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Chapter 1

The EDIM-Package

(Elementary Divisors and Integer Matrices, by Frankideck)

This chapter describes the functions defined in the mikP4 package&DIM. The main functions
implement variants of an algorithm for computing for a given pripnae p-parts of the elementary
divisors of an integer matrix. These algorithms ugeadic method and are described by the author
in [4] (seeElementaryDivisorsPPartRk (1.2.1)).

These functions were already applied to integer matrices of dimension greater than 11000 (which
had many non-trivial elementary divisors which were products of small primes).

Furthermore there are functions for finding the biggest elementary divisor of an invertible integer
matrix and the inverse of a rational invertible matrix (§eeonentSquareIntMatFullRank (1.3.2
andInverseRatMat (1.3.1). These algorithms uge-adic approximations, explained in7.

Finally we distribute implementations of some other algorithms for finding elementary divisors
or normal forms of integer matrices: p-modular algorithm by Havas and Sterling frol] [see
ElementaryDivisorsPPartHavasSterling (1.2.2) and LLL-based algorithms for extended great-
est common divisors of integers (seelexIntLLL (1.5.1)) and for Hermite normal forms of integer
matrices with (very nice) transforming matrices (§eeémiteIntMatLLL (1.5.2).

By default theEDIM is automatically loaded bgAP when it is installed. If the automatic loading
is disabled in your installation you must load the package wituirePackage ("edin"); before
its functions become available.

Please, send me an e-maitnk . Luebeck@Math.RWTH-Aachen.De) if you have any questions,
remarks, suggestions, etc. concerning this mini-package. Also, | would like to hear about applications
of this package.

Frank Liibeck

1.1 Installation of the EDIM-package

To install this package (after extracting the packages archive file to the GAP home directory) go to the
directorypkg/edim (the directory containing this README file) and call
/bin/sh ./configure [path]
wherepath is a path to the maiGAP root directory (if not given, the default. /. . is assumed).
Afterwards callnake to compile a binary file.
If you installed GAP on several architectures, you must executecthisigure/make step on
each of the architectures immediately after configuring GAP itself on this architecture. The package
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will also work without this step but then the kernel functiementaryDivisorsPPartRkExpSmall
(1.2.) (seeElementaryDivisorsPPartRkExpSmall (1.2.1)) will not be available.

TheINSTALL in the main package directory also explains how to compile the kernel function into
a static module. You can also run a test of the installation by typing test.

1.1.1 InfoEDIM

¢ InfoEDIM (info class)

This is aninfo class for theEDIM-package. Byset InfolLevel (InfoEDIM, 1); you can switch
on the printing of some information during the computations of ce&aim-functions.

1.2 p-Parts of Elementary Divisors

Here we explain the main functions of the package.

1.2.1 ElementaryDivisorsPPartRk

O ElementaryDivisorsPPartRk( A, pl[, rk] ) (function)
{Q ElementaryDivisorsPPartRkI( A, p, rk ) (function)
Q ElementaryDivisorsPPartRkII( A, p, rk ) (function)
Q ElementaryDivisorsPPartRkExp( A, p, rk, exp ) (function)
Q ElementaryDivisorsPPartRkExpSmall ( A, p, rk, exp, il ) (function)

These functions return a ligtny, mp, ..., m/] wherem is the number of nonzero elementary divi-
sors ofz divisible byp' (seeElementaryDivisorsMat (Reference: ElementaryDivisorsMaj for a
definition of the elementary divisors).

The algorithms for these functions are describedi]n [

A must be a matrix with integer entrigsa prime, andk the rank ofa (as rational matrix). In the
first version of the commantk is computed, if it is not given.

The first version of the command delegates its job to the fourth version by trying growing values
for exp, see below.

The second and third versions implement the main algorithm describef] anfl a variation.
HereElementaryDivisorsPPartRkII has a bit more overhead, but can be advantageous because
the intermediate entries during the computation can be much smaller.

In the fourth formexp must be an upper bound for the highest powep @fppearing in an ele-
mentary divisor ofa. This information allows reduction of matrix entries modwf*P during the
computation.

If exp is too small or the givemk is not correct the function returns ‘fail’.

As long asp®*P is smaller than 2 andp®*P+2 is smaller than ¥ we use internally a kernel
function which can also be used directly in the fifth form of the command. Thean be 0 or 1
where in the second case some information is printed during the computation.

This last form of the function was already succesfully applied to dense matrices of rank up to
11000.

Note that you have to compile a file (s&€l) while installing this package, if you want to have
this kernel function available.
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Example

gap> ReadPkg("edim", "tst/mat");

Reading 242x242 integer matrix '‘mat’ and its elementary divisors 'eldiv’.
gap> ElementaryDivisorsPPartRkI (mat, 2, 242); time; # mat has full rank

[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0]

9170

gap> ElementaryDivisorsPPartRkExpSmall (mat, 2, 242, 10, 0); time;

[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0]

560

1.2.2 ElementaryDivisorsPPartHavasSterling

Q ElementaryDivisorsPPartHavasSterling( A, p, d ) (function)

For an integer matrix and a primep this function returns a listmy, mp, ..., m;| wherem is the
number of nonzero elementary divisorsadivisible byp'.

An upper boundi for the highest power of appearing in an elementary divisor ®fmust be
given. Smaller improve the performance of the algorithm considerably.

This is an implementation of the modular algorithm describe@]in [

We added a slightimprovement: we divide the considered submatrices pyptreof the greatest
common divisor of all entries (and lower theappropriately). This reduces the size of the entries and
often shortens the pivot search.

Example

gap> ReadPkg("edim", "tst/mat");

Reading 242x242 integer matrix 'mat’ and its elementary divisors ’'eldiv’.
gap> ElementaryDivisorsPPartHavasSterling(mat, 2, 10); time;

[ 94, 78, 69, 57, 23, 23, 9, 2, 21

25390

1.3 Inverse of Rational Matrices

1.3.1 InverseRatMat

{ InverseRatMat ( A[, p] ) (function)

This function returns the inverse of an invertible matrix over the rational numbers.

It first computes the inverse modulo some primpeomputes from this g-adic approximation to
the inverse and finally constructs the rational entries from theidic approximations. See section
1.7 for more details.

This seems to be better th@nP’s standard Gaul3 algorithm{-1) already for small matrices.
(Try, e.g.,RandomMat (20,20, [-10000..10000]) or RandomMat (100, 100).)

The optional argument should be a prime such thamodulop is invertible (default i = 251).

If & is not invertible modul@ thenp is automatically replaced by the next prime.

1.3.2 ExponentSquarelntMatFullRank

O ExponentSquareIntMatFullRank ( A[, p[, nr]] ) (function)
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This function returns the biggest elementary divisor of a square integer matfifull rank.

For such a matrix the least common multiple of the denominators of all entries of the inverse
matrix 2~ 1 is exactly the biggest elementary divisorzof

This function is implemented by a slight modificationofverserRatMat (1.3.1). The third ar-
gumentnr tells the function to return the least common multiple of the fitstows of the rational
inverse matrix only. Very often the function will already return the biggest elementary divisor with
nr = 2 or 3 (and the command without this argument would spend most time in checking, that this is
correct).

The optional argument should be a prime such thaimodulop is invertible (default i = 251).
If & is not invertible module thenp is automatically replaced by the next prime.

Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’'mat’ and its elementary divisors 'eldiv’.
gap> inv := InverseRatMat (mat);; time;
14960
gap> ExponentSquareIntMatFullRank (mat, 101, 3); # same as without the ‘3’
115200

1.4 All Elementary Divisors Using p-adic Method

In the following two functions we put things together. In particular we handle the prime parts of the
elementary divisors efficiently for primes appearing with low powers in the highest elementary divisor
respectively determinant divisor.

1.4.1 ElementaryDivisorsSquarelntMatFullRank

{Q ElementaryDivisorsSquareIntMatFullRank ( A ) (function)

This function returns a list of nonzero elementary divisors of an integer nmatrix

Here we start with computing the biggest elementary divisor via
ExponentSquareIntMatFullRank (1.3.2. If it runs into a problem because is singular
modulo a choosen prime (it starts by default with 251) then the prime is automatically replaced by
the next one.

The rest is done usimglementaryDivisorsPPartRkExp (1.2.1) andRankMod (1.6.5.

The function fails if the biggest elementary divisor cannot be completely factored and the non-
factored part is not a divisor of the biggest elementary divisor only.

Note that this function may for many matrices not be the best choice for computing all elementary
divisors. You may first try the standa@aP library routines for Smith normal form instead of this
function. Nevertheless rememberementaryDivisorsSquareIntMatFullRank for hard and big
examples. It is particularly good when the largest elementary divisor is a very small factor of the
determinant.

Example
gap> Collected(ElementaryDivisorsSquareIntMatFullRank (mat));
[ (1, 4971, [ 3, 9911, [ 6, 71, [30, 91, [60, 971, [ 120, 21,
[ 360, 10 ], [ 720, 22 1, [ 3600, 12 ], [ 14400, 14 1, [ 28800, 7 1,
[ 115200, 2 ] 1]
gap> time;

10180



Mini GAP 4 Package EDIM 7

gap> last2 = Collected(DiagonalOfMat (NormalFormIntMat (mat, 1).normal));
true

gap> time;

188490

1.4.2 ElementaryDivisorsintMatDeterminant

{Q ElementaryDivisorsIntMatDeterminant ( A, det[, rk] ) (function)

This function returns a list of nonzero elementary divisors of an integer nmatrix

Heredet must be an integer which is a multiple of the biggest determinant divisar ¢f the
matrix does not have full rank then its rank must be given, too.

The argumentiet can be given in the form afollected (FactorsInt (det)).

This function handles prime divisors @t with multiplicity smaller than 4 specially, for the other
prime divisorsp it delegates t@1lementaryDivisorsPPartRkExp (1.2.]) where theexp argument is
the multiplicity of thep in det. (Note that this is not very good whegnhas actually a much smaller
multiplicity in the largest elementary divisor.)

Example

gap> ReadPkg("edim", "tst/mat");

Reading 242x242 integer matrix 'mat’ and its elementary divisors ’eldiv’.
gap> # not so good:

gap> ElementaryDivisorsIntMatDeterminant (mat,Product (eldiv)) =
Concatenation([1..49]*0+1, eldiv); time;

true

185770

1.5 Gcd and Normal Forms Using LLL

TheEDIM-mini package also contains implementations of an extended Gcd-algorithm for integers and
a Hermite and Smith normal form algorithm for integer matrices using LLL-techiques. They are well
described in the papef] by Havas, Majewski and Matthews.

They are particularly useful if one wants to have the normal forms together with transforming
matrices. These transforming matrices have spectacularly nice (i.e., “small”) entries in cases of input
matrices which are non-square or not of full rank (otherwise the transformation to the Hermite normal
form is unique).

In detail:

1.5.1 GcdexIntLLL

{ GedexIntLLL( nl, n2, ... ) (function)
This function returns for integetsi, n2,... a list [g, [c1,Cp, . ..]], whereg = cin1 +con2 + ... is
the greatest common divisor of the. Here all thec; are usually very small.
Example

gap> GcdexIntLLL( 517, 244, -304, -872, -286, 854, 866, 224, -7765, -38);
t, 10,0¢0,01,0 1,1, 1, 11]]
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1.5.2 HermitelntMatLLL

Q) HermiteIntMatLLL( A ) (function)

This returns the Hermite normal form of an integer matriand uses the LLL-algorithm to avoid
entry explosion.
1.5.3 HermiteIntMatLLLTrans
() HermiteIntMatLLLTrans( A ) (function)
This function returns a pair of matricgid,L| whereH = La is the Hermite normal form of an

integer matrixa. The transforming matrik can have surprisingly small entries.
Example

gap> ReadPkg("edim", "tst/mat2");

Reading 34x34 integer matrix ’'mat2’ and its elementary divisors ’eldiv2’.
gap> tr := HermiteIntMatLLLTrans (mat2);; Maximum(List (Flat(tr[2]), AbsInt));
606

gap> tr[2]*mat2 = tr[l];

true

1.5.4 SmithintMatLLL

¢ SmithIntMatLLL( A ) (function)

This function returns the Smith normal form of an integer matrixsing the LLL-algorithm to
avoid entry explosion.

1.5.5 SmithIntMatLLLTrans

O SmithIntMatLLLTrans( A ) (function)

This function return$S L, R] whereS= LAR is the Smith normal form of an integer mateix
We apply the algorithm for Hermite normal form several times to get the Smith normal form, that
is not in the paperd]. The transforming matrices need not be as nice as for the Hermite normal form.

Example

gap> ReadPkg("edim", "tst/mat2");

Reading 34x34 integer matrix ’'mat2’ and its elementary divisors ’eldiv2’.
gap> tr := SmithIntMatLLLTrans (mat2);;

gap> tr[2] * mat2 * tr[3] = tr[l];

true

1.6 Utility Functions from the EDIM-package

1.6.1 RatNumberFromModular

O RatNumberFromModular( n, k, 1, x ) (function)
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This function returns /s=x (mod ), if it exists. More precisely:

n, k, 1 must be positive integers wittk2 < n andx an integer with-n/2 < x <n/2. If it exists
this function returns a rational numheiswith 0 < s< 1, gcds,n) = 1, —k < r < k andr /scongruent
tox (modh (i.e.,n|r—sx). Such arr/sis unique. The function returnsil if such a number
does not exist.

1.6.2 InverselntMatMod

Q InverseIntMatMod( A, p ) (function)

This function returns an inverse matrix modulo a prign@ fail. More precisely:

A must be an integer matrix amca prime such that is invertible modulag. This function returns
an integer matrix nv with entries in the range—p/2...p/2] such that.nva reduced modulo p is the
identity matrix.

It returnsfail if the inverse module does not exist. This function is particularly fast for primes
smaller 256.

1.6.3 HadamardBoundIntMat

{) HadamardBoundIntMat ( A ) (function)

The Hadamard bound for a square integer matris the product of Euclidean norms of the
nonzero rows (or columns) ef It is an upper bound for the absolute value of the determinant of

1.6.4 CheapFactorsint

{Q CheapFactorsInt ( n[, nr] ) (function)

This function returns a list of factors of an integerincluding “small” prime factors - here the
optional argumentr is the number of iterations for ‘FactorsRho’ (default is 2000).

This is only a slight modification of the library functictactorsint (Reference: Factorsin)
which avoids an error message when the number is not completely factored.

1.6.5 RankMod

O RankMod ( A, p ) (function)

This function returns the rank of an integer matimodulop. Herep must not necessarily be a
prime. If it is not and this function returns an integer, then this is the rankfof all prime divisors
of p.

If during the computation a factorisation pfis found (because some pivot entry has nontrivial
greatest common divisor with) then the function is recursively applied to the found factatsof p.
The result is then given in the form £_1, rk_.1], [f_2, rk2], ...].

The idea to make this function useful for non primes was to use it with large factors of the biggest
elementary divisor of whose prime factorization cannot be found easily.

Example

gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix '‘mat’ and its elementary divisors 'eldiv’.
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gap> RankMod (mat, 5);

155

gap> RankMod (mat, (2*79*%4001));

[ [ 2, 148 1, [ 79, 242 1, [ 4001, 242 ] ]

1.7 InverseRatMat - the Algorithm

The idea is to recover a rational matrix fromlaadic approximation for some prinie This descrip-
tion came out of discussions witlirgjen Miller. | thank John Cannon for pointing out that the basic
idea already appeared in the papdrdf Dixon.

Let A be an invertible matrix over the rational numbers. By multiplying with a constant we may
assume that its entries are in fact integers.

(1) We first describe how to find dradic approximation oA~1. Find a primel such thatA is
invertible moduld and letB be the integer matrix with entries in the rangd /2,1/2] such thaBA
is congruent to the identity matrix modulo(This can be computed fast by usual Gaul3 elimination.)

Now letv € Z' be a row vector. Define two sequencgsndx; of row vectors inZ' by: xg :=
0e€ Z', vp:= —v and fori > 0 setx; to the vector congruent tev;_1B modulol having entries in the
range]—1/2,1/2]. Then all entries okA+vi_1 are divisible byl and we set; := (1/1) - (xA+Vi_1).

Induction shows that foy; := z‘k:ll"*lxk we havey,A= v+1ly, for alli > 0. Hence the sequence
yi, i > 0, gives ar-adic approximation to the vectgre Q" with yA=v.

(2) The second point is to show how we can get the vadhiam a sufficiently good approximation
yi. Note that the sequence pwfbecomes constant foe> ig if all entries ofy are integers of absolute
value smaller thah'®/2 because of our choice of representatives of residue classes mddutie
interval]—1/2,1/2].

More generally considea/b € Q with b > 0 anda, b coprime. Then there is for eadre N which
is coprime tob a uniquec € Z with —n/2 < c<n/2 anda=cb (modn). Thisc can be computed
via the extended Euclidean algorithm appliedbtandn.

Now let n,a,3 € N with 20 < n. Then the mapla/bc Q| —-a<a<a,1<b< B} —
1—-n/2,n/2], a/b+— c (defined as above) is injective (since ffb, & /b’ in the above set we have
ab—ab=0 (modn)ifandonlyifabl —a'b=0).

In practice we can use for amyc |—n/2,n/2] a certain extended Euclidean algorithm applied to
n andc to decide ifc is in the image of the above map and to find the corresporaibdf it exists.

(3) To put things together we apply (2) to the entries of the vegtarsnstructed in (1), choosing
n=1, a =,/n/2 andB = \/n. If we have found this way a candidate fpwe can easily check if it
is correct by computingA. If pis the maximal absolute value of all numerators and denominators of
the entries of it is clear from (2) that we will findy fromyy; if I' > 212,

(4) If we take as/ in (1) to(3) all standard unit vectors we clearly get the rowAof. But we can
do it better. Namely we can takeathe standard unit vectors multiplied by the least common multiple
¢ of the denominators of the already computed entrigs éf In many examples thisactually equals
& after the computation of the first or first few rows. Therefore we will often find quickly the next row
of A1 already in (1), because we findia= 0 such that the sequenceypbecomes constani(y).
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