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1

Finitely Generated
Commutative

Semigroups
(preliminary)

Given a finitely presented semigroup S , we can turn it into a commutative finitely presented semigroup
by factoring the free semigroup underlying S by the relations of S , together with the ones commuting
generators. We call the commutative finitely presented semigroup obtained in this way the abelianization of
S .

1I Abelianization( S ) A

returns the abelianization of the finitely presented semigroup S .

Knuth Bendix procedure is known to terminate for commutative finitely presented semigroups. Furthermore
there are some special methods for them, namely to compute whether a commutative finitely presented
semigroup is infinite or not, its size and compare Green’s classes.

2I IsFinite( S )
I Size( S )
I IsGreensLessThanOrEqual( C1,C2 )

One can think of words, in a free commutative semigroup, as vectors with length the number of the generators
and entries in the set of natural numbers including zero (if the semigroup has no identity, the zero vector
is not allowed). Each entry is sum of the exponents of the corresponding generator in the word. Actually,
vectors and words are in a one-one correpondence. Therefore, an element of a finitely presented semigroup
can also be represented by a vector (though not uniquely) - the vector of the underlying word of that element.

3I ElementOfFpSemigroupAsVector( e ) F

for an element e of a finitely presented semigroup. Returns the vector of exponents of the underlying word.

4I VectorToElementOfCommutativeFpSemigroup( S, v ) F

for a commutative semigroup S and a vector v . Returns the element of S which has as underlying word the
product of the free generators with the exponents the entries of the vector.

gap> f := FreeSemigroup( "a" , "b" );;
gap> a := GeneratorsOfSemigroup( f )[ 1 ];;
gap> b := GeneratorsOfSemigroup( f )[ 2 ];;
gap> h := Abelianization( f / [ [ a^3 , a ],[ b^2 , a*b ] ]);
<fp semigroup on the generators [ a, b ]>
gap> IsFinite( h );
true
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gap> Size( h );
5
gap> Elements( h );
[ a, b, a^2, a*b, a^2*b ]
gap> ha := GreensHClassOfElement(h,Elements(h)[1]);
{a}
gap> hb := GreensHClassOfElement(h,Elements(h)[2]);
{b}
gap> hab := GreensHClassOfElement(h,Elements(h)[3]);
{a^2}
gap> IsGreensLessThanOrEqual(hb,ha);
false
gap> IsGreensLessThanOrEqual(hab,ha);
true



2 What is available
1I IsCommutativeSemigroupRws( obj ) C

This is the category of commutative semigroup rewriting systems.

2I CommutativeSemigroupRws( S, vlteq ) A

returns the commutative rewriting system of the commutative FpSemigroup S with respect to the vlteq
ordering on vectors.

3I VectorRulesOfCommutativeSemigroupRws( commrws ) AM

the rules of the commutative rws written as vector rules

4I IsReducedConfluentCommutativeSemigroupRws( obj ) C

This is the category of reduced confluent commutative semigroup rewriting systems.

5I ReducedConfluentCommutativeSemigroupRws( S ) AM

returns a reduced confluent commutative rewriting system for the commutative semigroup S .

6I EpimorphismToLargestSemilatticeHomomorphicImage( s ) A

for a commutative semigroup s, returns the epimorphism to the largest semilattice homomorphic image

7I LargestSemilatticeHomomorphicImage( S ) O

returns the largest semilattice homomorphic image

8I ArchimedeanRelation( S ) O

returns the ArchimedeanRelation on the semigroup S .

9I StabilizerOfGreensClass( C ) A

returns the subsemigroup of the parent of C , which stabilizes C

10I AssocWordToVector( w ) F

for an associative word w . Returns the vector of exponents of each generator in word .

11I ElementOfFpSemigroupAsVector( e ) F

for an element e of a finitely presented semigroup. Returns the vector of exponents of the underlying word.

12I VectorToElementOfCommutativeFpSemigroup( S, v ) F

for a commutative semigroup S and a vector v . Returns the element of S which has as underlying word the
product of the free generators with the exponents the entries of the vector.

13I EpimorphismAbelianization( S ) A

returns an epimorphism from an fp semigroup to its abelianization.

14I Abelianization( S ) A

returns the abelianization of the finitely presented semigroup S .
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15I BasisOfSemigroupIdeal( id ) A

for an ideal of a commutative finitely presented semigroup S It returns the subset of reduced words of the
set of minimal generators of the ideal of the words representing elements in the principal ideal of S generated
by e. Notice that this is a decision procedure to decide whether a given word represents an element of the
principal ideal of S generated by e.

16I VectorBasisOfSemigroupIdealWithFactors( id ) A

17I VectorBasisOfSemigroupIdeal( id ) O
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