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Chapter 1

The EDIM-Package

(Elementary Divisors and Integer Matrices, by Frank Lübeck)
This chapter describes the functions defined in the miniGAP4 packageEDIM. The main functions

implement variants of an algorithm for computing for a given primep the p-parts of the elementary
divisors of an integer matrix. These algorithms use ap-adic method and are described by the author
in [4] (seeElementaryDivisorsPPartRk (1.2.1)).

These functions were already applied to integer matrices of dimension greater than 11000 (which
had many non-trivial elementary divisors which were products of small primes).

Furthermore there are functions for finding the biggest elementary divisor of an invertible integer
matrix and the inverse of a rational invertible matrix (seeExponentSquareIntMatFullRank (1.3.2)
andInverseRatMat (1.3.1)). These algorithms usep-adic approximations, explained in1.7.

Finally we distribute implementations of some other algorithms for finding elementary divisors
or normal forms of integer matrices: Ap-modular algorithm by Havas and Sterling from [3] (see
ElementaryDivisorsPPartHavasSterling (1.2.2)) and LLL-based algorithms for extended great-
est common divisors of integers (seeGcdexIntLLL (1.5.1)) and for Hermite normal forms of integer
matrices with (very nice) transforming matrices (seeHermiteIntMatLLL (1.5.2)).

By default theEDIM is automatically loaded byGAP when it is installed. If the automatic loading
is disabled in your installation you must load the package withRequirePackage("edim"); before
its functions become available.

Please, send me an e-mail (Frank.Luebeck@Math.RWTH-Aachen.De) if you have any questions,
remarks, suggestions, etc. concerning this mini-package. Also, I would like to hear about applications
of this package.

Frank L̈ubeck

1.1 Installation of the EDIM-package

To install this package (after extracting the packages archive file to the GAP home directory) go to the
directorypkg/edim (the directory containing this README file) and call

/bin/sh ./configure [path]
wherepath is a path to the mainGAP root directory (if not given, the default../.. is assumed).
Afterwards callmake to compile a binary file.
If you installed GAP on several architectures, you must execute thisconfigure/make step on

each of the architectures immediately after configuring GAP itself on this architecture. The package
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will also work without this step but then the kernel functionElementaryDivisorsPPartRkExpSmall
(1.2.1) (seeElementaryDivisorsPPartRkExpSmall (1.2.1)) will not be available.

TheINSTALL in the main package directory also explains how to compile the kernel function into
a static module. You can also run a test of the installation by typingmake test.

1.1.1 InfoEDIM

♦ InfoEDIM (info class)

This is anInfo class for theEDIM-package. BySetInfoLevel(InfoEDIM, 1); you can switch
on the printing of some information during the computations of certainEDIM-functions.

1.2 p-Parts of Elementary Divisors

Here we explain the main functions of the package.

1.2.1 ElementaryDivisorsPPartRk

♦ ElementaryDivisorsPPartRk( A, p[, rk] ) (function)

♦ ElementaryDivisorsPPartRkI( A, p, rk ) (function)

♦ ElementaryDivisorsPPartRkII( A, p, rk ) (function)

♦ ElementaryDivisorsPPartRkExp( A, p, rk, exp ) (function)

♦ ElementaryDivisorsPPartRkExpSmall( A, p, rk, exp, il ) (function)

These functions return a list[m1,m2, . . . ,mr ] wheremi is the number of nonzero elementary divi-
sors ofA divisible bypi (seeElementaryDivisorsMat (Reference: ElementaryDivisorsMat) for a
definition of the elementary divisors).

The algorithms for these functions are described in [4].
A must be a matrix with integer entries,p a prime, andrk the rank ofA (as rational matrix). In the

first version of the commandrk is computed, if it is not given.
The first version of the command delegates its job to the fourth version by trying growing values

for exp, see below.
The second and third versions implement the main algorithm described in [4] and a variation.

HereElementaryDivisorsPPartRkII has a bit more overhead, but can be advantageous because
the intermediate entries during the computation can be much smaller.

In the fourth formexp must be an upper bound for the highest power ofp appearing in an ele-
mentary divisor ofA. This information allows reduction of matrix entries modulopexp during the
computation.

If exp is too small or the givenrk is not correct the function returns ‘fail’.
As long aspexp is smaller than 228 andpexp+2 is smaller than 231 we use internally a kernel

function which can also be used directly in the fifth form of the command. Thereil can be 0 or 1
where in the second case some information is printed during the computation.

This last form of the function was already succesfully applied to dense matrices of rank up to
11000.

Note that you have to compile a file (see1.1) while installing this package, if you want to have
this kernel function available.
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Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ and its elementary divisors ’eldiv’.
gap> ElementaryDivisorsPPartRkI(mat, 2, 242); time; # mat has full rank
[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0 ]
9170
gap> ElementaryDivisorsPPartRkExpSmall(mat, 2, 242, 10, 0); time;
[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0 ]
560

1.2.2 ElementaryDivisorsPPartHavasSterling

♦ ElementaryDivisorsPPartHavasSterling( A, p, d ) (function)

For an integer matrixA and a primep this function returns a list[m1,m2, . . . ,mr ] wheremi is the
number of nonzero elementary divisors ofA divisible bypi .

An upper boundd for the highest power ofp appearing in an elementary divisor ofA must be
given. Smallerd improve the performance of the algorithm considerably.

This is an implementation of the modular algorithm described in [3].
We added a slight improvement: we divide the considered submatrices by thep-part of the greatest

common divisor of all entries (and lower thed appropriately). This reduces the size of the entries and
often shortens the pivot search.

Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ and its elementary divisors ’eldiv’.
gap> ElementaryDivisorsPPartHavasSterling(mat, 2, 10); time;
[ 94, 78, 69, 57, 23, 23, 9, 2, 2 ]
25390

1.3 Inverse of Rational Matrices

1.3.1 InverseRatMat

♦ InverseRatMat( A[, p] ) (function)

This function returns the inverse of an invertible matrix over the rational numbers.
It first computes the inverse modulo some primep, computes from this ap-adic approximation to

the inverse and finally constructs the rational entries from theirp-adic approximations. See section
1.7for more details.

This seems to be better thanGAP’s standard Gauß algorithm (Aˆ-1) already for small matrices.
(Try, e.g.,RandomMat(20,20,[-10000..10000]) or RandomMat(100,100).)

The optional argumentp should be a prime such thatA modulop is invertible (default isp = 251).
If A is not invertible modulop thenp is automatically replaced by the next prime.

1.3.2 ExponentSquareIntMatFullRank

♦ ExponentSquareIntMatFullRank( A[, p[, nr]] ) (function)
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This function returns the biggest elementary divisor of a square integer matrixA of full rank.
For such a matrixA the least common multiple of the denominators of all entries of the inverse

matrixA−1 is exactly the biggest elementary divisor ofA.
This function is implemented by a slight modification ofInverseRatMat (1.3.1). The third ar-

gumentnr tells the function to return the least common multiple of the firstnr rows of the rational
inverse matrix only. Very often the function will already return the biggest elementary divisor with
nr = 2 or 3 (and the command without this argument would spend most time in checking, that this is
correct).

The optional argumentp should be a prime such thatA modulop is invertible (default isp = 251).
If A is not invertible modulop thenp is automatically replaced by the next prime.

Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ and its elementary divisors ’eldiv’.
gap> inv := InverseRatMat(mat);; time;
14960
gap> ExponentSquareIntMatFullRank(mat, 101, 3); # same as without the ‘3’
115200

1.4 All Elementary Divisors Using p-adic Method

In the following two functions we put things together. In particular we handle the prime parts of the
elementary divisors efficiently for primes appearing with low powers in the highest elementary divisor
respectively determinant divisor.

1.4.1 ElementaryDivisorsSquareIntMatFullRank

♦ ElementaryDivisorsSquareIntMatFullRank( A ) (function)

This function returns a list of nonzero elementary divisors of an integer matrixA.
Here we start with computing the biggest elementary divisor via

ExponentSquareIntMatFullRank (1.3.2). If it runs into a problem becauseA is singular
modulo a choosen prime (it starts by default with 251) then the prime is automatically replaced by
the next one.

The rest is done usingElementaryDivisorsPPartRkExp (1.2.1) andRankMod (1.6.5).
The function fails if the biggest elementary divisor cannot be completely factored and the non-

factored part is not a divisor of the biggest elementary divisor only.
Note that this function may for many matrices not be the best choice for computing all elementary

divisors. You may first try the standardGAP library routines for Smith normal form instead of this
function. Nevertheless rememberElementaryDivisorsSquareIntMatFullRank for hard and big
examples. It is particularly good when the largest elementary divisor is a very small factor of the
determinant.

Example
gap> Collected(ElementaryDivisorsSquareIntMatFullRank(mat));
[ [ 1, 49 ], [ 3, 99 ], [ 6, 7 ], [ 30, 9 ], [ 60, 9 ], [ 120, 2 ],

[ 360, 10 ], [ 720, 22 ], [ 3600, 12 ], [ 14400, 14 ], [ 28800, 7 ],
[ 115200, 2 ] ]

gap> time;
10180
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gap> last2 = Collected(DiagonalOfMat(NormalFormIntMat(mat, 1).normal));
true
gap> time;
188490

1.4.2 ElementaryDivisorsIntMatDeterminant

♦ ElementaryDivisorsIntMatDeterminant( A, det[, rk] ) (function)

This function returns a list of nonzero elementary divisors of an integer matrixA.
Heredet must be an integer which is a multiple of the biggest determinant divisor ofA. If the

matrix does not have full rank then its rankrk must be given, too.
The argumentdet can be given in the form ofCollected(FactorsInt(det)).
This function handles prime divisors ofdet with multiplicity smaller than 4 specially, for the other

prime divisorsp it delegates toElementaryDivisorsPPartRkExp (1.2.1) where theexp argument is
the multiplicity of thep in det. (Note that this is not very good whenp has actually a much smaller
multiplicity in the largest elementary divisor.)

Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ and its elementary divisors ’eldiv’.
gap> # not so good:
gap> ElementaryDivisorsIntMatDeterminant(mat,Product(eldiv)) =
Concatenation([1..49]*0+1, eldiv); time;
true
185770

1.5 Gcd and Normal Forms Using LLL

TheEDIM-mini package also contains implementations of an extended Gcd-algorithm for integers and
a Hermite and Smith normal form algorithm for integer matrices using LLL-techiques. They are well
described in the paper [2] by Havas, Majewski and Matthews.

They are particularly useful if one wants to have the normal forms together with transforming
matrices. These transforming matrices have spectacularly nice (i.e., “small”) entries in cases of input
matrices which are non-square or not of full rank (otherwise the transformation to the Hermite normal
form is unique).

In detail:

1.5.1 GcdexIntLLL

♦ GcdexIntLLL( n1, n2, ... ) (function)

This function returns for integersn1,n2, . . . a list [g, [c1,c2, . . .]], whereg = c1n1+ c2n2+ . . . is
the greatest common divisor of theni. Here all theci are usually very small.

Example
gap> GcdexIntLLL( 517, 244, -304, -872, -286, 854, 866, 224, -765, -38);
[ 1, [ 0, 0, 0, 0, 1, 0, 1, 1, 1, 1 ] ]
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1.5.2 HermiteIntMatLLL

♦ HermiteIntMatLLL( A ) (function)

This returns the Hermite normal form of an integer matrixA and uses the LLL-algorithm to avoid
entry explosion.

1.5.3 HermiteIntMatLLLTrans

♦ HermiteIntMatLLLTrans( A ) (function)

This function returns a pair of matrices[H,L] whereH = LA is the Hermite normal form of an
integer matrixA. The transforming matrixL can have surprisingly small entries.

Example
gap> ReadPkg("edim", "tst/mat2");
Reading 34x34 integer matrix ’mat2’ and its elementary divisors ’eldiv2’.
gap> tr := HermiteIntMatLLLTrans(mat2);; Maximum(List(Flat(tr[2]), AbsInt));
606
gap> tr[2]*mat2 = tr[1];
true

1.5.4 SmithIntMatLLL

♦ SmithIntMatLLL( A ) (function)

This function returns the Smith normal form of an integer matrixA using the LLL-algorithm to
avoid entry explosion.

1.5.5 SmithIntMatLLLTrans

♦ SmithIntMatLLLTrans( A ) (function)

This function returns[S,L,R] whereS= LAR is the Smith normal form of an integer matrixA.
We apply the algorithm for Hermite normal form several times to get the Smith normal form, that

is not in the paper [2]. The transforming matrices need not be as nice as for the Hermite normal form.

Example
gap> ReadPkg("edim", "tst/mat2");
Reading 34x34 integer matrix ’mat2’ and its elementary divisors ’eldiv2’.
gap> tr := SmithIntMatLLLTrans(mat2);;
gap> tr[2] * mat2 * tr[3] = tr[1];
true

1.6 Utility Functions from the EDIM-package

1.6.1 RatNumberFromModular

♦ RatNumberFromModular( n, k, l, x ) (function)
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This function returnsr/s= x (mod )n, if it exists. More precisely:
n, k, l must be positive integers with 2kl≤ n andx an integer with−n/2< x≤ n/2. If it exists

this function returns a rational numberr/swith 0< s< l, gcd(s,n) = 1,−k< r < k andr/scongruent
to x (mod )n (i.e., n | r − sx). Such anr/s is unique. The function returnsfail if such a number
does not exist.

1.6.2 InverseIntMatMod

♦ InverseIntMatMod( A, p ) (function)

This function returns an inverse matrix modulo a primep or fail. More precisely:
A must be an integer matrix andp a prime such thatA is invertible modulop. This function returns

an integer matrixinv with entries in the range]−p/2. . .p/2] such thatinvA reduced modulo p is the
identity matrix.

It returnsfail if the inverse modulop does not exist. This function is particularly fast for primes
smaller 256.

1.6.3 HadamardBoundIntMat

♦ HadamardBoundIntMat( A ) (function)

The Hadamard bound for a square integer matrixA is the product of Euclidean norms of the
nonzero rows (or columns) ofA. It is an upper bound for the absolute value of the determinant ofA.

1.6.4 CheapFactorsInt

♦ CheapFactorsInt( n[, nr] ) (function)

This function returns a list of factors of an integern, including “small” prime factors - here the
optional argumentnr is the number of iterations for ‘FactorsRho’ (default is 2000).

This is only a slight modification of the library functionFactorsInt (Reference: FactorsInt)
which avoids an error message when the number is not completely factored.

1.6.5 RankMod

♦ RankMod( A, p ) (function)

This function returns the rank of an integer matrixA modulop. Herep must not necessarily be a
prime. If it is not and this function returns an integer, then this is the rank ofA for all prime divisors
of p.

If during the computation a factorisation ofp is found (because some pivot entry has nontrivial
greatest common divisor withp) then the function is recursively applied to the found factorsf i of p.
The result is then given in the form[[f 1, rk 1], [f 2, rk 2], ...].

The idea to make this function useful for non primes was to use it with large factors of the biggest
elementary divisor ofA whose prime factorization cannot be found easily.

Example
gap> ReadPkg("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ and its elementary divisors ’eldiv’.
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gap> RankMod(mat, 5);
155
gap> RankMod(mat, (2*79*4001));
[ [ 2, 148 ], [ 79, 242 ], [ 4001, 242 ] ]

1.7 InverseRatMat - the Algorithm

The idea is to recover a rational matrix from anl -adic approximation for some primel . This descrip-
tion came out of discussions with Jürgen M̈uller. I thank John Cannon for pointing out that the basic
idea already appeared in the paper [1] of Dixon.

Let A be an invertible matrix over the rational numbers. By multiplying with a constant we may
assume that its entries are in fact integers.

(1) We first describe how to find anl -adic approximation ofA−1. Find a primel such thatA is
invertible modulol and letB be the integer matrix with entries in the range]−l/2, l/2] such thatBA
is congruent to the identity matrix modulol . (This can be computed fast by usual Gauß elimination.)

Now let v∈ Zr be a row vector. Define two sequencesvi andxi of row vectors inZr by: x0 :=
0∈ Zr , v0 :=−v and fori > 0 setxi to the vector congruent to−vi−1B modulol having entries in the
range]−l/2, l/2]. Then all entries ofxiA+vi−1 are divisible byl and we setvi := (1/l) · (xiA+vi−1).

Induction shows that foryi := ∑i
k=1 lk−1xk we haveyiA = v+ l ivi for all i ≥ 0. Hence the sequence

yi , i ≥ 0, gives anl -adic approximation to the vectory∈Qr with yA= v.
(2) The second point is to show how we can get the vectory from a sufficiently good approximation

yi . Note that the sequence ofyi becomes constant fori ≥ i0 if all entries ofy are integers of absolute
value smaller thanl i0/2 because of our choice of representatives of residue classes modulol in the
interval]−l/2, l/2].

More generally considera/b∈Q with b> 0 anda,b coprime. Then there is for eachn∈N which
is coprime tob a uniquec∈ Z with −n/2< c≤ n/2 anda≡ cb (modn). Thisc can be computed
via the extended Euclidean algorithm applied tob andn.

Now let n,α,β ∈ N with 2αβ ≤ n. Then the map{a/b ∈ Q | −α ≤ a ≤ α,1 ≤ b < β} →
]−n/2,n/2], a/b 7→ c (defined as above) is injective (since fora/b, a′/b′ in the above set we have
ab′−a′b≡ 0 (modn) if and only if ab′−a′b = 0).

In practice we can use for anyc∈ ]−n/2,n/2] a certain extended Euclidean algorithm applied to
n andc to decide ifc is in the image of the above map and to find the correspondinga/b if it exists.

(3) To put things together we apply (2) to the entries of the vectorsyi constructed in (1), choosing
n = l i , α =

√
n/2 andβ =

√
n. If we have found this way a candidate fory we can easily check if it

is correct by computingyA. If µ is the maximal absolute value of all numerators and denominators of
the entries ofy it is clear from (2) that we will findy from yi if l i > 2µ2.

(4) If we take asv in (1) to(3) all standard unit vectors we clearly get the rows ofA−1. But we can
do it better. Namely we can take asv the standard unit vectors multiplied by the least common multiple
ε of the denominators of the already computed entries ofA−1. In many examples thisε actually equals
εr after the computation of the first or first few rows. Therefore we will often find quickly the next row
of A−1 already in (1), because we find avi = 0 such that the sequence ofyi becomes constant (= y).
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