
AutPGrp
—

A GAP4 Package

by

Bettina Eick and Eamonn O’Brien

May 2002

Contents

1 Introduction 3

2 The automorphism group method 4

3 The underlying function 6

4 Influencing the algorithm 8

4.1 Outline of the algorithm . 8

4.2 The initialisation step . 9

4.3 Stabilisers in matrix groups . 9

4.4 Searching for a small generating set . 10

4.5 An interactive version of the algorithm 10

4.6 Acknowledgements . 11

Index 12

1 Introduction

Given an arbitrary finite group, the computation of its automorphism group is a very difficult task. Pioneer
work in this area was carried out by Felsch & Neubüser (1970), whose algorithm used the output of their
subgroup lattice program. A technique developed by Neubüser in the early 1970s sought to compute the
automorphism group viewed as a permutation group acting on unions of certain conjugacy classes of the
group. A similar method was implemented by Hulpke (1997) in the GAP 4 library. Recently, Cannon & Holt
(1999) presented a new algorithm which uses a “hybrid group” approach.

More efficient approaches are available to determine the automorphism group for groups satisfying certain
properties. Following the work of Shoda (1928), Hulpke in 1997 implemented a practical method for finite
abelian groups in the GAP 4 library. Wursthorn (1993) adapted modular group algebra techniques to compute
the automorphism groups of p-groups; the GAP 3 share package Sisyphos includes an implementation. Smith
(1994) introduced an algorithm for finite solvable groups which is available in the AutAg share package of
GAP 3.

Moreover, the p-group generation method of Newman (1977) and O’Brien (1990) can be modified to compute
the automorphism group of a finite p-group as outlined in O’Brien (1995). This algorithm is implemented
in the ANU pq C program.

Here we introduce a new function to compute the automorphism group of a finite p-group. The underlying
algorithm is a refinement of the methods described in O’Brien (1995). In particular, this implementation is
more efficient in both time and space requirements and hence has a wider range of applications than the
ANU pq method. Our package is written in GAP code and it makes use of a number of methods from the
GAP library such as the MeatAxe for matrix groups and permutation group functions.

The GAP 4 package ANUPQ, which is an interface to most of the functionality of the ANU pq C program,
uses the AutPGrp package to compute automorphism groups of p-groups.

We have compared our method to the others available in GAP. Our package usually out-performs all but
the method designed for finite abelian groups. We note that our method uses the small groups library in
certain cases and hence our algorithm is more effective if the small groups library is installed.

A GAP 3 version of the methods implemented in this package is available via

http://www-public.tu-bs.de:8080/~beick/so.html

2

The automorphism
group method

The AutPGrp package installs a method for AutomorphismGroup for a finite p-group (see also Section 38.7
in the GAP Reference Manual).

1I AutomorphismGroup(G) M

The input is a finite p-group G . If the filters IsPGroup, IsFinite and CanEasilyComputePcgs are set and
true for G , the method selection of GAP 4 invokes this algorithm.

The output of the method is an automorphism group, whose generators are given in GroupHomomorphism-
ByImages format in terms of their action on the underlying group G .

2I InfoAutGrp V

This is a GAP InfoClass (these are described in Chapter 7.4 in the GAP Reference Manual). By assigning
an info-level in the range 1 to 4 via

SetInfoLevel(InfoAutGrp, info-level)

varying levels of information on the progress of the computation, will be obtained.

gap> RequirePackage("autpgrp");
#I ------------ The AutPGrp package --------------
#I -- Computing automorphism groups of p-groups --
true

gap> G := SmallGroup(32, 15);
<pc group of size 32 with 5 generators>

gap> SetInfoLevel(InfoAutGrp, 1);

gap> AutomorphismGroup(G);
#I step 1: 2^2 -- init automorphisms
#I step 2: 2^2 -- aut grp has size 2
#I step 3: 2^1 -- aut grp has size 32
#I final step: convert
<group of size 64 with 6 generators>

The algorithm proceeds by induction down the lower p-central series of G and the information corresponds
to the steps of this induction. In the following example we observe that the method also accepts permutation
groups as input, provided they satisfy the required filters.

5

gap> G := DihedralGroup(IsPermGroup, 2^5);
Group([(1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)])

gap> IsPGroup(G);
true
gap> CanEasilyComputePcgs(G);
true
gap> IsFinite(G);
true
gap> AutomorphismGroup(G);
#I step 1: 2^2 -- init automorphisms
#I step 2: 2^1 -- aut grp has size 2
#I step 3: 2^1 -- aut grp has size 8
#I step 4: 2^1 -- aut grp has size 32
#I final step: convert
<group of size 128 with 7 generators>
gap> A := last;;
gap> A.1;
Pcgs([(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10),
(1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
(1, 3, 5, 7, 9,11,13,15)(2, 4, 6, 8,10,12,14,16),
(1, 5, 9,13)(2, 6,10,14)(3, 7,11,15)(4, 8,12,16),
(1, 9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]) ->

[(1, 2)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10),
(1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
(1, 3, 5, 7, 9,11,13,15)(2, 4, 6, 8,10,12,14,16),
(1, 5, 9,13)(2, 6,10,14)(3, 7,11,15)(4, 8,12,16),
(1, 9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]

gap> Order(A.1);
16

3 The underlying function

Underlying the method installation for AutomorphismGroup is the function AutomorphismGroupPGroup.
This function is intended for expert users who wish to influence the steps of the algorithm. Note also that
AutomorphismGroup will always choose default values.

1I AutomorphismGroupPGroup(G [,flag]) F

The input is a finite p-group as above and an optional flag which can be true or false. Here the filters for G
need not be set, but they should be true for G . The possible values for flag are considered later in Chapter
4. If flag is not supplied, the algorithm proceeds similarly to the method installed for AutomorphismGroup,
but it produces slightly more detailed output. The output of the function is a record which contains the
following fields:

glAutos
a set of automorphisms which together with agAutos generate the automorphism group;

glOrder
an integer whose product with the agOrders gives the size of the automorphism group;

agAutos
a polycyclic generating sequence for a soluble normal subgroup of the automorphism group;

agOrder
the relative orders corresponding to agAutos;

one
the identity element of the automorphism group;

group
the underlying group G ;

size
the size of the automorphism group.

We do not return an automorphism group in the standard form because we wish to distinguish between
agAutos and glAutos; the latter act non-trivially on the Frattini quotient of G . This hybrid-group descrip-
tion of the automorphism group permits more efficient computations with it. The following function converts
the output of AutomorphismGroupPGroup to the output of AutomorphismGroup.

2I ConvertHybridAutGroup(A) F

gap> RequirePackage("autpgrp");
#I ------------ The AutPGrp package --------------
#I -- Computing automorphism groups of p-groups --
true

gap> H := SmallGroup (729, 34);
<pc group of size 729 with 6 generators>

7

gap> A := AutomorphismGroupPGroup(H);
rec(glAutos := [],

glOrder := 1,
agAutos := [Pcgs([f1, f2, f3, f4, f5, f6])

-> [f1^2, f2, f3^2*f4, f4, f5^2*f6, f6],
Pcgs([f1, f2, f3, f4, f5, f6])
-> [f2^2, f1, f3*f5^2, f5^2, f4*f6^2, f6^2],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1^2, f2^2, f3*f4^2*f5^2*f6, f4^2*f6, f5^2*f6, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1*f3, f2, f3*f5^2, f4*f6^2, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1, f2*f3, f3*f4, f4, f5*f6, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1*f4, f2, f3*f6^2, f4, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1, f2*f4, f3, f4, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1*f5, f2, f3, f4, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1, f2*f5, f3*f6, f4, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1*f6, f2, f3, f4, f5, f6],

Pcgs([f1, f2, f3, f4, f5, f6])
-> [f1, f2*f6, f3, f4, f5, f6]],

agOrder := [2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3],
one := IdentityMapping(<pc group of size 729 with 6 generators>),
group := <pc group of size 729 with 6 generators>,
size := 52488)

gap> ConvertHybridAutGroup(A);
<group of size 52488 with 11 generators>

4

Influencing
the algorithm

A number of choices can be made by the user to influence the performance of AutomorphismGroupPGroup.
Below we identify these choices and their default values used in AutomorphismGroup. We use the optional
argument flag of AutomorphismGroupPGroup to invoke user-defined choices. The possible values for flag are

flag = false
the user-defined defaults are employed in the algorithm. See below for a list of possibilities.

flag = true
invokes the interactive version of the algorithm as described in Section 4.5.

In the next section we give a brief outline of the algorithm which is necessary to understand the possible
choices. Then we introduce the choices the later sections of this chapter.

4.1 Outline of the algorithm

The basic algorithm proceeds by induction down the lower p-central series of a given p-group G ; that is,
it successively computes Aut(Gi) for the quotients Gi = G/Pi (G) of the descending sequence of subgroups
defined by P1(G) = G and Pi+1(G) = [Pi (G),G]Pi (G)p for i ≥ 1. Hence, in the initial step of the
algorithm, Aut(G2) = GL(d , p) where d is the rank of the elementary abelian group G2. In the inductive
step it determines Aut(Gi+1) from Aut(Gi). For this purpose we introduce an action of Aut(Gi) on a certain
elementary abelian p-group M (the p-multiplicator of Gi). The main computation of the inductive step is
the determination of the stabiliser in Aut(Gi) of a subgroup U of M (the allowable subgroup for Gi+1).
This stabiliser calculation is the bottle-neck of the algorithm.

Our package incorporates a number of refinements designed to simplify this stabiliser computation. Some of
these refinements incur overheads and hence they are not always invoked. The features outlined below allow
the user to select them.

Observe that the initial step of the algorithm returns GL(d , p). But Aut(G) may induce on G2 a proper
subgroup, say K , of GL(d , p). Any intermediate subgroup of GL(d , p) which contains K suffices for the
algorithm and we supply two methods to construct a suitable subgroup: these use characteristic subroups
or invariants of normal subgroups of G . (See Section 4.2.)

In the inductive step an action of Aut(Gi) on an elementary abelian group M is used. This action is computed
as a matrix action on a vector space. To simplify the orbit-stabiliser computation of the subspace U of M ,
we can construct the stabiliser of U by iteration over a sequence of Aut(Gi)-invariant subspaces of M . (See
Section 4.3.)

Orbit-stabiliser computations in finite solvable groups given by a polycyclic generating sequence are much
more efficient than generic computations of this type. Thus our algorithm makes use of a large solvable
normal subgroup S of Aut(Gi). Further, it is useful if the generating set of Aut(Gi) outside S is as small as
possible. To achieve this we determine a permutation representation of Aut(Gi)/S and use this to reduce
the number of generators if possible. (See Section 4.4.)

Section 3. Stabilisers in matrix groups 9

4.2 The initialisation step

Assume we seek to compute the automorphism group of a p-group G having Frattini rank d . We first
determine as small as possible a subgroup of GL(d , p) whose extension can act on G .

The user can choose the initialisation routine by assigning InitAutGroup to any one of the following.

InitAutomorphismGroupOver
to use the minimal overgroups;

InitAutomorphismGroupChar
to use the characteristic subgroups;

InitAutomorphismGroupFull
to use the full GL(d , p).

a) Minimal Overgroups

We determine the minimal over-groups of the Frattini subgroup of G and compute invariants of these which
must be respected by the automorphism group of G . We partition the minimal overgroups and compute the
stabiliser in GL(d , p) of this partition.

The partition of the minimal overgroups is computed using the function PGFingerprint(G, U). This is
the time-consuming part of this initialisation method. The user can overwrite the function PGFingerprint.

b) Characteristic Subgroups

Compute a generating set for the stabiliser in GL(d , p) of a chain of characteristic subgroups of G . In
practice, we construct a characteristic chain by determining 2-step centralisers and omega subgroups of
factors of the lower p-central series.

However, there are often other characteristic subgroups which are not found by these approaches. The user
can overwrite the function PGCharSubgroups(G) to supply a set of characteristic subgroups.

c) Defaults

In the method for AutomorphismGroup we use a default strategy: if the value pd−1
p−1 is less than 1000, then

we use the minimal overgroup approach, otherwise the characteristic subgroups are employed. An exception
is made for homogeneous abelian groups where we initialise the algorithm with the full group GL(d , p).

4.3 Stabilisers in matrix groups

Consider the ith inductive step of the algorithm. Here A ≤ Aut(Gi) acts as matrix group on the elementary
abelian p-group M and we want to determine the stabiliser of a subgroup U ≤ M .

We use the MeatAxe to compute a series of A-invariant subspaces through M such that each factor in the
series is irreducible as A-module. Then we use this series to break the computation of StabA(U) into several
smaller orbit-stabiliser calculations.

Note that a theoretic argument yields an A-invariant subspace of M a priori: the nucleus N . This is always
used to split the computation up. However, it may happen that N = M and hence results in no improvement.

1I CHOP MULT V

The invariant series through M is computed and used if the global variable CHOP MULT is set to true.
Otherwise, the algorithm tries to determine StabA(U) in one step. By default, CHOP MULT is true.

10 Chapter 4. Influencing the algorithm

4.4 Searching for a small generating set

After each step of the computation, we attempt to find a nice generating set for the automorphism group
of the current factor.

If the automorphism group is soluble, we store a polycyclic generating set; otherwise, we store such a
generating set for a large soluble normal subgroup S of the automorphism group A, and as few generators
outside as possible. If S = A and a polycyclic generating set for S is known, many steps of the algorithm
proceed more rapidly.

1I NICE STAB V

It may be both time-consuming and difficult to reduce the number of generators for A outside S . Note that if
the initialisation of the algorithm is by InitAutomorphismGroupOver, then we always know a permutation
representation for A/S . Occasionally the search for a small generating set is expensive. If this is observed,
one could set the flag NICE STAB to false and the algorithm no longer invokes this search.

4.5 An interactive version of the algorithm

The choice of initialisation and the choice of chopping of the p-multiplicator can also be driven by an
interactive version of the algorithm. We give an example.

gap> G := SmallGroup(2^8, 1000);;
gap> SetInfoLevel(InfoAutGrp, 3);

gap> AutomorphismGroupPGroup(G, true);
#I step 1: 2^3 -- init automorphisms

choose initialisation (Over/Char/Full): # we choose Full
#I init automorphism group : Full
#I step 2: 2^3 -- aut grp has size 168
#I computing cover
#I computing matrix action
#I computing stabilizer of U
#I dim U = 3 dim N = 6 dim M = 6

chop M/N and N: (y/n): # we choose n
#I induce autos and add central autos
#I step 3: 2^2 -- aut grp has size 12288
#I computing cover
#I computing matrix action
#I computing stabilizer of U
#I dim U = 6 dim N = 5 dim M = 8

chop M/N and N: (y/n): # we choose y
#I induce autos and add central autos
#I final step: convert
rec(
glAutos := [Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) -> [f1, f2*f3, f3,

f4, f5, f6*f7, f7, f8],
Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->

[f1*f3*f5*f6, f2*f3, f3, f4, f5*f8, f6*f7, f7, f8],
Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->

[f1*f3, f2*f4, f3, f4*f7, f5*f7, f6*f7*f8, f7, f8]], glOrder := 4,

Section 6. Acknowledgements 11

agAutos :=
[Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) -> [f1*f4, f2, f3, f4*f8, f5,

f6, f7, f8], Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2*f4, f3, f4*f7, f5, f6*f7*f8, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1*f5, f2, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2*f5, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2, f3*f5, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1*f6, f2, f3, f4, f5*f7*f8, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2*f6, f3, f4*f7*f8, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1*f8, f2, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2*f8, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2, f3*f8, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1*f7, f2, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2*f7, f3, f4, f5, f6, f7, f8],

Pcgs([f1, f2, f3, f4, f5, f6, f7, f8]) ->
[f1, f2, f3*f7, f4, f5, f6, f7, f8]],

agOrder := [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
one := IdentityMapping(<pc group of size 256 with 8 generators>),
group := <pc group of size 256 with 8 generators>, size := 32768)

Two points are worthy of comment. First, the interactive version of the algorithm permits the user to make
a suitable choice in each step of the algorithm instead of making one choice at the beginning. Secondly, the
output of the Info function shows the ranks of the p-multiplicator and allowable subgroup, and thus allow
the user to observe the scale of difficulty of the computation.

4.6 Acknowledgements

We thank Alexander Hulpke for helping us with efficiency problems. Werner Nickel provided some functions
from the GAP PQuotient which are used in this package.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
Acknowledgements, 11
An interactive version of the algorithm, 10
AutomorphismGroup, 4
AutomorphismGroupPGroup, 6

C
CHOP MULT, 9
ConvertHybridAutGroup, 6

I
InfoAutGrp, 4

N
NICE STAB, 9

O
Outline of the algorithm, 8

S
Searching for a small generating set, 9
SetInfoLevel, 4
Stabilisers in matrix groups, 9

T
The initialisation step, 8

	Contents
	Introduction
	The automorphism group method
	The underlying function
	Influencing the algorithm
	Outline of the algorithm
	The initialisation step
	Stabilisers in matrix groups
	Searching for a small generating set
	An interactive version of the algorithm
	Acknowledgements

	Index
	A
	C
	I
	N
	O
	S
	T

