ACLib

A GAP4 Package

for Computations with
Almost Crystallographic Groups

by

Karel Dekimpe
Katholieke Universiteit Leuven Campus Kortrijk, Universitaire Campus
B-8500 Kortrijk, Belgium

Bettina Eick

Institut für Geometrie Universität Braunschweig
38106 Braunschweig, Germany

Contents

1 The Almost Crystallographic Groups Package 3
1.1 Almost crystallographic groups 4
1.2 Rational matrix groups 4
1.3 Polycyclically presented groups 5
1.4 More about almost crystallographic groups 6
1.5 The electronic versus the printed library 8
1.6 Example computations I 9
1.7 Example computations II 9
1.8 Example computations III 10
Bibliography 13
Index 14

The Almost Crystallographic Groups Package

1

Almost crystallographic groups are finitely generated nilpotent-by-finite groups satisfying certain properties. There are several group theoretic characterizations known for almost crystallographic groups; for example, a group G is almost crystallographic if and only if G is a finitely generated nilpotent-by-finite group such that the only finite normal subgroup in G is the trivial subgroup. Further, the group G is called an almost Bieberbach group if it is almost crystallographic and torsion free.
Thus an almost crystallographic group G has a finitely generated nilpotent normal subgroup N of finite index. Clearly, N is polycyclic and thus has a polycyclic series. The number of infinite cyclic factors in such a series is an invariant of G : the Hirsch length of G.
Further, for each of the almost crystallographic groups of Hirsch length 3 and 4 there exists a representation as a rational matrix group (in dimension 4 or 5). These representations can be seen as representations into the affine group of dimension 3 or 4 . Via these representations, the almost crystallographic groups act (properly discontinuously) on \mathbb{R}^{3} or \mathbb{R}^{4}. That is one reason to define the dimension of an almost crystallographic group as its Hirsch length.
The 3-dimensional and a part of the 4-dimensional almost crystallographic groups have been classified by K. Dekimpe, see [Dek96]. This classification includes all almost Bieberbach groups in dimension 3 and 4.

This package gives access to the resulting library of groups. The groups are available in two different representations. First, they can be accessed as rational matrix groups. This is also the representation used in [Dek96]. Secondly, all 3- and 4-dimensional almost crystallographic groups are polycyclic and they can also be obtained as polycyclically presented groups using the methods from the Polycyclic package of GAP. This second description is probably more useful for computations with the almost crystallographic groups. The package Polycyclic must be installed to use this feature.
Almost crystallographic groups can be seen as natural generalizations of crystallographic groups. A library of crystallographic groups is also available in the GAP package CrystCat. The GAP packages Cryst and CARAT can be used to compute with crystallographic groups.
This documentation is organized as follows. We first recall basic definitions and background on almost crystallographic groups in Section 1.1. Then we outline briefly the main access functions to this library in Sections 1.2 and 1.3. A more extended outline of these access functions is given in Section 1.4. This library is an electronic version of the classification given in [Dek96] and we relate the two version of the library in Section 1.5. Finally, we outline various interesting example computations in Sections 1.6-1.8.

1.1 Almost crystallographic groups

Almost crystallographic groups were first discussed in the theory of actions on Lie groups. We recall the original definition here briefly (see [Aus60], [Dek96], [Lee88] for more details).
Let L be a connected and simply connected nilpotent Lie group. For example, the 3-dimensional Heisenberg group, consisting of all upper unitriangular 3×3-matrices with real entries is of this type. Then $L \rtimes \operatorname{Aut}(L)$ acts affinely (on the left) on L via

$$
\forall l, l^{\prime} \in L, \forall \alpha \in \operatorname{Aut}(L):{ }^{(l, \alpha)} l^{\prime}=l \alpha\left(l^{\prime}\right) .
$$

Let C be a maximal compact subgroup of $\operatorname{Aut}(L)$. Then a subgroup G of $L \rtimes C$ is said to be an almost crystallographic group if and only if the action of G on L, induced by the action of $L \rtimes \operatorname{Aut}(L)$, is properly discontinuous and the quotient space $G \backslash L$ is compact. One recovers the situation of the ordinary crystallographic groups by taking $L=\mathbb{R}^{n}$, for some n, and $C=O(n)$, the orthogonal group.
More generally, we say that an abstract group is an almost crystallographic group if it can be realized as a genuine almost crystallographic subgroup of some $L \rtimes C$. In the following theorem we outline some algebraic characterizations of almost crystallographic groups; see Theorem 3.1.3 of [Dek96]. Recall that the Fitting subgroup $\operatorname{Fitt}(G)$ of a polycyclic-by-finite group G is its unique maximal normal nilpotent subgroup.
Theorem. The following are equivalent for a polycyclic-by-finite group G :
(1) G is an almost crystallographic group.
(2) $\operatorname{Fitt}(G)$ is torsion free and of finite index in G.
(3) G contains a torsion free nilpotent normal subgroup N of finite index in G with $C_{G}(N)$ torsion free.
(4) G has a nilpotent subgroup of finite index and there are no non-trivial finite normal subgroups in G.

In particular, if G is almost crystallographic, then $G / \operatorname{Fitt}(G)$ is finite. This factor is called the holonomy group of G.
The dimension of an almost crystallographic group equals the dimension of the Lie group L above which coincides also with the Hirsch length of the polycyclic-by-finite group. This library therefore contains families of virtually nilpotent groups of Hirsch length 3 and 4.

1.2 Rational matrix groups

The following three main functions are available to access the library of almost crystallographic groups as rational matrix groups.

1- AlmostCrystallographicGroup (dim, type, parameters)

- AlmostCrystallographicDim3(type, parameters)
- AlmostCrystallographicDim4 (type, parameters)
dim is the dimension of the required group. Thus dim must be either 3 or 4 . The inputs type and parameters are used to define the desired group as described in [Dek96]. We outline the possible choices for type and parameters here briefly. A more extended description is given later in Section 1.4 or can be obtained from [Dek96].
type specifies the type of the required group. There are 17 types in dimension 3 and 95 types in dimension 4. The input type can either be an integer defining the position of the desired type among all types; that is, in this case type is a number in [1..17] in dimension 3 or a number in [1..95] in dimension 4. Alternatively, type can be a string defining the desired type. In dimension 3 the possible strings are "01", "02", .., "17". In dimension 4 the possible strings are listed in the list ACDim4Types and thus can be accessed from GAP.

2- ACDim3Param

- ACDim4Param
parameters is a list of integers. Its length depends on the type of the chosen group. The lists ACDim3Param and ACDim4Param contain at position i the length of the parameter list for the type number i. Every list of integers of this length is a valid parameter input. Alternatively, one can input false instead of a parameter list. Then GAP will chose a random parameter list of suitable length.

```
gap> G := AlmostCrystallographicGroup( 4, 50, [ 1, -4, 1, 2 ] );
<matrix group of size infinity with 5 generators>
gap> DimensionOfMatrixGroup( G );
5
gap> FieldOfMatrixGroup( G );
Rationals
gap> GeneratorsOfGroup( G );
[ [ [ 1, 0, -1/2, 0, 0], [ 0, 1, 0, 0, 1], [ 0, 0, 1, 0, 0 ],
                [ 0, 0, 0, 1, 0], [ 0, 0, 0, 0, 1] ],
    [ [ 1, 1/2, 0, 0, 0], [ 0, 1, 0, 0, 0], [ 0, 0, 1, 0, 1],
                [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],
    [ [ 1, 0, 0, 0, 0], [ 0, 1, 0, 0, 0], [ 0, 0, 1, 0, 0 ],
                [ 0, 0, 0, 1, 1], [ 0, 0, 0, 0, 1 ] ],
    [ [ 1, 0, 0, 0, 1], [ 0, 1, 0, 0, 0], [0, 0, 1, 0, 0],
                [ 0, 0, 0, 1, 0], [ 0, 0, 0, 0, 1] ],
    [ [ 1, -4, 1, 0, 1/2 ], [ 0, 0, -1, 0, 0], [ 0, 1, 0, 0, 0 ],
                [ 0, 0, 0, 1, 1/4 ], [ 0, 0, 0, 0, 1] ] ]
gap> G.1;
[ [ 1, 0, -1/2, 0, 0], [ 0, 1, 0, 0, 1], [ 0, 0, 1, 0, 0 ],
    [0,0,0,1, 0], [0, 0, 0, 0, 1] ]
gap> ACDim4Types[50];
"076"
gap> ACDim4Param[50];
4
```


1.3 Polycyclically presented groups

All the almost crystallographic groups considered in this package are polycyclic. Hence they have a polycyclic presentation and this can be used to facilitate efficient computations with the groups. To obtain the polycyclic presentation of an almost crystallographic group we supply the following functions. Note that the package Polycyclic must be installed to use these functions.
1- AlmostCrystallographicPcpGroup (dim, type, parameters)

- AlmostCrystallographicPcpDim3(type, parameters)
- AlmostCrystallographicPcpDim4 (type, parameters)

The input is the same as for the corresponding matrix group functions. The output is a pcp group isomorphic to the corresponding matrix group. An explicit isomorphism from an almost crystallographic matrix group to the corresponding pcp group can be obtained by the following function.

2- IsomorphismPcpGroup (G)
We can use the polycyclic presentations of almost crystallographic groups to exhibit structure information on these groups. For example, we can determine their Fitting subgroup and ask group-theoretic questions about this nilpotent group. The factor $G / F i t t(G)$ of an almost crystallographic group G is called its holonomy group. We provide access to this factor of a pcp group via the following functions. Let G be an almost crystallographic pcp group.

3- HolonomyGroup (G)

- NaturalHomomorphismOnHolonomyGroup(G)

The following example shows applications of these functions.

```
gap> G := AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );
Pcp-group with orders [ 4, 0, 0, 0, 0 ]
gap> Cgs(G);
[ g1, g2, g3, g4, g5 ]
gap> F := FittingSubgroup( G );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> Centre(F);
Pcp-group with orders [ 0, 0 ]
gap> LowerCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0 ],
    Pcp-group with orders [ ] ]
gap> UpperCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0 ],
    Pcp-group with orders [ ] ]
gap> MinimalGeneratingSet(F);
[ g2, g3, g4 ]
gap> H := HolonomyGroup( G );
Pcp-group with orders [ 4 ]
gap> hom := NaturalHomomorphismOnHolonomyGroup( G );
[ g1, g2, g3, g4, g5 ] >> [ g1, identity, identity, identity, identity ]
gap> U := Subgroup( H, [Pcp(H)[1]^2] );
Pcp-group with orders [ 2 ]
gap> PreImage( hom, U );
Pcp-group with orders [ 2, 0, 0, 0, 0 ]
```


1.4 More about almost crystallographic groups

Each group from this library knows that it is almost crystallographic and it knows its type and defining parameters.
1- IsAlmostCrystallographic (G)

- AlmostCrystallographicInfo(G)

We note here that these two properties are defined in GAP for groups from the AC library only. In particular, it is not possible so far, to test if an arbitrary group is almost crystallographic or to determine its type. Methods for this purpose might be added in a later version of this library.

```
gap> G := AlmostCrystallographicGroup( 4, 70, false );
<matrix group of size infinity with 5 generators>
gap> IsAlmostCrystallographic(G);
true
gap> AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ 1, -4, 1, 2, -3 ] )
gap> G := AlmostCrystallographicPcpGroup( 4, 70, false );
Pcp-group with orders [ 6, 0, 0, 0, 0 ]
gap> IsAlmostCrystallographic(G);
```

```
true
gap> AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ -3, 2, 5, 1, 0 ] )
```

Next we consider the types of almost crystallographic groups in more detail. The almost crystallographic groups in dimensions 3 and 4 fall into three families
(1) 3-dimensional almost crystallographic groups.
(2) 4-dimensional almost crystallographic groups with a Fitting subgroup of class 2.
(3) 4-dimensional almost crystallographic groups with a Fitting subgroup of class 3 .

These families are split up further into subfamilies in [Dek96] and to each subfamily is assigned a type; that is, a string which is used to identify the subfamily. As mentioned above, for the 3 -dimensional almost crystallographic groups the type is a string representing the numbers from 1 to 17 , i.e. types are " 01 ", "02", ..., "17".
For the 4-dimensional almost crystallographic groups with a Fitting subgroup of class 2 the type is a string of 3 or 4 characters. In general, a string of 3 characters representing the number of the table entry in [Dek96] is used. So possible types are "001", "002", The reader is warned however that not all possible numbers are used, e.g. there are no groups of type "016". Also, the types do not appear in their natural order in [Dek96]. Moreover, for certain numbers there is more than one family of groups listed in [Dek96]. For example, the 3 families of groups corresponding to number 19 on pages 179-180 of [Dek96] have types "019", "019b" and "019c" (the order is the one given in [Dek96]).

For the last category of groups, the 4 -dimensional almost crystallographic groups with a Fitting subgroup of class 3 , the type is a string of 2 or 3 characters, where the first character is always the letter " B ". This "B" is followed by the number of the table entry as found in [Dek96], eventually followed by a "b" or "c" as in the previous case.

2 ACDim3Funcs V

- ACDim4Funcs V
- ACPcpDim3Funcs V

For each type of almost crystallographic group contained in the library there exists a function taking a parameter list as input and returning the desired matrix or pcp group. These functions can be accessed from GAP using the lists ACDim3Funcs, ACDim4Funcs, ACPcpDim3Funcs and ACPcpDim4Funcs which consist of the corresponding functions.
Although we include these direct access functions here for completeness, we note that the user should in general use the higher-level functions introduced above to obtain almost crystallographic groups from the library. In particular, these low-level access functions return matrix or pcp groups, but the almost crystallographic info flags will not be attached to them.

```
gap> ACDim3Funcs[15];
function( k1, k2, k3, k4 ) ... end
gap> ACDim3Funcs[15] (1,1,1,1);
<matrix group with 5 generators>
gap> ACPcpDim3Funcs[1](1);
Pcp-group with orders [ 0, 0, 0 ]
```


1.5 The electronic versus the printed library

The package ACLib can be considered to be the electronic version of Chapter 7 of [Dek96]. In this section we outline the relationship between the library presented in this manual and the printed version in [Dek96]. First we consider an example. On page 175 of [Dek96], we find the following groups in the table starting with entry " 13 ".
13. $Q=P 2 / c$

$$
\begin{aligned}
& E:\langle a, b, c, d, \alpha, \beta \mid \quad[b, a]=1 \quad[d, a]=1 \quad\rangle \\
& {[c, a]=d^{2 k_{1}} \quad[d, b]=1} \\
& {[c, b]=1 \quad[d, c]=1} \\
& \alpha a=a^{-1} \alpha d^{k_{2}} \quad \alpha^{2}=d^{k_{3}} \\
& \alpha b=b \alpha \quad \alpha d=d \alpha \\
& \alpha c=c^{-1} \alpha d^{-2 k_{6}} \\
& \beta a=a^{-1} \beta d^{k_{1}+k_{2}} \quad \beta^{2}=d^{k_{5}} \\
& \beta b=b^{-1} \beta d^{k_{4}} \quad \beta d=d \beta \\
& \beta c=c^{-1} \beta d^{-2 k_{6}} \quad \alpha \beta=c \beta \alpha d^{k_{6}} \\
& \lambda(\alpha)=\left(\begin{array}{ccccc}
1 & \frac{k_{1}}{2}+k_{2} & 0 & -2 k_{6} & \frac{k_{3}}{2}+\frac{k_{6}}{2} \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \lambda(\beta)=\left(\begin{array}{ccccc}
1 & k_{1}+k_{2} & k_{4} & -2 k_{6} & \frac{k_{5}}{2} \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& H^{2}(Q, \mathbb{Z})=\mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{4}=\mathbb{Z}^{6} / A, \\
& A=\left\{\left(k_{1}, \ldots, k_{6}\right) \mid k_{1}=0, k_{2}, \ldots, k_{5} \in 2 \mathbb{Z}, k_{6} \in \mathbb{Z}\right\}
\end{aligned}
$$

AB-groups:

$$
\forall k>0, k \equiv 0 \bmod 2,(k, 0,1,0,1,0)
$$

The number " 13 " at the beginning of this entry is the type of the almost crystallographic group in this library. This family of groups with type 13 depends on 6 parameters $k_{1}, k_{2}, \ldots, k_{6}$ and these are the parameters list in this library. The rational matrix representation in GAP corresponds exactly to the printed version in [Dek96] where it is named λ. In the example below, we consider the group with parameters $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}\right)=$ $(8,0,1,0,1,0)$.

```
gap> G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]);
<matrix group with 6 generators>
gap> G.5;
[ [ 1, 4, 0, 0, 1/2], [0, -1, 0, 0, 0], [0, 0, 1, 0, 0],
    [ 0, 0, 0, -1, 1/2 ], [ 0, 0, 0, 0, 1] ]
gap> G.6;
[ [ 1, 8, 0, 0, 1/2], [ 0, -1, 0, 0, 0], [ 0, 0, -1, 0, 0],
    [0, 0, 0, -1, 0], [0, 0, 0, 0, 1] ]
```

For a 4 -dimensional almost crystallographic group the matrix group is built up such that $\{a, b, c, d, \alpha, \beta, \gamma\}$ as described in [Dek96] forms the defining generating set of G. For certain types the elements α, β or γ may not be present. Similarly, for a 3-dimensional group we have the generating set $\{a, b, c, \alpha, \beta\}$ and α and β may be absent.

To obtain a polycyclic generating sequence from the defining generators of the matrix group we have to order the elements in the generating set suitably. For this purpose we take the subsequence of $(\gamma, \beta, \alpha, a, b, c, d)$ of those generators which are present in the defining generating set of the matrix group. This new ordering of the generators is then used to define a polycyclic presentation of the given almost crystallographic group.

1.6 Example computations I

Using the functions available for pcp groups in the package Polycyclic it is now easy to redo some of the calculations of [Dek96]. As a first example we check whether the groups indicated as torsion free in [Dek96] are also determined as torsion free ones by GAP. In [Dek96] these almost Bieberbach groups are listed as "AB-groups". So for type " 013 " these are the groups with parameters ($k, 0,1,0,1,0$) where k is an even integer. Let's look at some examples in GAP:

```
gap> G:=AlmostCrystallographicPcpDim4("013",[8,0,1,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap> IsTorsionFree(G);
true
gap> G:=AlmostCrystallographicPcpDim4("013",[9,0,1,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap> IsTorsionFree(G);
false
```

Further, there is also some cohomology information in the tables of [Dek96]. In fact, the groups in this library were obtained as extensions E of the form

$$
1 \rightarrow \mathbb{Z} \rightarrow E \rightarrow Q \rightarrow 1
$$

where, in the 4-dimensional case $Q=E /\langle d\rangle$. The cohomology information for the particular example above shows that the groups determined by a parameter set $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{4}, k_{6}\right)$ are equivalent as extensions to the groups determined by the parameters $\left(k_{1}, k_{2} \bmod 2, k_{3} \bmod 2, k_{4} \bmod 2, k_{5} \bmod 2,0\right)$. This is also visible in finding torsion:

```
gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,2,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap> IsTorsionFree(G);
false
gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,3,0,1,9]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap> IsTorsionFree(G);
true
```


1.7 Example computations II

The computation of cohomology groups played an important role in the classification of the almost Bieberbach groups in [Dek96]. Using GAP, it is now possible to check these computations. As an example we consider the 4 -dimensional almost crystallographic groups of type 85 on page 202 of [Dek96]. This group E has 6 generators. In the table, one also finds the information

$$
H^{2}(Q, \mathbb{Z})=\mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{2} \oplus \mathbb{Z}_{4}
$$

for $Q=E /\langle d\rangle$ as above. Moreover, the Q-module \mathbb{Z} is in fact the group $\langle d\rangle$, where the Q-action comes from conjugation inside E. In the case of groups of type $85, \mathbb{Z}$ is a trivial Q-module. The following example demonstrates how to (re)compute this two-cohomology group $H^{2}(Q, \mathbb{Z})$.

```
gap> G:=AlmostCrystallographicPcpGroup(4, "085", false);
Pcp group with orders [ 2, 4, 0, 0, 0, 0 ]
gap> GroupGeneratedByd:=Subgroup(G, [G.6] );
Pcp group with orders [ 0 ]
gap> Q:=G/GroupGeneratedByd;
Pcp group with orders [ 2, 4, 0, 0, 0 ]
gap> action:=List( Pcp(Q), x -> [[1]] );
[ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ]
gap> C:=CRRecordByMats( Q, action);;
gap> TwoCohomologyCR( C ).factor.rels;
[ 2, 2, 4, 0 ]
```

This last line gives us the abelian invariants of the second cohomology group $H^{2}(Q, \mathbb{Z})$. So we should read this line as

$$
H^{2}(Q, \mathbb{Z})=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}
$$

which indeed coincides with the information in [Dek96].

1.8 Example computations III

As another application of the capabilities of the combination of ACLib and Polycyclic we check some computations of [DM].
Section 5 of the paper [DM] is completely devoted to an example of the computation of the P-localization of a virtually nilpotent group, where P is a set of primes. Although it is not our intention to develop the theory of P-localization of groups at this place, let us summarize some of the main results concerning this topic here.
For a set of primes P, we say that $n \in P$ if and only if n is a product of primes in P. A group G is said to be P-local if and only if the map $\mu_{n}: G \rightarrow G: g \mapsto g^{n}$ is bijective for all $n \in P^{\prime}$, where P^{\prime} is the set of all primes not in P. The P-localization of a group G, is a P-local group G_{P} together with a morphism $\alpha: G \rightarrow G_{P}$ which satisfy the following universal property: For each P-local group L and any morphism $\varphi: G \rightarrow L$, there exists a unique morphism $\psi: G_{P} \rightarrow L$, such that $\psi \circ \alpha=\varphi$.
This concept of localization is well developed for finite groups and for nilpotent groups. For a finite group G, the P-localization is the largest quotient of G, having no elements with an order belonging to P^{\prime} (the morphism α, mentioned above is the natural projection).
In $[\mathrm{DM}]$ a contribution is made towards the localization of virtually nilpotent groups. The theory developed in the paper is then illustrated in the last section of the paper by means of the computation of the P-localization of an almost crystallographic group. For their example the authors have chosen an almost crystallographic group G of dimension 3 and type 17. For the set of parameters $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ they have considered all cases of the form $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\left(2,0,0, k_{4}\right)$.
Here we will check their computations in two cases $k_{4}=0$ and $k_{4}=1$ using the set of primes $P=\{2\}$. The holonomy group of these almost crystallographic groups G is the dihedral group \mathcal{D}_{6} of order 12 . Thus there is a short exact sequence of the form

$$
1 \rightarrow \operatorname{Fitt}(G) \rightarrow G \rightarrow \mathcal{D}_{6} \rightarrow 1
$$

As a first step in their computation, Descheemaeker and Malfait determine the group I_{P}, \mathcal{D}_{6}, which is the unique subgroup of order 3 in \mathcal{D}_{6}. One of the main objects in [DM] is the group $K=p^{-1}\left(I_{P}, \mathcal{D}_{6}\right)$, where p is the natural projection of G onto its holonomy group. It is known that the P-localization of G coincides with the P-localization of $G / \gamma_{3}(K)$, where $\gamma_{3}(K)$ is the third term in the lower central series of K. As $G / \gamma_{3}(K)$
is finite in this example, we exactly know what this P-localization is. Let us now show, how GAP can be used to compute this P-localization in two cases:

First case: The parameters are $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(2,0,0,0)$

```
gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,0] );
Pcp group with orders [ 2, 6, 0, 0, 0 ]
gap> projection := NaturalHomomorphismOnHolonomyGroup( G );
[ g1, g2, g3, g4, g5 ] -> [ g1, g2, identity, identity, identity ]
gap> F := HolonomyGroup( G );
Pcp group with orders [ 2, 6 ]
gap> IPprimeD6 := Subgroup( F , [F.2^2] );
Pcp group with orders [ 3 ]
gap> K := PreImage( projection, IPprimeD6 );
Pcp group with orders [ 3, 0, 0, 0 ]
gap> PrintPcpPresentation( K );
pcp presentation on generators [ g2^2, g3, g4, g5 ]
g2^2 ^ 3 = identity
g3 ^ g2^2 = g3^-1*g4^-1
g3 ^ g2^2^-1 = g4*g5^-2
g4 ^ g2^2 = g3*g5^2
g4 ^ g2^2^-1 = g3^-1*g4^-1*g5^2
g4 ^ g3 = g4*g5^2
g4 ^ g3^-1 = g4*g5^-2
gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));
Pcp group with orders [ 0, 0, 0 ]
gap> quotient := G/Gamma3K;
Pcp group with orders [ 2, 6, 3, 3, 2 ]
gap> S := SylowSubgroup( quotient, 3);
Pcp group with orders [ 3, 3, 3 ]
gap> N := NormalClosure( quotient, S);
Pcp group with orders [ 3, 3, 3 ]
gap> localization := quotient/N;
Pcp group with orders [ 2, 2, 2 ]
gap> PrintPcpPresentation( localization );
pcp presentation on generators [ g1, g2, g3 ]
g1 ~ 2 = identity
g2 ^ 2 = identity
g3 - 2 = identity
```

This shows that $G_{P} \cong \mathbb{Z}_{2}^{3}$.
Second case: The parameters are $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(2,0,0,1)$

```
gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,1]);;
gap> projection := NaturalHomomorphismOnHolonomyGroup( G );;
gap> F := HolonomyGroup( G );;
gap> IPprimeD6 := Subgroup( F , [F.2^2] );;
gap> K := PreImage( projection, IPprimeD6 );;
gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));;
gap> quotient := G/Gamma3K;;
gap> S := SylowSubgroup( quotient, 3);;
gap> N := NormalClosure( quotient, S);;
gap> localization := quotient/N;
```

```
Pcp group with orders [ 2, 2, 2 ]
gap> PrintPcpPresentation( localization );
pcp presentation on generators [ g1, g2, g3 ]
g1 ~ 2 = identity
g2 ` 2 = g3
g3 - 2 = identity
g2 ^ g1 = g2*g3
g2 ^ g1^-1 = g2*g3
```

In this case, we see that $G_{P}=\mathcal{D}_{4}$.
The reader can check that these results coincide with those obtained in [DM]. Note also that we used a somewhat different scheme to compute this localization than the one used in [DM]. We invite the reader to check the same computations, tracing exactly the steps made in $[\mathrm{DM}]$.

Bibliography

[Aus60] Louis Auslander. Bieberbach's theorem on space groups and discrete uniform subgroups of lie groups. Ann. of Math, 71(3):579-590, 1960.
[Dek96] Karel Dekimpe. Almost-Bieberbach Groups: Affine and Polynomial Structures, volume 1639 of Springer Lecture Notes in Mathematics. 1996.
[DM] An Descheemaeker and Wim Malfait. P-localization of relative groups. Journal of Pure and Applied Algebra. To appear.
[Lee88] Kyung Bai Lee. There are only finitely many infra-nilmanifolds under each nilmanifold. Quart. J. Math. Oxford, 39(2):61-66, 1988.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., "PermutationCharacter" comes before "permutation group".

A

ACDim3Funcs, 7
ACDim3Param, 4
ACDim4Funcs, 7
ACDim4Param, 4
aclib, 3
ACPcpDim3Funcs, 7
almost Bieberbach group, 3
almost crystallographic, 3
AlmostCrystallographicDim3, 4
AlmostCrystallographicDim4, 4
AlmostCrystallographicGroup, 4
Almost crystallographic groups, 3
AlmostCrystallographicInfo, 6
AlmostCrystallographicPcpDim3, 5
AlmostCrystallographicPcpDim4, 5
AlmostCrystallographicPcpGroup, 5
D
dimension, of an almost crystallographic group, 3

E

Example computations I, 8
Example computations II, 9
Example computations III, 10

F

Fitting subgroup, 4

H

Hirsch length, 3
HolonomyGroup, 5
holonomy group, 4, 5
|
IsAlmostCrystallographic, 6
IsomorphismPcpGroup, 5
M
More about almost crystallographic groups, 6

N

NaturalHomomorphismOnHolonomyGroup, 5

P

Polycyclically presented groups, 5

R

Rational matrix groups, 4

T

The electronic versus the printed library, 7

