlike the latter does not invoke a general mode (see Section 6.2).

46 Chapter 6. Functions for Using ACE Interactively

The last form of ACEStart (on five arguments), is like the fourth form of ACEStart (on four arguments),
except that it does not insert a start (see D.3.2) directive. It re-uses an existing interactive ACE process,
with a new presentation. There is no form of ACEStart with the same functionality as this form, where the
i argument is omitted.

Note: When an interactive ACE process is initiated by ACEStart a process number i is assigned to it (the
integer i returned by the ACEStart command), an ACE (binary) process (in the UNIX sense) is started up,
a GAP iostream is assigned to communicate with the ACE (binary) process, and the essential “defining”
data associated with the interactive ACE process is saved in ACEData.io[i] (see 1.8.1 for precisely what is
saved).

2I ACEQuit(i) F
I ACEQuit() F

terminate an interactive ACE process, where i is the integer returned by ACEStart when the process was
started. If the second form is used (i.e. without arguments) then the interactive process of least index that
is still running is terminated.

Note: ACEQuit(i) terminates the ACE (binary) process of interactive ACE process i , and closes its GAP
iostream, and unbinds the record ACEData.io[i] (see 6.1.1 note).

It can happen that the ACE (binary) process, and hence the GAP iostream assigned to communicate with
it, can die, e.g. by the user typing a Ctrl-C while the ACE (binary) process is engaged in a long calculation.
IsACEProcessAlive (see 6.3.3) is provided to check the status of the GAP iostream (and hence the status
of the ACE (binary) process it was communicating with); in the case that it is indeed dead, ACEResurrect-
Process (see 6.3.4) may be used to start a new ACE (binary) process and assign a new GAP iostream to
communicate with it, by using the “defining” data of the interactive ACE process saved in ACEData.io[i].

3I ACEQuitAll() F

is provided as a convenience, to terminate all active interactive ACE processes with a single command. It is
equivalent to executing ACEQuit(i) for all active interactive ACE processes i (see 6.1.2).

6.2 General ACE Modes

For our purposes, we define an interactive ACE interface command to be an ACE mode, if it delivers an enu-
meration result (see Section A.2). Thus, ACEStart (see 6.1.1), except when called with the argument 0, and
the commands ACERedo and ACEContinue which we describe below are ACE modes; we call these general
ACE modes. Additionally, there are two other commands which deliver enumeration results: ACEAllEquiv-
Presentations (see 6.4.1) and ACERandomEquivPresentations (see 6.4.2); we call these “experimentation”
ACE modes and describe them in Section 6.4.

Guru Note: The ACE standalone uses the term mode in a slightly different sense. There, the commands:
start, redo or continue, put the ACE enumerator in start mode, redo mode or continue mode. In this
manual, we have used the term to mean the command itself, and generalised it to include any command
that produces enumeration results.

After changing any of ACE’s parameters, one of three general modes is possible: one may be able to
“continue” via ACEContinue (see 6.2.2), or “redo” via ACERedo (see 6.2.3), or if neither of these is possible
one may have to re-“start” the enumeration via ACEStart (see 6.1.1). Generally, the appropriate mode is
invoked automatically when options are changed; so most users should be able to ignore the following three
functions.

1I ACEModes(i) F
I ACEModes() F

for the ith (or default) interactive ACE process, return a record whose fields are the modes ACEStart,
ACEContinue and ACERedo, and whose values are true if the mode is possible for the process and false
otherwise.

Section 3. Interactive ACE Process Utility Functions and Interruption of an Interactive ACE Process 47

2I ACEContinue(i [:options]) F
I ACEContinue([:options]) F

for the ith (or default) interactive ACE process, apply any options and then “continue” the current enumer-
ation, building upon the existing table. If a previous run stopped without producing a finite index you can,
in principle, change any of the options and continue on. Of course, if you make any changes which invalidate
the current table, you won’t be allowed to ACEContinue and an error will be raised. However, after quitting
the break-loop, the interactive ACE process should normally still be active; after doing so, run ACEModes
(see 6.2.1) to see which of ACERedo or ACEStart is possible.

3I ACERedo(i [:options]) F
I ACERedo([:options]) F

for the ith (or default) interactive ACE process, apply any options and then “redo” the current enumeration
from coset 1 (i.e., the subgroup), keeping any existing information in the table.

Notes: The difference between ACEContinue and ACERedo is somewhat technical, and the user should regard
it as a mode that is a little more expensive than ACEContinue but cheaper than ACEStart. ACERedo is really
intended for the case where additional relators and/or subgroup generators have been introduced; the current
table, which may be incomplete or exhibit a finite index, is still “valid”. However, the new data may allow
the enumeration to complete, or cause a collapse to a smaller index. In some cases, ACERedo may not be
possible and an error will be raised; in this case, quit the break-loop, and try ACEStart, which will discard
the current table and re-“start” the enumeration.

6.3 Interactive ACE Process Utility Functions and Interruption of an Interactive ACE
Process

1I ACEProcessIndex(i) F
I ACEProcessIndex() F

With argument i , which must be a positive integer, ACEProcessIndex returns i if it corresponds to an active
interactive process, or raises an error. With no arguments it returns the default active interactive process
or returns fail and emits a warning message to Info at InfoACE or InfoWarning level 1.

Note: Essentially, an interactive ACE process i is “active” if ACEData.io[i] is bound (i.e. we still have
some data telling us about it). Also see 6.1.1 note.

2I ACEProcessIndices() F

returns the list of integer indices of all active interactive ACE processes (see 6.3.1 for the meaning of “active”).

3I IsACEProcessAlive(i) F
I IsACEProcessAlive() F

return true if the GAP iostream of the ith (or default) interactive ACE process started by ACEStart is alive
(i.e. can still be written to), or false, otherwise. (See the notes for 6.1.1 and 6.1.2.)

If the user does not yet have a gap> prompt then usually ACE is still away doing something and an ACE
interface function is still waiting for a reply from ACE. Typing a Ctrl-C (i.e. holding down the Ctrl key and
typing c) will stop the waiting and send GAP into a break-loop, from which one has no option but to quit;.
The typing of Ctrl-C, in such a circumstance, usually causes the stream of the interactive ACE process to
die; to check this we provide IsACEProcessAlive (see 6.3.3). If the stream of an interactive ACE process,
indexed by i , say, has died, it may still be possible to recover enough of the state, before the death of the
stream, from the information stored in the ACEData.io[i] record (see Section 1.8). For such a purpose, we
have provided ACEResurrectProcess (see 6.3.4).

The GAP iostream of an interactive ACE process will also die if the ACE binary has a segmentation fault.
We do hope that this never happens to you, but if it does and the failure is reproducible, then it’s a bug

48 Chapter 6. Functions for Using ACE Interactively

and we’d like to know about it. Please read the README that comes with the ACE package to find out what
to include in a bug report and who to email it to.

4I ACEResurrectProcess(i [: options]) F
I ACEResurrectProcess([: options]) F

re-generate the GAP iostream of the ith (or default) interactive ACE process started by ACEStart (see 6.1.1,
the final note, in particular), and try to recover as much as possible of the previous state from saved values
of the process’s arguments and parameter options. The possible options here are use and useboth which
are described in detail below.

The arguments of the ith interactive ACE process are stored in ACEData.io[i].args, a record with fields
fgens, rels and sgens, which are the GAP group generators, relators and subgroup generators, respectively
(see Section 1.8). Option information is saved in ACEData.io[i].options when a user uses an interactive
ACE interface function with options or uses SetACEOptions (see 6.5.8). Option information is saved in
ACEData.io[i].parameters if ACEParameters (see 6.5.10) is used to extract from ACE the current values
of the ACE parameter options (this is generally less reliable unless one of the general ACE modes (see
Section 6.2), has been run previously).

By default, ACEResurrectProcess recovers parameter option information from ACEData.io[i].options if
it is bound, or from ACEData.io[i].parameters if it is bound, otherwise. The ACEData.io[i].options
record, however, is first filtered for parameter and strategy options (see Sections 4.12.1 and 4.9) and the
echo option (see 4.11.12). To alter this behaviour, the user is provided two options:

use := useList
useList may contain one or both of "options" and "parameters". By default, use = ["options",
"parameters"].

useboth
(A boolean option). By default, useboth = false.

If useboth = true, SetACEOptions (see 6.5.8) is applied to the ith interactive ACE process with each
ACEData.io[i].(field) for each field ("options" or "parameters") that is bound and in useList , in the
order implied by useList . If useboth = false, SetACEOptions is applied with ACEData.io[i].(field) for
only the first field that is bound in useList . The current value of the echo option is also preserved (no matter
what values the user chooses for the use and useboth options).

Notes: Do not use general ACE options with ACEResurrectProcess; they will only be superseded by
those options recovered from ACEData.io[i].options and/or ACEData.io[i].parameters. Instead, call
SetACEOptions first (or afterwards). When called prior to ACEResurrectProcess, SetACEOptions will emit
a warning that the stream is dead; despite this, the ACEData.io[i].options will be updated.

ACEResurrectProcess does not invoke an ACE mode (see Section 6.2). This leaves the user free to use
SetACEOptions (which does invoke an ACE mode) to further modify options afterwards.

5I ToACEGroupGenerators(fgens) F

This function produces, from a GAP list fgens of free group generators, the ACE directive string required by
the group (see D.2.1) option. (The group option may be used to define the equivalent of fgens in an ACE
process.)

6I ToACEWords(fgens, words) F

This function produces, from a GAP list words in free group generators fgens, a string that represents those
words as an ACE list of words. ToACEWords may be used to provide suitable values for the options relators
(see D.2.2), generators (see D.2.3), sg (see D.2.4), and rl (see D.2.5).

Section 4. Experimentation ACE Modes 49

6.4 Experimentation ACE Modes

Now we describe the two experimentation modes. The term mode was defined in Section 6.2.

1I ACEAllEquivPresentations(i, val) F
I ACEAllEquivPresentations(val) F

for the ith (or default) interactive ACE process, generates and tests an enumeration for combinations of
relator ordering, relator rotations, and relator inversions; val is in the integer range 1 to 7.

The argument val is considered as a binary number. Its three bits are treated as flags, and control relator
rotations (the 20 bit), relator inversions (the 21 bit) and relator orderings (the 22 bit), respectively; where
1 means “active” and 0 means “inactive”. (See below for an example).

Before we describe the GAP output of ACEAllEquivPresentations let us spend some time considering what
happens before the ACE binary output is parsed.

The ACEAllEquivPresentations command first performs a “priming run” using the options as they stand.
In particular, the asis and messages options are honoured.

It then turns asis (see 4.13.1) on and messages (see 4.18.1) off (i.e. sets messages to 0), and generates
and tests the requested equivalent presentations. The maximum and minimum values attained by m (the
maximum number of coset numbers defined at any stage) and t (the total number of coset numbers defined)
are tracked, and each time the statistics are better than what we’ve already seen, the ACE binary emits
a summary result line for the relators used. See Appendix A for a discussion of the statistics m and t. To
observe these messages set the InfoLevel of InfoACE to 3; and it’s recommended that you do this so that
you get some idea of what the ACE binary is doing.

The order in which the equivalent presentations are generated and tested has no particular significance, but
note that the presentation as given after the initial priming run) is the last presentation to be generated
and tested, so that the group’s relators are left “unchanged” by running the ACEAllEquivPresentations
command.

As discussed by Cannon, Dimino, Havas and Watson [CDHW73] and Havas and Ramsay [HR01] such equiv-
alent presentations can yield large variations in the number of coset numbers required in an enumeration.
For this command, we are interested in this variation.

After the final presentation is run, some additional status information messages are printed to the ACE
output:

– the number of runs which yielded a finite index;

– the total number of runs (excluding the priming run); and

– the range of values observed for m and t.

As an example (drawn from the discussion in [HR99]) consider the enumeration of the 448 coset numbers
of the subgroup 〈a2, a−1b〉 of the group

(8, 7 | 2, 3) = 〈a, b | a8 = b7 = (ab)2 = (a−1b)3 = 1〉·

There are 4! = 24 relator orderings and 24 = 16 combinations of relator or inverted relator. Exponents are
taken into account when rotating relators, so the relators given give rise to 1, 1, 2 and 2 rotations respectively,
for a total of 1 · 1 · 2 · 2 = 4 combinations. So, for val = 7 (resp. 3), 24 · 16 · 4 = 1536 (resp. 16 · 4 = 64)
equivalent presentations are tested.

Now we describe the output of ACEAllEquivPresentations; it is a record with fields:

primingResult
the ACE enumeration result message (see Section A.2) of the priming run;

50 Chapter 6. Functions for Using ACE Interactively

primingStats
the enumeration result of the priming run as a GAP record with fields index, cputime, cputime-
Units, activecosets, maxcosets and totcosets, exactly as for the record returned by ACEStats
(see 1.3.1);

equivRuns
a list of data records, one for each progressively “best” run, where each record has fields:

rels
the relators in the order used for the run,

enumResult
the ACE enumeration result message (see Section A.2) of the run, and

stats
the enumeration result as a GAP record exactly like the record returned by ACEStats (see 1.3.1);

summary
a record with fields:

successes
the total number of successful (i.e. having finite enumeration index) runs,

runs
the total number of equivalent presentation runs executed,

maxcosetsRange
the range of values as a GAP list inside which each equivRuns[i].maxcosets lies, and

totcosetsRange
the range of values as a GAP list inside which each equivRuns[i].totcosets lies.

Notes: In general, the length of the equivRuns field list will be less than the number of runs executed.

There is no way to stop the ACEAllEquivPresentations command before it has completed, other than
killing the task. So do a reality check beforehand on the size of the search space and the time for each
enumeration. If you are interested in finding a “good” enumeration, it can be very helpful, in terms of
running time, to put a tight limit on the number of coset numbers via the max option. You may also have to
set compaction = 100 to prevent time-wasting attempts to recover space via compaction. This maximises
throughput by causing the “bad” enumerations, which are in the majority, to overflow quickly and abort.
If you wish to explore a very large search-space, consider firing up many copies of ACE, and starting each
with a “random” equivalent presentation. Alternatively, you could use the ACERandomEquivPresentations
command.

2I ACERandomEquivPresentations(i, val) F
I ACERandomEquivPresentations(val) F
I ACERandomEquivPresentations(i, [val]) F
I ACERandomEquivPresentations([val]) F
I ACERandomEquivPresentations(i, [val, Npresentations]) F
I ACERandomEquivPresentations([val, Npresentations]) F

for the ith (or default) interactive ACE process, generates and tests up to Npresentations (or 8, in the first
4 forms) random presentations; val , an integer in the range 1 to 7, acts as for ACEAllEquivPresentations
and Npresentations, when given, should be a positive integer.

The routine first turns asis (see 4.13.1) on and messages (see 4.18.1) off (i.e. sets messages to 0), and then
generates and tests the requested number of random equivalent presentations. For each presentation, the
relators used and the summary result line are printed by ACE. To observe these messages set the InfoLevel
of InfoACE to at least 3.

Section 5. Interactive Query Functions and an Option Setting Function 51

ACERandomEquivPresentations parses the ACE messages, translating them to GAP, and thus returns a
list of records (similar to the field equivRuns of the returned record of ACEAllEquivPresentations). Each
record of the returned list is the data derived from a presentation run and has fields:

rels
the relators in the order used for the run,

enumResult
the ACE enumeration result message (see Section A.2) of the run, and

stats
the enumeration result as a GAP record exactly like the record returned by ACEStats (see 1.3.1).

Notes: The relator inversions and rotations are “genuinely” random. The relator permuting is a little bit
of a kludge, with the “quality” of the permutations tending to improve with successive presentations. When
the ACERandomEquivPresentations command completes, the presentation active is the last one generated.

Guru Notes: It might appear that neglecting to restore the original presentation is an error. In fact, it is a
useful feature! Suppose that the space of equivalent presentations is too large to exhaustively test. As noted in
the entry for ACEAllEquivPresentations, we can start up multiple copies of ACEAllEquivPresentations
at random points in the search-space. Manually generating random equivalent presentations to serve as
starting-points is tedious and error-prone. The ACERandomEquivPresentations command provides a simple
solution; simply run ACERandomEquivPresentations(i, 7); before ACEAllEquivPresentations(i, 7);.

6.5 Interactive Query Functions and an Option Setting Function

1I ACEGroupGenerators(i) F
I ACEGroupGenerators() F

return the GAP group generators of the ith (or default) interactive ACE process. If no generators have
been saved for the interactive ACE process, possibly because the process was started via ACEStart(0);
(see 6.1.1), the ACE process is interrogated, and the equivalent in GAP is saved and returned. Essentially,
ACEGroupGenerators(i) interrogates ACE and establishes ACEData.io[i].args.fgens, if necessary, and
returns ACEData.io[i].args.fgens. As a side-effect, if any of the remaining fields of ACEData.io[i].args
or ACEData.io[i].acegens are unset, they are also set. Note that GAP provides GroupWithGenerators
(see 37.2.2 in the GAP Reference Manual) to establish a free group on a given set of already-defined gener-
ators.

2I ACERelators(i) F
I ACERelators() F

return the GAP relators of the ith (or default) interactive ACE process. If no relators have been saved for
the interactive ACE process, possibly because the process was started via ACEStart(0); (see 6.1.1), the ACE
process is interrogated, the equivalent in GAP is saved and returned. Essentially, ACERelators(i) interro-
gates ACE and establishes ACEData.io[i].args.rels, if necessary, and returns ACEData.io[i].args.rels.
As a side-effect, if any of the remaining fields of ACEData.io[i].args or ACEData.io[i].acegens are unset,
they are also set.

3I ACESubgroupGenerators(i) F
I ACESubgroupGenerators() F

return the GAP subgroup generators of the ith (or default) interactive ACE process. If no subgroup generators
have been saved for the interactive ACE process, possibly because the process was started via ACEStart(0);
(see 6.1.1), the ACE process is interrogated, the equivalent in GAP is saved and returned. Essentially, ACE-
SubgroupGenerators(i) interrogates ACE and establishes ACEData.io[i].args.sgens, if necessary, and
returns ACEData.io[i].args.sgens. As a side-effect, if any of the remaining fields of ACEData.io[i].args
or ACEData.io[i].acegens are unset, they are also set.

52 Chapter 6. Functions for Using ACE Interactively

4I DisplayACEArgs(i) F
I DisplayACEArgs() F

display the arguments (i.e. fgens, rels and sgens) of the ith (or default) process started by ACEStart.
In fact, DisplayACEArgs(i) is just a pretty-printer of the ACEData.io[i].args record. Use GetACEArgs
(see 6.5.7) in assignments. Unlike ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2) and ACESub-
groupGenerators (see 6.5.3), DisplayACEArgs does not have the side-effect of setting any of the fields of
ACEData.io[i].args if they are unset.

5I GetACEArgs(i) F
I GetACEArgs() F

return a record of the current arguments (i.e. fgens, rels and sgens) of the ith (or default) process started
by ACEStart. In fact, GetACEOptions(i) simply returns the ACEData.io[i].args record, or an empty
record if that record is unbound. Unlike ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2) and
ACESubgroupGenerators (see 6.5.3), GetACEOptions does not have the side-effect of setting any of the
fields of ACEData.io[i].args if they are unset.

6I DisplayACEOptions(i) F
I DisplayACEOptions() F

display the options, explicitly set by the user, of the ith (or default) process started by ACEStart. In fact,
DisplayACEOptions(i) is just a pretty-printer of the ACEData.io[i].options record. Use GetACEOptions
(see 6.5.7) in assignments. Please note that no-value ACE options will appear with the assigned value true
(see Section 4.6 for how the ACE interface functions interpret such options).

Notes: Any options set via ACEWrite (see 6.8.1) will not be displayed. Also, recall that if ACE is not given
any options it uses the default strategy (see Section 4.5). To discover the various settings of the ACE
Parameter Options (see 4.12.1) in vogue for the ACE process, use ACEParameters (see 6.5.10).

7I GetACEOptions(i) F
I GetACEOptions() F

return a record of the current options (those that have been explicitly set by the user) of the ith (or default)
process started by ACEStart. Please note that no-value ACE options will appear with the assigned value
true (see Section 4.6 for how the ACE interface functions interpret such options). The notes applying to
DisplayACEOptions (see 6.5.6) also apply here.

8I SetACEOptions(i [:options]) F
I SetACEOptions([:options]) F

modify the current options of the ith (or default) process started by ACEStart. Please ensure that the
OptionsStack is empty before calling SetACEOptions, otherwise the options already present on the Op-
tionsStack will also be “seen”. All interactive ACE interface functions that accept options, actually call
an internal version of SetACEOptions; so, it is generally important to keep the OptionsStack clear while
working with ACE interactively.

After setting the options passed, the first mode of the following: ACEContinue (see 6.2.2), ACERedo (see 6.2.3)
or ACEStart (see 6.1.1), that may be applied, is automatically invoked.

Since a user will sometimes have options in the form of a record (e.g. via GetACEOptions), we provide a
PushOptions-like alternative to the behind-the-colon syntax for the passing of options via SetACEOptions:

9I SetACEOptions(i, optionsRec) F
I SetACEOptions(optionsRec) F

In this form, the record optionsRec is used to update the current options of the ith (or default) process
started by ACEStart. Note that since optionsRec is a record each field must have an assigned value; in
particular, no-value ACE options should be assigned the value true (see Section 4.6). Please don’t mix these

Section 5. Interactive Query Functions and an Option Setting Function 53

two forms of SetACEOptions with the previous two forms; i.e. do not pass both a record argument and
options, since this will lead to options appearing in the wrong order; if you want to do this, make two
separate calls to SetACEOptions, e.g. let’s say you have a process like that started by:

gap> ACEExample("A5", ACEStart);

then the following demonstrates both usages of SetACEOptions:

gap> SetACEOptions(rec(echo := 2));
gap> SetACEOptions(: hlt);

Each of the three commands above generates output; for brevity it has not been included.

Notes:

When ACECosetTableFromGensAndRels enters a break-loop (see 1.2.1), local versions of the second form
of each of DisplayACEOptions and SetACEOptions become available. (Even though the names are similar
and their function is analogous they are in fact different functions.)

10I ACEParameters(i) F
I ACEParameters() F

return a record of the current values of the ACE Parameter Options (see 4.12.1) of the ith (or default) process
started by ACEStart, according to ACE. Please note that some options may be reported with incorrect values
if they have been changed recently without following up with one of the modes ACEContinue, ACERedo
or ACEStart. Together the commands ACEGroupGenerators, ACERelators, ACESubgroupGenerators and
ACEParameters give the equivalent GAP information that is obtained in ACE with sr := 1 (see D.5.7),
which is the “Run Parameters” block obtained in the messaging output (observable when the InfoLevel of
InfoACE is set to at least 3), when messages (see 4.18.1) is set a non-zero value.

Notes: One use for this function might be to determine the options required to replicate a previous run,
but be sure that, if this is your purpose, any recent change in the parameter option values has been followed
by an invocation of one of ACEContinue (see 6.2.2), ACERedo (see 6.2.3) or ACEStart (see 6.1.1).

As a side-effect, for ACE process i , any of the fields of ACEData.io[i].args or ACEData.io[i].acegens
that are unset, are set.

11I IsCompleteACECosetTable(i) F
I IsCompleteACECosetTable() F

return, for the ith (or default) process started by ACEStart, true if ACE’s current coset table is complete,
or false otherwise.

Note: The completeness of the coset table of the ith interactive ACE process is determined by checking
whether ACEData.io[i].stats.index is positive; a value of zero indicates the last enumeration failed to
complete. The record ACEData.io[i].stats is what is returned by ACEStats(i) (see 1.3.1).

12I ACEDisplayCosetTable(i) F
I ACEDisplayCosetTable() F
I ACEDisplayCosetTable(i, [val]) F
I ACEDisplayCosetTable([val]) F
I ACEDisplayCosetTable(i, [val, last]) F
I ACEDisplayCosetTable([val, last]) F
I ACEDisplayCosetTable(i, [val, last, by]) F
I ACEDisplayCosetTable([val, last, by]) F

compact and display the (possibly incomplete) coset table of the ith (or default) process started by ACEStart;
val must be an integer, and last and by must be positive integers. In the first two forms of the command,
the entire coset table is displayed, without orders or coset representatives. In the third and fourth forms,

54 Chapter 6. Functions for Using ACE Interactively

the absolute value of val is taken to be the last line of the table to be displayed (and 1 is taken to be the
first); in the fifth and sixth forms, |val| is taken to be the first line of the table to be displayed, and last is
taken to be the number of the last line to be displayed. In the last two forms, the table is displayed from
line |val| to line last in steps of by . If val is negative, then the orders modulo the subgroup (if available)
and coset representatives are displayed also.

Note: The coset table displayed will normally only be lenlex standardised if the call to ACEDisplay-
CosetTable is preceded by ACEStandardCosetNumbering (see 6.7.2). The options lenlex (see 4.11.4) and
semilenlex (see 4.11.5) are only executed by ACECosetTable (see 1.2.1). The ACE binary does not provide
semilenlex standardisation, and hence ACEDisplayCosetTable will never display a semilenlex standard
coset table.

13I ACECosetRepresentative(i, n) F
I ACECosetRepresentative(n) F

return, for the ith (or default) process started by ACEStart, the coset representative of coset n of the current
coset table held by ACE, where n must be a positive integer.

14I ACECosetRepresentatives(i) F
I ACECosetRepresentatives() F

return, for the ith (or default) process started by ACEStart, the list of coset representatives of the current
coset table held by ACE.

15I ACETransversal(i) F
I ACETransversal() F

return, for the ith (or default) process started by ACEStart, the list of coset representatives of the current
coset table held by ACE, if the current table is complete, and fail otherwise. Essentially, ACETransversal(i)
= ACECosetRepresentatives(i) for a complete table.

16I ACECycles(i) F
I ACECycles() F
I ACEPermutationRepresentation(i) F
I ACEPermutationRepresentation() F

return, for the ith (or default) process started by ACEStart, a list of permutations corresponding to the
group generators, (i.e., the permutation representation), if the current coset table held by ACE is complete
or fail, otherwise. In the event of failure a message is emitted to Info at InfoACE or InfoWarning level 1.

17I ACETraceWord(i, n, word) F
I ACETraceWord(n, word) F

for the ith (or default) interactive ACE process started by ACEStart, trace word through ACE’s coset table,
starting at coset n, and return the final coset number if the trace completes, and fail otherwise. In Group
Theory terms, if the cosets of a subgroup H in a group G are the subject of interactive ACE process i and
the coset identified by that process by the integer n corresponds to some coset Hx , for some x in G , and word
represents the element g of G , then, providing the current coset table is complete enough, ACETraceWord(
i, n, word) returns the integer identifying the coset Hxg .

Notes: You may wish to compact ACE’s coset table first, either explicitly via ACERecover (see 6.7.1), or,
implicitly, via any function call that invokes ACE’s compaction routine (see 6.7.1 note).

If you actually wanted ACE’s coset representative, then, for a compact table, feed the output of ACETrace-
Word to ACECosetRepresentative (see 6.5.13).

Section 5. Interactive Query Functions and an Option Setting Function 55

18I ACEOrders(i) F
I ACEOrders() F
I ACEOrders(i : suborder := suborder) F
I ACEOrders(: suborder := suborder) F

for the ith (or default) interactive ACE process started by ACEStart, search for all coset numbers whose
representatives’ orders (modulo the subgroup) are either finite, or, if invoked with the suborder option, are
multiples of suborder , where suborder should be a positive integer. ACEOrders returns a (possibly empty)
list of records, each with fields coset, order and rep, which are respectively, the coset number, its order
modulo the subgroup, and a representative for each coset number satisfying the criteria of the search.

Note: You may wish to compact ACE’s coset table first, either explicitly via ACERecover (see 6.7.1), or,
implicitly, via any function call that invokes ACE’s compaction routine (see 6.7.1 note).

19I ACEOrder(i, suborder) F
I ACEOrder(suborder) F

for the ith (or default) interactive ACE process started by ACEStart, search for coset number(s) whose coset
representatives have order modulo the subgroup a multiple of suborder . When suborder is a positive integer,
ACEOrder returns just one record with fields coset, order and rep, which are respectively, the coset number,
its order modulo the subgroup, and a representative for the first coset number satisfying the criteria of the
search, or fail if there is no such coset number. The value of suborder may also be a negative integer,
in which case, ACEOrder(i, suborder) is equivalent to ACEOrders(i : suborder := |suborder|); or
suborder may be zero, in which case, ACEOrder(i, 0) is equivalent to ACEOrders(i).

Note: You may wish to compact ACE’s coset table first, either explicitly via ACERecover (see 6.7.1), or,
implicitly, via any function call that invokes ACE’s compaction routine (see 6.7.1 note).

20I ACECosetOrderFromRepresentative(i, cosetrep) F
I ACECosetOrderFromRepresentative(cosetrep) F

for the ith (or default) interactive ACE process return the order (modulo the subgroup) of the coset with
representative cosetrep, a word in the free group generators.

Note: ACECosetOrderFromRepresentative calls ACETraceWord to determine the coset (number) to which
cosetrep belongs, and then scans the output of ACEOrders to determine the order of the coset (number).

21I ACECosetsThatNormaliseSubgroup(i, n) F
I ACECosetsThatNormaliseSubgroup(n) F

for the ith (or default) interactive ACE process started by ACEStart, determine non-trivial (i.e. other than
coset 1) coset numbers whose representatives normalise the subgroup.

– If n > 0, the list of the first n non-trivial coset numbers whose representatives normalise the subgroup
is returned.

– If n < 0, a list of records with fields coset and rep which represent the coset number and a representa-
tive, respectively, of the first n non-trivial coset numbers whose representatives normalise the subgroup
is returned.

– If n = 0, a list of records with fields coset and rep which represent the coset number and a repre-
sentative, respectively, of all non-trivial coset numbers whose representatives normalise the subgroup is
returned.

Note: You may wish to compact ACE’s coset table first, either explicitly via ACERecover (see 6.7.1), or,
implicitly, via any function call that invokes ACE’s compaction routine (see 6.7.1 note).

56 Chapter 6. Functions for Using ACE Interactively

22I ACEStyle(i) F
I ACEStyle() F

returns the current enumeration style as one of the strings: "C", "Cr", "CR", "R", "R*", "Rc", "R/C", or
"R/C (defaulted)" (see Section 3.1).
The next two functions of this section are really intended for ACE standalone gurus. To fully understand
their output you will need to consult the standalone manual and the C source code.

23I ACEDumpVariables(i) F
I ACEDumpVariables() F
I ACEDumpVariables(i, [level]) F
I ACEDumpVariables([level]) F
I ACEDumpVariables(i, [level, detail]) F
I ACEDumpVariables([level, detail]) F

dump the internal variables of ACE of the ith (or default) process started by ACEStart; level should be one
of 0, 1, or 2, and detail should be 0 or 1.
The value of level determines which of the three levels of ACE to dump. (You will need to read the standalone
manual to understand what Levels 0, 1 and 2 are all about.) The value of detail determines the amount
of detail (detail = 0 means less detail). The first two forms of ACEDumpVariables (with no list argument)
selects level = 0, detail = 0. The third and fourth forms (with a list argument containing the integer level)
makes detail = 0. This command is intended for gurus; the source code should be consulted to see what the
output means.

24I ACEDumpStatistics(i) F
I ACEDumpStatistics() F

dump ACE’s internal statistics accumulated during the most recent enumeration of the ith (or default)
process started by ACEStart, provided the ACE binary was built with the statistics package (which it is by
default). Use ACEBinaryVersion(); (see 6.5.25) to check for the inclusion of the statistics package. See the
enum.c source file for the meaning of the variables.

25I ACEBinaryVersion(i) F
I ACEBinaryVersion() F

for the ith (or default) process started by ACEStart, print, via Info (at InfoACE level 1), version details of
the ACE binary you are currently running, including what compiler flags were set when the executable was
built, and also returns the version number of the binary as a string. Essentially the information obtained
is what is obtained via ACE’s options option (see D.5.5), and the returned value is what is stored in
ACEData.version (see 1.8.1). A typical output, illustrating the default build, is:

gap> ACEBinaryVersion();
#I ACE Binary Version: 3.001
#I ACE 3.001 executable built:
#I Mon Aug 20 20:10:07 CEST 2001
#I Level 0 options:
#I statistics package = on
#I coinc processing messages = on
#I dedn processing messages = on
#I Level 1 options:
#I workspace multipliers = decimal
#I Level 2 options:
#I host info = on
"3.001"

Notes: The ACE binary’s banner may also appear in the output (if it has not already appeared). Unlike
other ACE interface functions, the information obtained via ACEBinaryVersion(); is absolutely independent

Section 7. Steering ACE Interactively 57

of any enumeration. For this reason, we make it permissible to run ACEBinaryVersion(); when there are
no currently active interactive ACE processes; and, in such a case, ACEBinaryVersion(); emits a warning
that there are no interactive ACE sessions currently active and initiates (and closes again) its own stream
to obtain the information from the ACE binary. For the current version of the ACE package (the GAP code
component) use ACEPackageVersion(); (see 1.11.1).

6.6 Interactive Versions of Non-interactive ACE Functions
1I ACECosetTable(i [:options]) F
I ACECosetTable([:options]) F

return a coset table as a GAP object, in standard form (for GAP). These functions perform the same function
as ACECosetTableFromGensAndRels and ACECosetTable on three arguments (see 1.2.1), albeit interactively,
on the ith (or default) process started by ACEStart. If options are passed then an internal version of ACEModes
is run to determine which of the general ACE modes (see Section 6.2) ACEContinue, ACERedo or ACEStart
is possible; and (an internal version of) the first mode of these that is allowed is executed, to ensure the
resultant table is correct for the current options.

2I ACEStats(i [:options]) F
I ACEStats([:options]) F

perform the same function as ACEStats on three arguments (see 1.3.1 — non-interactive version), albeit
interactively, on the ith (or default) process started by ACEStart. If options are passed then an internal
version of ACEModes is run to determine which of the general ACE modes (see Section 6.2) ACEContinue,
ACERedo or ACEStart is possible; and (an internal version of) the first mode of these that is allowed is
executed, to ensure the resultant statistics are correct for the current options.

See Section B.3 for an example demonstrating both these functions within an interactive process.

3I IsACEGeneratorsInPreferredOrder(i) F
I IsACEGeneratorsInPreferredOrder() F

for the ith (or default) interactive ACE process started by ACEStart, return true if the group generators
of that process, are in an order that will not be changed by ACE, and false otherwise. This function
has greatest relevance to users who call ACECosetTable (see 6.6.1), with the lenlex option (see 4.11.4).
For more details, see the discussion for the non-interactive version of IsACEGeneratorsInPreferredOrder
(1.2.3), which is called with two arguments.

6.7 Steering ACE Interactively

1I ACERecover(i) F
I ACERecover() F

invoke the compaction routine on the coset table of the ith (or default) interactive ACE process started by
ACEStart, in order to recover the space used by the dead coset numbers. A CO message line is printed if
any rows of the coset table were recovered, and a co line if none were. (See Appendix A for the meanings of
these messages.)

Note: The compaction routine is called automatically when any of ACEDisplayCosetTable (see 6.5.12), ACE-
CosetRepresentative (see 6.5.13), ACECosetRepresentatives (see 6.5.14), ACETransversal (see 6.5.15),
ACECycles (see 6.5.16), ACEStandardCosetNumbering (see 6.7.2), ACECosetTable (see 1.2.1) or ACEConju-
gatesForSubgroupNormalClosure (see 6.7.10), is invoked.

2I ACEStandardCosetNumbering(i) F
I ACEStandardCosetNumbering() F

compact and then do a lenlex standardisation (see Section 3.4) of the numbering of cosets in the coset
table of the ith (or default) interactive ACE process started by ACEStart. That is, for a given ordering of

58 Chapter 6. Functions for Using ACE Interactively

the generators in the columns of the table, they produce a canonic table. A table that includes a column
for each generator inverse immediately following the column for the corresponding generator, standardised
according to the lenlex scheme, has the property that a row-major scan (i.e. a scan of the successive rows
of the body of the table row by row, from left to right) encounters previously unseen cosets in numeric
order. This function does not display the new table; use ACEDisplayCosetTable (see 6.5.12) for that.

Notes: In a lenlex canonic table, the coset representatives are ordered first according to length and then
the lexicographic order defined by the order the generators and their inverses head the columns. Note that,
unless special action is taken, ACE avoids having an involutory generator in the first column (by swapping
the first two generators), except when there is only one generator, or when the second generator is also an
involution; so the lexicographic order used by ACE need not necessarily correspond with the order in which
the generators were first put to ACE. (We have used the term “involution” above; what we really mean is a
generator x for which there is a relator x*x or x^2. Such a generator may, of course, turn out to actually be
the identity.) The function IsACEGeneratorsInPreferredOrder (see 1.2.3) detects cases when ACE would
swap the first two generators.

Standardising the coset numbering within ACE does not affect the GAP coset table obtained via ACECoset-
Table (see 1.2.1). If ACECosetTable is called without the lenlex option GAP’s default standardisation
is applied after conversion of ACE’s output, which undoes an ACE standardisation. On the other hand,
if ACECosetTable is called with the lenlex option then after a check and special action, if required, the
equivalent of a call to ACEStandardCosetNumbering is invoked, irrespective of whether it has been done by
the user beforehand. The check that is done is a call to IsACEGeneratorsInPreferredOrder (see 1.2.3) to
ensure that ACE has not swapped the first two generators. The special action taken when the call to IsACE-
GeneratorsInPreferredOrder returns false, is the setting of the asis option (see 4.13.1) to 1 and the
resubmission of the relators to ACE taking care not to submit the relator that determines the first generator
as an involution as that generator squared (these two actions together avert ACE’s swapping of the first two
generators), followed by the re-starting of the enumeration.

Guru Notes: In five of the ten standard enumeration strategies of Sims [Sim94] (i.e. the five Sims strategies
not provided by ACE), the table is standardised repeatedly. This is expensive computationally, but can result
in fewer cosets being necessary. The effect of doing this can be investigated in ACE by (repeatedly) halting
the enumeration (via restrictive options), standardising the coset numbering, and continuing (see Section C.2
for an example).

3I ACEAddRelators(i, wordlist) F
I ACEAddRelators(wordlist) F

add, for the ith (or default) interactive ACE process started by ACEStart, the words in the list wordlist to any
relators already present, and automatically invoke ACERedo, if it can be applied, or otherwise ACEStart. Note
that ACE sorts the resultant relator list, unless the asis option (see 4.13.1) has been set to 1; don’t assume,
unless asis = 1, that the new relators have been appended in user-provided order to the previously existing
relator list. ACEAddRelators also returns the new relator list. Use ACERelators (see 6.5.2) to determine the
current relator list.

4I ACEAddSubgroupGenerators(i, wordlist) F
I ACEAddSubgroupGenerators(wordlist) F

add, for the ith (or default) interactive ACE process started by ACEStart, the words in the list wordlist to any
subgroup generators already present, and automatically invoke ACERedo, if it can be applied, or otherwise
ACEStart. Note that ACE sorts the resultant subgroup generator list, unless the asis option (see 4.13.1)
has been set to 1; don’t assume, unless asis = 1, that the new subgroup generators have been appended
in user-provided order to the previously existing subgroup generator list. ACEAddSubgroupGenerators also
returns the new subgroup generator list. Use ACESubgroupGenerators (see 6.5.3) to determine the current
subgroup generator list.

Section 7. Steering ACE Interactively 59

5I ACEDeleteRelators(i, list) F
I ACEDeleteRelators(list) F

for the ith (or default) interactive ACE process started by ACEStart, delete list from the current relators, if
list is a list of words in the group generators, or those current relators indexed by the integers in list , if list
is a list of positive integers, and automatically invoke ACEStart. ACEDeleteRelators also returns the new
relator list. Use ACERelators (see 6.5.2) to determine the current relator list.

6I ACEDeleteSubgroupGenerators(i, list) F
I ACEDeleteSubgroupGenerators(list) F

for the ith (or default) interactive ACE process started by ACEStart, delete list from the current subgroup
generators, if list is a list of words in the group generators, or those current subgroup generators indexed by
the integers in list , if list is a list of positive integers, and automatically invoke ACEStart. ACEDeleteSub-
groupGenerators also returns the new subgroup generator list. Use ACESubgroupGenerators (see 6.5.3) to
determine the current subgroup generator list.

7I ACECosetCoincidence(i, n) F
I ACECosetCoincidence(n) F

for the ith (or default) interactive ACE process started by ACEStart, return the representative of coset n,
where n must be a positive integer, and add it to the subgroup generators; i.e., equates this coset with coset
1, the subgroup. ACERedo is automatically invoked.

8I ACERandomCoincidences(i, subindex) F
I ACERandomCoincidences(subindex) F
I ACERandomCoincidences(i, [subindex]) F
I ACERandomCoincidences([subindex]) F
I ACERandomCoincidences(i, [subindex, attempts]) F
I ACERandomCoincidences([subindex, attempts]) F

for the ith (or default) interactive ACE process started by ACEStart, attempt up to attempts (or, in the first
four forms, 8) times to find nontrivial subgroups with index a multiple of subindex by repeatedly making
random coset numbers coincident with coset 1 and seeing what happens. The starting coset table must be
non-empty, but must not be complete (use ACERandomlyApplyCosetCoincidence (see 6.7.9) if your table is
already complete). For each attempt, by applying ACE’s rc option (see D.2.9) random coset representatives
are repeatedly added to the subgroup and the enumeration redone. If the table becomes too small, the
attempt is aborted, the original subgroup generators restored, and another attempt made. If an attempt
succeeds, then the new set of subgroup generators is retained. ACERandomCoincidences returns the list of
new subgroup generators added. Use ACESubgroupGenerators (see 6.5.3) to determine the current subgroup
generator list.

Notes: ACERandomCoincidences may add subgroup generators even if it failed to determine a nontrivial
subgroup with index a multiple of subindex ; in such a case, the original status may be restored by applying
ACEDeleteSubgroupGenerators (see 6.7.6) with the list returned by ACERandomCoincidences.

ACERandomCoincidences applies the rc option (see D.2.9) of ACE which takes the line that if an enumeration
has already obtained a finite index then either, subindex is already a divisor of that finite index, or the request
is impossible. Thus an invocation of ACERandomCoincidences, in the case where the coset table is already
complete, is an error.

Guru Notes: A coset can have many different representatives. Consider running ACEStandardCosetNum-
bering (see 6.7.2) before ACERandomCoincidences, to canonicise the table and the representatives.

9I ACERandomlyApplyCosetCoincidence(i [: controlOptions]) F
I ACERandomlyApplyCosetCoincidence([: controlOptions]) F

for the ith (or default) interactive ACE process started by ACEStart, try to find a larger proper subgroup
(i.e. a subgroup of smaller but nontrivial index), by repeatedly applying ACECosetCoincidence (see 6.7.7)

60 Chapter 6. Functions for Using ACE Interactively

and seeing what happens; ACERandomlyApplyCosetCoincidence returns the (possibly empty) list of new
subgroup generators added. The starting coset table must already be complete (use ACERandomCoinci-
dences (see 6.7.8) if your table is not already complete). ACERandomlyApplyCosetCoincidence provides
the following four options (controlOptions).

subindex := subindex
Sets the restriction that the final index should be a multiple of subindex ; subindex must be a positive
integer divisor of the initial subgroup index.

hibound := hibound
Sets the restriction that the final index should be (strictly) less than hibound ; hibound must be an
integer that is greater than 1 and at most the initial subgroup index.

lobound := lobound
Sets the restriction that the final index should be (strictly) greater than lobound ; lobound must be
an integer that is at least 1 and (strictly) less than the initial subgroup index.

attempts := attempts
Sets the restriction that the number of applications of ACECosetCoincidence should be at most
attempts; attempts must be a positive integer.

By default, subindex = 1, hibound is the existing subgroup index, lobound = 1 and attempts = 8. If after an
attempt the new index is a multiple of subindex , less than hibound and greater than lobound then the process
terminates (and the list of new subgroup generators is returned). Otherwise, if an attempt reaches a stage
where the criteria cannot be satisfied, the attempt is aborted, the original subgroup generators restored, and
another attempt made. If no attempt is successful an empty list is returned. Use ACESubgroupGenerators
(see 6.5.3) to determine the current subgroup generator list.

10I ACEConjugatesForSubgroupNormalClosure(i) F
I ACEConjugatesForSubgroupNormalClosure() F
I ACEConjugatesForSubgroupNormalClosure(i : add) F
I ACEConjugatesForSubgroupNormalClosure(: add) F

for the ith (or default) interactive ACE process started by ACEStart, test each conjugate of a subgroup
generator by a group generator for membership in the subgroup, and return the (possibly empty) list of
conjugates that were determined to not belong to the subgroup (coset 1); and, if called with the add option,
these conjugates are also added to the existing list of subgroup generators.

Notes: A conjugate of a subgroup generator is tested for membership of the subgroup, by checking whether
it can be traced from coset 1 to coset 1 (see ACETraceWord: 6.5.17). For an incomplete coset table, such
a trace may not complete, in which case ACEConjugatesForSubgroupNormalClosure may return an empty
list even though the subgroup is not normally closed within the group.

The add option does not guarantee that the resultant subgroup is normally closed. It is still possible that
some conjugates of the newly added subgroup generators will not be elements of the subgroup.

Example: To demonstrate the usage and features of ACEConjugatesForSubgroupNormalClosure, let us
consider an example where we know pretty well what to expect.

Let G be the group, isomorphic to the symmetric group S6, with the presentation

{a, b | a2, b6, (ab−1ab)3, (ab−1ab2)4, (ab)5, (ab−2ab2)2}

(from [CM72]), and let H be the subgroup 〈ab3〉. There is an isomorphism φ from G to S6 mapping a onto
(1, 2) and ab3 onto (1, 2, 3, 4, 5, 6). It follows that φ maps ab3 into A6. So we know that the normal closure
of H has index 2 in G . Let us observe this via ACE.

First we start an enumeration with max set to 80.

Section 8. Primitive ACE Read/Write Functions 61

gap> F := FreeGroup("a", "b");;
gap> a := F.1;; b := F.2;;
gap> fgens := GeneratorsOfGroup(F);;
gap> rels := [a^2, b^6, (a*b^-1*a*b)^3, (a*b^-1*a*b^2)^4, (a*b)^5,
> (a*b^-2*a*b^2)^2];;
gap> sgens := [a*b^3];;
gap> i := ACEStart(fgens, rels, sgens : max := 80);;
gap> IsCompleteACECosetTable(i);
false
gap> ACEConjugatesForSubgroupNormalClosure(i : add);
#I ACEConjugatesForSubgroupNormalClosure: All (traceable) conjugates in subgp
[]

Though we know that H is not equal to its normal closure, we did not get any new elements (we had warned
above of such a possibility). Apparently our incomplete table is too small. So let us increase max to 100 and
continue.

gap> ACEContinue(i : max := 100);;
gap> IsCompleteACECosetTable(i);
false
gap> ACEConjugatesForSubgroupNormalClosure(i : add);
[b^-1*a*b^4]
gap> IsCompleteACECosetTable(i);
true
gap> ACEStats(i).index;
20

This time we got a new element, and after adding it to the subgroup generators we obtained a complete
table. However the resulting subgroup need not yet be the normal closure of H (and in fact we know that
it is not). So we continue with another call to the function ACEConjugatesForSubgroupNormalClosure.

gap> ACEConjugatesForSubgroupNormalClosure(i : add);
[b^-2*a*b^5, b*a*b^2]
gap> ACEStats(i).index;
2

Now we have the index that we expected. Another call to the function ACEConjugatesForSubgroupNor-
malClosure should not yield any more conjugates. We ensure that this is indeed the case and then display
the resulting list of subgroup generators.

gap> ACEConjugatesForSubgroupNormalClosure(i : add);
#I ACEConjugatesForSubgroupNormalClosure: All (traceable) conjugates in subgp
[]
gap> ACESubgroupGenerators(i);
[a*b^3, b*a*b^2, b^-1*a*b^4, b^-2*a*b^5]

6.8 Primitive ACE Read/Write Functions

For those familiar with the workings of the ACE standalone we provide primitive read/write tools to com-
municate directly with an interactive ACE process, started via ACEStart (possibly with argument 0, but this
is not essential). For the most part, it is up to the user to translate the output strings from ACE into a form
useful in GAP. However, after the group generators, relators, and subgroup generators have been set in the
ACE process, via ACEWrite, invocations of any of ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2),
ACESubgroupGenerators (see 6.5.3), or ACEParameters (see 6.5.10) will establish the corresponding GAP

62 Chapter 6. Functions for Using ACE Interactively

values. Be warned though, that unless one of the modes ACEStart (without a zero argument; see 6.1.1),
ACERedo (see 6.2.3) or ACEContinue (see 6.2.2), or their equivalent for the standalone ACE (start;, redo;,
or continue;), has been invoked since the last change of any parameter options (see 4.12.1), some of the
values reported by ACEParameters may well be incorrect.

1I ACEWrite(i, string) F
I ACEWrite(string) F

write string to the ith or default interactive ACE process; string must be in exactly the form the ACE
standalone expects. The command is echoed via Info at InfoACE level 4 (with a “ToACE> ” prompt); i.e. do
SetInfoACELevel(4); to see what is transmitted to the ACE binary. ACEWrite returns true if successful
in writing to the stream of the interactive ACE process, and fail otherwise.

Note: If ACEWrite returns fail (which means that the ACE process has died), you may like to try resur-
recting the interactive ACE process via ACEResurrectProcess (see 6.3.4).

2I ACERead(i) F
I ACERead() F

read a complete line of ACE output, from the ith or default interactive ACE process, if there is output to
be read and returns fail otherwise. When successful, the line is returned as a string complete with trailing
newline character. Please note that it is possible to be “too quick” (i.e. the return can be fail purely because
the output from ACE is not there yet), but if ACERead finds any output at all, it waits for a complete line.

3I ACEReadAll(i) F
I ACEReadAll() F

read and return as many complete lines of ACE output, from the ith or default interactive ACE process,
as there are to be read, at the time of the call, as a list of strings with the trailing newlines removed
and returns the empty list otherwise. ACEReadAll also writes each line read via Info at InfoACE level 3.
Whenever ACEReadAll finds only a partial line, it waits for the complete line, thus increasing the probability
that it has captured all the output to be had from ACE.

4I ACEReadUntil(i, IsMyLine) F
I ACEReadUntil(IsMyLine) F
I ACEReadUntil(i, IsMyLine, Modify) F
I ACEReadUntil(IsMyLine, Modify) F

read complete lines of ACE output, from the ith or default interactive ACE process, “chomps” them (i.e. re-
moves any trailing newline character), emits them to Info at InfoACE level 3, and applies the function
Modify (where Modify is just the identity map/function for the first two forms) until a “chomped” line line
for which IsMyLine(Modify(line)) is true. ACEReadUntil returns the list of Modify-ed “chomped” lines
read.

Notes: When provided by the user, Modify should be a function that accepts a single string argument.

IsMyLine should be a function that is able to accept the output of Modify (or take a single string argument
when Modify is not provided) and should return a boolean.

If IsMyLine(Modify(line)) is never true, ACEReadUntil will wait indefinitely.

A

The Meanings
of ACE’s output

messages

In this chapter, we discuss the meanings of the messages that appear in output from the ACE binary, the
verbosity of which is determined by the messages option (see 4.18.1). Actually our aim here is to concentrate
on describing those “messages” that are controlled by the messages option, namely the progress and results
messages; other output from ACE is fairly self-explanatory. (We describe some other output to give points
of reference.)

Both interactively and non-interactively, ACE output is Info-ed at InfoACE level 3. To see the Info-ed ACE
output, set the InfoLevel of InfoACE to at least 3, e.g.

gap> SetInfoACELevel(3);

This causes each line of ACE output to be prepended with “#I ”. Below, we describe the Info-ed output
observed when each of ACECosetTableFromGensAndRels, ACECosetTable, ACEStats or ACEStart is called
with three arguments, and presume that users will be able to extend the description to explain output
observed from other ACE interface functions. The first-observed (Info-ed) output from ACE, is ACE’s banner,
e.g.

#I ACE 3.001 Sun Sep 30 21:45:39 2001
#I ===
#I Host information:
#I name = rigel

If there were any errors in the directives put to ACE, or output from the options described in Appendix D,
they will appear next. Then, the next observed output is a row of three asterisks:

#I ***

Guru note: The three asterisks are generated by a “text:***” (see D.7.1) directive, emitted to ACE, so
that ACE’s response can be used as a sentinel to flush out any user errors, or any output from a user’s use
of Appendix D options.

Next, if the messages option (see 4.18.1) is set to a non-zero value, what is observed is a heading like:

#I #--- ACE 3.001: Run Parameters ---

(where 3.001 may be replaced be some later version number of the ACE binary) followed by the “input pa-
rameters” developed from the arguments and options passed to ACECosetTableFromGensAndRels, ACEStats
or ACEStart. After these appears a separator:

#I #---------------------------------

followed by any progress messages (progress messages only occur if messages is non-zero; recall that by
default messages = 0), followed by a results message.

64 Appendix A. The Meanings of ACE’s output messages

In the case of ACECosetTableFromGensAndRels, the results message is followed by a compaction (CO or
co) progress message and a coset table.

ACE’s exit banner which should look something like:

===
ACE 3.001 Sun Sep 30 22:03:36 2001

is only seen when running ACE as a standalone.

Both progress messages and the results message consist of an initial tag followed by a list of statistics.
All messages have values for the statistics a, r, h, n, h, l and c (excepting that the second h, the one
following the n statistic, is only given if hole monitoring has been turned on by setting messages < 0, which
as noted above is expensive and should be avoided unless really needed). Additionally, there may appear
the statistics: m and t (as for the results message); d; or s, d and c (as for the DS progress message). The
meanings of the various statistics and tags will follow later. The following is a sample progress message:

#I AD: a=2 r=1 h=1 n=3; h=66.67% l=1 c=+0.00; m=2 t=2

with tag AD and values for the statistics a, r, h, n, h (appears because messages < 0), l, c, m and t. The
following is a sample results message:

#I INDEX = 12 (a=12 r=16 h=1 n=16; l=3 c=0.01; m=14 t=15)

which, in this case, declares a successful enumeration of the coset numbers of a subgroup of index 12 within
a group, and, as it turns out, values for the same statistics as the sample progress message.

You should see all the above (and a little more), except that your dates and host information will no doubt
differ, by running:

gap> ACEExample("A5-C5" : echo:=0, messages:=-1);

In the following table we list the statistics that can follow a progress or results message tag, in order:

--
statistic meaning
--
a number of active coset numbers
r number of applied coset numbers
h first (potentially) incomplete row
n next coset number definition
h percentage of holes in the table (if ‘messages’$ \< 0$)
l number of main loop passes
c total CPU time
m maximum number of active coset numbers
t total number of coset numbers defined
s new deduction stack size (with DS tag)
d current deduction stack size, or

no. of non-redundant deductions retained (with DS tag)
c no. of redundant deductions discarded (with DS tag)
--

Now that we have discussed the various meanings of the statistics, it’s time to discuss the various types of
progress and results messages possible. First we describe progress messages.

Section 2. Results Messages 65

A.1 Progress Messages

A progress message (and its tag) indicates the function just completed by the enumerator. In the following
table, the possible message tags appear in the first column. In the action column, a y indicates the function
is aggregated and counted. Every time this count reaches the value of messages, a message line is printed
and the count is zeroed. Those tags flagged with a y* are only present if the appropriate option was included
when the ACE binary was compiled (a default compilation includes the appropriate options; so normally read
y* as y). Tags with an n in the action column indicate the function is not counted, and cause a message
line to be output every time they occur. They also cause the action count to be reset.

--
tag action meaning
--
AD y coset 1 application definition (‘SG’/‘RS’ phase)
RD y R-style definition
RF y row-filling definition
CG y immediate gap-filling definition
CC y* coincidence processed
DD y* deduction processed
CP y preferred list gap-filling definition
CD y C-style definition
Lx n lookahead performed (type ‘x’)
CO n table compacted
co n compaction routine called, but nothing recovered
CL n complete lookahead (table as deduction stack)
UH n updated completed-row counter
RA n remaining coset numbers applied to relators
SG n subgroup generator phase
RS n relators in subgroup phase
DS n stack overflowed (compacted and doubled)
--

A.2 Results Messages

The possible results are given in the following table; any result not listed represents an internal error and
should be reported to the ACE authors.

result tag meaning

INDEX = x finite index of ‘x’ obtained
OVERFLOW out of table space
SG PHASE OVERFLOW out of space (processing subgroup generators)
ITERATION LIMIT ‘loop’ limit triggered
TIME LIMT ‘ti’ limit triggered
HOLE LIMIT ‘ho’ limit triggered
INCOMPLETE TABLE all coset numbers applied, but table has holes
MEMORY PROBLEM out of memory (building data structures)

Notes: Recall that hole monitoring is switched on by setting a negative value for the messages (see 4.18.1)
option, but note that hole monitoring is expensive, so don’t turn it on unless you really need it. If you wish
to print out the presentation and the options, but not the progress messages, then set messages non-zero,
but very large. (You’ll still get the SG, DS, etc. messages, but not the RD, DD, etc. ones.) You can set messages
to 1, to monitor all enumerator actions, but be warned that this can yield very large output files.

B Examples

In this chapter we collect together a number of examples which illustrate the various ways in which the ACE
Package may be used, and give some interactions with the ACEExample function. In a number of cases, we
have set the InfoLevel of InfoACE to 3, so that all output from ACE is displayed, prepended by “#I ”.
Recall that to also see the commands directed to ACE (behind a “ToACE> ” prompt), you will need to set
the InfoACE level to 4. We have omitted the line

gap> RequirePackage("ace");
true

which is, of course, required at the beginning of any session requiring ACE.

B.1 Example where ACE is made the Standard Coset Enumerator

If ACE is made the standard coset enumerator, one simply uses the method of passing arguments normally
used with those commands that invoke CosetTableFromGensAndRels, but one is able to use all options
available via the ACE interface. As an example we use ACE to compute the permutation representation of a
perfect group from the data library (GAP’s perfect group library stores for each group a presentation together
with generators of a subgroup as words in the group generators such that the permutation representation
on the cosets of this subgroup will be a (nice) faithful permutation representation for the perfect group).
The example we have chosen is an extension of a group of order 16 by the simple alternating group A5.

gap> TCENUM:=ACETCENUM;; # Make ACE the standard coset enumerator
gap> G := PerfectGroup(IsPermGroup, 16*60, 1 # Arguments ... as per usual
> : max := 50, mess := 10 # ... but we use ACE options
>);
A5 2^4
gap> GeneratorsOfGroup(G); # Just to show we indeed have a perm’n rep’n
[(2,4)(3,5)(7,15)(8,14)(10,13)(12,16), (2,6,7)(3,11,12)(4,14,5)(8,9,13)(10,

15,16), (1,2)(3,8)(4,9)(5,10)(6,7)(11,15)(12,14)(13,16),
(1,3)(2,8)(4,13)(5,6)(7,10)(9,16)(11,12)(14,15),
(1,4)(2,9)(3,13)(5,14)(6,15)(7,11)(8,16)(10,12),
(1,5)(2,10)(3,6)(4,14)(7,8)(9,12)(11,16)(13,15)]

gap> Order(G);
960

The call to PerfectGroup produced an output string that identifies the group G, but we didn’t see how
ACE became involved here. Let’s redo that part of the above example after first setting the InfoLevel of
InfoACE to 3, so that we may get to glimpse what’s going on behind the scenes.

Section 1. Example where ACE is made the Standard Coset Enumerator 67

gap> SetInfoACELevel(3); # Just to see what’s going on behind the scenes
gap> # Recall that we did: TCENUM:=ACETCENUM;;
gap> G := PerfectGroup(IsPermGroup, 16*60, 1 # Arguments ... as per usual
> : max := 50, mess := 10 # ... but we use ACE options
>);
#I ACE 3.001 Sun Sep 30 22:08:11 2001
#I ===
#I Host information:
#I name = rigel
#I ***
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: G;
#I Group Generators: abstuv;
#I Group Relators: (a)^2, (s)^2, (t)^2, (u)^2, (v)^2, (b)^3, (st)^2, (uv)^2,
#I (su)^2, (sv)^2, (tu)^2, (tv)^2, asau, atav, auas, avat, Bvbu, Bsbvt,
#I Bubvu, Btbvuts, (ab)^5;
#I Subgroup Name: H;
#I Subgroup Generators: a, b;
#I Wo:1000000; Max:50; Mess:10; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:21; Look:0; Com:10;
#I C:0; R:0; Fi:11; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I SG: a=1 r=1 h=1 n=2; l=1 c=+0.00; m=1 t=1
#I RD: a=11 r=1 h=1 n=12; l=2 c=+0.00; m=11 t=11
#I RD: a=21 r=2 h=1 n=22; l=2 c=+0.00; m=21 t=21
#I CC: a=29 r=4 h=1 n=31; l=2 c=+0.00; d=0
#I CC: a=19 r=4 h=1 n=31; l=2 c=+0.00; d=0
#I CC: a=19 r=6 h=1 n=36; l=2 c=+0.00; d=0
#I INDEX = 16 (a=16 r=36 h=1 n=36; l=3 c=0.00; m=30 t=35)
#I CO: a=16 r=17 h=1 n=17; c=+0.00
#I coset | b B a s t u v
#I -------+---
#I 1 | 1 1 1 2 3 4 5
#I 2 | 11 14 4 1 6 8 9
#I 3 | 13 15 5 6 1 10 11
#I 4 | 7 5 2 8 10 1 7
#I 5 | 4 7 3 9 11 7 1
#I 6 | 8 10 7 3 2 12 14
#I 7 | 5 4 6 15 16 5 4
#I 8 | 10 6 8 4 12 2 15
#I 9 | 16 12 10 5 14 15 2
#I 10 | 6 8 9 12 4 3 16
#I 11 | 14 2 11 14 5 16 3
#I 12 | 9 16 15 10 8 6 13
#I 13 | 15 3 13 16 15 14 12
#I 14 | 2 11 16 11 9 13 6
#I 15 | 3 13 12 7 13 9 8
#I 16 | 12 9 14 13 7 11 10
A5 2^4

68 Appendix B. Examples

B.2 Example of Using ACECosetTableFromGensAndRels

The following example calls ACE for up to 800 coset numbers (max := 800) using Mendelsohn style relator
processing (mendelsohn) and sets progress messages to be printed every 500 iterations (messages :=500);
we do “SetInfoACELevel(3);” so that we may see these messages. The value of table, i.e. the GAP coset
table, immediately follows the last ACE message (“#I ”) line, but both the coset table from ACE and the
GAP coset table have been abbreviated. A slightly modified version of this example, which includes the echo
option is available on-line via table := ACEExample("perf602p5");. You may wish to peruse the notes in
the ACEExample index first, however, by executing ACEExample();. (Note that the final table output here is
lenlex standardised, since we used GAP 4.3; with GAP 4.2 the final table will be semilenlex standardised.)

gap> SetInfoACELevel(3); # So we can see the progress messages
gap> G := PerfectGroup(2^5*60, 2);;# See previous example:
gap> # "Example where ACE is made the
gap> # Standard Coset Enumerator"
gap> fgens := FreeGeneratorsOfFpGroup(G);;
gap> table := ACECosetTableFromGensAndRels(
> # arguments
> fgens, RelatorsOfFpGroup(G), fgens{[1]}
> # options
> : mendelsohn, max:=800, mess:=500);
#I ACE 3.001 Sun Sep 30 22:10:10 2001
#I ===
#I Host information:
#I name = rigel
#I ***
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: G;
#I Group Generators: abstuvd;
#I Group Relators: (s)^2, (t)^2, (u)^2, (v)^2, (d)^2, aad, (b)^3, (st)^2,
#I (uv)^2, (su)^2, (sv)^2, (tu)^2, (tv)^2, Asau, Atav, Auas, Avat, Bvbu,
#I dAda, dBdb, (ds)^2, (dt)^2, (du)^2, (dv)^2, Bubvu, Bsbdvt, Btbvuts,
#I (ab)^5;
#I Subgroup Name: H;
#I Subgroup Generators: a;
#I Wo:1000000; Max:800; Mess:500; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:1; No:28; Look:0; Com:10;
#I C:0; R:0; Fi:13; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I SG: a=1 r=1 h=1 n=2; l=1 c=+0.00; m=1 t=1
#I RD: a=321 r=68 h=1 n=412; l=5 c=+0.00; m=327 t=411
#I CC: a=435 r=162 h=1 n=719; l=9 c=+0.00; d=0
#I CL: a=428 r=227 h=1 n=801; l=13 c=+0.00; m=473 t=800
#I DD: a=428 r=227 h=1 n=801; l=14 c=+0.00; d=33
#I CO: a=428 r=192 h=243 n=429; l=15 c=+0.00; m=473 t=800
#I INDEX = 480 (a=480 r=210 h=484 n=484; l=18 c=0.00; m=480 t=855)
#I CO: a=480 r=210 h=481 n=481; c=+0.00
#I coset | a A b B s t u v d
#I -------+---
#I 1 | 1 1 7 6 2 3 4 5 1
#I 2 | 4 4 22 36 1 8 10 11 2
... 476 lines omitted here ...

Section 3. Example of Using ACE Interactively (Using ACEStart) 69

#I 479 | 479 479 384 383 475 468 470 471 479
#I 480 | 480 480 421 420 470 469 475 476 480
[[1, 8, 13, 6, 7, 4, 5, 2, 34, 35, 32, 33, 3, 48, 49, 46, 47, 57, 59, 28,

21, 25, 62, 64, 22, 26, 66, 20, 67, 69, 74, 11, 12, 9, 10, 89, 65, 87,
... 30 lines omitted here ...

477, 438, 478, 446, 475, 479, 471, 473, 476, 469],
[1, 8, 13, 6, 7, 4, 5, 2, 34, 35, 32, 33, 3, 48, 49, 46, 47, 57, 59, 28,

21, 25, 62, 64, 22, 26, 66, 20, 67, 69, 74, 11, 12, 9, 10, 89, 65, 87,
... 30 lines omitted here ...

477, 438, 478, 446, 475, 479, 471, 473, 476, 469],
... 363 lines omitted here ...
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
... 30 lines omitted here ...

472, 473, 474, 475, 476, 477, 478, 479, 480]]

B.3 Example of Using ACE Interactively (Using ACEStart)

Now we illustrate a simple interactive process, with an enumeration of an index 12 subgroup (isomorphic
to C5) within A5. Observe that we have relied on the default level of messaging from ACE (messages = 0)
which gives a result line (the “#I INDEX” line here) only, without parameter information. The result line is
visible in the Info-ed component of the output below because we set the InfoLevel of InfoACE to a value
of at least 2 (in fact we set it to 3; doing “SetInfoACELevel(2);” would make only the result line visible).
We have however used the option echo, so that we can see how the interface handled the arguments and
options. On-line try: SetInfoACELevel(3); ACEExample("A5-C5", ACEStart); (this is nearly equivalent
to the sequence following, but the variables F, a, b, G are not accessible, being “local” to ACEExample).

gap> SetInfoACELevel(3); # So we can see output from ACE binary
gap> F := FreeGroup("a","b");; a := F.1;; b := F.2;;
gap> G := F / [a^2, b^3, (a*b)^5];
<fp group on the generators [a, b]>
gap> ACEStart(FreeGeneratorsOfFpGroup(G), RelatorsOfFpGroup(G), [a*b]
> # Options
> : echo, # Echo handled by GAP (not ACE)
> enum := "A_5", # Give the group G a meaningful name
> subg := "C_5"); # Give the subgroup a meaningful name
ACEStart called with the following arguments:
Group generators : [a, b]
Group relators : [a^2, b^3, a*b*a*b*a*b*a*b*a*b]
Subgroup generators : [a*b]
#I ACE 3.001 Sun Sep 30 22:11:42 2001
#I ===
#I Host information:
#I name = rigel
ACEStart called with the following options:
echo := true (not passed to ACE)
enum := A_5
subg := C_5
#I ***
#I INDEX = 12 (a=12 r=16 h=1 n=16; l=3 c=0.00; m=14 t=15)
1

70 Appendix B. Examples

The return value on the last line is an “index” that identifies the interactive process; we use this “index”
with functions that need to interact with the interactive ACE process; we now demonstrate this with the
interactive version of ACEStats:

gap> ACEStats(1);
rec(index := 12, cputime := 0, cputimeUnits := "10^-2 seconds",
activecosets := 12, maxcosets := 14, totcosets := 15)

gap> # Actually, we didn’t need to pass an argument to ACEStats()
gap> # ... we could have relied on the default:
gap> ACEStats();
rec(index := 12, cputime := 0, cputimeUnits := "10^-2 seconds",
activecosets := 12, maxcosets := 14, totcosets := 15)

Similarly, we may use ACECosetTable with 0 or 1 arguments, which is the interactive version of ACE-
CosetTableFromGensAndRels, and which returns a standard table (with GAP 4.2 that means a semilenlex
standard table, but with GAP 4.3, as below, a lenlex standard table is returned).

gap> ACECosetTable(); # Interactive version of ACECosetTableFromGensAndRels()
#I CO: a=12 r=13 h=1 n=13; c=+0.00
#I coset | b B a
#I -------+---------------------
#I 1 | 3 2 2
#I 2 | 1 3 1
#I 3 | 2 1 4
#I 4 | 8 5 3
#I 5 | 4 8 6
#I 6 | 9 7 5
#I 7 | 6 9 8
#I 8 | 5 4 7
#I 9 | 7 6 10
#I 10 | 12 11 9
#I 11 | 10 12 12
#I 12 | 11 10 11
[[2, 1, 4, 3, 7, 8, 5, 6, 10, 9, 12, 11],
[2, 1, 4, 3, 7, 8, 5, 6, 10, 9, 12, 11],
[3, 1, 2, 5, 6, 4, 8, 9, 7, 11, 12, 10],
[2, 3, 1, 6, 4, 5, 9, 7, 8, 12, 10, 11]]

gap> # To terminate the interactive process we do:
gap> ACEQuit(1); # Again, we could have omitted the 1
gap> # If we had more than one interactive process we could have
gap> # terminated them all in one go with:
gap> ACEQuitAll();

B.4 Fun with ACEExample

First let’s see the ACEExample index (obtained with no argument, with "index" as argument, or with a
non-existent example as argument):

Section 4. Fun with ACEExample 71

gap> ACEExample();
#I ACEExample Index (Table of Contents)
#I ------------------------------------
#I This table of possible examples is displayed when calling ACEExample
#I with no arguments, or with the argument: "index" (meant in the sense
#I of ‘list’), or with a non-existent example name.
#I
#I The following ACE examples are available (in each case, for a subgroup
#I H of a group G, the cosets of H in G are enumerated):
#I
#I Example G H strategy
#I ------- - - --------
#I "A5" A_5 Id default
#I "A5-C5" A_5 C_5 default
#I "C5-fel0" C_5 Id felsch := 0
#I "F27-purec" F(2,7) = C_29 Id purec
#I "F27-fel0" F(2,7) = C_29 Id felsch := 0
#I "F27-fel1" F(2,7) = C_29 Id felsch := 1
#I "M12-hlt" M_12 (Matthieu group) Id hlt
#I "M12-fel1" M_12 (Matthieu group) Id felsch := 1
#I "SL219-hard" SL(2,19) |G : H| = 180 hard
#I "perf602p5" PerfectGroup(60*2^5,2) |G : H| = 480 default
#I * "2p17-fel1" |G| = 2^17 Id felsch := 1
#I "2p17-fel1a" |G| = 2^17 |G : H| = 1 felsch := 1
#I "2p17-2p3-fel1" |G| = 2^17 |G : H| = 2^3 felsch := 1
#I "2p17-2p14-fel1" |G| = 2^17 |G : H| = 2^14 felsch := 1
#I "2p17-id-fel1" |G| = 2^17 Id felsch := 1
#I * "2p18-fel1" |G| = 2^18 |G : H| = 2 felsch := 1
#I * "big-fel1" |G| = 2^18.3 |G : H| = 6 felsch := 1
#I * "big-hard" |G| = 2^18.3 |G : H| = 6 hard
#I
#I Notes
#I -----
#I 1. The example (first) argument of ACEExample() is a string; each
#I example above is in double quotes to remind you to include them.
#I 2. By default, ACEExample applies ACEStats to the chosen example. You
#I may alter the ACE function used, by calling ACEExample with a 2nd
#I argument; choose from: ACECosetTableFromGensAndRels (or, equival-
#I ently ACECosetTable), or ACEStart, e.g. ‘ACEExample("A5", ACEStart);’
#I 3. You may call ACEExample with additional ACE options (entered after a
#I colon in the usual way for options), e.g. ‘ACEExample("A5" : hlt);’
#I 4. Try the *-ed examples to explore how to modify options when an
#I enumeration fails (just follow the instructions you get within the
#I break-loop, or see Notes 2. and 3.).
#I 5. Try ‘SetInfoACELevel(3);’ before calling ACEExample, to see the
#I effect of setting the "mess" (= "messages") option.
#I 6. To suppress a long output, use a double semicolon (‘;;’) after the
#I ACEExample command. (However, this does not suppress Info-ed output.)
#I 7. Also, try ‘SetInfoACELevel(2);’ or ‘SetInfoACELevel(4);’ before
#I calling ACEExample.
gap>

72 Appendix B. Examples

Notice that the example we first met in Section 1.2, the Fibonacci group F(2,7), is available via examples
"F27-purec", "F27-fel0", and "F27-fel1" (with 2nd argument ACECosetTableFromGensAndRels to pro-
duce a coset table), except that each of these enumerate the cosets of its trivial subgroup (of index 29). Let’s
experiment with the first of these F(2,7) examples; since this example uses the messages option, we ought
to set the InfoLevel of InfoACE to 3, first, but since the coset table is quite long, we will be content for
the moment with applying the default function ACEStats to the example.

Before exhibiting the example we list a few observations that should be made. Observe that the first group
of Info lines list the commands that are executed; these lines are followed by the result of the echo option
(see 4.11.12); which in turn are followed by Info messages from ACE courtesy of the non-zero value of the
messages option (and we see these because we first set the InfoLevel of InfoACE to 3); and finally, we get
the output (record) of the ACEStats command.

Observe also that ACE uses the same generators as are input; this will always occur if you stick to single
lowercase letters for your generator names. Note, also that capitalisation is used by ACE as a short-hand for
inverses, e.g. C = c^-1 (see Group Relators in the ACE “Run Parameters” block).

gap> SetInfoACELevel(3);
gap> ACEExample("F27-purec");
#I # ACEExample "F27-purec" : enumeration of cosets of H in G,
#I # where G = F(2,7) = C_29, H = Id, using purec strategy.
#I #
#I # F, G, a, b, c, d, e, x, y are local to ACEExample
#I # We define F(2,7) on 7 generators
#I F := FreeGroup("a","b","c","d","e", "x", "y");
#I a := F.1; b := F.2; c := F.3; d := F.4;
#I e := F.5; x := F.6; y := F.7;
#I G := F / [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1,
#I e*x*y^-1, x*y*a^-1, y*a*b^-1];
#I ACEStats(
#I FreeGeneratorsOfFpGroup(G),
#I RelatorsOfFpGroup(G),
#I [] # Generators of identity subgroup (empty list)
#I # Options that don’t affect the enumeration
#I : echo, enum := "F(2,7), aka C_29", subg := "Id",
#I # Other options
#I wo := "2M", mess := 25000, purec);
ACEStats called with the following arguments:
Group generators : [a, b, c, d, e, x, y]
Group relators : [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1, e*x*y^-1,
x*y*a^-1, y*a*b^-1]

Subgroup generators : []
#I ACE 3.001 Sun Sep 30 22:16:08 2001
#I ===
#I Host information:
#I name = rigel
ACEStats called with the following options:
echo := true (not passed to ACE)
enum := F(2,7), aka C_29
subg := Id
wo := 2M
mess := 25000
purec (no value, passed to ACE via option: pure c)
#I ***

Section 4. Fun with ACEExample 73

#I #--- ACE 3.001: Run Parameters ---
#I Group Name: F(2,7), aka C_29;
#I Group Generators: abcdexy;
#I Group Relators: abC, bcD, cdE, deX, exY, xyA, yaB;
#I Subgroup Name: Id;
#I Subgroup Generators: ;
#I Wo:2M; Max:142855; Mess:25000; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
#I C:1000; R:0; Fi:1; PMod:0; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I DD: a=5290 r=1 h=1050 n=5291; l=8 c=+0.00; d=2
#I CD: a=10410 r=1 h=2149 n=10411; l=13 c=+0.01; m=10410 t=10410
#I DD: a=15428 r=1 h=3267 n=15429; l=18 c=+0.01; d=0
#I DD: a=20430 r=1 h=4386 n=20431; l=23 c=+0.02; d=1
#I DD: a=25397 r=1 h=5519 n=25399; l=28 c=+0.01; d=1
#I CD: a=30313 r=1 h=6648 n=30316; l=33 c=+0.01; m=30313 t=30315
#I DS: a=32517 r=1 h=7326 n=33240; l=36 c=+0.01; s=2000 d=997 c=4
#I DS: a=31872 r=1 h=7326 n=33240; l=36 c=+0.00; s=4000 d=1948 c=53
#I DS: a=29077 r=1 h=7326 n=33240; l=36 c=+0.00; s=8000 d=3460 c=541
#I DS: a=23433 r=1 h=7326 n=33240; l=36 c=+0.01; s=16000 d=5940 c=2061
#I DS: a=4163 r=1 h=7326 n=33240; l=36 c=+0.03; s=32000 d=447 c=15554
#I INDEX = 29 (a=29 r=1 h=33240 n=33240; l=37 c=0.15; m=33237 t=33239)
rec(index := 29, cputime := 15, cputimeUnits := "10^-2 seconds",
activecosets := 29, maxcosets := 33237, totcosets := 33239)

Now let’s see that we can add some new options, even ones that over-ride the example’s options; but first
we’ll reduce the output a bit by setting the InfoLevel of InfoACE to 2 and since we are not going to
observe any progress messages from ACE with that InfoACE level we’ll set messages := 0; also we’ll use
the function ACECosetTableFromGensAndRels and so it’s like our first encounter with F(2,7) we’ll add the
subgroup generator c via sg := ["c"] (see D.2.4). Observe that "c" is a string not a GAP group generator;
to convert a list of GAP words sgens in generators fgens, suitable for an assignment of the sg option use the
construction: ToACEWords(fgens, sgens) (see 6.3.6). Note again that if only single lowercase letter strings
are used to identify the GAP group generators, the same strings are used to identify those generators in
ACE. (It’s actually fortunate that we could pass the value of sg as a string here, since the generators of each
ACEExample example are local variables and so are not accessible, though we could call ACEExample with
2nd argument ACEStart and use ACEGroupGenerators to get at them.) For good measure, we also change
the string identifying the subgroup (since it will no longer be the trivial group), via the subgroup option
(see 4.19.2).

In considering the example following, observe that in the Info block all the original example options are listed
along with our new options sg := ["c"], messages := 0 after the tag “# User Options”. Following
the Info block there is a block due to echo; in its listing of the options first up there is aceexampleoptions
alerting us that we passed some ACEExample options; observe also that in this block subg := Id and mess
:= 25000 disappear (they are over-ridden by subgroup := "< c >", messages := 0, but the quotes for
the value of subgroup are not visible); note that we don’t have to use the same abbreviations for options to
over-ride them. Also observe that our new options are last.

gap> SetInfoACELevel(2);
gap> ACEExample("F27-purec", ACECosetTableFromGensAndRels
> : sg := ["c"], subgroup := "< c >", messages := 0);
#I # ACEExample "F27-purec" : enumeration of cosets of H in G,
#I # where G = F(2,7) = C_29, H = Id, using purec strategy.
#I #

74 Appendix B. Examples

#I # F, G, a, b, c, d, e, x, y are local to ACEExample
#I # We define F(2,7) on 7 generators
#I F := FreeGroup("a","b","c","d","e", "x", "y");
#I a := F.1; b := F.2; c := F.3; d := F.4;
#I e := F.5; x := F.6; y := F.7;
#I G := F / [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1,
#I e*x*y^-1, x*y*a^-1, y*a*b^-1];
#I ACECosetTableFromGensAndRels(
#I FreeGeneratorsOfFpGroup(G),
#I RelatorsOfFpGroup(G),
#I [] # Generators of identity subgroup (empty list)
#I # Options that don’t affect the enumeration
#I : echo, enum := "F(2,7), aka C_29", subg := "Id",
#I # Other options
#I wo := "2M", mess := 25000, purec,
#I # User Options
#I sg := ["c"],
#I subgroup := "< c >",
#I messages := 0);
ACECosetTableFromGensAndRels called with the following arguments:
Group generators : [a, b, c, d, e, x, y]
Group relators : [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1, e*x*y^-1,
x*y*a^-1, y*a*b^-1]

Subgroup generators : []
ACECosetTableFromGensAndRels called with the following options:
aceexampleoptions := true (inserted by ACEExample, not passed to ACE)
echo := true (not passed to ACE)
enum := F(2,7), aka C_29
wo := 2M
purec (no value, passed to ACE via option: pure c)
sg := ["c"] (brackets are not passed to ACE)
subgroup := < c >
messages := 0
#I INDEX = 1 (a=1 r=2 h=2 n=2; l=4 c=0.00; m=332 t=332)
[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1],
[1], [1], [1], [1]]

Now following on from our last example we shall demonstrate how one can recover from a break-loop
(see Section 1.2). To force the break-loop we pass max := 2 (see 4.17.6), while using the ACE interface
function ACECosetTableFromGensAndRels with ACEExample; in this way, ACE will not be able to complete
the enumeration, and hence enters a break-loop when it tries to provide a complete coset table. While we’re
at it we’ll pass the hlt (see 5.1.5) strategy option (which will over-ride purec). (The InfoACE level is still
2.) To avoid getting a trace-back during the break-loop (which can look a little scary to the unitiated) we
will set OnBreak (see 6.3.3) as follows:

gap> NormalOnBreak := OnBreak;; # Save the old value to restore it later
gap> OnBreak := function() Where(0); end;;

Note that there are some “user-input” comments inserted at the brk> prompt.

Section 4. Fun with ACEExample 75

gap> ACEExample("F27-purec", ACECosetTableFromGensAndRels
> : sg := ["c"], subgroup := "< c >", max := 2, hlt);
#I # ACEExample "F27-purec" : enumeration of cosets of H in G,
#I # where G = F(2,7) = C_29, H = Id, using purec strategy.
#I #
#I # F, G, a, b, c, d, e, x, y are local to ACEExample
#I # We define F(2,7) on 7 generators
#I F := FreeGroup("a","b","c","d","e", "x", "y");
#I a := F.1; b := F.2; c := F.3; d := F.4;
#I e := F.5; x := F.6; y := F.7;
#I G := F / [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1,
#I e*x*y^-1, x*y*a^-1, y*a*b^-1];
#I ACECosetTableFromGensAndRels(
#I FreeGeneratorsOfFpGroup(G),
#I RelatorsOfFpGroup(G),
#I [] # Generators of identity subgroup (empty list)
#I # Options that don’t affect the enumeration
#I : echo, enum := "F(2,7), aka C_29", subg := "Id",
#I # Other options
#I wo := "2M", mess := 25000, purec,
#I # User Options
#I sg := ["c"],
#I subgroup := "< c >",
#I max := 2,
#I hlt := true);
ACECosetTableFromGensAndRels called with the following arguments:
Group generators : [a, b, c, d, e, x, y]
Group relators : [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1, e*x*y^-1,
x*y*a^-1, y*a*b^-1]

Subgroup generators : []
ACECosetTableFromGensAndRels called with the following options:
aceexampleoptions := true (inserted by ACEExample, not passed to ACE)
echo := true (not passed to ACE)
enum := F(2,7), aka C_29
wo := 2M
mess := 25000
purec (no value, passed to ACE via option: pure c)
sg := ["c"] (brackets are not passed to ACE)
subgroup := < c >
max := 2
hlt (no value)
#I OVERFLOW (a=2 r=1 h=1 n=3; l=4 c=0.00; m=2 t=2)
Error, no coset table ...
the ‘ACE’ coset enumeration failed with the result:
OVERFLOW (a=2 r=1 h=1 n=3; l=4 c=0.00; m=2 t=2)
Entering break read-eval-print loop ...
try relaxing any restrictive options
e.g. try the ‘hard’ strategy or increasing ‘workspace’
type: ’?strategy options’ for info on strategies
type: ’?options for ACE’ for info on options
type: ’DisplayACEOptions();’ to see current ACE options;
type: ’SetACEOptions(:<option1> := <value1>, ...);’

76 Appendix B. Examples

to set <option1> to <value1> etc.
(i.e. pass options after the ’:’ in the usual way)
... and then, type: ’return;’ to continue.
Otherwise, type: ’quit;’ to quit to outer loop.
brk> # Let’s give ACE enough coset numbers to work with ...
brk> # and while we’re at it see the effect of ’echo := 2’ :
brk> SetACEOptions(: max := 0, echo := 2);
brk> # Let’s check what the options are now:
brk> DisplayACEOptions();
rec(
enum := "F(2,7), aka C_29",
wo := "2M",
mess := 25000,
purec := true,
sg := ["c"],
subgroup := "< c >",
hlt := true,
max := 0,
echo := 2)

brk> # That’s ok ... so now we ’return;’ to escape the break-loop
brk> return;
ACECosetTableFromGensAndRels called with the following arguments:
Group generators : [a, b, c, d, e, x, y]
Group relators : [a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*x^-1, e*x*y^-1,
x*y*a^-1, y*a*b^-1]

Subgroup generators : []
ACECosetTableFromGensAndRels called with the following options:
enum := F(2,7), aka C_29
wo := 2M
mess := 25000
purec (no value, passed to ACE via option: pure c)
sg := ["c"] (brackets are not passed to ACE)
subgroup := < c >
hlt (no value)
max := 0
echo := 2 (not passed to ACE)
Other options set via ACE defaults:
asis := 0
compaction := 10
ct := 0
dmode := 0
dsize := 1000
fill := 1
hole := -1
lookahead := 1
loop := 0
mendelsohn := 0
no := 0
path := 0
pmode := 0
psize := 256

Section 5. Using ACEReadResearchExample 77

row := 1
rt := 1000
time := -1
#I INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.00; m=2049 t=3127)
[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1],
[1], [1], [1], [1]]

Observe that purec did not disappear from the option list; nevertheless, it is over-ridden by the hlt option
(at the ACE level). Observe the “Other options set via ACE defaults” list of options that has resulted
from having the echo := 2 option (see 4.11.12). Observe, also, that hlt is nowhere near as good, here, as
purec (refer to Section 1.2): whereas purec completed the same enumeration with a total number of coset
numbers of 332, the hlt strategy required 3127.

Before we finish this section, let us say something about the examples listed when one calls ACEExample with
no arguments that have a * beside them; these are examples for which the enumeration fails to complete.
The first such example listed is "2p17-fel1", where a group of order 217 is enumerated over the identity
subgroup with the felsch := 1 strategy. The enumeration fails after defining a total number of 416664 coset
numbers. (In fact, the enumeration can be made to succeed by simply increasing workspace to "4700k",
but in doing so a total of 783255 coset numbers are defined.) With the example "2p17-fel1a" the same
group is again enumerated, again with the felsch := 1 strategy, but this time over the group itself and after
tweaking a few options, to see how well we can do. The other "2p17-XXX " examples are again enumerations
of the same group but over smaller and smaller subgroups, until we once again enumerate over the identity
subgroup but far more efficiently this time (only needing to define a total of 550659 coset numbers, which
can be achieved with workspace set to "3300k").

The other *-ed examples enumerate overgroups of the group of order 217 of the "2p17-XXX " examples. It’s
recommended that you try these with second argument ACECosetTableFromGensAndRels so that you enter
a break-loop, where you can experiment with modifying the options using SetACEOptions. The example
"2p18-fel1" can be made to succeed with hard, mend, workspace := "10M"; why don’t you see if you
can do better! There are no hints for the other two *-ed examples; they are exercises for you to try.

Let’s now restore the original value of OnBreak:

gap> OnBreak := NormalOnBreak;;

Of course, running ACEExample with ACEStart as second argument opens up far more flexibility. Try it!
Have fun! Play with as many options as you can.

B.5 Using ACEReadResearchExample

Without an argument, the function ACEReadResearchExample reads the file "pgrelfind.g" in the res-
examples directory which defines GAP functions such as PGRelFind, that were used in [CHHR01] to show
that the group L3(5) has deficiency 0.

The deficiency of a finite presentation {X | R} of a finite group G is |R| − |X |, and the deficiency of the
group G is the minimum of the deficiencies of all finite presentations of G .

Let us now invoke ACEReadResearchExample with no arguments:

gap> ACEReadResearchExample();
#I The following are now defined:
#I
#I Functions:
#I PGRelFind, ClassesGenPairs, TranslatePresentation,
#I IsACEResExampleOK
#I Variables:

78 Appendix B. Examples

#I ACEResExample, ALLRELS, newrels, F, a, b, newF, x, y,
#I L2_8, L2_16, L3_3s, U3_3s, M11, L2_32,
#I U3_4s, J1s, L3_5s, PSp4_4s, presentations
#I
#I Also:
#I
#I TCENUM = ACETCENUM (Todd-Coxeter Enumerator is now ACE)
#I
#I For an example of their application, you might like to try:
#I gap> ACEReadResearchExample("doL28.g" : optex := [1,2,4,5,8]);
#I (the output is 65 lines followed by a ’gap> ’ prompt)
#I
#I For information type: ?Using ACEReadResearchExample
gap>

The output (Info-ed at InfoACELevel 1) states that a number of new functions are defined. During a GAP
session, you can find out details of these functions by typing:

gap> ?Using ACEReadResearchExample

C

Finer Points
with Examples

The examples in this chapter are intended to provide the nearest GAP equivalent of the similarly named
sections in Appendix A of ace3001.dvi (the standalone manual in directory standalone-doc). There is a
lot of detail here, which the novice ACE Package user won’t want to know about. Please, despite the name
of the first section of this chapter, read the examples in Appendix B first.

C.1 Getting Started

Each of the functions ACECosetTableFromGensAndRels (see 1.2.1), ACEStats (see 1.3.1 — non-interactive
version) and ACEStart (see 6.1.1), may be called with three arguments: fgens (the group generators), rels
(the group relators), and sgens (the subgroup generators). While it is legal for the arguments rels and sgens
to be empty lists, it is always an error for fgens to be empty, e.g.

gap> ACEStats([],[],[]);
Error, fgens (arg[1]) must be a non-empty list of group generators ...
called from
CALL_ACE("ACEStats", arg[1], arg[2], arg[3]) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
type: ’quit;’ to quit to outer loop, or
type: ’fgens := <val>; return;’ to assign <val> to fgens to continue.
brk> fgens := FreeGeneratorsOfFpGroup(FreeGroup("a"));
[a]
brk> return;
rec(index := 0, cputime := 13, cputimeUnits := "10^-2 seconds",
activecosets := 499998, maxcosets := 499998, totcosets := 499998)

The example shows that the ACE package does allow you to recover from the break-loop. However, the
definition of fgens above is local to the break-loop, and in any case we shall want two generators for the
examples we wish to consider and raise some other points; so let us re-define fgens and start again:

gap> F := FreeGroup("a", "b");; fgens := FreeGeneratorsOfFpGroup(F);;

An ACEStats example

By default, the presentation is not echoed; use the echo (see 4.11.12) option if you want that. Also, by
default, the ACE binary only prints a results message, but we won’t see that unless we set InfoACE to a
level of at least 2 (see 1.9.3):

gap> SetInfoACELevel(2);

Calling ACEStats with arguments fgens, [], [], defines a free froup with 2 generators, since the second
argument defines an empty relator list; and since the third argument is an empty list of generators, the
subgroup defined is trivial. So the enumeration overflows:

80 Appendix C. Finer Points with Examples

gap> ACEStats(fgens, [], []);
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.10; m=249998 t=2499\
98)
rec(index := 0, cputime := 10, cputimeUnits := "10^-2 seconds",
activecosets := 249998, maxcosets := 249998, totcosets := 249998)

The line starting with “#I ”. is the Info-ed results message from ACE; see Appendix A for details on
what it means. Observe that since the enumeration overflowed, ACE’s result message has been translated
into a GAP record with index field 0.

To dump out the presentation and parameters associated with an enumeration, ACE provides the sr
(see D.5.7) option. However, you won’t see output of this command, unless you set the InfoACELevel
to at least 3. Also, to ensure the reliability of the output of the sr option, an enumeration should precede
it; for ACEStats (and ACECosetTableFromGensAndRels) the directive start (see D.3.2) required to initiate
an enumeration is inserted (automatically) after all the user’s options, except if the user herself supplies an
option that initiates an enumeration (namely, one of start or begin (see D.3.2), aep (see D.1.1) or rep
(see D.1.2)). Interactively, the equivalent of the sr command is ACEParameters (see 6.5.10), which gives an
output record that is immediately GAP-usable. With the above in mind let’s rerun the enumeration and get
ACE’s dump of the presentation and parameters:

gap> SetInfoACELevel(3);
gap> ACEStats(fgens, [], [] : start, sr := 1);
#I ACE 3.001 Wed Oct 31 09:36:39 2001
#I ===
#I Host information:
#I name = rigel
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.09; m=249998 t=2499\
98)
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: G;
#I Group Generators: ab;
#I Group Relators: ;
#I Subgroup Name: H;
#I Subgroup Generators: ;
#I Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;
#I C:0; R:0; Fi:7; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
rec(index := 0, cputime := 9, cputimeUnits := "10^-2 seconds",
activecosets := 249998, maxcosets := 249998, totcosets := 249998)

Observe that at InfoACE level 3, one also gets ACE’s banner. We could have printed out the first few lines
of the coset table if we had wished, using the print (see D.5.8) option, but note as with the sr option, an
enumeration should precede it. Here’s what happens if you disregard this (recall, we still have the InfoACE
level set to 3):

gap> ACEStats(fgens, [], [] : print := [-1, 12]);
#I ACE 3.001 Wed Oct 31 09:37:37 2001
#I ===
#I Host information:
#I name = rigel
#I ** ERROR (continuing with next line)
#I no information in table
#I ***

Section 1. Getting Started 81

#I ***
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.09; m=249998 t=2499\
98)
rec(index := 0, cputime := 9, cputimeUnits := "10^-2 seconds",
activecosets := 249998, maxcosets := 249998, totcosets := 249998)

Essentially, because ACE had not done an enumeration prior to getting the print directive, it complained
with an “** ERROR”, recovered and went on with the start directive automatically inserted by the ACEStats
command: no ill effects at the GAP level, but also no table.

Now, let’s do what we should have done (to get those first few lines of the coset table), namely, insert the
start option before the print option (the InfoACE level is still 3):

gap> ACEStats(fgens, [], [] : start, print := [-1, 12]);
#I ACE 3.001 Wed Oct 31 09:38:28 2001
#I ===
#I Host information:
#I name = rigel
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.10; m=249998 t=2499\
98)
#I co: a=249998 r=83333 h=83333 n=249999; c=+0.00
#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8 0 a
#I 3 | 1 9 10 11 0 A
#I 4 | 12 13 14 1 0 b
#I 5 | 15 16 1 17 0 B
#I 6 | 18 2 19 20 0 aa
#I 7 | 21 22 23 2 0 ab
#I 8 | 24 25 2 26 0 aB
#I 9 | 3 27 28 29 0 AA
#I 10 | 30 31 32 3 0 Ab
#I 11 | 33 34 3 35 0 AB
#I 12 | 36 4 37 38 0 ba
#I ***
rec(index := 0, cputime := 10, cputimeUnits := "10^-2 seconds",
activecosets := 249998, maxcosets := 249998, totcosets := 249998)

The values we gave to the print option, told ACE to print the first 12 lines and include coset representatives.
Note that, since there are no relators, the table has separate columns for generator inverses. So the default
workspace of 1000000 words allows a table of 249998 = 1000000/4− 2 cosets. Since row filling (see 4.14.1)
is on by default, the table is simply filled with cosets in order. Note that a compaction phase is done before
printing the table, but that this does nothing here (the lowercase co: tag), since there are no dead cosets.
The coset representatives are simply all possible freely reduced words, in length plus lexicographic (i.e.
lenlex; see Section 3.4) order.

Using ACECosetTableFromGensAndRels

The essential difference between the functions ACEStats and ACECosetTableFromGensAndRels is that ACES-
tats parses the results message from the ACE binary and outputs a GAP record containing statistics of the
enumeration, and ACECosetTableFromGensAndRels after parsing the results message, goes on to parse
ACE’s coset table, if it can, and outputs a GAP list of lists version of that table. So, if we had used ACE-
CosetTableFromGensAndRels instead of ACEStats in our examples above, we would have observed similar
output, except that we would have ended up in a break-loop (because the enumeration overflows) instead

82 Appendix C. Finer Points with Examples

of obtaining a record containing enumeration statistics. We have already seen an example of that in Sec-
tion 1.2. So, here we will consider two options that prevent one entering a break-loop, namely the silent
(see 4.11.3) and incomplete (see 4.11.6) options. Firstly, let’s take the last ACEStats example, but use
ACECosetTableFromGensAndRels instead and include the silent option. (We still have the InfoACE level
set at 3.)

gap> ACECosetTableFromGensAndRels(fgens, [], [] : start, print := [-1, 12],
> silent);
#I ACE 3.001 Wed Oct 31 09:40:18 2001
#I ===
#I Host information:
#I name = rigel
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.09; m=249998 t=2499\
98)
#I co: a=249998 r=83333 h=83333 n=249999; c=+0.00
#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8 0 a
#I 3 | 1 9 10 11 0 A
#I 4 | 12 13 14 1 0 b
#I 5 | 15 16 1 17 0 B
#I 6 | 18 2 19 20 0 aa
#I 7 | 21 22 23 2 0 ab
#I 8 | 24 25 2 26 0 aB
#I 9 | 3 27 28 29 0 AA
#I 10 | 30 31 32 3 0 Ab
#I 11 | 33 34 3 35 0 AB
#I 12 | 36 4 37 38 0 ba
#I ***
fail

Since, the enumeration overflowed and the silent option was set, ACECosetTableFromGensAndRels simply
returned fail. But hang on, ACE at least has a partial table; we should be able to obtain it in GAP format, in
a situation like this. We can. We simply use the incomplete option, instead of the silent option. However,
if we did that with the example above, the result would be an enormous table (the number of active cosets
is 249998); so let us also set the max (see 4.17.6) option, in order that we should get a more modestly sized
partial table. Finally, we will use print := -12 since it is a shorter equivalent alternative to print := [-1,
12]. Note that the output here was obtained with GAP 4.3. With GAP 4.2 the output is similar except that
the last Info-ed message (before the final output) states that the coset table result is incomplete only, since
no standardisation is done. It turns out that the table displayed via the print option is already in lenlex
standard form; so despite the differences in the GAP versions, both GAP 4.2 and GAP 4.3 output the same
table.

gap> ACECosetTableFromGensAndRels(fgens, [], [] : max := 12,
> start, print := -12,
> incomplete);
#I ACE 3.001 Wed Oct 31 09:41:14 2001
#I ===
#I Host information:
#I name = rigel
#I OVERFLOW (a=12 r=4 h=4 n=13; l=5 c=0.00; m=12 t=12)
#I co: a=12 r=4 h=4 n=13; c=+0.00

Section 1. Getting Started 83

#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8 0 a
#I 3 | 1 9 10 11 0 A
#I 4 | 12 0 0 1 0 b
#I 5 | 0 0 1 0 0 B
#I 6 | 0 2 0 0 0 aa
#I 7 | 0 0 0 2 0 ab
#I 8 | 0 0 2 0 0 aB
#I 9 | 3 0 0 0 0 AA
#I 10 | 0 0 0 3 0 Ab
#I 11 | 0 0 3 0 0 AB
#I 12 | 0 4 0 0 0 ba
#I ***
#I co: a=12 r=4 h=4 n=13; c=+0.00
#I coset | a A b B
#I -------+----------------------------
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8
#I 3 | 1 9 10 11
#I 4 | 12 0 0 1
#I 5 | 0 0 1 0
#I 6 | 0 2 0 0
#I 7 | 0 0 0 2
#I 8 | 0 0 2 0
#I 9 | 3 0 0 0
#I 10 | 0 0 0 3
#I 11 | 0 0 3 0
#I 12 | 0 4 0 0
#I ACECosetTable: Coset table is incomplete, reduced & lenlex standardised.
[[2, 6, 1, 12, 0, 0, 0, 0, 3, 0, 0, 0],
[3, 1, 9, 0, 0, 2, 0, 0, 0, 0, 0, 4],
[4, 7, 10, 0, 1, 0, 0, 2, 0, 0, 3, 0],
[5, 8, 11, 1, 0, 0, 2, 0, 0, 3, 0, 0]]

Observe, that despite the fact that ACE is able to define coset representatives for all 12 coset numbers
defined, the body of the coset table now contains a 0 at each place formerly occupied by a coset number
larger than 12 (0 essentially represents “don’t know”). To get a table that is the same in the first 12 rows
as before we would have had to set max to 38, since that was the largest coset number that appeared in the
body of the 12-line table, previously. Also, note that the max option preceded the start option; since the
interface respects the order in which options are put by the user, the enumeration invoked by start would
otherwise have only been restricted by the size of workspace (see 4.17.1). The warning that the coset table
is incomplete is emitted at InfoACE or InfoWarning level 1, i.e. by default, you will see it.

Using ACEStart

The limitation of the functions ACEStats and ACECosetTableFromGensAndRels (on three arguments) is that
they do not interact with ACE; they call ACE with user-defined input, and collect and parse the output for
either statistics or a coset table. On the other hand, the ACEStart (see 6.1.1) function allows one to start up
an ACE process and maintain a dialogue with it. Moreover, via the functions ACEStats and ACECosetTable
(on 1 or no arguments), one is able to extract the same information that we could with the non-interactive
versions of these functions. However, we can also do a lot more. Each ACE option that provides output that

84 Appendix C. Finer Points with Examples

can be used from within GAP has a corresponding interactive interface function that parses and translates
that output into a form usable from within GAP.

Now we emulate our (successful) ACEStats exchanges above, using interactive ACE interface functions. We
could do this with: ACEStart(0, fgens, [], [] : start, sr := 1); where the 0 first argument tells
ACEStart not to insert start after the options explicitly listed. Alternatively, we may do the following (note
that the InfoACE level is still 3):

gap> ACEStart(fgens, [], []);
#I ACE 3.001 Wed Oct 31 09:42:49 2001
#I ===
#I Host information:
#I name = rigel
#I ***
#I OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.10; m=249998 t=2499\
98)
1
gap> ACEParameters(1);
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: G;
#I Group Generators: ab;
#I Group Relators: ;
#I Subgroup Name: H;
#I Subgroup Generators: ;
#I Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;
#I C:0; R:0; Fi:7; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
rec(enumeration := "G", subgroup := "H", workspace := 1000000,
max := 249998, messages := 0, time := -1, hole := -1, loop := 0, asis := 0,
path := 0, row := 1, mendelsohn := 0, no := 0, lookahead := 0,
compaction := 10, ct := 0, rt := 0, fill := 7, pmode := 3, psize := 256,
dmode := 4, dsize := 1000)

Observe that the ACEStart call returned an integer (1, here). All 8 forms of the ACEStart function, return
an integer that identifies the interactive ACE interface function initiated or communicated with. We may
use this integer to tell any interactive ACE interface function which interactive ACE process we wish to
communicate with. Above we passed 1 to the ACEParameters command which caused sr := 1 (see D.5.7)
to be passed to the interactive ACE process indexed by 1 (the process we just started), and a record containing
the parameter options (see 4.12.1) is returned. Note that the “Run Parameters”: Group Generators, Group
Relators and Subgroup Generators are considered “args” (i.e. arguments) and a record containing these is
returned by the GetACEArgs (see 6.5.5) command; or they may be obtained individually via the commands:
ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2), or ACESubgroupGenerators (see 6.5.3).

We can obtain the enumeration statistics record, via the interactive version of ACEStats (see 6.6.2) :

gap> ACEStats(1); # The interactive version of ACEStats takes 1 or no arg’ts
rec(index := 0, cputime := 10, cputimeUnits := "10^-2 seconds",
activecosets := 249998, maxcosets := 249998, totcosets := 249998)

To display 12 lines of the coset table with coset representatives without invoking a further enumeration we
could do: ACEStart(0, 1 : print := [-1, 12]);. Alternatively, we may use the ACEDisplayCosetTable
(see 6.5.12) (the table itself is emitted at InfoACE level 1, since by default we presumably want to see it):

Section 1. Getting Started 85

gap> ACEDisplayCosetTable(1, [-1, 12]);
#I co: a=249998 r=83333 h=83333 n=249999; c=+0.00
#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8 0 a
#I 3 | 1 9 10 11 0 A
#I 4 | 12 13 14 1 0 b
#I 5 | 15 16 1 17 0 B
#I 6 | 18 2 19 20 0 aa
#I 7 | 21 22 23 2 0 ab
#I 8 | 24 25 2 26 0 aB
#I 9 | 3 27 28 29 0 AA
#I 10 | 30 31 32 3 0 Ab
#I 11 | 33 34 3 35 0 AB
#I 12 | 36 4 37 38 0 ba
#I --

Still with the same interactive ACE process we can now emulate the ACECosetTableFromGensAndRels ex-
change that gave us an incomplete coset table. Note that it is still necessary to invoke an enumeration after
setting the max (see 4.17.6) option. We could just call ACECosetTable with the argument 1 and the same
4 options we used for ACECosetTableFromGensAndRels. Alternatively, we can do the equivalent of the 4
options one (or two) at a time, via their equivalent interactive commands. Note that the ACEStart command
(without 0 as first argument) inserts a start directive after the user option max:

gap> ACEStart(1 : max := 12);
#I ***
#I OVERFLOW (a=12 r=4 h=4 n=13; l=5 c=0.00; m=12 t=12)
1

Now the following ACEDisplayCosetTable command does the equivalent of the print := [-1, 12] option.

gap> ACEDisplayCosetTable(1, [-1, 12]);
#I co: a=12 r=4 h=4 n=13; c=+0.00
#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8 0 a
#I 3 | 1 9 10 11 0 A
#I 4 | 12 0 0 1 0 b
#I 5 | 0 0 1 0 0 B
#I 6 | 0 2 0 0 0 aa
#I 7 | 0 0 0 2 0 ab
#I 8 | 0 0 2 0 0 aB
#I 9 | 3 0 0 0 0 AA
#I 10 | 0 0 0 3 0 Ab
#I 11 | 0 0 3 0 0 AB
#I 12 | 0 4 0 0 0 ba
#I --

Finally, we call ACECosetTable with 1 argument (which invokes the interactive version of ACECosetTable-
FromGensAndRels) with the option incomplete.

86 Appendix C. Finer Points with Examples

gap> ACECosetTable(1 : incomplete);
#I start = yes, continue = yes, redo = yes
#I ***
#I OVERFLOW (a=12 r=4 h=4 n=13; l=4 c=0.00; m=12 t=12)
#I co: a=12 r=4 h=4 n=13; c=+0.00
#I coset | a A b B
#I -------+----------------------------
#I 1 | 2 3 4 5
#I 2 | 6 1 7 8
#I 3 | 1 9 10 11
#I 4 | 12 0 0 1
#I 5 | 0 0 1 0
#I 6 | 0 2 0 0
#I 7 | 0 0 0 2
#I 8 | 0 0 2 0
#I 9 | 3 0 0 0
#I 10 | 0 0 0 3
#I 11 | 0 0 3 0
#I 12 | 0 4 0 0
#I ACECosetTable: Coset table is incomplete, reduced & lenlex standardised.
[[2, 6, 1, 12, 0, 0, 0, 0, 3, 0, 0, 0],
[3, 1, 9, 0, 0, 2, 0, 0, 0, 0, 0, 4],
[4, 7, 10, 0, 1, 0, 0, 2, 0, 0, 3, 0],
[5, 8, 11, 1, 0, 0, 2, 0, 0, 3, 0, 0]]

Observe the line beginning “#I start = yes,” (the first line in the output of ACECosetTable). This line
appears in response to the option mode (see D.3.1) inserted by ACECosetTable after any user options; it is
inserted in order to check that no user options (possibly made before the ACECosetTable call) have invali-
dated ACE’s coset table. Since the line also says continue = yes, the mode continue (the least expensive
of the three modes; see D.3.4) is directed at ACE which evokes a results message. Then ACECosetTable
extracts the incomplete table via a print (see D.5.8) directive. If you wish to see all the options that are
directed to ACE, set the InfoACE level to 4 (then all such commands are Info-ed behind a “ToACE> ”
prompt; see 1.9.3).

Following the standalone manual, we now set things up to do the alternating group A5, of order 60. (We saw
the group A5 with subgroup C5 earlier in Section B.3; here we are concerned with observing and remarking
on the output from the ACE binary.) We turn messaging on via the messages (see 4.18.1) option; setting
messages to 1 tells ACE to emit a progress message on each pass of its main loop. In the example following
we set messages := 1000, which, for our example, sets the interval between messages so high that we only
get the “Run Parameters” block (the same as that obtained with sr := 1), no progress messages and the
final results message. Recall F is the free group we defined on generators fgens: "a" and "b". Here we will
be interested in seeing what is transmitted to the ACE binary; so we will set the InfoACE level to 4 (what is
transmitted to ACE will now appear behind a “ToACE> ” prompt, and we will still see the messages from
ACE). Note, that when GAP prints F.1 (= fgens[1]) it displays a, but the variable a is (at the moment)
unassigned; so for convenience (in defining relators, for example) we first assign the variable a to be F.1
(and b to be F.2).

gap> SetInfoACELevel(4);
gap> a := F.1;; b := F.2;;
gap> # Enumerating A_5 = < a, b | a^2, b^3, (a*b)^5 >
gap> # over Id (trivial subgp)
gap> ACEStart(1, fgens, [a^2, b^3, (a*b)^5], []
> # 4th arg empty (to define Id)

Section 1. Getting Started 87

> : enumeration := "A_5", # Define the Group Name
> subgroup := "Id", # Define the Subgroup Name
> max := 0, # Set ‘max’ back to default (no limit)
> messages := 1000); # Progress messages every 1000 iter’ns
#I ToACE> group:ab;
#I ToACE> relators:a^2,b^3,a*b*a*b*a*b*a*b*a*b;
#I ToACE> generators;
#I ToACE> enumeration:A_5;
#I ToACE> subgroup:Id;
#I ToACE> max:0;
#I ToACE> messages:1000;
#I ToACE> text:***;
#I ***
#I ToACE> text:***;
#I ***
#I ToACE> Start;
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: A_5;
#I Group Generators: ab;
#I Group Relators: (a)^2, (b)^3, (ab)^5;
#I Subgroup Name: Id;
#I Subgroup Generators: ;
#I Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
#I C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I INDEX = 60 (a=60 r=77 h=1 n=77; l=3 c=0.00; m=66 t=76)
1

Observe that the fgens and subgroup generators (the empty list) arguments are transmitted to ACE via
the ACE binary’s group and generators options, respectively. Observe also, that the relator (a*b)^5 is
expanded by GAP to a*b*a*b*a*b*a*b*a*b when transmitted to ACE and then ACE correctly deduces that
it’s (a*b)^5.

Since we did not specify a strategy the default (see 5.1.1) strategy was followed and hence coset number
definitions were R (i.e. HLT) style, and a total of 76 coset numbers (t=76) were defined (if we had tried
felsch we would have achieved the best possible: t=60). Note, that ACE already “knew” the group generators
and subgroup generators; so, we could have avoided re-transmitting that information by using the relators
(see D.2.2) option:

gap> ACEStart(1 : relators := ToACEWords(fgens, [a^2, b^3, (a*b)^5]),
> enumeration := "A_5",
> subgroup := "Id",
> max := 0,
> messages := 1000);
#I Detected usage of a synonym of one (or more) of the options:
#I ‘group’, ‘relators’, ‘generators’.
#I Discarding current values of args.
#I (The new args will be extracted from ACE, later).
#I ToACE> relators:a^2,b^3,a*b*a*b*a*b*a*b*a*b;
#I ToACE> enumeration:A_5;
#I ToACE> subgroup:Id;
#I ToACE> max:0;

88 Appendix C. Finer Points with Examples

#I ToACE> messages:1000;
#I No group generators saved. Setting value(s) from ACE ...
#I ToACE> sr:1;
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: A_5;
#I Group Generators: ab;
#I Group Relators: (a)^2, bbb, ababababab;
#I Subgroup Name: Id;
#I Subgroup Generators: ;
#I Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
#I C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I ToACE> text:***;
#I ***
#I ToACE> Start;
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: A_5;
#I Group Generators: ab;
#I Group Relators: (a)^2, (b)^3, (ab)^5;
#I Subgroup Name: Id;
#I Subgroup Generators: ;
#I Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
#I C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I INDEX = 60 (a=60 r=77 h=1 n=77; l=3 c=0.00; m=66 t=76)
1

Note the usage of ToACEWords (see 6.3.6) to provide the appropriate string value of the relators option.
Also, observe the Info-ed warning of the action triggered by using the relators option, that says that the
current values of the “args” (i.e. what would be returned by GetACEArgs; see 6.5.5) were discarded, which
immediately triggered the action of reinstantiating the value of ACEData.io[1].args (which is what the
Info:

#I No group generators saved. Setting value(s) from ACE ...

was all about). Also observe that the “Run Parameters” block was Info-ed twice; the first time was
due to ACEStart emitting sr with value 1 to ACE, the response of which is used to re-instantiate ACE-
Data.io[1].args, and the second is in response to transmitting Start to ACE.

In particular, GAP no longer thinks fgens are the group generators:

gap> ACEGroupGenerators(1) = fgens;
false

Groan! We will just have to re-instantiate everything:

gap> fgens := ACEGroupGenerators(1);;
gap> F := GroupWithGenerators(fgens);; a := F.1;; b := F.2;;

We now define a non-trivial subgroup, of small enough index, to make the observation of all progress
messages, by setting messages := 1, a not too onerous proposition. As for defining the relators, we could
use the 1-argument version of ACEStart, in which case we would use the subgroup (see 4.19.2) option with
the value ToACEWords(fgens, [a*b]). However, as we saw, in the end we don’t save anything by doing

Section 1. Getting Started 89

this, since afterwards the variables fgens, a, b and F would no longer be associated with ACEStart process
1. Instead, we will use the more convenient 4-argument form, and also switch the InfoACELevel back to 3:

gap> SetInfoACELevel(3);
gap> ACEStart(1, ACEGroupGenerators(1), ACERelators(1), [a*b]
> : messages := 1);
#I ***
#I ***
#I #--- ACE 3.001: Run Parameters ---
#I Group Name: A_5;
#I Group Generators: ab;
#I Group Relators: (a)^2, (b)^3, (ab)^5;
#I Subgroup Name: Id;
#I Subgroup Generators: ab;
#I Wo:1000000; Max:333331; Mess:1; Ti:-1; Ho:-1; Loop:0;
#I As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
#I C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#I #---------------------------------
#I AD: a=2 r=1 h=1 n=3; l=1 c=+0.00; m=2 t=2
#I SG: a=2 r=1 h=1 n=3; l=1 c=+0.00; m=2 t=2
#I RD: a=3 r=1 h=1 n=4; l=2 c=+0.00; m=3 t=3
#I RD: a=4 r=2 h=1 n=5; l=2 c=+0.00; m=4 t=4
#I RD: a=5 r=2 h=1 n=6; l=2 c=+0.00; m=5 t=5
#I RD: a=6 r=2 h=1 n=7; l=2 c=+0.00; m=6 t=6
#I RD: a=7 r=2 h=1 n=8; l=2 c=+0.00; m=7 t=7
#I RD: a=8 r=2 h=1 n=9; l=2 c=+0.00; m=8 t=8
#I RD: a=9 r=2 h=1 n=10; l=2 c=+0.00; m=9 t=9
#I CC: a=8 r=2 h=1 n=10; l=2 c=+0.00; d=0
#I RD: a=9 r=5 h=1 n=11; l=2 c=+0.00; m=9 t=10
#I RD: a=10 r=5 h=1 n=12; l=2 c=+0.00; m=10 t=11
#I RD: a=11 r=5 h=1 n=13; l=2 c=+0.00; m=11 t=12
#I RD: a=12 r=5 h=1 n=14; l=2 c=+0.00; m=12 t=13
#I RD: a=13 r=5 h=1 n=15; l=2 c=+0.00; m=13 t=14
#I RD: a=14 r=5 h=1 n=16; l=2 c=+0.00; m=14 t=15
#I CC: a=13 r=6 h=1 n=16; l=2 c=+0.00; d=0
#I CC: a=12 r=6 h=1 n=16; l=2 c=+0.00; d=0
#I INDEX = 12 (a=12 r=16 h=1 n=16; l=3 c=0.00; m=14 t=15)
1

Observe that we used ACERelators(1) (see 6.5.2) to grab the value of the relators we had defined earlier.
We also used ACEGroupGenerators(1) (see 6.5.1) to get the group generators.

The run ended with 12 active (see Section 3.5) coset numbers (a=12) after defining a total number of 15
coset numbers (t=15); the definitions occurred at the steps with progress messages tagged by AD: (coset 1
application definition) and SG: (subgroup generator phase), and the 13 tagged by RD: (R style definition).
So there must have been 3 coincidences: observe that there were 3 progress messages with a CC: tag. (See
Appendix A.)

We can dump out the statistics accumulated during the run, using ACEDumpStatistics (see 6.5.24), which
Infos the ACE output of the statistics (see D.5.10) at InfoACE level 1.

90 Appendix C. Finer Points with Examples

gap> ACEDumpStatistics();
#I #- ACE 3.001: Level 0 Statistics -
#I cdcoinc=0 rdcoinc=2 apcoinc=0 rlcoinc=0 clcoinc=0
#I xcoinc=2 xcols12=4 qcoinc=3
#I xsave12=0 s12dup=0 s12new=0
#I xcrep=6 crepred=0 crepwrk=0 xcomp=0 compwrk=0
#I xsaved=0 sdmax=0 sdoflow=0
#I xapply=1 apdedn=1 apdefn=1
#I rldedn=0 cldedn=0
#I xrdefn=1 rddedn=5 rddefn=13 rdfill=0
#I xcdefn=0 cddproc=0 cdddedn=0 cddedn=0
#I cdgap=0 cdidefn=0 cdidedn=0 cdpdl=0 cdpof=0
#I cdpdead=0 cdpdefn=0 cddefn=0
#I #---------------------------------

The statistic qcoinc=3 states what we had already observed, namely, that there were three coincidences.
Of these, two were primary coincidences (rdcoinc=2). Since t=15, there were fourteen non-trivial coset
number definitions; one was during the application of coset 1 to the subgroup generator (apdefn=1), and
the remainder occurred during applications of the coset numbers to the relators (rddefn=13). For more
details on the meanings of the variables you will need to read the C code comments.

Now let us display all 12 lines of the coset table with coset representatives.

gap> ACEDisplayCosetTable([-12]);
#I CO: a=12 r=13 h=1 n=13; c=+0.00
#I coset | b B a order rep’ve
#I -------+--------------------------------------
#I 1 | 3 2 2
#I 2 | 1 3 1 3 B
#I 3 | 2 1 4 3 b
#I 4 | 8 5 3 5 ba
#I 5 | 4 8 6 2 baB
#I 6 | 9 7 5 5 baBa
#I 7 | 6 9 8 3 baBaB
#I 8 | 5 4 7 5 bab
#I 9 | 7 6 10 5 baBab
#I 10 | 12 11 9 3 baBaba
#I 11 | 10 12 12 2 baBabaB
#I 12 | 11 10 11 3 baBabab
#I --

Note how the pre-printout compaction phase now does some work (indicated by the upper-case CO: tag),
since there were coincidences, and hence dead coset numbers. Note how b and B head the first two columns,
since ACE requires that the first two columns be occupied by a generator/inverse pair or a pair of involutions.
The a column is also the A column, as a is an involution.

We now use ACEStandardCosetNumbering to produce a lenlex standard table within ACE, but note that
this is only lenlex with respect to the ordering b, a of the generators. Then we call ACEDisplayCosetTable
again to see it. Observe that at both the standardisation and coset table display steps a compaction phase
is invoked but on both occasions the lowercase co: tag indicates that nothing is done (all the recovery of
dead coset numbers that could be done was done earlier).

Section 1. Getting Started 91

gap> ACEStandardCosetNumbering();
#I co/ST: a=12 r=13 h=1 n=13; c=+0.00
gap> ACEDisplayCosetTable([-12]);
#I co: a=12 r=13 h=1 n=13; c=+0.00
#I coset | b B a order rep’ve
#I -------+--------------------------------------
#I 1 | 2 3 3
#I 2 | 3 1 4 3 b
#I 3 | 1 2 1 3 B
#I 4 | 5 6 2 5 ba
#I 5 | 6 4 7 5 bab
#I 6 | 4 5 8 2 baB
#I 7 | 8 9 5 5 baba
#I 8 | 9 7 6 5 baBa
#I 9 | 7 8 10 3 babaB
#I 10 | 11 12 9 3 babaBa
#I 11 | 12 10 12 3 babaBab
#I 12 | 10 11 11 2 babaBaB
#I --

Of course, the table above is not lenlex with respect to the order of the generators we had originally given
to ACE; to get that, we would have needed to specify lenlex (see 4.11.4) at the enumeration stage. The
effect of the lenlex option at the enumeration stage is the following: behind the scenes it ensures that the
relator a^2 is passed to ACE as aa and then it sets the option asis to 1; this bit of skulduggery stops
ACE treating a as an involution, allowing a and A (the inverse of a) to take up the first two columns of the
coset table, effectively stopping ACE from reordering the generators. To see what is passed to ACE, at the
enumeration stage, we set the InfoACELevel to 4, but since we don’t really want to see messages this time
we set messages := 0.

gap> SetInfoACELevel(4);
gap> ACEStart(1, ACEGroupGenerators(1), ACERelators(1), [a*b]
> : messages := 0, lenlex);
#I ToACE> group:ab;
#I ToACE> relators:aa, b^3,a*b*a*b*a*b*a*b*a*b;
#I ToACE> generators:a*b;
#I ToACE> asis:1;
#I ToACE> messages:0;
#I ToACE> text:***;
#I ***
#I ToACE> text:***;
#I ***
#I ToACE> Start;
#I INDEX = 12 (a=12 r=17 h=1 n=17; l=3 c=0.00; m=15 t=16)
1
gap> ACEStandardCosetNumbering();
#I ToACE> standard;
#I CO/ST: a=12 r=13 h=1 n=13; c=+0.00
gap> # The capitalised ‘CO’ indicates space was recovered during compaction
gap> ACEDisplayCosetTable([-12]);
#I ToACE> print:-12;
#I ToACE> text:--;
#I co: a=12 r=13 h=1 n=13; c=+0.00

92 Appendix C. Finer Points with Examples

#I coset | a A b B order rep’ve
#I -------+---
#I 1 | 2 2 3 2
#I 2 | 1 1 1 3 2 a
#I 3 | 4 4 2 1 3 b
#I 4 | 3 3 5 6 5 ba
#I 5 | 7 7 6 4 5 bab
#I 6 | 8 8 4 5 2 baB
#I 7 | 5 5 8 9 5 baba
#I 8 | 6 6 9 7 5 baBa
#I 9 | 10 10 7 8 3 babaB
#I 10 | 9 9 11 12 3 babaBa
#I 11 | 12 12 12 10 3 babaBab
#I 12 | 11 11 10 11 2 babaBaB
#I --

You may have noticed the use of ACE’s text option several times above; this just tells ACE to print the
argument given to text (as a comment). This is used by the GAP interface as a sentinel; when the string
appears in the ACE output, the GAP interface knows not to expect anything else.

C.2 Emulating Sims

Here we consider the various sims strategies (see 5.1.8), with respect to duplicating Sims’ example statistics
of his strategies given in Section 5.5 of [Sim94], and giving approximations of his even-numbered strategies.

In order to duplicate Sims’ maximum active coset numbers and total coset numbers statistics, one needs
to work with the formal inverses of the relators and subgroup generators from [Sim94], since definitions
are made from the front in Sims’ routines and from the rear in ACE. Also, in instances where IsACEGen-
eratorsInPreferredOrder(gens, rels) returns false, for group generators fgens and relators rels, one
will need to apply the lenlex option to stop ACE from re-ordering the generators and relators (see 1.2.3
and 4.11.4). In general, we can match Sims’ values for the sims := 1 and sims := 3 strategies (the R style
and R* style Sims strategies with mendelsohn off) and for the sims := 9 (C style) strategy, but sometimes
we may not exactly match Sims’ statistics for the sims := 5 and sims := 7 strategies (the R style and R*
style Sims strategies with mendelsohn on); Sims does not specify an order for the (Mendelsohn) processing of
cycled relators and evidently ACE’s processing order is different to the one Sims used in his CHLT algorithm
to get his statistics (see 4.13.5).

Note: HLT as it appears in Table 5.5.1 of [Sim94] is achieved in ACE with the sequence “hlt, lookahead
:= 0” and CHLT is (nearly) equivalent to “hlt, lookahead := 0, mendelsohn”; also Sims’ save = false
equates to R style (rt positive, ct := 0) in ACE, and save = true, for Sims’ HLT and CHLT, equates to
R* style (rt negative, ct := 0) in ACE. Sims’ Felsch strategy coincides with ACE’s felsch := 0 strategy,
i.e. sims := 9 is identical to felsch := 0. (See the options 5.1.5, 4.15.2, 4.13.5, 4.13.2, 4.13.3 and 5.1.3.)

The following duplicates the “Total” (totcosets in ACE) and “Max. Active” (maxcosets in ACE) statistics
for Example 5.2 of [Sim94], found in Sims’ Table 5.5.3, for the sims := 3 strategy.

gap> SetInfoACELevel(1); # No behind-the-scenes info. please
gap> F := FreeGroup("r", "s", "t");; r := F.1;; s := F.2;; t := F.3;;
gap> ACEStats([r, s, t], [(r^t*r^-2)^-1, (s^r*s^-2)^-1, (t^s*t^-2)^-1], []
> : sims := 3);
rec(index := 1, cputime := 0, cputimeUnits := "10^-2 seconds",
activecosets := 1, maxcosets := 673, totcosets := 673)

By replacing sims := 3 with sims := i for i equal to 1, 5, 7 or 9, one may verify that for i equal to 1 or 9,
Sims’ statistics are again duplicated, and observe a slight variance with Sims’ statistics for i equal to 5 or 7.

Section 2. Emulating Sims 93

Now, we show how one can approximate any one of Sims’ even-numbered strategies. Essentially, the idea is to
start an interactive ACE process using ACEStart (see 6.1.1) with sims := i , for i equal to 1, 3, 5, 7 or 9, and
max set to some low value maxstart so that the enumeration stops after only completing a few rows of the coset
table. Then, to approximate Sims’ strategy i + 1, one alternately applies ACEStandardCosetNumbering and
ACEContinue, progressively increasing the value of max by some value maxstep. The general algorithm is
provided by the ACEEvenSims function following.

gap> ACEEvenSims := function(fgens, rels, sgens, i, maxstart, maxstep)
> local j;
> j := ACEStart(fgens, rels, sgens : sims := i, max := maxstart);
> while ACEStats(j).index = 0 do
> ACEStandardCosetNumbering(j);
> ACEContinue(j : max := ACEParameters(j).max + maxstep);
> od;
> return ACEStats(j);
> end;;

It turns out that one can duplicate the Sims’ strategy 4 statistics in Table 5.5.3 of [Sim94], with i = 3 (so
that i + 1 = 4), maxstart = 14 and maxstep = 50:

gap> ACEEvenSims([r, s, t], [(r^t*r^-2)^-1, (s^r*s^-2)^-1, (t^s*t^-2)^-1],
> [], 3, 14, 50);
rec(index := 1, cputime := 0, cputimeUnits := "10^-2 seconds",
activecosets := 1, maxcosets := 393, totcosets := 393)

Setting maxstep = 60 (and leaving the other parameters the same) also gives Sims’ statistics, but maxstart
= 64 with maxstep = 80 does better:

gap> ACEEvenSims([r, s, t], [(r^t*r^-2)^-1, (s^r*s^-2)^-1, (t^s*t^-2)^-1],
> [], 3, 64, 80);
rec(index := 1, cputime := 0, cputimeUnits := "10^-2 seconds",
activecosets := 1, maxcosets := 352, totcosets := 352)

Even though the (lenlex) standardisation steps in the above examples produce a significant improvement
over the sims := 3 statistics, this does not happen universally. Sims [Sim94] gives many examples where
the even-numbered strategies fail to show any significant improvement over the odd-numbered strategies,
and one example (see Table 5.5.7) where sims := 2 gives a performance that is very much worse than any
of the other Sims strategies. As with any of the strategies, what works well for some groups may not work
at all well with other groups. There are no general rules. It’s a bit of a game. Let’s hope you win most of
the time.

D Other ACE Options

Here we list all the known ACE options not provided earlier. Most of the options provided here have interac-
tive function alternatives (each such alternative is noted at the end of the section describing the corresponding
option and introduced by “INTERACTIVELY, use . . . ”). A few options have only limited usefulness from
GAP; many options, users will normally only wish to use if generating an input file, by using the option
aceinfile (see 4.11.7). However all options here are functional, both interactively and non-interactively.

D.1 Experimentation Options

1I aep:=val

Runs the enumeration for all equivalent presentations; val is in the integer range 1 to 7.

The aep option runs an enumeration for combinations of relator ordering, relator rotations, and relator
inversions.

The argument val is considered as a binary number. Its three bits are treated as flags, and control relator
rotations (the 20 bit), relator inversions (the 21 bit) and relator orderings (the 22 bit), respectively; where
1 means “active” and 0 means “inactive”. (See below for an example).

The aep option first performs a “priming run” using the options as they stand. In particular, the asis and
messages options are honoured.

It then turns asis on and messages off (i.e. sets messages to 0), and generates and tests the requested
equivalent presentations. The maximum and minimum values attained by m (the maximum number of coset
numbers defined at any stage) and t (the total number of coset numbers defined) are tracked, and each time
a new “record” is found, the relators used and the summary result line is printed. See Appendix A for a
discussion of the statistics m and t. To observe these messages either set the InfoLevel of InfoACE to 3 or
non-interactively you can peruse the ACE output file (see 4.11.8).

Normally when a non-interactive ACE interface function is called, the option start (see D.3.2), is quietly
inserted after all the options provided by the user, to initiate a coset enumeration. Since the aep option
invokes an enumeration, the quiet insertion of the start option is neither needed nor done, when a non-
interactive ACE interface function is called with the aep option.

The order in which the equivalent presentations are generated and tested has no particular significance, but
note that the presentation as given after the initial priming run) is the last presentation to be generated and
tested, so that the group’s relators are left unchanged by running the aep option, (not that a non-interactive
user cares).

As discussed by Cannon, Dimino, Havas and Watson [CDHW73] and Havas and Ramsay [HR01] such equiv-
alent presentations can yield large variations in the number of coset numbers required in an enumeration.
For this command, we are interested in this variation.

After the final presentation is run, some additional status information messages are printed to the ACE
output file:

– the number of runs which yielded a finite index;

Section 1. Experimentation Options 95

– the total number of runs (excluding the priming run); and

– the range of values observed for m and t.

As an example (drawn from the discussion in [HR99]) consider the enumeration of the 448 coset numbers
of the subgroup 〈a2, a−1b〉 of the group

(8, 7 | 2, 3) = 〈a, b | a8 = b7 = (ab)2 = (a−1b)3 = 1〉·

There are 4! = 24 relator orderings and 24 = 16 combinations of relator or inverted relator. Exponents are
taken into account when rotating relators, so the relators given give rise to 1, 1, 2 and 2 rotations respectively,
for a total of 1 · 1 · 2 · 2 = 4 combinations. So, for aep = 7 (resp. 3), 24 · 16 · 4 = 1536 (resp. 16 · 4 = 64)
equivalent presentations are tested.

Notes: There is no way to stop the aep option before it has completed, other than killing the task. So do
a reality check beforehand on the size of the search space and the time for each enumeration. If you are
interested in finding a “good” enumeration, it can be very helpful, in terms of running time, to put a tight
limit on the number of coset numbers via the max option. You may also have to set compaction = 100 to
prevent time-wasting attempts to recover space via compaction. This maximises throughput by causing the
“bad” enumerations, which are in the majority, to overflow quickly and abort. If you wish to explore a very
large search-space, consider firing up many copies of ACE, and starting each with a “random” equivalent
presentation. Alternatively, you could use the rep command.

INTERACTIVELY, use ACEAllEquivPresentations (see 6.4.1).

2I rep:=val
I rep:=[val, Npresentations]

Run the enumeration for random equivalent presentations; val is in the integer range 1 to 7; Npre-
sentations must be a positive integer.

The rep (random equivalent presentations) option complements the aep option. It generates and tests some
random equivalent presentations. The argument val acts as for aep. It is also possible to set the number
Npresentations of random presentations used (by default, eight are used), by using the extended syntax
rep:=[val,Npresentations].

The routine first turns asis on and messages off (i.e. sets messages to 0), and then generates and tests
the requested number of random equivalent presentations. For each presentation, the relators used and the
summary result line are printed. To observe these messages either set the InfoLevel of InfoACE to at least
3 or non-interactively you can peruse the ACE output file (see 4.11.8).

Normally when a non-interactive ACE interface function is called, the option start (see D.3.2), is quietly
inserted after all the options provided by the user, to initiate a coset enumeration. Since the rep option
invokes an enumeration, the quiet insertion of the start option is neither needed nor done, when a non-
interactive ACE interface function is called with the rep option.

Notes: The relator inversions and rotations are “genuinely” random. The relator permuting is a little bit
of a kludge, with the “quality” of the permutations tending to improve with successive presentations. When
the rep command completes, the presentation active is the last one generated, (not that the non-interactive
user cares).

Guru Notes: It might appear that neglecting to restore the original presentation is an error. In fact, it is a
useful feature! Suppose that the space of equivalent presentations is too large to exhaustively test. As noted
in the entry for aep, we can start up multiple copies of aep at random points in the search-space. Manually
generating random equivalent presentations to serve as starting-points is tedious and error-prone. The rep
option provides a simple solution; simply run rep := 7 before aep := 7.

INTERACTIVELY, use ACERandomEquivPresentations (see 6.4.2).

96 Appendix D. Other ACE Options

D.2 Options that Modify a Presentation

1I group:=grpgens

Defines the group generators; grpgens should be an integer (that is the number of generators) or a
string that is the concatenation of, or a list of, single-lowercase-letter group generator names, i.e. it
should be in a form suitable for the ACE binary to interpret. (Shortest abbreviation: gr.)

The group generators should normally be input as one of the arguments of an ACE interface function, though
this option may be useful when ACEStart (see 6.1.1) is called with the single argument 0. This option may
also be useful for re-using an interactive process for a new enumeration, rather than using ACEQuit to kill
the process and ACEStart to initiate a new process. If the generators each have names that as strings are
single lowercase letters, those same strings are used to represent the same generators by ACE; otherwise,
ACE will represent each generator by an integer, numbered sequentially from 1.

To convert a GAP list fgens of free group generators into a form suitable for the group option, use the
construction: ToACEGroupGenerators(fgens) (see 6.3.5). It is strongly recommended that users of the
group option use this construction.

Notes: Any use of the group command which actually defines generators invalidates any previous enumer-
ation, and stays in effect until the next group command. Any words for the group or subgroup must be
entered using the nominated generator format, and all printout will use this format. A valid set of generators
is the minimum information necessary before ACE will attempt an enumeration.

Guru Notes: The columns of the coset table are allocated in the same order as the generators are listed,
insofar as this is possible, given that the first two columns must be a generator/inverse pair or a pair of
involutions. The ordering of the columns can, in some cases, affect the definition sequence of cosets and
impact the statistics of an enumeration.

2I relators:=relators

Defines the group relators; relators must be a string or list of strings that the ACE binary can
interpret as words in the group generators. (Shortest abbreviation: rel.)

The group relators should normally be input as one of the arguments of an ACE interface function, but this
option may occasionally be useful with interactive processes (see D.2.1). If wordList is an empty list, the
group is free.

To convert a GAP list rels of relators in the free group generators fgens into a form suitable for the relators
option, use the construction: ToACEWords(fgens, rels) (see 6.3.6).

3I generators:=subgens

Defines the subgroup generators; subgens must be a string or list of strings that the ACE binary
can interpret as words in the group generators. (Shortest abbreviation: gen.)

The subgroup generators should normally be input as one of the arguments of an ACE interface function,
but this option may occasionally be useful with interactive processes (see D.2.1). By default, there are no
subgroup generators and the subgroup is trivial. This command allows a list of subgroup generating words
to be entered.

To convert a GAP list sgens of subgroup generators in the free group generators fgens into a form suitable
for the generators option, use the construction: ToACEWords(fgens, sgens) (see 6.3.6).

4I sg:=subgens

Adds the words in subgens to any subgroup generators already present; subgens must be a string
or list of strings that the ACE binary can interpret as words in the group generators.

The enumeration must be (re)started or redone, it cannot be continued.

Section 2. Options that Modify a Presentation 97

To convert a GAP list sgens of subgroup generators in the free group generators fgens into a form suitable
for the generators option, use the construction: ToACEWords(fgens, sgens) (see 6.3.6).

INTERACTIVELY, use ACEAddSubgroupGenerators (see 6.7.4).

5I rl:=relators

Appends the relator list relators to the existing list of relators present; relators must be a string
or list of strings that the ACE binary can interpret as words in the group generators.

The enumeration must be (re)started or redone, it cannot be continued.

To convert a GAP list rels of relators in the free group generators fgens into a form suitable for the rl
option, use the construction: ToACEWords(fgens, rels) (see 6.3.6).

INTERACTIVELY, use ACEAddRelators (see 6.7.3).

6I ds:=list

Deletes subgroup generators; list must be a list of positive integers.

This command allows subgroup generators to be deleted from the presentation. If the generators are num-
bered from 1 in the output of, say, the sr command (see D.5.7), then the generators listed in list are deleted;
list must be a strictly increasing sequence.

INTERACTIVELY, use ACEDeleteSubgroupGenerators (see 6.7.6).

7I dr:=list

Deletes relators; list must be a list of positive integers.

This command allows group relators to be deleted from the presentation. If the relators are numbered from
1 in the output of, say, the sr command (see D.5.7), then the relators listed in list are deleted; list must be
a strictly increasing sequence.

INTERACTIVELY, use ACEDeleteRelators (see 6.7.5).

8I cc:=val

Makes coset val coincide with coset 1; val should be a positive integer.

Prints out the representative of coset val , and adds it to the subgroup generators; i.e., forces coset val to
coincide with coset 1, the subgroup.

INTERACTIVELY, use ACECosetCoincidence (see 6.7.7).

9I rc:=val
I rc:=[val]
I rc:=[val, attempts]

Enforce random coincidences; val and attempts must be positive integers.

This option attempts upto attempts (or, in the first and second forms, 8) times to find nontrivial subgroups
with index a multiple of val by repeatedly making random coset numbers coincident with coset 1 and seeing
what happens. The starting coset table must be non-empty, but should not be complete. For each attempt,
we repeatedly add random coset representatives to the subgroup and redo the enumeration. If the table
becomes too small, the attempt is aborted, the original subgroup generators restored, and another attempt
made. If an attempt succeeds, then the new set of subgroup generators is retained.

Guru Notes: A coset number can have many different coset representatives. Consider running standard
before rc, to canonicise the table and hence the coset representatives.

INTERACTIVELY, use ACERandomCoincidences (see 6.7.8).

98 Appendix D. Other ACE Options

D.3 Mode Options

1I mode

Prints the possible enumeration modes. (Shortest abbreviation: mo.)

Prints the possible enumeration modes (i.e. which of continu, redo or start are possible (see D.3.4, D.3.3
and D.3.2).

INTERACTIVELY, use ACEModes (see 6.2.1).

2I begin
I start

Start an enumeration. (Shortest abbreviation of begin is beg.)

Any existing information in the table is cleared, and the enumeration starts from coset 1 (i.e., the subgroup).

Normally when a non-interactive ACE interface function is called, the option start (see D.3.2), is quietly
inserted after all the options provided by the user, to initiate a coset enumeration; however, this is not done,
if the user herself supplies either the begin or start option.

INTERACTIVELY, use ACEStart (see 6.1.1).

3I check
I redo

Redo an extant enumeration, using the current parameters.

As opposed to start (see D.3.2), which clears an existing coset table, any existing information in the table
is retained, and the enumeration is restarted from coset 1 (i.e., the subgroup).

Notes: This option is really intended for the case where additional relators (option rl; see D.2.5) and/or
subgroup generators (option sg; see D.2.4) have been introduced. The current table, which may be incomplete
or exhibit a finite index, is still valid. However, the additional data may allow the enumeration to complete,
or cause a collapse to a smaller index.

INTERACTIVELY, use ACERedo (see 6.2.3).

4I continu

Continues the current enumeration, building upon the existing table. (Shortest abbreviation: cont.)

If a previous run stopped without producing a finite index you can, in principle, change any of the parameters
and continue on. Of course, if you make any changes which invalidate the current table, you won’t be allowed
to continue, although you may be allowed to redo (see D.3.3). If redo is not allowed, you must re-start
(see D.3.2).

Note: The ACE standalone allows the option continue, but this is (as of GAP 4.3) a GAP keyword, and so
GAP users must use (mixed-case abbreviations of) continu.

INTERACTIVELY, use ACEContinue (see 6.2.2).

Section 5. Query Options 99

D.4 Options that Interact with the Operating System

1I ai
I ai:=filename

Alter input to standard input or filename; filename must be a string.

By default, commands to ACE are read from standard input (i.e., the keyboard). With no value ai causes
ACE to revert to reading from standard input; otherwise, the ai command closes the current input file, and
opens filename as the source of commands. If filename can’t be opened, input reverts to standard input.

Notes: If you switch to taking input from (another) file, remember to switch back before the end of that
file; otherwise the EOF there will cause ACE to terminate.

2I bye
I exit
I qui

Quit ACE. (Shortest abbreviation of qui is q.)

This quits ACE nicely, printing the date and the time. An EOF (end-of-file; i.e., ^d) has the same effect, so
proper termination occurs if ACE is taking its input from a script file.

Note that qui actually abbreviates the corresponding ACE directive quit, but since quit is a GAP keyword
it is not available via the GAP interface to ACE.

INTERACTIVELY, use ACEQuit (see 6.1.2).

3I system:=string

Does a shell escape, to execute string ; string must be a string. (Shortest abbreviation: sys.)

Since GAP already provides Exec() for this purpose, this option is unlikely to have a use.

D.5 Query Options

1I cycles

Prints out the table in cycles. (Shortest abbreviation: cy.)

This option prints out the permutation representation.

INTERACTIVELY, use ACECycles (see 6.5.16).

2I dump
I dump:=level
I dump:=[level]
I dump:=[level, detail]

Dump the internal variables of ACE; level must be an integer in the range 0 to 2, and detail must be
0 or 1. (Shortest abbreviation: d.)

The value of level determines which of the three levels of ACE to dump. (You will need to read the standalone
manual acce3001.dvi in the standalone-doc directory to understand what Levels 0, 1 and 2 are all about.)
The value of detail determines the amount of detail (detail = 0 means less detail). The first form (with no
arguments) selects level = 0, detail = 0. The second form of this command makes detail = 0. This option
is intended for gurus; the source code should be consulted to see what the output means.

INTERACTIVELY, use ACEDumpVariables (see 6.5.23).

3I help

Prints the ACE help screen. (Shortest abbreviation: h.)

100 Appendix D. Other ACE Options

This option prints the list of options of the ACE binary. Note that this list is longer than a standard screenful.

4I nc
I nc:=val
I normal
I normal:=val

Check or attempt to enforce normal closure; val must be 0 or 1.

This option tests the subgroup for normal closure within the group. If a conjugate of a subgroup generator
by a generator, is determined to belong to a coset other than coset 1, it is printed out, and if val = 1, then
any such conjugate is also added to the subgroup generators. With no argument or if val = 0, ACE does
not add any new subgroup generators.

Notes: The method of determination of whether a conjugate of a subgroup generator is in the subgroup, is
by testing whether it can be traced from coset 1 to coset 1 (see trace: D.5.12).

The resultant subgroup need not be normally closed after executing option nc with the value 1. It is still
possible that some conjugates of the newly added subgroup generators will not be elements of the subgroup.

INTERACTIVELY, use ACEConjugatesForSubgroupNormalClosure (see 6.7.10).

5I options

Dumps version information of the ACE binary. (Shortest abbreviation: opt.)

A rather unfortunate name for an option; this command dumps details of the “options” included in the
version of ACE when the ACE binary was compiled.

A typical output, is as follows:

Executable built:
Sat Feb 27 15:57:59 EST 1999

Level 0 options:
statistics package = on
coinc processing messages = on
dedn processing messages = on

Level 1 options:
workspace multipliers = decimal

Level 2 options:
host info = on

INTERACTIVELY and non-interactively, use the command ACEBinaryVersion(); (see 6.5.25) for this
information, instead, unless you want it in an ACE standalone input file.

6I oo:=val
I order:=val

Print a coset representative of a coset number with order a multiple of val modulo the subgroup;
val must be an integer.

This option finds a coset with order a multiple of |val| modulo the subgroup, and prints out its coset
representative. If val < 0, then all coset numbers meeting the requirement are printed. If val > 0, then just
the first coset number meeting the requirement is printed. Also, val = 0 is permitted; this special value
effects the printing of the orders (modulo the subgroup) of all coset numbers.

INTERACTIVELY, use ACEOrders (see 6.5.18), for the case val = 0, or ACEOrder (see 6.5.19), otherwise.

7I sr
I sr:=val

Print out parameters of the current presentation; val must be an integer in the range 0 to 5.

Section 5. Query Options 101

No argument, or val = 0, prints out the Group Name, the group’s relators, Subgroup Name and the sub-
group’s generators. If val = 1, then the Group Generators and the current setting of the “run parame-
ters” is also printed. The printout is the same as that produced at the start of a run when option messages
(see 4.18.1) is non-zero. Also, val equal to 2, 3, 4, or 5 print out just the Group Name, just the group’s
relators, just the Subgroup Name, or just the subgroup’s generators, respectively.

Notes: The sr option should only be used after an enumeration run; otherwise, the value 0 for some
options will be unreliable. To ensure this occurs non-interactively, ensure one of the options that invokes
an enumeration: start (see D.3.2) or aep (see D.1.1) or rep (see D.1.2), precedes the sr option. (When
an enumeration-invoking option is included non-interactively the quiet inclusion step of the start option is
omitted.)

INTERACTIVELY, use ACEGroupGenerators (see 6.5.1), ACERelators (see 6.5.2), ACESubgroupGener-
ators (see 6.5.3), and ACEParameters (see 6.5.10).

8I print
I print:=val
I print:=[val]
I print:=[val, last]
I print:=[val, last, by]

Compact and print the coset table; val must be an integer, and last and by must be positive integers.
(Shortest abbreviation: pr.)

In the first (no value) form, print prints the entire coset table, without orders or coset representatives. In
the second and third forms, the absolute value of val is taken to be the last line of the table to be printed
(and 1 is taken to be the first); in the fourth and fifth forms, |val| is taken to be the first line of the table
to be printed, and last is taken to be the number of the last line to be printed. In the last form, the table
is printed from line |val| to line last in steps of by . If val is negative, then the orders modulo the subgroup
(if available) and coset representatives are printed also.

INTERACTIVELY, use ACEDisplayCosetTable (see 6.5.12).

9I sc:=val
I stabilising:=val

Print out the coset numbers whose elements normalise the subgroup; val must be an integer. (Short-
est abbreviation of stabilising is stabil.)

If val > 0, the first val non-trivial (i.e. other than coset 1) coset numbers whose elements normalise the
subgroup are printed. If val = 0, all non-trivial coset numbers whose elements normalise the subgroup,
plus their representatives, are printed. If val < 0, the first |val| non-trivial coset numbers whose elements
normalise the subgroup, plus their representatives, are printed.

Note: The name of this option is an historical hangover. It is named for the property that elements that
“normalise” a subgroup, may be said to “stabilise” that subgroup when they act “by conjugation”. Also,
the option normal (see D.5.4) already performs a different function.

INTERACTIVELY, use ACECosetsThatNormaliseSubgroup (see 6.5.21).

10I statistics
I stats

Dump enumeration statistics. (Shortest abbreviation of statistics is stat.)

If the statistics package is compiled into the ACE code, which it is by default (see the options D.5.5 option),
then this option dumps the statistics accumulated during the most recent enumeration. See the enum.c
source file for the meaning of the variables.

INTERACTIVELY, use ACEDumpStatistics (see 6.5.24).

102 Appendix D. Other ACE Options

11I style

Prints the current enumeration style.

This option prints the current enumeration style, as deduced from the current ct and rt parameters (see 3.1).

INTERACTIVELY, use ACEStyle (see 6.5.22).

12I tw:=[val, word]
I trace:=[val, word]

Trace word through the coset table, starting at coset val ; val must be a positive integer, and word
must be a word in the group generators.

This option prints the final coset number of the trace, if the trace completes.

INTERACTIVELY, use ACETraceWord (see 6.5.17).

D.6 Options that Modify the Coset Table

1I recover
I contiguous

Recover space used by dead coset numbers. (Shortest abbreviation of recover is reco, and shortest
abbreviation of contiguous is contig.)

This option invokes the compaction routine on the table to recover the space used by any dead coset numbers.
A CO message line is printed if any cosets were recovered, and a co line if none were. This routine is called
automatically if the cycles, nc, print or standard options (see D.5.1, D.5.4, D.5.8 and D.6.2) are invoked.

INTERACTIVELY, use ACERecover (see 6.7.1).

2I standard

Compacts ACE’s coset table and standardises the numbering of cosets, according to the lenlex
scheme (see Section 3.4). (Shortest abbreviation: st.)

For a given ordering of the generators in the columns of the table, it produces a canonical numbering of
the cosets. This function does not display the new table; use the print (see D.5.8) for that. Such a table
has the property that a scan of the successive rows of the body of the table row by row, from left to right,
encounters previously unseen cosets in numeric order.

Notes: In a lenlex standard table, the coset representatives are ordered first according to length and then
the lexicographic order defined by the order the generators and their inverses head the columns. Note that,
since ACE avoids having an involutory generator in the first column when it can, this lexicographic order
does not necessarily correspond with the order in which the generators were first put to ACE. Two tables are
equivalent only if their canonic forms are the same. Invoking this option directly does not affect the GAP
coset table obtained via ACECosetTable; use the lenlex (see 4.11.4) option, if you want your table lenlex
standardised. (The lenlex option restarts the enumeration, if it is necessary to ensure the generators have
not been rearranged.)

Guru Notes: In five of the ten standard enumeration strategies of Sims [Sim94] (i.e. the five Sims strategies
not provided by ACE), the table is standardised repeatedly. This is expensive computationally, but can result
in fewer cosets being necessary. The effect of doing this can be investigated in ACE by (repeatedly) halting
the enumeration (via restrictive options), standardising the coset numbering, and continuing (see Section C.2
for an interactive example).

INTERACTIVELY, use ACEStandardCosetNumbering (see 6.7.2).

Section 7. Options for Comments 103

D.7 Options for Comments

1I text:=string

Prints string in the output; string must be a string.

This allows the user to add comments to the output from ACE.

Note: Please avoid using this option to insert comments starting with three asterisks: ***, since this string
is used as a sentinel internally in flushing output from ACE.

2I aceincomment:=string

Prints comment string in the ACE input; string must be a string. (Shortest abbreviation: aceinc.)

This option prints the comment string behind a sharp sign (#) in the input to ACE. Only useful for adding
comments (that ACE ignores) to standalone input files.

Bibliography

[CDHW73] John J. Cannon, Lucien A. Dimino, George Havas, and Jane M. Watson. Implementation and
analysis of the Todd-Coxeter algorithm. Mathematics of Computation, 27(123):463–490, July 1973.

[CHHR01] Colin M. Campbell, George Havas, Alexander Hulpke, and Edmund F. Robertson. The simple
group L3(5) is efficient. Communications in Algebra, to appear c. 2001.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[CM72] H.S.M. Coxeter and W.O.J. Moser. Generators and Relations for Discrete Groups. Springer-Verlag,
3rd edition, 1972.

[Hav91] George Havas. Coset enumeration strategies. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’91), Bonn 1991, pages 191–199. ACM Press, 1991.

[HR99] George Havas and Colin Ramsay. Coset enumeration: ACE version 3, 1999. ACE version 3.001 is
available from

http://www.csee.uq.edu.au/~cram/ce.html.

[HR01] George Havas and Colin Ramsay. Groups and computation III. In Ohio State University
Mathematical Research Institute Publications, volume 8, pages 183–192. de Gruyter, 2001.

[Lee77] John Leech. Computer proof of relations in groups. In Michael P.J. Curran, editor, Topics in Group
Theory and Computation, pages 38–61. Academic Press, 1977.

[Lee84] John Leech. Coset enumeration. In Michael D. Atkinson, editor, Computational Group Theory,
pages 3–18. Academic Press, 1984.

[Neu82] Joachim Neubüser. An elementary introduction to coset table methods in computational group
theory. In Colin M. Campbell and Edmund F. Robertson, editors, Groups-St.Andrews 1981,
Proceedings of a conference, St.Andrews 1981, volume 71 of London Math. Soc. Lecture Note Series,
pages 1–45. Cambridge University Press, 1982.

[Ram99] Colin Ramsay. ACE for amateurs (version 3.001). Technical Report 14, Centre for Discrete
Mathematics and Computing, The University of Queensland, St. Lucia 4072, Australia, 1999.

[Sim94] Charles C. Sims. Computation with finitely presented groups. Cambridge University Press, 1994.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
Abbreviations and mixed case for ACE Options, 25
Accessing ACE Examples with ACEExample and

ACEReadResearchExample, 10
ace, 5
ACEAddRelators, 58
ACEAddSubgroupGenerators, 58
ACEAllEquivPresentations, 48
ACEBinaryVersion, 56
ACEConjugatesForSubgroupNormalClosure, 60
ACEContinue, 46
ACECosetCoincidence, 59
ACECosetOrderFromRepresentative, 55
ACECosetRepresentative, 54
ACECosetRepresentatives, 54
ACECosetsThatNormaliseSubgroup, 55
ACECosetTable, 6

break-loop example, 7
interactive, 57
non-interactive, 6

ACECosetTableFromGensAndRels, 6
example, 81

ACECycles, 54
ACEData, 12
ACEDeleteRelators, 58
ACEDeleteSubgroupGenerators, 59
ACEDirectoryTemporary, 13
ACEDisplayCosetTable, 53
ACEDumpStatistics, 56
ACEDumpVariables, 56
ACEExample, 10
ACEGroupGenerators, 51
ACEIgnoreUnknownDefault, 30

use as debugging tool, 27
ACEModes, 46
ACEOptionData, 28
ACE Option Synonyms, 29
ACEOptionSynonyms, 29

ACEOrder, 55
ACEOrders, 54
ACEPackageVersion, 15
ACE Parameter Options, 32
ACEParameterOptions, 32
ACE Parameter Options controlling ACE Output,

38
ACE Parameter Options for Deduction Handling, 35
ACE Parameter Options for R Style Definitions, 35
ACE Parameter Options Modifying C Style

Definitions, 34
ACE Parameter Options that give Names to the

Group and Subgroup, 39
ACEParameters, 53
ACEPermutationRepresentation, 54
ACEPreferredOptionName, 29
ACEPrintResearchExample, 12
ACEProcessIndex, 47
ACEProcessIndices, 47
ACEQuit, 46

details, 46
introduction, 10

ACEQuitAll, 46
ACERandomCoincidences, 59
ACERandomEquivPresentations, 50
ACERandomlyApplyCosetCoincidence, 59
ACERead, 62
ACEReadAll, 62
ACEReadResearchExample, 12
ACEReadUntil, 62
ACERecover, 57
ACERedo, 47
ACERelators, 51
ACEResurrectProcess, 47
ACEStandardCosetNumbering, 57
ACEStart, 44

details, 44
example, 83

106 Index

introduction, 10
ACEStats, 9

example, 79
interactive, 57
non-interactive, 9

ACEStrategyOptions, 29
ACEStyle, 55
ACESubgroupGenerators, 51
ACETraceWord, 54
ACETransversal, 54
ACEWrite, 62
Acknowledgements, 14
activecosets, 9, 23
alive coset number, 23
An Example of passing Options, 27

B
banner, suppression, 17
break-loop, 6, 47, 53, 74

C
Changes from earlier versions, 15
coincidence, 10, 18, 20, 21, 23

coincidence queue, 18
cosets, 18

coset application, 18
coset numbers, 18
coset table, 18

Coset Statistics Terminology, 23
Coset Table Standardisation Schemes, 21
CR style, 19, 42
Cr style, 19, 42
C style, 19, 42

definition, 19, 34

D
dead coset (number), 20, 23, 37, 38, 57, 102
debugging, 27
deduction, 18, 20

deduction stack, 18
Defaulted R/C style, 20, 42
definition, 20

preferred, 18
DisplayACEArgs, 51
DisplayACEOptions, 52

E
Emulating Sims, 92
Enumeration Style, 18

Example of Using ACECosetTableFromGensAn-
dRels, 67

Example of Using ACE Interactively (Using
ACEStart), 69

Example where ACE is made the Standard Coset
Enumerator, 66

Experimentation ACE Modes, 48
Experimentation Options, 94

F
Felsch strategy, 18
Finding Deductions, Coincidences, and Preferred

Definitions, 20
Finding Subgroups, 21
FlushOptionsStack, 25
Fun with ACEExample, 70

G
General ACE Modes, 46
General ACE Parameter Options that Modify the

Enumeration Process, 33
General Warnings regarding the Use of Options, 12
GetACEArgs, 52
GetACEOptions, 52
Getting Started, 79

H
HLT strategy, 18
holes, 18
Honouring of the order in which ACE Options are

passed, 25

I
InfoACE, 14
InfoACELevel, 14
Installing the ACE Package, 16
Interactive ACE Process Utility Functions and

Interruption of an Interactive ACE Process, 47
Interactive Query Functions and an Option Setting

Function, 51
Interactive Versions of Non-interactive ACE

Functions, 57
Interpretation of ACE Options, 26
interruption of an interactive ACE process, 47
IsACEGeneratorsInPreferredOrder, 9

interactive, 57
non-interactive, 9

IsACEParameterOption, 29
IsACEProcessAlive, 47
IsACEStandardCosetTable, 8

Index 107

IsACEStrategyOption, 29
IsCompleteACECosetTable, 53
IsKnownACEOption, 28

K
KnownACEOptions, 28

L
lenlex standardisation, 8
lenlex standardisation scheme, 21, 57
Loading the ACE Package, 16
loop, 23

M
maxcosets, 9, 23
Mode Options, 97

N
Non-ACE-binary Options, 29
NonACEbinOptions, 29

O
OnBreak, 74
option aceecho, 32
option aceexampleoptions, 32
option aceignore, 31
option aceignoreunknown, 31
option aceincomment, 32

different to option text, 103
option aceinfile, 31
option acenowarnings, 32
option aceoutfile, 31, 39
option aep, 94
option ai, 98
option ao, 39
option asis, 33
option begin, 98
option bye, 98
option cc, 97
option cfactor, 33
option check, 98
option compaction, 37
option contiguous, 102
option continu, 98
option continue, deprecated: use continu, 98
option ct, 33
option cycles, 99
option default, 42
option dmode, 35
option dr, 97

option ds, 97
option dsize, 36
option dump, 99
option easy, 42
option echo, 32
option enumeration, 39
option exit, 98
option felsch, 42
option ffactor, 34
option fill, 34
option generators, 96
option group, 95
option hard, 42
option help, 99
option hlt, 42
option hole, 38
option incomplete, 31
option lenlex, 30
option lookahead, 35
option loop, 37
option max, 38
option mendelsohn, 34
option messages, 38
option mode, 97
option monitor, 38
option nc, 99
option no, 33
option normal, 99
option oo, 100
option options, 100
option order, 100
option path, 37
option pmode, 34
option print, 101
option psize, 35
option purec, 43
option purer, 43
option qui, 98
option rc, 97
option recover, 102
option redo, 98
option relators, 96
option rep, 95
option rfactor, 33
option rl, 96
option row, 35
option rt, 33
option sc, 101

108 Index

option semilenlex, 30
Options for Comments, 102
Options for redirection of ACE Output, 39
option sg, 96
option silent, 30
option sims, 43
option sr, 100
option stabilising, 101
option standard, 102
option start, 98
option statistics, 101
option stats, 101
Options that Interact with the Operating System,

98
Options that Modify a Presentation, 95
Options that Modify the Coset Table, 102
option style, 101
option subgroup, 39
option system, 99
option text, 102
option time, 36
option trace, 102
option tw, 102
option workspace, 36
Other Options, 39
Other Terminology, 23

P
pass, 23
Passing ACE Options, 24
PGRelFind, 77
preferred definition, 18, 19

preferred definition stack, 18–20
Primitive ACE Read/Write Functions, 61
Progress Messages, 64

Q
Query Options, 99

R
R/C (defaulted) style, 20, 42
R/C style, 19, 42
R* style, 19, 42

Rc style, 19, 42
Results Messages, 65
R style, 19, 42

definition, 19, 35

S
semilenlex standardisation scheme, 22
SetACEOptions, 52

record version, 52
SetInfoACELevel, 14
Setting the Verbosity of ACE via Info and InfoACE,

14
Starting and Stopping Interactive ACE Processes,

44
state (machine), 23
Steering ACE Interactively, 57
strategy, 18

minimal gaps, 19

T
Technical ACE Parameter Options, 36
The ACEData Record, 12
The ACEStrategyOptions List, 29
The KnownACEOptions Record, 28
The Strategies in Detail, 42
ToACEGroupGenerators, 48
ToACEWords, 48
totcosets, 9, 23

U
Using ACE as a Default for Coset Enumerations, 5
Using ACE Directly to Generate a Coset Table, 5
Using ACE Directly to Test whether a Coset

Enumeration Terminates, 9
Using ACE Interactively, 10
Using ACEReadResearchExample, 77

W
Warnings regarding Options, 25
What happens if no ACE Strategy Option or if no

ACE Option is passed, 26
Writing ACE Standalone Input Files to Generate a

Coset Table, 10

	Contents
	The ACE Package
	Using ACE as a Default for Coset Enumerations
	Using ACE Directly to Generate a Coset Table
	Using ACE Directly to Test whether a Coset Enumeration Terminates
	Writing ACE Standalone Input Files to Generate a Coset Table
	Using ACE Interactively
	Accessing ACE Examples with ACEExample and ACEReadResearchExample
	General Warnings regarding the Use of Options
	The ACEData Record
	Setting the Verbosity of ACE via Info and InfoACE
	Acknowledgements
	Changes from earlier versions

	Installing and Loading the ACE Package
	Installing the ACE Package
	Loading the ACE Package

	Some Basics
	Enumeration Style
	Finding Deductions, Coincidences, and Preferred Definitions
	Finding Subgroups
	Coset Table Standardisation Schemes
	Coset Statistics Terminology
	Other Terminology

	Options for ACE
	Passing ACE Options
	Warnings regarding Options
	Abbreviations and mixed case for ACE Options
	Honouring of the order in which ACE Options are passed
	What happens if no ACE Strategy Option or if no ACE Option is passed
	Interpretation of ACE Options
	An Example of passing Options
	The KnownACEOptions Record
	The ACEStrategyOptions List
	ACE Option Synonyms
	Non-ACE-binary Options
	ACE Parameter Options
	General ACE Parameter Options that Modify the Enumeration Process
	ACE Parameter Options Modifying C Style Definitions
	ACE Parameter Options for R Style Definitions
	ACE Parameter Options for Deduction Handling
	Technical ACE Parameter Options
	ACE Parameter Options controlling ACE Output
	ACE Parameter Options that give Names to the Group and Subgroup
	Options for redirection of ACE Output
	Other Options

	Strategy Options for ACE
	The Strategies in Detail

	Functions for Using ACE Interactively
	Starting and Stopping Interactive ACE Processes
	General ACE Modes
	Interactive ACE Process Utility Functions and Interruption of an Interactive ACE Process
	Experimentation ACE Modes
	Interactive Query Functions and an Option Setting Function
	Interactive Versions of Non-interactive ACE Functions
	Steering ACE Interactively
	Primitive ACE Read/Write Functions

	The Meanings of ACE's output messages
	Progress Messages
	Results Messages
	Examples
	Example where ACE is made the Standard Coset Enumerator
	Example of Using ACECosetTableFromGensAndRels
	Example of Using ACE Interactively (Using ACEStart)
	Fun with ACEExample
	Using ACEReadResearchExample
	Finer Points with Examples
	Getting Started
	Emulating Sims
	Other ACE Options
	Experimentation Options
	Options that Modify a Presentation
	Mode Options
	Options that Interact with the Operating System
	Query Options
	Options that Modify the Coset Table
	Options for Comments
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

