
COHOMOLO
—

A GAP4 Package
For Cohomology Calculations

Version 1.0

by

Derek Holt

Mathematics Institute

University of Warwick, Coventry, CV4 7AL

May 2002

Contents

1 Cohomology 3

1.1 CHR . 4

1.2 SchurMultiplier . 4

1.3 CoveringGroup . 4

1.4 FirstCohomologyDimension . 4

1.5 SecondCohomologyDimension . 4

1.6 SplitExtensionCHR . 5

1.7 NonsplitExtension . 5

1.8 CalcPres . 5

1.9 PermRep . 5

1.10 Further Information . 6

Index 8

1 Cohomology

This chapter describes functions which may be used to perform certain cohomological calculations on
a finite group G . There is a file gap-dir/pkg/cohomolo/gap/cohomolo.tst which contains simple com-
mands that can be used to test the installation of the package. If you start GAP in the directory gap-
dir/pkg/cohomolo/gap, then you can read the file cohomolo.tst into GAP to peform the test.

This share package has been updated from the original GAP3 package with minimal changes, so the user
should find the interface unchanged. In fact the only real changes are that the function InfoCohomology
has been replaced by the Info variable InfoCohomolo, and the function SplitExtension has been renamed
SplitExtensionCHR, to avoid clashing with an existing GAP function name. (Of course, it does more or less
the same thing as the GAP function!)

The following properties of G can be computed:

(i) The p-part Mulp of the Schur multiplier Mul of G , and a presentation of a covering extension of Mulp
by G , for a specified prime p;

(ii) The dimensions of the first and second cohomology groups of G acting on a finite dimensional KG
module M , where K is a field of prime order; and

(iii) Presentations of split and nonsplit extensions of M by G .

All of these functions require G to be defined as a finite permutation group. The functions which compute
presentations require, in addition, a presentation of G . Finally, the functions which operate on a module M
require the module to be defined by a list of matrices over K . This situation is handled by first defining a
GAP record, which contains the required information. This is done using the function CHR, which must be
called before any of the other functions. The remaining functions operate on this record.

If no presentation of the permutation group G is known, and G has order at most 32767, then a presentation
can be computed using the package function CalcPres (which calls a standalone C program), or alternatively
by the GAP function Image(IsomorphismFpGroup(G)). On the other hand, if you start with a finitely
presented group, then you can create a permutation representation with the function PermRep (although
there is no guarantee that the representation will be faithful in general).

The functions all compute and make use of a descending sequence of subgroups of G , starting at G and
ending with a Sylow p-subgroup of G , and it is usually most efficient to have the indices of the subgroups
in this chain as small as possible. If you get a warning message, and one of the function fails because the
indices in the chain computed are too large, then you can try to remedy matters by supplying your own
chain. See Section 1.10 for more details, and an example.

If you set the Info variable InfoCohomolo to 1, then a small amount of information will be printed, indicating
what is happening. If chr is the cohomology record you are working with, and you set the field chr.verbose
to the value true, then you will see all the output of the external programs.

4 Chapter 1. Cohomology

1.1 CHR

1I CHR(G, p, [F, mats]) F

CHR constructs a cohomology-record, which is used as a parameter for all of the other functions in this
chapter. G must be a finite permutation group, and p a prime number. If present, F must either be zero or
a finitely presented group with the same number of generators as G , of which the relators are satisfied by
the generators of G . In fact, to obtain meaningful results, F should almost certainly be isomorphic to G . If
present, mats should be a list of invertible matrices over the finite field K = GF(p). The list should have
the same length as the number of generators of G , and the matrices should correspond to these generators,
and define a GF(p)G-module, which we shall denote by M .

1.2 SchurMultiplier

1I SchurMultiplier(chr) F

chr must be a cohomology-record that was created by a call of CHR(G,p,[F,mats]). SchurMultiplier
calculates the p-part Mulp of the Schur multiplier Mul of G . The result is returned as a list of integers,
which are the abelian invariants of Mulp . If the list is empty, then Mulp is trivial.

1.3 CoveringGroup

1I CoveringGroup(chr) F

chr must be a cohomology-record, created by a call of CHR(G,p,F[,mats]), where F is a finitely presented
group. CoveringGroup calculates a presentation of a covering extension of Mulp by G , where Mulp is the p-
part of the Schur multiplier Mul of G . The set of generators of the finitely presented group that is returned is
a union of two sets, which are in one-one correspondence with the generators of F and of Mulp , respectively.

The relators fall into three classes:

(a) Those that specify the orders of the generators of Mulp ;

(b) Those that say that the generators of Mulp are central; and

(c) Those that give the values of the relators of F as elements of Mulp .

1.4 FirstCohomologyDimension

1I FirstCohomologyDimension(chr) F

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats). (If there is no finitely presented
group F involved, then the third parameter of CHR should be given as 0.) FirstCohomologyDimension
calculates and returns the dimension over K = GF(p) of the first cohomology group H 1(G ,M) of the group
G in its action on the module M defined by the matrices mats.

1.5 SecondCohomologyDimension

1I SecondCohomologyDimension(chr) F

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats). (If there is no finitely presented
group F involved, then the third parameter of CHR should be given as 0.) SecondCohomologyDimension
calculates and returns the dimension over K = GF(p) of the second cohomology group H 2(G ,M) of the
group G in its action on the module M defined by the matrices mats.

Section 9. PermRep 5

1.6 SplitExtensionCHR

1I SplitExtensionCHR(chr) F

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats), where F is a finitely presented
group. SplitExtensionCHR returns a presentation of the split extension of the module M defined by the
matrices mats by the group G . This is a straightforward calculation, and involves no call of the external
cohomology programs. It is provided here for convenience.

1.7 NonsplitExtension

1I NonsplitExtension(chr[, vec]) F

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats), where F is a finitely presented
group. If present, vec must be a list of integers of length equal to the dimension over K = GF(p) of the second
cohomology group H 2(G ,M) of the group G in its action on the module M defined by the matrices mats.
NonsplitExtension calculates and returns a presentation of a nonsplit extension of M by G . Since there
may be many such extensions, and the equivalence classes of these extensions are in one-one correspondence
with the nonzero elements of H 2(G ,M), the optional second parameter can be used to specify an element
of H 2(G ,M) as a vector. The default value of this vector is [1,0,...,0]. The set of generators of the
finitely presented group that is returned is a union of two sets, which are in one-one correspondence with
the generators of F and of M (as an abelian group), respectively.

The relators fall into three classes:

(a) Those that say that M is an abelian group of exponent p;

(b) Those that define the action of the generators of F on those of M ; and

(c) Those that give the values of the relators of F as elements of M .

(Note: It is not particularly efficient to call SecondCohomologyDimension first to calculate the dimension
of H 2(G ,M), which must of course be known if the second parameter is to be given; it is preferable to call
NonsplitExtension immediately without the second parameter (which will return one nonsplit extension),
and then to call ’SecondCohomologyDimension’, which will at that stage return the required dimension
immediately - all subsequent calls of NonsplitExtension on chr will also yield immediate results.)

1.8 CalcPres

1I CalcPres(chr) F

CalcPres computes a presentation of the permutation group chr.permgp on the same set of generators as
chr.permgp, and stores it as chr.fpgp. It currently only works for groups of order up to 32767, although
that could easily be increased if required. Note that a presentation of a finite group G can also be computed
by the standard GAP function call Image(IsomorphismFpGroup(G)).

1.9 PermRep

1I PermRep(G, K) F

PermRep calculates the permutation representation of the finitely presented group F on the right cosets
of the subgroup K , and returns it as a permutation group of which the generators correspond to those of
F . It simply calls the GAP Todd-Coxeter function. Of course, there is no guarantee in general that this
representation will be faithful.

6 Chapter 1. Cohomology

1.10 Further Information

Suppose, as usual, that the cohomology record chr was constructed with the call CHR(G,p,[F],[mats]).
All of the functions make use of a strictly decreasing chain of subgroups of the permutation group G starting
with G itself and ending with a Sylow p-subgroup P of G . In general, the programs run most efficiently if
the indices between successive terms in this sequence are as small as possible. By default, GAP will attempt
to find a suitable chain, when you call the first cohomology function on chr . However, you may be able
to construct a better chain yourself. If so, then you can do this by assigning the record field chr.chain
to the list L of subgroups that you wish to use. You should do that before calling any of the cohomology
functions. Remeber that the first term in the list must be G itself, the sequence of subgroups must be strictly
decreasing, and the last term must be equal to the Sylow subgroup stored as chr.sylow. (You can change
chr.sylow to a different Sylow p-subgroup if you like.) Here is a slightly contrived example of this process.

gap> G:=AlternatingGroup(16);;
gap> chr:=CHR(G,2);;
gap> SetInfoLevel(InfoCohomolo,1);;
gap> SchurMultiplier(chr);
#Indices in the subgroup chain are: 2027025 315
#WARNING: An index in the subgroup chain found is larger than 50000.
#This calculation may fail. See manual for possible remedies.
#I Cohomology package: Calling external program.
Out of tree space. Increase TRSP.
#I External program complete.
Error ’Cohomology’ failed for some reason.
at
Error("’Cohomology’ failed for some reason.\n");
Cohomology(chr, true, false, false, TmpName()); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop, you can ’quit;’ to quit to outer loop,
or you can return to continue
brk> quit;

#The first index in the chain found by GAP was hopelessly large.
#Let’s try and do better.

gap> P:=chr.sylow;;
gap> H1:=Subgroup(G, [(1,2)(9,10), (2,3,4,5,6,7,8),
> (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;
gap> Index(G,H1);
6435
gap> H2:=Subgroup(H1, [(1,2)(5,6),(1,2)(9,10), (2,3,4),
> (1,5)(2,6)(3,7)(4,8), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;
gap> Index(H1,H2);
1225
gap> IsSubgroup(H2,P);
true
#If that had been false, we could have replaced chr.sylow by
#a Sylow 2-subgroup of H2.
gap> Index(H2,P);
81
gap> chr.chain := [G,H1,H2,P];;
gap> SchurMultiplier(chr);

Section 10. Further Information 7

#Calling external program.
#External program complete.
#Removing temporary files.
[2]
gap> quit;

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

C
CalcPres, 5
CalcPres, 5
CHR, 3
CHR, 3
cohomology, 3
CoveringGroup, 4
CoveringGroup, 4

F
FirstCohomologyDimension, 4
FirstCohomologyDimension, 4
Further Information, 5

N

NonsplitExtension, 4
NonsplitExtension, 4

P
PermRep, 5
PermRep, 5

S
SchurMultiplier, 4
SchurMultiplier, 4
SecondCohomologyDimension, 4
SecondCohomologyDimension, 4
SplitExtensionCHR, 4
SplitExtensionCHR, 4

	Contents
	Cohomology
	CHR
	SchurMultiplier
	CoveringGroup
	FirstCohomologyDimension
	SecondCohomologyDimension
	SplitExtensionCHR
	NonsplitExtension
	CalcPres
	PermRep
	Further Information

	Index
	C
	F
	N
	P
	S

