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1 Introduction

The GAP package CRISP provides algorithms for computing subgroups of finite solvable groups related to a
group class C. In particular, it allows to compute C-radicals and C-injectors for Fitting classes (and Fitting
sets) C, C-residuals for formations C, and C-projectors for Schunck classes C. In order to carry out these
computations, the group class C must be represented by an algorithm which can decide membership in the
group class. Moreover, additional information about the class can be supplied to speed up computations,
sometimes considerably. This information may consist of other classes (such as the characteristic of the
class), or of additional algorithms, for instance for the computation of residuals and local residuals, radicals,
or for testing membership in related classes (such as the basis or boundary of a Schunck class).

Moreover, the present package contains algorithms for the computation of normal subgroups belonging to
a given group class, including an improved method to compute the set of all normal subgroups of a finite
solvable group, and methods to compute the socle and p-socles of a finite soluble group, as well as the
abelian socle of any finite group. CRISP also provides basic support for classes (in the set theoretical sense).
The algorithms used are described in [Höf99], a preprint of which is included in the doc folder of the package
(file crisp.dvi).

C-projectors and C-injectors of finite solvable groups arise as generalisations of Sylow and Hall subgroups,
and have attracted considerable interest. They were first studied by Gaschütz [Gas63], Schunck [Sch67], and
Fischer, Gaschütz and Hartley [FGH67]. In particular, C-injectors only exist in any finite solvable group if
the group class C is a Fitting class. Similarly, C-projectors exist in any finite group G if and only if C is a
Schunck class. An extensive account of the subject can be found in [DH92].

In the case when the class C in question is a local formation (which is a special kind of Schunck class),
algorithms for dealing with C-projectors and related subgroups of finite solvable groups are available also
in the GAP package FORMAT by Eick and Wright; see also [EW99]. In order to use their methods, C has
to be described in terms of algorithms for the computation of residuals with respect to an integrated local
function for C.
The author would like to thank J. Neubüser and the Lehrstuhl D für Mathematik, RWTH Aachen, for
an invitation, which made it possible to develop a first version of the algorithm for the computation of
projectors. He is indebted to the GAP team, particularly Bettina Eick and Alexander Hulpke, for its advice,
and to the anonymous referee, J. Neubüser, and C. R. B. Wright for their detailed comments on previous
versions of CRISP.



2 Set theoretical classes

In CRISP, a class (in the set-theoretical sense) is usually represented by an algorithm which decides mem-
bership in that class. Wherever this makes sense, sets (see 28.2.5 in the GAP reference manual) may also be
used as classes.

2.1 Creating set theoretical classes

1I IsClass(C) C

returns true if C is a class object. The category of class objects is a subcategory of the category IsListOr-
Collection.

2I Class(rec) O
I Class(func) O

returns a class C . In the first form, rec must be a record having a component \in and an optional component
name. The values of these components, if present, are bound to the attributes MemberFunction and Name
(see 12.8.2) of the class created. The value bound to \in must be a function func which returns true
if a GAP object belongs to C , and false otherwise; cf. 2.2.2 below. The second form is equivalent to
Class(rec(\in := func)). It is the user’s responsibility to ensure that func returns the same result for
different GAP objects representing the same mathematical object (or element, in the GAP sense; see 12 in
the GAP reference manual).

gap> RequirePackage ("crisp");

_____ ___ __ ____ ___
/ ___/ / _ \ / / / __/ / _ \
/ /__ / _/ / / _\_ \ / ___/
\___/ /_/\_\ /_/ /____/ /_/

A GAP 4 package for
Computing with Radicals, Injectors
Schunck classes and Projectors
of finite solvable groups

By Burkhard H\"ofling

For help, type ?CRISP

true
gap> FermatPrimes := Class (p -> IsPrime (p) and p = 2^LogInt (p, 2) + 1);
Class (in:=function( p ) ... end)

3I View(class)

If the class does not have a name, this produces a brief description of the information defining class which
has been supplied by the user. If the class has a name, only its name will be printed.
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gap> View (FermatPrimes);
Class (in:=function( p ) ... end)

4I Print(class)

Print behaves very similarly to View, except that the defining information is being printed in a more explicit
way if possible.

gap> Print (FermatPrimes);
Class (rec ( in = function ( p )

return IsPrime( p ) and p = 2 ^ LogInt( p, 2 ) + 1;
end))

5I Display(class)

For classes, Display works exactly as Print.

6I obj in class

returns true or false, depending upon whether obj belongs to class or not. If obj can store attributes, the
outcome of the membership test is stored in an attribute ComputedIsMembers of obj .

7I C1 = C2

Since it is not possible to compare classes given by membership algorithms, two classes are equal in GAP if
and only if they are the same GAP object (see 12.5.1 in the GAP reference manual).

8I C1 < C2

The operation < for classes has no mathematical meaning; it only exists so that one can form sorted lists of
classes.

2.2 Properties of classes

1I IsEmpty(C) P

This property may be set to true or false if the class C is empty resp. not empty.

2I MemberFunction(C) A

This attribute, if bound, stores a function with one argument, obj , which decides if obj belongs to C or not,
and returns true and false accordingly. If present, this function is called by the default method for \in.
MemberFunction is part of the definition of C and should not be called directly by the user.

2.3 Lattice operations for classes

1I Complement(C) O

returns the unary complement of the class C , that is, the class consisting of all objects not in C . C may
also be a set.

gap> cmpl := Complement([1,2]);
Complement ([ 1, 2 ])
gap> Complement (cmpl);
[ 1, 2 ]

2I Intersection(list) F
I Intersection(C1, C2, . . . ) F

returns the intersection of the groups in list , resp. of the classes C1 , C2 , . . . . If one of the classes is a list
with fewer than INTERSECTION LIMIT elements, then the result will be a sublist of that list. By default,
INTERSECTION LIMIT is 1000.
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gap> Intersection (Class (IsPrimeInt), [1..10]);
[ 2, 3, 5, 7 ]
gap> Intersection (Class (IsPrimeInt), Class (n -> n = 2^LogInt (n+1, 2) - 1));
Intersection ([ Class (in:=function( n ) ... end),
Class (in:=function( n ) ... end) ])

3I Union(C, D) F

returns the union of C and D .

gap> Union (Class (n -> n mod 2 = 0), Class (n -> n mod 3 = 0));
Union ([ Class (in:=function( n ) ... end), Class (in:=function( n ) ... end)
])

4I Difference(C, D) O

returns the difference of C and D . If C is a list, then the result will be a sublist of C .

gap> Difference (Class (IsPrimePowerInt), Class (IsPrimeInt));
Intersection ([ Class (in:=function( n ) ... end),
Complement (Class (in:=function( n ) ... end)) ])

gap> Difference ([1..10], Class (IsPrimeInt));
[ 1, 4, 6, 8, 9, 10 ]



3 Generic group classes

In this chapter, we describe how group classes can be defined by assigning basic attributes and properties,
in particular closure properties.

A class (see 2) is a group class if it consists of groups, and if it is closed under isomorphisms of groups.
Thus if G and H are isomorphic groups, then G is in the group class grpclass if and only if H is. Groups
belonging to the same group class may be regarded as sharing a group theoretical property (a property
shared by isomorphic groups), and groups sharing a group theoretical property form a class of groups. It not
empty, group classes are genuinely infinite objects, so GAP sets can never form group classes. Some authors
require every group class to contain the trivial groups. Here we do not make this assumption; in particular
every empty class is a group class.

The following sections describe how to create group classes and declare some of their basic properties.

Note that, for common types of group classes, there are additional functions available to accomplish this
task; see the following Chapters 4 and 5. There are also a number of pre-defined group classes; see Chapter 6.

3.1 Creating group classes

Group classes can either be defined by a function deciding membership, or alternatively by a (finite) list of
groups containing at least one representative of each isomorphism type of groups contained in the class.

1I GroupClass(rec) O
I GroupClass(func) O
I GroupClass(group-list) O
I GroupClass(group-list, iso-func) O

The function GroupClass returns a new group class class, specified by its argument(s).

In the first form, rec must be a record which has a component \in, and may have further components name,
and char. \in must be a function having one argument. When called with a group G as its argument, it
must return true or false, depending upon whether G is in class or not. It is the user’s responsibility to
ensure that the function supplied returns the same value when called with isomorphic groups. If rec has
components name or char, their values are stored in the attributes Name (see 12.8.2) and Characteristic
(see 3.4.1) of class.

GroupClass(func) is a shorthand for GroupClass(rec(\in := func)).

In the other cases, GroupClass returns the group class consisting of the isomorphism classes of the groups
in the list group-list . If iso-func is given, iso-func is used to check whether a given group G is isomorphic
with one of the groups in the defining list. iso-func must have two arguments, and must return true if two
groups, one of which is in group-list , passed as arguments are isomorphic, and false otherwise. If iso-func
is not given, the GAP function IsomorphismGroups is used for the isomorphism test. Note that even for
relatively small groups, IsomorphismGroups tends to be very slow.
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gap> GroupClass(IsNilpotent);
GroupClass (in:=<Operation "IsNilpotent">)
gap> GroupClass([CyclicGroup(2), CyclicGroup(3)]);
GroupClass ([ <pc group of size 2 with 1 generators>,
<pc group of size 3 with 1 generators> ])

gap> AbelianIsomorphismTest := function (A,B)
> if IsAbelian (A) then
> if IsAbelian (B) then
> return AbelianInvariants (A) = AbelianInvariants (B);
> else
> return false;
> fi;
> elif IsAbelian (B) then
> return false;
> else # this will not happen if called from GroupClass
> Error ("At least one of the groups <A> and <B> must be abelian");
> fi;
> end;
function( A, B ) ... end
gap> cl := GroupClass ([AbelianGroup ([2,2]), AbelianGroup ([3,5])],
> AbelianIsomorphismTest);
GroupClass ([ <pc group of size 4 with 2 generators>,
<pc group of size 15 with 2 generators> ], function( A, B ) ... end)

gap> Group ((1,2), (3,4)) in cl;
true

2I Intersection(list) F
I Intersection(C 1, C 2, . . . , C n) F

The intersection of a list list of group classes resp. of the group classes C 1 , C 2 , . . . , C n is again a group
class. The intersection automatically has those closure properties (see 3.2) which all of the intersected classes
have.

3.2 Properties of group classes

Since nonempty group classes are infinite, CRISP cannot, in general, decide whether a group class has a
certain property. Therefore the user is required to set the appropriate properties and attributes. See Sections
13.5 and 13.7 in the GAP reference manual. To facilitate this task, there are special functions available to
create common types of group classes such as formations (see 4.4), Fitting classes (see 5.1), and Schunck
classes (see 4.1).

However, CRISP knows about the implications between the closure properties listed below; for instance it
knows that a group class which has IsResiduallyClosed also has IsDirectProductClosed, and that a class
having IsSchunckClass also has IsDirectProductClosed and IsSaturated. Moreover, the intersection of
group classes all having one of the closure properties in common also has that closure property.

The following basic properties are defined for group classes.

1I IsGroupClass(grpclass) P

A generic class (see Chapter 2) is considered a group class if it has the property IsGroupClass. There is no
way for CRISP to know that a given class defined by a membership function is a group class, i. e., consists
of groups and is closed under group isomorphisms.



Section 3. Additional properties of group classes 9

2I ContainsTrivialGroup(grpclass) P

This property, if bound, indicates whether grpclass contains the trivial group or not.

3I IsSubgroupClosed(grpclass) P

if true, then for every G in grpclass, the subgroups of G likewise belong to grpclass.

4I IsNormalSubgroupClosed(grpclass) P

if true, then for every G in grpclass, the (sub)normal subgroups of G likewise belong to grpclass.

5I IsQuotientClosed(grpclass) P

if true, then for every G in grpclass, the factor groups of G likewise belong to grpclass.

6I IsResiduallyClosed(grpclass) P

if true and G is a group such that G/N1 and G/N2 belong to grpclass for two normal subgroups N1 and N2

of G which intersect trivially, then G belongs to grpclass.

7I IsNormalProductClosed(grpclass) P

if true and G is a group which is generated by subnormal subgroups in grpclass, then G belongs to grpclass.

8I IsDirectProductClosed(grpclass) P

if true and the group G is the direct product of N1 and N2 belonging to grpclass, then G likewise belongs
to grpclass.

9I IsSchunckClass(grpclass) P

if true, then G belongs to grpclass if and only if its primitive factor groups lie in grpclass. A (finite) group
is primitive if it has a faithful primitive permutation representation, or equivalently, if it has a maximal
subgroup with trivial core. A Schunck class contains every trivial group.

10I IsSaturated(grpclass) P

if true, G belongs to X whenever G/FrattiniSubgroup(G) belongs to X .

3.3 Additional properties of group classes

Note that the following “properties” are not properties but only filters in the GAP sense (cf. 13.7 and 13.2
in the GAP reference manual).

1I HasIsFittingClass(obj) F

is true if obj knows if it is a Fitting class, that is, if it lies in the filters HasIsGroupClass, HasContain-
sTrivialGroup, HasIsNormalSubgroupClosed and HasIsNormalProductClosed.

2I IsFittingClass(obj) F

is true if obj is a Fitting class, that is, if it has the properties IsGroupClass, ContainsTrivialGroup,
IsNormalSubgroupClosed and IsNormalProductClosed.

3I SetIsFittingClass(group class, bool) F

If bool is true, this fake setter function sets the properties IsNormalSubgroupClosed and IsNormalPro-
ductClosed of group class to true. It is the user’s responsibility to ensure that group class is indeed a Fitting
class.
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gap> nilp := GroupClass (IsNilpotent);
GroupClass (in:=<Operation "IsNilpotent">)
gap> SetIsFittingClass (nilp, true);
gap> nilp;
FittingClass (in:=<Operation "IsNilpotent">)

4I HasIsOrdinaryFormation(obj) F

is true if obj knows if it is a formation, that is, if it lies in the filters HasIsGroupClass, HasContainsTriv-
ialGroup, HasIsQuotientClosed and HasIsResiduallyClosed.

5I IsOrdinaryFormation(obj) F

is true if obj is a formation, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsQuo-
tientClosed and IsResiduallyClosed.

6I SetIsOrdinaryFormation(class, bool) F

If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResidually-
Closed of class, making it a formation.

7I HasIsSaturatedFormation(obj) F

returns true if obj knows if it is a saturated formation, that is, if it lies in the filters HasIsOrdinaryFor-
mation and HasIsSaturated.

8I IsSaturatedFormation(obj) F

returns true if obj is a saturated formation, that is, if it has the properties IsOrdinaryFormation and
IsSaturated

9I SetIsSaturatedFormation(class, bool) F

If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResidually-
Closed and IsSaturated of class, making it a saturated formation.

10I HasIsFittingFormation(obj) F

returns true if obj knows whether it is a Fitting formation, that is, if it lies in the filters HasIsOrdinary-
Formation and HasIsFittingClass (see 3.3.4 and 3.3.1).

11I IsFittingFormation(obj) F

returns true if obj is both a formation and a Fitting class.

12I SetIsFittingFormation(class, bool) F

If bool is true, this function sets the attributes of class to indicate that it is a Fitting formation.

13I HasIsSaturatedFittingFormation(obj) F

returns true if obj knows whether it is a saturated Fitting formation, that is, if it lies in the filters HasIs-
SaturatedFormation and HasIsFittingClass (see 3.3.7 and 3.3.1).

14I IsSaturatedFittingFormation(obj) F

returns true if obj is both a saturated formation and a Fitting class, that is, if it lies in the filters IsSatu-
ratedFormation and IsFittingClass (see 3.3.8 and 3.3.2).

15I SetIsSaturatedFittingFormation(class, bool) F

If bool is true, this sets the attributes of class to indicate that it is a saturated Fitting formation.
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3.4 Attributes of group classes

In addition to the attribute MemberFunction which has the same meaning as for generic classes, a group
class may have the following attribute.

1I Characteristic(grpclass) A

This attribute, if present, stores a class containing all primes p such that grpclass contains a cyclic group
of order p. There is a pre-defined class AllPrimes which should be assigned to Characteristic if grpclass
contains a cyclic group of order p for every prime p.



4

Schunck classes
and formations

In principle, any group class can be created as generic (group) class, followed by setting the required proper-
ties and attributes described in the preceding chapters. For certain standard kinds of group classes, there are
additional functions available to accomplish this task, which are described in this and the following chapter.

4.1 Creating Schunck classes

A class C of finite groups is a Schunck class if a finite group G belongs to C if and only if all its primitive
factor groups belong to C. In particular, a Schunck class is nonempty and closed with respect to factor
groups. By definition, a Schunck class C is determined by the primitive groups which it contains (the basis
of C), or by the primitive groups not in C but all of whose proper factor groups belong to C (the boundary
of C).

1I SchunckClass(rec) O

returns a Schunck class defined by the information stored in the record rec. Note that it is the user’s
responsibility to ensure that rec really defines a Schunck class. rec may have the following components: \in,
proj, bound, char, and name. The values bound to these entries, if present, are stored, respectively, in the
attributes MemberFunction, ProjectorFunction, BoundaryFunction, Characteristic, and Name. Please
refer to 2.2.2, 4.2.6, 4.2.5, 3.4.1, and 12.8.2 for the meaning of these attributes.

At least one of the attributes MemberFunction, ProjectorFunction, or BoundaryFunction must be present
in order to be able to compute with a Schunck class.

gap> nilp := SchunckClass (rec (bound := G -> not IsCyclic (G),
> name := "class of all nilpotent groups"));
class of all nilpotent groups
gap> DihedralGroup (8) in nilp;
true
gap> SymmetricGroup (3) in nilp;
false

4.2 Attributes and operations for Schunck classes

In addition to the attributes and operations for generic group classes, for Schunck classes also the following
are available:

1I Boundary(class) A

computes the boundary of class, i. e., the class of all primitive groups which do not belong to class but
whose proper factor groups do. The result is a group class.

2I Basis(class) A

The basis of class consists of the primitive solvable groups in class. The result is a group class.
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3I Projector(grp, class) O

This function returns a class-projector of grp. Note that, at present, methods are only available for finite
solvable groups grp, or when class has an attribute ProjectorFunction.

A subgroup H of the group G is a class-projector of G if HN /N is class-maximal in G/N for all normal
subgroups N of G . A subgroup H of G is class-maximal in G if H belongs to class, and there is no subgroup
L of G which contains H and lies in class. Note that if class consists of finite solvable groups, then class-
projectors exist in every finite solvable group if and only if class is a Schunck class, and in this case all
class-projectors of G are conjugate. See [DH92], III, 3.21.

gap> H := SchunckClass (rec (bound := G -> Size (G) = 6));
SchunckClass (bound:=function( G ) ... end)
gap> Size (Projector (GL(2,3), H));
16
gap> # H-projectors coincide with Sylow subgroups
gap> U := SchunckClass (rec ( # class of all supersolvable groups
> bound := G -> not IsPrimeInt ( Size (Socle (G)))
> ));
SchunckClass (bound:=function( G ) ... end)
gap> Size (Projector (SymmetricGroup (4), U));
6
gap> # the projectors are the point stabilizers

4I CoveringSubgroup(grp, class) O

A subgroup H of G is a class-covering subgroup of G if H is a class-projector of L for every subgroup L
with H ≤ L ≤ G . Note that projectors and covering subgroups coincide for Schunck classes of finite solvable
groups. At present, methods are only available for finite solvable groups grp.

5I BoundaryFunction(grpclass) A

This attribute stores a function func which has been set by the user to define grpclass, either as an argument
to SchunckClass, SaturatedFormation, or FittingFormation (see 4.1.1, 4.4.2, or 5.2.1), or has been set
directly (see 13.6.2). func must be a function taking one argument. If the argument is a finite solvable group
G having attributes Socle and SocleComplement (see Section 4.3 below), func must return true if G is
in the boundary of grpclass, and false if G belongs to grpclass. The behaviour for arguments which are
not primitive solvable groups, or which belong neither to grpclass nor to the boundary of grpclass need not
be defined. Note that BoundaryFunction should not be used to test whether a given group belongs to the
boundary of grpclass. Boundary and/or Basis (see 4.2.1 and 4.2.2), which are defined independently of the
way grpclass is defined.

6I ProjectorFunction(grpclass) A

If bound, ProjectorFunction stores a function func supplied by the user as part of the definition of grpclass.
func must be a function taking a group G as the only argument, and returns a grpclass-projector of G .
Note that Projector (see 4.2.3), rather than ProjectorFunction, should be used by the user to compute
grpclass-projectors.
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4.3 Additional attributes for primitive solvable groups

A finite group G is primitive if it has a faithful primitive permutation representation, or equivalently, if it
has a maximal subgroup M with trivial core. If G is solvable, M complements the unique minimal normal
subgroup N of G . Therefore N is the socle as well as the Fitting subgroup of grp.

1I IsPrimitiveSolvable(grp) P

returns true if grp is primitive and solvable, and false otherwise.

2I SocleComplement(grp) A

If present, this attribute stores a complement of the socle of grp. Currently, there is only a method available
for SocleComplement if grp has the property IsPrimitiveSolvable.

4.4 Creating formations

A nonempty group class is a formation if it is closed with respect to factor groups and residually closed.
A saturated formation is, of course, a formation which is saturated. Note that by the Gaschütz-Lubeseder-
Schmid theorem (see e. g. [DH92], IV, 4.6), every saturated formation is a local formation. Moreover, every
saturated formation is a Schunck class. Therefore a saturated formation admits the operations Boundary,
Basis, and Projector.

1I OrdinaryFormation(rec) O

creates a formation from the record rec. Note that it is the user’s responsibility to ensure that rec re-
ally defines a formation. rec may have components \in, res, char, and name, whose values are stored in
the attributes MemberFunction, ResidualFunction, Characteristic, and Name, respectively, of the new
formation. See 2.2.2, 4.5.2, 3.4.1, and 12.8.2, respectively, for the meaning of these attributes.

The following example shows how to construct the formations of all groups of derived length at most 3 and
of all groups of exponent dividing 6.

gap> der3 := OrdinaryFormation (rec (
> res := G -> DerivedSubgroup (DerivedSubgroup (DerivedSubgroup (G)))
> ));
OrdinaryFormation (res:=function( G ) ... end)
gap> SymmetricGroup (4) in der3;
true
gap> GL (2,3) in der3;
false
gap> exp6 := OrdinaryFormation (rec (
> \in := G -> 6 mod Exponent (G) = 0,
> char := [2,3]));
OrdinaryFormation (in:=function( G ) ... end)

2I SaturatedFormation(rec) O

creates a saturated formation from the record rec. Note that it is the user’s responsibility to ensure that rec
really defines a saturated formation. rec may have any components admissible for formations (see 4.4.1) or
Schunck classes (see 4.1.1), that is, \in, res, char, proj, bound, locdef, and name, whose values, if bound,
are stored in the attributes MemberFunction, ResidualFunction, Characteristic, ProjectorFunction,
BoundaryFunction, LocalDefinitionFunction, and Name, respectively. Please refer to 2.2.2, 4.5.2, 3.4.1,
4.2.6, 4.2.5, 4.5.3, and 12.8.2 for the meaning of these attributes.

There are also functions FittingFormation and SaturatedFittingFormation to create Fitting formations
and saturated Fitting formations; see 5.2.1 and 5.2.2 below for details.



Section 4. Creating formations 15

The following example shows how to construct the saturated formations of all finite nilpotent groups and
of all nilpotent-by-abelian groups whose order is not divisible by a prime congruent 3 mod 4, and whose
2-chief factors are central. In the first case, we choose f (p) = (1) for all primes p, so that the f (p)-residual
of G is generated by a generating set of G (see 4.5.3 below). In the second example, we let f (2) = 1, if p ≡ 3
(mod 4), we define f (p) = A, the class of all finite abelian groups, and set f (p) = ∅ otherwise.

gap> nilp := SaturatedFormation (rec (
> locdef := function (G, p)
> return SmallGeneratingSet (G);
> end));
SaturatedFormation (locdef:=function( G, p ) ... end)
gap> form := SaturatedFormation (rec (
> locdef := function (G, p)
> if p = 2 then
> return SmallGeneratingSet (G);
> elif p mod 4 = 3 then
> return SmallGeneratingSet (DerivedSubgroup (G));
> else
> return fail;
> fi;
> end));
SaturatedFormation (locdef:=function( G, p ) ... end)
gap> Projector (GL(2,3), form);
Group([ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
[ [ Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ])

3I FormationProduct(form1, form2) O

The formation product prod of two formations form1 and form2 consists of the groups G such that the
form2 -residual of G belongs to form1 . The product prod is again a formation. If form1 and form2 are
saturated formations, the result is a saturated formation. The same is true if the characteristic of form2 is
contained in that of form1 . This is automatically recognised if the characteristic of form1 is AllPrimes (see
6.3.1). In all other cases, you will have to set the attribute IsSaturated manually, if applicable. Note that
in general it is not possible for CRISP to determine if two classes are contained in each other.

gap> nilp := SaturatedFormation (rec (\in := IsNilpotent, name := "nilp"));
nilp
gap> FormationProduct (nilp, der3); # no characteristic known
FormationProduct (nilp, OrdinaryFormation (res:=function( G ) ... end))
gap> HasIsSaturated (last);HasCharacteristic (nilp);
false
false
gap> SetCharacteristic (nilp, AllPrimes);
gap> FormationProduct (nilp, der3); # try with characteristic
FormationProduct (nilp, OrdinaryFormation (res:=function( G ) ... end))
gap> IsSaturated (last);
true

4I FittingFormationProduct(fitform1, fitform2) O

If fitform1 and fitform2 are Fitting formations, the formation product equals the Fitting product (see 5.1.2)
of fitform1 and fitform2 , which, in turn, equals the class product of fitform1 and fitform2 . The latter consists
of all groups G having a normal subgroup N in fitform1 such that G/N belongs to fitform2 .
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Note that if fitform1 and fitform2 are Fitting formations, then FormationProduct(fitform1, fitform2),
FittingProduct(fitform1, fitform2) and FittingFormationProduct(fitform1, fitform2) all return the
same mathematical object (but distinct GAP objects), which is, again, a Fitting formation.

gap> nilp := FittingFormation (rec (\in := IsNilpotent, name := "nilp"));;
gap> FormationProduct (nilp, nilp);
FittingFormationProduct (nilp, nilp)
gap> FittingProduct (nilp, nilp);
FittingFormationProduct (nilp, nilp)
gap> FittingFormationProduct (nilp, nilp);
FittingFormationProduct (nilp, nilp)

4.5 Attributes and operations for formations

In addition to those available for generic group classes, formations also admit the following attributes and
operations. See also 4.2 for additional operations for saturated formations.

1I Residual(grp, form) O

returns the form-residual of the group grp, i. e., the smallest normal subgroup res of grp such that grp/res
belongs to form. Note that, unless form has an attribute ResidualFunction, there are presently only
methods available for finite solvable groups.

2I ResidualFunction(form) A

This attribute is part of the definition of form supplied by the user. If present, it must contain a function
which computes the form-residual of a given group. In general, such a residual only exists if form is residually
closed; cf. 3.2.6. Note that ResidualFunction, if present, is called by Residual (see 4.5.1). Therefore
Residual, which also works for formations without ResidualFunction, should be used by the user to
compute form-residuals.

3I LocalDefinitionFunction(form) A

Let form be a saturated formation with local function f . This attribute, if present, stores a function func
supplied by the user as part of the definition of form. func must be a function taking two parameters, a
group G and a prime p. If p is in the characteristic of form, this function must return a list list of elements
of G , such that the smallest normal subgroup of G containing list is the f (p)-residual of G . If p is not in the
characteristic of form, then func(G, p) must return fail for any group G . LocalDefinitionFunction is
part of the definition of form and should not be called by the user.

4.6 Functions for normal and characteristic subgroups

1I NormalSubgroups(grp) A

CRISP provides an improved method for NormalSubgroups (see 37.18.7) for groups grp which are finite
and solvable. This method simply calls AllInvSgrsWithQPropUnderAction with act = grp, ReturnTrue as
pretest and ReturnFail as test . Note that, since pretest always returns true, test is never actually called.
This is usually significantly faster than the methods in the GAP library.

2I CharacteristicSubgroups(grp) A

returns a list containing all characteristic subgroups of grp. CharacteristicSubgroups calls AllInvSgr-
sWithQPropUnderAction.
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4.7 Low level functions for normal subgroups related to residuals

1I OneInvariantSubgroupMinWrtQProperty(act, grp, pretest, test, data) O

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp
invariant under act is normal in grp. Assume that X is a set of act-invariant subgroups of grp containing grp,
and such that whenever M and N are act-invariant subgroups with M ∈ X and M contained in N , then also
N ∈ X . Then OneInvariantSubgroupMinWrtQProperty computes an act-invariant subgroup M ∈ X such
that no act-invariant subgroup of grp contained in M belongs to X . At present, there exist only methods
for finite solvable groups grp.

The class X is described by two functions, pretest and test .

pretest is a function taking four arguments, U , V , R, and data, where data is just the argument passed to
OneInvariantSubgroupMinWrtQProperty (see below for examples). U /V is a chief factor of grp, and R is
an act-invariant subgroup of grp containing U which is known to belong to X .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of
grp such that V is contained in N and R/N is G-isomorphic with U /V must belong to X . If it returns
false, no such act-invariant subgroup N may belong to X .

test is a function taking three arguments, S , R, and data, where data has been described above. R is a
act-invariant subgroup of grp belonging to X , and R/S is a chief factor of grp. The function must return
true if S belongs to X , and false otherwise.

Note that whenever test(S, R, data) is called, pretest(U , V , R, data) has been called before, and has
returned fail, where U /V is a chief factor which is G-isomorphic with R/S . Thus test need not repeat
tests which have been performed by pretest . In particular, if pretest always returns true or false, test will
never be called.

data is never used or changed by OneInvariantSubgroupMinWrtQProperty, but exists only as a means for
passing additional information to or between the functions pretest and test .

For example, if C is a group class which is closed with respect to factor groups and X is the set of all
act-invariant subgroups N of grp with grp/N ∈ C, then X satisfies the above properties. In particular, if C
is a formation, then OneInvariantSubgroupMinWrtQProperty will return the C-residual of grp.

The following example shows how to use OneInvariantSubgroupMinWrtQProperty to compute the derived
subgroup of a group G . (Note that in practise, this is not a particularly efficient way of computing the
derived subgroup.)

gap> G := DirectProduct (SL(2,3), CyclicGroup (2));;
gap> data := rec (gens := SmallGeneratingSet (G),
> comms := List (Combinations (SmallGeneratingSet (G), 2),
> x -> Comm (x[1],x[2])));;
gap> OneInvariantSubgroupMinWrtQProperty (
> G, G,
> function (U, V, R, data) # test if U/V is central in G
> if ForAny (ModuloPcgs (U, V), y ->
> ForAny (data.gens, x -> not Comm (x, y) in V)) then
> return false;
> else
> return fail;
> fi;
> end,
> function (S, R, data)
> return ForAll (data.comms, x -> x in S);
> end,
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> data) = DerivedSubgroup (G); # compare results
true

2I AllInvariantSubgroupsWithQProperty(act, grp, pretest, test, data) O

AllInvariantSubgroupsWithQProperty returns a list consisting of all act-invariant subgroups in X , where
X is the class defined by pretest , test , and data, as described for OneInvariantSubgroupMinWrtQProperty
(see 4.7.1). At present, there exist only methods for finite solvable groups grp.

gap> G := GL(2,3);
GL(2,3)
gap> normsWithSupersolvableFactorGroups :=
> AllInvSgrsWithQPropUnderAction (G, G,
> function (U, V, R, data)
> return IsPrimeInt (Index (U, V));
> end,
> ReturnFail, # pretest is sufficient
> fail); # no data required
[ GL(2,3),
Group([ [ [ Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0 ] ], [ [ Z(3), Z(3)^0 ],

[ Z(3)^0, Z(3)^0 ] ], [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]),

Group([ [ [ Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ],
[ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]) ]

3I OneNormalSubgroupMinWrtQProperty(grp, pretest, test, data) O

OneNormalSubgroupMinWrtQProperty is the same as OneInvariantSubgroupMinWrtQProperty (see 4.7.1),
where act = grp.

4I AllNormalSubgroupsWithQProperty(grp, pretest, test, data) O

AllNormalSubgroupsWithQProperty is the same as AllInvariantSubgroupsWithQProperty (see 4.7.2),
where act = grp.
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Fitting classes
and Fitting sets

In this chapter, you will find information on how to create Fitting classes and Fitting sets (see 5.1 and 5.3
below), and how to compute injectors and radicals with respect to these; see 5.4.

5.1 Creating Fitting classes

Recall that a Fitting class is a nonempty group class which is closed with respect to normal subgroups and
joins of subnormal subgroups.

1I FittingClass(rec) O

returns the Fitting class fitclass defined by the entries of the record rec. Note that it is the user’s responsibility
to ensure that rec really defines a Fitting class. rec may have components \in, inj, rad, char, and name.
The functions assigned to the components are stored in the attributes MemberFunction, InjectorFunction,
RadicalFunction, Characteristic, and Name, of fitclass. Please refer to 2.2.2, 5.4.4, 5.4.3, 3.4.1, and 12.8.2
for the meaning of these attributes.

The third example below shows how to construct the Fitting class L2(N ) (see [DH92], IX, 1.14 and 1.15),
where N is the class of all finite nilpotent groups.

gap> myNilpotentGroups := FittingClass(rec(\in := IsNilpotent,
> rad := FittingSubgroup));
FittingClass (in:=<Operation "IsNilpotent">, rad:=<Operation "FittingSubgroup"\
>)
gap> myTwoGroups := FittingClass(rec(
> \in := G -> IsSubset([2], Set(Factors(Size(G)))),
> rad := G -> PCore(G,2),
> inj := G -> SylowSubgroup(G,2)));
FittingClass (in:=function( G ) ... end, rad:=function( G ) ... end, inj:=func\
tion( G ) ... end)
gap> myL2_Nilp := FittingClass (rec (\in :=
> G -> IsSolvableGroup (G)
> and Index (G, Injector (G, myNilpotentGroups)) mod 2 <> 0));
FittingClass (in:=function( G ) ... end)
gap> SymmetricGroup (3) in myL2_Nilp;
false
gap> SymmetricGroup (4) in myL2_Nilp;
true # thus myL2_Nilp is not closed with respect to factor groups

2I FittingProduct(fit1, fit2) O

returns the Fitting product prod of the Fitting classes fit1 and fit2 , i. e., the class of all groups G such that
G/R is a fit2 -group, where R is the fit1 -radical of G . prod is again a Fitting class. Note that if fit1 and fit2
are also formations, then prod equals the formation product of fit1 and fit2 ; see 4.4.3 and 4.4.4.
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gap> FittingProduct (myNilpotentGroups, myTwoGroups);
FittingProduct (FittingClass (in:=<Operation "IsNilpotent">, rad:=<Operation "\
FittingSubgroup">), FittingClass (in:=function( G ) ... end, rad:=function( G \
) ... end, inj:=function( G ) ... end))
gap> FittingProduct (myNilpotentGroups, myL2_Nilp);
FittingProduct (FittingClass (in:=<Operation "IsNilpotent">, rad:=<Operation "\
FittingSubgroup">), FittingClass (in:=function( G ) ... end))

5.2 Creating Fitting formations

Fitting formations are Fitting classes which are also formations.

1I FittingFormation(rec) O

creates a Fitting formation from the record rec. Note that it is the user’s responsibility to ensure that rec
really defines a Fitting formation. rec may have any components admissible for saturated formations (see
4.4.2) or Fitting classes (see 5.1.1), that is, \in, res, rad, inj, char, and name, whose values are stored in the
attributes MemberFunction, ResidualFunction, RadicalFunction, InjectorFunction, Characteristic,
and Name, respectively. Please refer to 2.2.2, 4.5.2, 5.4.3, 5.4.4, 3.4.1, and 12.8.2, respectively, for the meaning
of these attributes.

2I SaturatedFittingFormation(rec) O

creates a saturated Fitting formation from the record rec. Note that it is the user’s responsibility to ensure
that rec really defines a saturated Fitting formation. rec may have any components admissible for saturated
formations (see 4.4.2) or Fitting classes (see 5.1.1), that is, \in, res, proj, bound, locdef, rad, inj,
char, and Name, whose values are stored in the attributes MemberFunction (see 2.2.2), ResidualFunction
(see 4.5.2), ProjectorFunction (see 4.2.6), BoundaryFunction (see 4.2.5), LocalDefinitionFunction (see
4.5.3), RadicalFunction (see 5.4.3), InjectorFunction (see 5.4.4), Characteristic (see 3.4.1), and Name
(see 12.8.2), respectively.

5.3 Creating Fitting sets

A nonempty set F of subgroups of a group G is a Fitting set of G if it satisfies the following properties:

(1) if H belongs to F and K is normal in H , then K belongs to F ;

(2) if H and K belong to F , and H and K are normal in 〈H ,K 〉, then 〈H ,K 〉 = HK belongs to F ;

(3) if H is in F and g ∈ G , then H g also belongs to F .

Note that a Fitting set fitset of the group G is a subset of the set of all subgroups of G . Therefore it is not
closed under group isomorphisms, hence is not a group class. If H is a subgroup of G , then the subgroups of
G in fitset which are contained in H form a Fitting set of H . We will not distinguish between fitset and the
arising Fitting set of H . Moreover, if fit is a Fitting class and grp is a group, then the set of all subgroups
of grp which belong to fit is a Fitting set of grp.

1I IsFittingSet(G, fitset) O

tests whether fitset (or, more precisely, the set of all subgroups of G which are contained in fitset) is a
Fitting set of the group G . Thus if fitset is a Fitting class, or if G is a subgroup of the group H and fitset
is a Fitting set of H , then IsFittingSet(G, fitset) will return true.

2I FittingSet(G, rec) O

returns the Fitting set fitset of the group G , defined by the entries of the record rec. Note that, although it
would be possible to test whether rec defines a Fitting set, such a test is not performed, since it would be
extremely expensive, even for relatively small groups.
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rec may have components \in, inj, rad, and name. The functions assigned to the components are stored
in the attributes MemberFunction, InjectorFunction, RadicalFunction, and Name, of fitset . Please see
2.2.2, 5.4.4 and 5.4.3 for the meaning of these arguments.

Note that at present, every Fitting set has to be a class (see 2). The second example below shows how to
define a Fitting set from a list of subgroups.

gap> fitset := FittingSet(SymmetricGroup (4), rec(
> \in := S -> IsSubgroup (AlternatingGroup (4), S),
> rad := S -> Intersection (AlternatingGroup (4), S),
> inj := S -> Intersection (AlternatingGroup (4), S)));
FittingSet (SymmetricGroup(
[ 1 .. 4 ] ), rec (in:=function( S ) ... end, rad:=function( S ) ... end, inj:\
=function( S ) ... end))
gap> FittingSet (SymmetricGroup (3), rec(
> \in := H -> H in [Group (()), Group ((1,2)), Group ((1,3)), Group ((2,3))]));
FittingSet (SymmetricGroup( [ 1 .. 3 ] ), rec (in:=function( H ) ... end))

3I ImageFittingSet(alpha, fitset) O

returns the image F 1 of the Fitting set fitset under the group homomorphism alpha, i.e. the Fitting set F 1
of Image(alpha) which consists of all subgroups alpha(S) of Image(alpha) such that S is a fitset-injector
of PreImage(alpha, S). fitset must be a Fitting set of PreImage(alpha) or a Fitting class. Note that the
image of a Fitting class is a Fitting set but not a Fitting class.

gap> alpha := GroupHomomorphismByImages (SymmetricGroup (4), SymmetricGroup (3),
> [(1,2), (1,3), (1,4)], [(1,2), (1,3), (2,3)]);;
gap> im := ImageFittingSet (alpha, fitset);
FittingSet (Group( [ (1,2), (1,3), (2,3)
] ), rec (inj:=function( G ) ... end))
gap> Radical (Image (alpha), im);
Group([ (1,2,3), (1,3,2) ])

4I PreImageFittingSet(alpha, fitset) O

returns the preimage fitset 0 of the Fitting set fitset of Image(alpha) under the group homomorphism alpha.
It consists of all subgroups S of PreImage(alpha) which are subnormal in PreImage(alpha, T) for some
T in fitset . fitset must be a Fitting set of Image(alpha) or a Fitting class.

Note that the preimage of a Fitting class is just a Fitting set but not a Fitting class.

Moreover, ImageFittingSet(PreImageFittingSet(fitset, alpha), alpha) equals fitset but in general, fit-
set is not contained in PreImageFittingSet(ImageFittingSet(fitset, alpha), alpha); see e.g. Example
VIII, 2.16 of [DH92].

gap> pre := PreImageFittingSet (alpha, NilpotentGroups);
FittingSet (SymmetricGroup( [ 1 .. 4 ] ), rec (inj:=function( G ) ... end))
gap> Injector (Source (alpha), pre);
Group([ (1,4)(2,3), (1,2)(3,4), (2,3,4) ])

5I Intersection(fitset1, fitset2)

Let fitset1 and fitset2 be Fitting sets of the groups G1 and G2 . Then the intersection of fitset1 and fitset2
will be a Fitting set of the intersection of G1 and G2 . You will run into an error if GAP cannot compute
the intersection of G1 and G2 .
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gap> F1 := FittingSet (SymmetricGroup (3),
> rec (\in := IsNilpotent, rad := FittingSubgroup));
FittingSet (SymmetricGroup(
[ 1 .. 3 ] ), rec (in:=<Operation "IsNilpotent">, rad:=<Operation "FittingSubg\
roup">))
gap> F2 := FittingSet (AlternatingGroup (4),
> rec (\in := ReturnTrue, rad := H -> H));
FittingSet (AlternatingGroup(
[ 1 .. 4 ] ), rec (in:=function( ) ... end, rad:=function( H ) ... end))
gap> F := Intersection (F1, F2);
FittingSet (Group(
[ (1,2,3) ] ), rec (in:=function( x ) ... end, rad:=function( G ) ... end))
gap> Intersection (F1, PiGroups ([2,5]));
FittingSet (SymmetricGroup(
[ 1 .. 3 ] ), rec (in:=function( x ) ... end, rad:=function( G ) ... end))

5.4 Attributes and operations for Fitting classes and Fitting sets

In addition to operations applicable to classes, both Fitting sets and Fitting classes admit the following
attributes and operations. Of course, Fitting classes, being group classes, also admit all properties and
attributes for group classes.

1I Radical(G, fitset) O

returns the grpclass-radical of the group G , where fitset is a Fitting set of G (see 5.3.1), or a Fitting class.
The fitset-radical of G is the unique largest normal subgroup of G belonging to fitset . Note that Radical(G)
returns the solvable radical of a group G (see 37.11.9 in the GAP reference manual). The class myL2 Nilp
in the example below has been defined in 5.1.1.

gap> Radical (SymmetricGroup (4), FittingClass (rec(\in := IsNilpotentGroup)));
Group([ (1,4)(2,3), (1,3)(2,4) ])
gap> Radical (SymmetricGroup (4), myL2_Nilp);
Sym( [ 1 .. 4 ] )
gap> Radical (SymmetricGroup (3), myL2_Nilp);
Group([ (1,2,3) ])

2I Injector(G, fitset) O

returns a fitset-injector of the group G , where fitset is a Fitting set of G (or a group containing G), or a
Fitting class. A subgroup H of G is a fitset-injector of G if S ∩H is fitset-maximal in S for every subnormal
subgroup S of G . Note that by [DH92], VIII, 2.9, all fitset-injectors of G are conjugate in G , and it is
not hard to see that every subgroup of G has fitset-injectors if and only if fitset is a Fitting set of G . In
particular, if fitset is a group class, then every finite solvable group has fitset-injectors if and only if fitset is
a Fitting class; see [DH92], IX, 1.4.

gap> Injector (SymmetricGroup (4), FittingClass (rec(\in := IsNilpotentGroup)));
Group([ (1,3)(2,4), (1,4)(2,3), (3,4) ])

3I RadicalFunction(class) A

This attribute, if present, forms part of the definition of class supplied by the user. It must contain a function
which takes one argument, a group G , and returns the class-radical of G . This function will be used during
subsequent calls to Radical. Therefore Radical (see 5.4.1), which is guaranteed to work for arbitrary Fitting
sets class, should always be called by the user to compute class-radicals.
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4I InjectorFunction(class) A

This attribute constitutes part of the definition of class supplied by the user. If present, it must contain a
function taking a group G as the only argument and returning a class-injector of G . This function will then
be used by Injector (see 5.4.2). Since Injector will work for arbitrary Fitting sets, it should always be
called by the user to compute class-injectors.

5.5 Functions for the socle

This section contains various algorithms to compute the socle of a finite soluble group, or, more generally,
the solvable socle of an arbitrary finite group.

1I Socle(grp) A

CRISP provides a method for Socle (see 37.11.10) for which works for all finite soluble groups grp. The socle
of a group grp is the subgroup generated by all minimal normal subgroups of grp. See also 5.5.2 and 5.5.5
below.

gap> Size (Socle ( DirectProduct (DihedralGroup (8), CyclicGroup (12))));
12

2I AbelianSocle(grp) A
I SolvableSocle(grp) A

This function computes the solvable socle of grp. The solvable socle of a group grp is the subgroup generated
by all minimal normal solvable subgroups of grp.

3I SocleComponents(grp) A

This function returns a list of minimal normal subgroups of grp such that the socle of grp (see 5.5.1) is the
direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.
Currently, this function is only implemented for finite soluble groups. See also 5.5.4 and 5.5.6.

4I AbelianSocleComponents(grp) A
I SolvableSocleComponents(grp) A

This function returns a list of solvable minimal normal subgroups of grp such that the socle of grp (see
5.5.1) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is
not unique.

5I PSocle(grp, p) A

If p is a prime, the p-socle of a group grp is the subgroup generated by all minimal normal p-subgroups of
grp.

6I PSocleComponents(grp, p) A

For a prime p, this function returns a list of minimal normal p-subgroups of grp such that the p-socle of grp
(see 5.5.5) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition
is not unique.
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5.6 Low level functions for normal subgroups related to radicals

1I OneInvariantSubgroupMaxWrtNProperty(act, grp, pretest, test, data) O

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp
invariant under act is normal in grp. Assume X is a set of subgroups of grp such that X contains the trivial
group, and if M and N are act-invariant subgroups with M ∈ X and M containing N , then also N ∈ X .
Then OneInvariantSubgroupMaxWrtNProperty computes an act-invariant subgroup M ∈ X such that no
act-invariant subgroup of grp properly containing M belongs to X .

For example, every Fitting set X satisfies the above properties, where act = G . In this case, OneInvari-
antSubgroupMaxWrtNProperty will return the X -radical of grp.

The class X is described by two functions, pretest and test .

pretest is a function taking four arguments, U , V , R, and data, where data is just the argument passed
to OneInvariantSubgroupMaxWrtNProperty. U /V is an act-composition factor of grp, and R is an act-
invariant subgroup of grp contained in V which is known to belong to X .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of
grp contained in U such that N /R is G-isomorphic with U /V must belong to X . If it returns false, no
such N may belong to X .

test is a function taking three arguments, S , R, and data, where data has been described above. R is an
act-invariant subgroup of grp belonging to X , and S/R is an act-composition factor of grp. The function
must return true if S belongs to X , and false otherwise.

Note that test(S, R, data) is only called if pretest(U , V , R, data) has returned fail for a chief
factor U /V which is G-isomorphic with S/R. Therefore test need not repeat tests already performed by
pretest . In particular, if pretest always returns true or false, test will not be called at all.

data is never used or changed by OneInvariantSubgroupMaxWrtNProperty, but exists only as a means for
passing additional information to or between the functions pretest and test .

2I AllInvariantSubgroupsWithNProperty(act, grp, pretest, test, data) O

returns a list consisting of all act-invariant subgroups of grp belonging to the class X described by pretest ,
test , and data. See the documentation of OneInvariantSubgroupMaxWrtNProperty (see 5.6.1) for details.

gap> D := DihedralGroup (8);;
gap> AllInvariantSubgroupsWithNProperty (
> D, D,
> ReturnFail,
> function (R, S, data)
> return IsAbelian (R);
> end,
> fail);
[ Group([ f3 ]), <pc group with 2 generators>, <pc group with 2 generators>,
Group([ f2, f3 ]), Group([ ]) ]

3I OneNormalSubgroupWithNProperty(grp, pretest, test, data) O
I AllNormalSubgroupsWithNProperty(grp, pretest, test, data) O

are the same as OneInvariantSubgroupMaxWrtNProperty (see 5.6.1) and AllInvariantSubgroupsWithN-
Property ((see 5.6.2), where act = grp, and thus the act-invariant subgroups of grp are just the normal
subgroups of grp.
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Examples of
group classes

This chapter describes some pre-defined group classes, namely the classes of all abelian, nilpotent, and
supersolvable groups. Moreover, there are some functions constructing the classes of all p-groups, π-groups,
and abelian groups whose exponent divides a given positive integer.

The definitions of these group classes can also serve as further examples of how group classes can be defined
using the methods described in the preceding chapters.

6.1 Pre-defined group classes

1I TrivialGroups V

The global variable TrivialGroups contains the class of all trivial groups. It is a subgroup closed saturated
Fitting formation.

2I NilpotentGroups V

This global variable contains the class of all finite nilpotent groups. It is a subgroup closed saturated Fitting
formation.

3I SupersolvableGroups V

This global variable contains the class of all finite supersolvable groups. It is a subgroup closed saturated
formation.

4I AbelianGroups V

is the class of all abelian groups. It is a subgroup closed formation.

5I AbelianGroupsOfExponent(n) F

returns the class of all abelian groups of exponent dividing n, where n is a positive integer. It is always a
subgroup-closed formation.

6I PiGroups(pi) F

constructs the class of all pi -groups. pi may be a non-empty class or a set of primes. The result is a
subgroup-closed saturated Fitting formation.

7I PGroups(p) F

returns the class of all p-groups, where p is a prime. The result is a subgroup-closed saturated Fitting
formation.
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6.2 Pre-defined projector functions

1I NilpotentProjector(grp) A

This function returns a projector for the class of all finite nilpotent groups. For a definition, see 4.2.3.
Note that the nilpotent projectors of a finite solvable group equal its a Carter subgroups, that is, its self-
normalizing nilpotent subgroups.

2I SupersolvableProjector(grp) A

These functions return a projector for the class of all finite supersolvable groups. For a definition, see 4.2.3.

6.3 Pre-defined sets of primes

1I AllPrimes V

is the set of all (integral) primes. This should be installed as value for Characteristic(grpclass) if the
group class grpclass contains cyclic groups of prime order p for arbitrary primes p.
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[Gas63] W. Gaschütz. Zur Theorie der endlichen auflösbaren Gruppen. Math. Z., 80:300 – 305, 1963.
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This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.
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of all p-groups, 25
of all abelian groups, 25
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of all nilpotent groups, 25
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properties of, 5
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Complement, 5
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crisp, 3

D
Difference, 6
Display, for classes, 5

E
element test, for classes, 5
equality, for classes, 5

F
factor groups, with properties inherited by factor

groups, 16
FittingClass, 19
fitting classes, attributes of, 22

creating, 19
creating fitting formations, 20
operations for, 22

FittingFormation, 20
FittingFormationProduct, 15, 19
fitting formations, creating, 20
FittingProduct, 19
FittingSet, 20
fitting sets, attributes of, 22

creating, 20
operations for, 22

FormationProduct, 15
formations, attributes for, 16

creating, 14
creating fitting formations, 20
operations for, 16

FORMAT package, 3

G
GroupClass, 7
group classes, attributes for, 10

closure properties of, 8
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properties of, 9

H
HasIsFittingClass, 9
HasIsFittingFormation, 10
HasIsFormation, 9
HasIsOrdinaryFormation, 9
HasIsSaturatedFittingFormation, 10
HasIsSaturatedFormation, 10

I
ImageFittingSet, 21
in, for classes, 5
Injector, 22
InjectorFunction, 22
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of Fitting sets, 21
of group classes, 8

INTERSECTION LIMIT, 5
invariant normal subgroups, with properties

inherited by normal subgroups, 23
with properties inherited by normal subgroups

above, 16
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IsEmpty, for classes, 5
IsFittingClass, 9
IsFittingFormation, 10
IsFittingSet, 20
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IsGroupClass, 8
IsNormalProductClosed, 9
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IsSaturatedFormation, 10
IsSchunckClass, 9
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L
lattice operations, for classes, 5
LocalDefinitionFunction, 16

M
MemberFunction, 5

membership test, for classes, 5

N
nilpotent groups, class of, 25
NilpotentProjector, 25
NormalSubgroups, 16
normal subgroups, with properties inherited by

normal subgroups, 23
with properties inherited by normal subgroups

above, 16

O
OneInvariantSubgroupMaxWrtNProperty, 23
OneInvariantSubgroupMinWrtQProperty, 16
OneNormalSubgroupMinWrtQProperty, 18
OneNormalSubgroupWithNProperty, 24
operations, for fitting classes, 22

for fitting sets, 22
for formation, 16
for schunck class, 12

OrdinaryFormation, 14

P
PGroups, 25
PiGroups, 25
PreImageFittingSet, 21
primes, set of all, 25
primitive solvable group, attributes of, 13
Print, for classes, 5
Projector, 12
ProjectorFunction, 13
properties, of classes, 5

of group classes, 9
PSocle, 23
PSocleComponents, 23

Q
quotient groups, with properties inherited by

quotients, 16

R
Radical, 22
RadicalFunction, 22
Residual, 16
ResidualFunction, 16

S
SaturatedFittingFormation, 20
SaturatedFormation, 14
SchunckClass, 12
schunck class, attributes of, 12
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creating, 12
operations for, 12

set, of all primes, 25
SetIsFittingClass, 9
SetIsFittingFormation, 10
SetIsFormation, 10
SetIsOrdinaryFormation, 10
SetIsSaturatedFittingFormation, 10
SetIsSaturatedFormation, 10
Socle, 23
SocleComplement, 13
SocleComponents, 23

SolvableSocle, 23
SolvableSocleComponents, 23
supersolvable groups, class of, 25
SupersolvableProjector, 25

T
trivial groups, class of, 25

U
Union, 6

V
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