
FactInt
—

A GAP4 Package

Version 1.2

by
Stefan Kohl

E-mail: kohl@mathematik.uni-stuttgart.de

This package for GAP 4 provides routines for integer factorization, in particular:

Pollard’s p − 1

Williams’ p + 1

The Elliptic Curves Method (ECM)

The Continued Fraction Algorithm (CFRAC)

The Multiple Polynomial Quadratic Sieve (MPQS)

It is completely written in the GAP language and contains / requires no external binaries. No other packages
are needed. It must be installed in the pkg subdirectory of the GAP distribution.

Contents

1 Preface 5

2 The General Factorization Routines 6

2.1 If you do not care about the methods used 6

2.2 Taking influence on the methods being used 6

3 The Routines for Specific Factorization Methods 9

3.1 Pollard’s p-1 . 9

3.2 Williams’ p+1 . 10

3.3 The Elliptic Curves Method (ECM) . 10

3.4 The Continued Fraction Algorithm (CFRAC) 11

3.5 The Multiple Polynomial Quadratic Sieve (MPQS) 12

4 Getting Information about the Factoring Process 13

5 How much Time does a Factorization take ? 18

5.1 The General Factorization Routine . 18

5.2 Timings for ECM . 18

5.3 Timings for the MPQS . 19

Bibliography 20

Index 21

1 Preface

Factoring large integers is a computationally very difficult problem, and there is no general factorization
algorithm that is capable of factoring arbitrary integers with more than about 130 – 150 decimal digits
on currently existing computers, but however, there are methods (not algorithms in the sense that it is
guaranteed that they will give the desired result after a finite number of steps) for factoring integers with
prime factors being far beyond the range where trial division is feasible.

One important class of such methods is based on exponentiation in suitably chosen groups acting on subsets
of the k -fold cartesian product of the set of residue classes (mod n), where n denotes the number to be
factored. Representatives of this class are the Elliptic Curves Method (ECM), Pollard’s p− 1 and Williams’
p + 1. These methods have the important property that they find smaller factors usually considerably faster
than larger ones (but with the drawback of being slower for large factors).

The other important class consists of the so-called factor base methods. These methods compute factoriza-
tions of perfect squares (mod n) over an appropriately chosen factor base (a set of small prime numbers,
or of prime ideals in the case of the Generalized Number Field Sieve) and use them to determine a pair of
integers (x , y), such that x 2 and y2 are congruent (mod n), but ±x and ±y are not. In this situation, taking
Gcd(n,x − y) will yield a non-trivial factor of n. Representatives of this class are the Continued Fraction
Algorithm (CFRAC), the Multiple Polynomial Quadratic Sieve (MPQS) and the already mentioned Gen-
eralized Number Field Sieve (GNFS), which has got the asymptotically lowest complexity of all factoring
methods known today (in respect of “difficult” numbers, of course), with the drawback of being superior to
the MPQS only for numbers with more than 100 decimal digits, say, which is probably not within the feasible
range of such a function implemented in GAP. The first two methods are implemented in this package.

The only method which I am aware of (except of the “naive” ones like trial division and some “historical”
methods) that does not fit into one of the two above-mentioned classes is Pollard’s Rho, which is already
implemented in the GAP Library.

In respect of the current state-of-the-art in integer factorization, see for example the respective web pages
of the RSA Laboratories, e.g.

http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

I would like to thank Bettina Eick and Steve Linton for their support and many interesting discussions.

I would be grateful for any bug reports, comments or suggestions,

Stefan Kohl

2

The General
Factorization Routines

2.1 If you do not care about the methods used

1I IntegerFactorization(n) F

IntegerFactorization computes the prime factorization of the integer n. The result is returned as a list
of the prime factors. In case of failure an error is signalled.

The returned factors are considered to be prime by the built-in probabilistic primality test of GAP (IsProb-
ablyPrimeInt, see the Reference Manual), as in all other factorization routines included in this package.

IntegerFactorization(n) is equivalent to FactInt(n : FactIntPartial:=false)[1] (see 2.2.1).

IntegerFactorization is also installed as a method for Factors, with a higher value than the GAP library
function FactorsInt.

gap> IntegerFactorization(Factorial(24) - 1);
[625793187653, 991459181683]

gap> Factors(1459^24 - 1);
[2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 7, 13, 73, 97, 193, 283, 337, 1009,
303889, 669433, 1064341, 6722971513, 4531280671081, 313380751265929]

2.2 Taking influence on the methods being used

1I FactInt(n) F

FactInt computes the prime factorization of the integer n. The result is returned as a list of two lists, where
the first one contains the prime factors found, and the second one contains remaining unfactored parts of n,
if there are any (if FactIntPartial not set, this should never happen, because in this case the function does
not return before n is factored completely).

The factors returned as prime factors are considered to be prime by the build-in probabilistic primality
test of GAP (IsProbablyPrimeInt, see the Reference Manual). This also applies to all other factorization
routines provided by this package.

FactInt recognizes the following options:

TDHints
specifies a list of additional trial divisors (when factoring “random” numbers, giving a large list of
trial divisors here is certainly not a sensible approach, TDHints is useful only if certain primes p
are expected to divide n with probability significantly larger than 1

p)

RhoSteps
specifies the number of steps for Pollard’s Rho,

RhoCluster
specifies the number of steps between two Gcd computations in Pollard’s Rho

Section 2. Taking influence on the methods being used 7

Pminus1Limit1
specifies the first stage limit for Pollard’s p − 1 (see 3.1.1)

Pminus1Limit2
specifies the second stage limit for Pollard’s p − 1 (see 3.1.1)

Pplus1Residues
specifies the number of residues to be tried by Williams’ p + 1 (see 3.2.1)

Pplus1Limit1
specifies the first stage limit for Williams’ p + 1 (see 3.2.1)

Pplus1Limit2
specifies the second stage limit for Williams’ p + 1 (see 3.2.1)

ECMCurves
specifies the number of elliptic curves to be tried by the Elliptic Curves Method (ECM) (see 3.3.1),
also admissible: a function that takes an argument n (the number to be factored) and returns the
desired number of curves to be tried

ECMLimit1
specifies the initial first stage limit for ECM (see 3.3.1)

ECMLimit2
specifies the initial second stage limit for ECM (see 3.3.1)

ECMDelta
specifies the increment per curve for the first stage limit in ECM, the second stage limit is adjusted
appropriately (see 3.3.1)

ECMDeterministic
if true, ECM chooses its curves deterministically, i.e. repeatable (see 3.3.1)

FactIntPartial
if true, the partial factorization obtained by applying the factoring methods whose time complexity
depends mainly on the size of the factors to be found and less on the size of n (those of the first
class mentioned in the preface) is returned and the factor base methods (MPQS and CFRAC) are
not used to complete the factorization for numbers that exceed the bound given by CFRACLimit
resp. MPQSLimit ; default: false

FBMethod
specifies which of the factor base methods should be used to do the “hard work”; currently imple-
mented: CFRAC and MPQS (see 3.4.1, 3.5.1)

CFRACLimit
specifies the maximal number of decimal digits of an integer to which the Continued Fraction
Algorithm (CFRAC) should be applied (only used when FactIntPartial = true) (see 3.4.1)

MPQSLimit
as above, for the Multiple Polynomial Quadratic Sieve (MPQS) (see 3.5.1)

Once these option values are set by the user via PushOptions, all subsequent factorizations by FactInt
and IntegerFactorization (see 2.1.1) are done using these settings without the need to give further
arguments (in respect to the use of the GAP Options Stack, see the Reference Manual). Setting RhoSteps,
Pminus1Limit1 , Pplus1Residues, Pplus1Limit1 , ECMCurves or ECMLimit1 to zero switches the respective
method off. FactInt chooses defaults for all option values that are not explicitly set by the user. The option
values are also taken into consideration by the routines for the particular factorization methods described
in the next chapter when default values have to be chosen.

If |n| < 1012, FactInt just calls the library function FactorsInt, which is guaranteed to give the correct
result for numbers in this range. If not, it checks whether n = bk ± 1 for some b, k and looks for factors

8 Chapter 2. The General Factorization Routines

corresponding to polynomial factors of x k ±1 (in order to immediately obtain factors that do not correspond
to polynomial factors it is necessary to give a list of the prime factors of numbers of this form as TDHints).

As the first general factorization step, FactInt does trial division by the primes below 1000. After that,
it checks whether the remaining part of the number to be factored already is a prime. If not, it does trial
divisions by some already known primes, using the list Primes2 (see GAP-Manual). If there is still an
unfactored part m, then it checks whether m is a non-trivial power of an integer. Then, the additional list
of trial divisors given as TDHints is processed, if present.

After the small and other “easy” factors have been casted out this way, FactInt searches for “medium-
sized” factors using Pollard’s Rho (by the library function FactorsRho, see GAP-Manual), Pollard’s p − 1
(see 3.1.1), Williams’ p +1 (see 3.2.1) and the Elliptic Curves Method (ECM, see 3.3.1) in this order. After
that, if there is still an unfactored part remaining and FactIntPartial = false (or the remaining composites do
not exceed the bound given by CFRACLimit resp. MPQSLimit), one of the factor base methods (CFRAC,
see 3.4.1 or MPQS, see 3.5.1) is used to do the “hard work”, depending on the value of FBMethod , which
could be "MPQS" or "CFRAC".

Finally, it is checked whether the product of all factors is equal to n and whether all factors in the first
list of the result pass the GAP pseudoprime test IsProbablyPrimeInt and all factors in the second list are
really composites. These checks are also done by all other factorization routines provided by this package.

gap> FactInt(Factorial(39) + 1 : RhoSteps := 16384, Pminus1Limit1 := 100000,
Pplus1Limit1 := 2000, ECMLimit1 := 5000, ECMCurves := 10,
FBMethod := "MPQS");

[[79, 57554485363, 146102648914939, 30705821478100704367], []]

3

The Routines
for Specific

Factorization Methods

Descriptions of the factoring methods used here can be found in [Bre89] and in [Coh93]. The last book
contains also descriptions of the other methods mentioned in the preface.

3.1 Pollard’s p-1

1I FactorsPminus1(n, [[a], Limit1, [Limit2]]) F

FactorsPminus1 tries to factor n using Pollard’s p − 1, with a as base for exponentiation (the default is
a = 2), Limit1 as first stage limit and Limit2 as second stage limit. FactorsPminus1 chooses defaults for
all arguments not explicitly given. If FactorsPminus1 is called with three arguments, these arguments are
regarded as n, Limit1 and Limit2 . The result is returned as a list of two lists, where the first one contains
the prime factors found, and the second one contains remaining unfactored parts of n, if there are any.

Pollard’s p − 1 is based on the fact that exponentiation in the group of invertible residue classes (mod n) is
so fast that it is possible to compute for example ak ! for k large enough (e.g. 100000 or so) in a reasonable
amount of time and without using much memory, and on Lagrange’s Theorem, which states that ak ! is
congruent to 1 (mod p) (where p is a prime divisor of n) if k ! is a multiple of p − 1, and (a, p) = 1. In this
situation, if this is satisfied for no other prime factor of n, p can be determined by calculating Gcd(ak !−1,n).
A prime divisor p is usually found if the largest prime factor of p − 1 is not larger than Limit2 , and the
second-largest one is not larger than Limit1 . (Compare with 3.2.1 and 3.3.1.)

gap> FactorsPminus1(Factorial(158) + 1, 100000, 1000000);
[[2879, 5227, 1452486383317, 9561906969931, 18331561438319,

483714299709483760811581110341732950506493218122654853400674921345082310\
906370452295654816571305041217323052879842924826121333143254713674832962773107\
806789945715570386038565256719614524924705165110048148716160964980629081176057\
0095669], []]

Let’s see why this works:

gap> List(last[1]{[3, 4, 5]}, p -> IntegerFactorization(p - 1));
[[2, 2, 3, 3, 81937, 492413], [2, 3, 3, 3, 5, 7, 7, 1481, 488011],
[2, 3001, 7643, 399613]]

10 Chapter 3. The Routines for Specific Factorization Methods

3.2 Williams’ p+1

1I FactorsPplus1(n, [[Residues], Limit1, [Limit2]]) F

FactorsPplus1 tries to factor n using a variant of Williams’ p + 1, where it tries Residues different residues
(the probability of a given residue to be in principle usable is about 1/2) and uses Limit1 as first stage limit
and Limit2 as second stage limit. FactorsPplus1 chooses defaults for all arguments not explicitly given. If
FactorsPplus1 is called with three arguments, these arguments are regarded as n, Limit1 and Limit2 . The
result is returned as a list of two lists, where the first one contains the prime factors found, and the second
one contains remaining unfactored parts of n, if there are any.

Williams’ p + 1 is very similar to Pollard’s p − 1 (see 3.1.1), the only difference is that the group used here
has order p +1 (instead of p−1), and that the group operation takes more time. A prime divisor p is usually
found if the largest prime factor of p + 1 is at most Limit2 and the second-largest one is not larger than
Limit1 , and if the algorithm hits a “usable” residue (concerning the “unusable” residues, it could be stated
that the order of the respective group is p − 1, such that the method turns into a slow p − 1-algorithm in
this case). (Compare also with 3.3.1.)

gap> FactorsPplus1(Factorial(55) - 1, 10, 10000, 100000);
[[73, 39619, 277914269, 148257413069],
[106543529120049954955085076634537262459718863957]]

gap> List(last[1], p -> [Factors(p - 1), Factors(p + 1)]);
[[[2, 2, 2, 3, 3], [2, 37]],
[[2, 3, 3, 31, 71], [2, 2, 5, 7, 283]],
[[2, 2, 2207, 31481], [2, 3, 5, 9263809]],
[[2, 2, 47, 788603261], [2, 3, 5, 13, 37, 67, 89, 1723]]]

3.3 The Elliptic Curves Method (ECM)

1I FactorsECM(n, [Curves, [Limit1, [Limit2 [Delta]]]]) F

FactorsECM tries to factor n using the Elliptic Curves Method (ECM), where Curves specifies the number
of curves to be tried, Limit1 is the initial first stage limit, Limit2 is the initial second stage limit and Delta
is the increment per curve for the first stage limit, where the second stage limit is adjusted appropriately.
FactorsECM chooses defaults for all arguments not explicitly given. The option ECMDeterministic specifies,
if set, that the choice of the curves to be tried should be deterministic, i.e. that repeated calls of FactorsECM
yield the same curves, and hence for the same n the result after the same number of trials (this is of use
mainly for testing purposes). The result is returned as a list of two lists, where the first one contains the
prime factors found, and the second one contains remaining unfactored parts of n, if there are any.

The Elliptic Curves Method is based on the fact that exponentiation in the elliptic curve groups E (a, b)/n
is fast enough that it is possible to compute for example gk ! for k large enough (e.g. 10000 or so) in a
reasonable amount of time and without using much memory, and on Lagrange’s Theorem, which states that
for each elliptic curve point g , gk ! is the identity element of E (a, b)/p (where p is a prime divisor of n) if
k ! is a multiple of |E (a, b)/p|. In this situation, under reasonable circumstances, p can be determined by
taking an appropriate Gcd.

In practice, the algorithm chooses in some sense “better” products Pk of small primes rather than k ! as
exponents, and, after reaching the first stage limit with PLimit1, it considers further products PLimit1q for
primes q up to the second stage limit Limit2 (which is usually set equal to, for example, 40 times the first
stage limit, or so). The prime q corresponds to the largest prime factor of the order of the group under
consideration.

A prime divisor p is usually found if the largest prime factor of the order of one of the examined elliptic
curve groups E (a, b)/p is at most Limit2 , and the second-largest one is at most Limit1 , so trying a larger
number of curves increases the chance of factoring n as well as taking a larger value for Limit1 and/or

Section 4. The Continued Fraction Algorithm (CFRAC) 11

Limit2 (it turns out to be not optimal either to take a large number of curves with very small Limit1 and
Limit2 or to grind on with a single curve and very large limits). (Compare with 3.1.1.)

The elements of the group E (a, b)/n are the points (x , y) given by the solutions of y2 = x 3 + ax + b in
the residue class ring (mod n), and an additional point ∞ at infinity, which serves as identity element. To
turn this set into a group, define the product (although elliptic curve groups are usually written additively,
I prefer using the multiplicative notation here to retain the analogy to 3.1.1 and 3.2.1) of two points p1

and p2 as follows: Let l be the line through p1 and p2 if p1 6= p2, otherwise let l be the tangent to the curve
C given by the above equation in the point p1 = p2. l intersects C in a third point, say p3 (if l does not
intersect the curve in a third affine point, then set p3 := ∞). Set p1 · p2 equal to the image of p3 under the
reflection across the x -axis. Define the product of any curve point p and ∞ by p itself. This (more or less
obviously, checking associativity requires some calculation) turns the set of points on the given curve into
an abelian group E (a, b)/n.

However, the calculations are done in projective coordinates to have an explicit representation of the identity
element and to avoid calculating inverses (mod n) for the group operation, which would otherwise require
using an O((logn)3)-algorithm, while multiplication (mod n) is only O((logn)2). The respective equation
in this case is given by bY 2Z = X 3 + aX 2Z + XZ 2 (this form allows more efficient calculations than the
Weierstrass model Y 2Z = X 3 + aXZ 2 + bZ 3, which is the projective equivalent to the affine representation
y2 = x 3 + ax + b mentioned above). The algorithm only keeps track of two of the three coordinates, namely
X and Z . The choice of curves is done in a way that ensures the order of the respective group to be divisible
by 12. This increases the chance that it is smooth enough to find a factor of n. The implementation follows
the description of R. P. Brent given in [Bre96], pp. 5 – 8 (in terms of this paper, for the second stage the
“improved standard continuation” is used).

gap> FactorsECM(2^256+1,100,10000,1000000,100);
[[1238926361552897,

93461639715357977769163558199606896584051237541638188580280321], []]

3.4 The Continued Fraction Algorithm (CFRAC)

1I FactorsCFRAC(n) F

FactorsCFRAC tries to factor n using the Continued Fraction Algorithm (CFRAC), also known as Brillhart-
Morrison Algorithm. The result is returned as a list of the prime factors of n. In case of failure an error is
signalled.

To CFRAC, the same warning applies as to the Quadratic Sieve (see 3.5.1).

The Continued Fraction Algorithm tries to find integers x , y , such that x 2 ≡ y2 (mod n), but not ±x ≡ ±y
(mod n). In this situation, taking Gcd(x − y ,n) yields a non-trivial factor of n. For determining such a pair
(x , y), the algorithm uses the continued fraction expansion of the square root of n (because n is usually very
large, it is impossible to compute the whole period of it, but a much smaller number of terms is enough in
this case). If xi/yi is a continued fraction approximation for the square root of n, then ci := x 2

i −ny2
i has size

only about a small constant times the square root of n. The algorithm tries to find as many ci as possible
which factor completely over a chosen factor base (a list of small primes) or with only one factor not in
the factor base. The latter ones are usable only if a second ci with the same “large factor” is found Then,
Gaussian Elimination over GF (2) is used to determine which of the congruences x 2

i ≡ ci (mod n) have to be
multiplied together to get a congruence of the desired form x 2 ≡ y2 (mod n), where the involved matrix M
is given by Mij = 1, if an odd power of the j -th element of the factor base divides the i -th usable factored
value, and Mij = 0 otherwise. For this purpose it is necessary that the number of factored ci is larger than
the rank of M , which is approximately given by the size of the factor base. (Compare with 3.5.1.)

gap> FactorsCFRAC(Factorial(34) - 1);
[10398560889846739639, 28391697867333973241]

12 Chapter 3. The Routines for Specific Factorization Methods

3.5 The Multiple Polynomial Quadratic Sieve (MPQS)

1I FactorsMPQS(n) F

FactorsMPQS tries to factor n using the Single Large Prime Variation of the Multiple Polynomial Quadratic
Sieve (MPQS). The result is returned as a list of the prime factors of n. In case of failure an error is signalled.

The intermediate results of a computation could be saved by interrupting the calculation with [Ctrl][C]
and calling Pause(); from the break loop. FactorsMPQS then pushes all data important for resuming the
computation again as a record MPQSTmp on the options stack. When called again, it will look whether
there is such an appropriate record on the options stack and get the previously computed factorization data,
if so. For continuing the factorization process in another session, you will have to write this record to a file.
This is done by the function SaveMPQSTmp(filename), the file written by this function is readable by the
standard Read-function of GAP.

Caution: The runtime of FactorsMPQS depends only on the size of n, not on the size of its factors, so if a
small factor is not found during the preprocessing which is done before invoking the sieving process, you
will have to wait as long as if n would have two prime factors of roughly equal size.

The Multiple Polynomial Quadratic Sieve tries to find integers x , y , such that x 2 ≡ y2 (mod n), but not
±x ≡ ±y (mod n). In this situation, taking Gcd(x − y ,n) yields a non-trivial factor of n. For determining
such a pair (x , y), the algorithm chooses polynomials fa of the form fa(r) = ar2+2br +c with suitably chosen
coefficients a, b and c, satisfying b2 ≡ n (mod a) and c = (b2−n)/a. The identity a× fa(r) = (ar + b)2−n
yields a congruence (mod n) with a perfect square on one side and a × fa(r) on the other. The algorithm
searches for factorizations of polynomial values fa(r) over a chosen factor base (a list of small primes), either
complete or with a single large factor which is not in the factor base (where the latter ones are only usable
if a second fa(r) with the same “large factor” is found) using a sieving technique over an appropriately
chosen sieving interval (similar to the Sieve of Eratosthenes). Taking more polynomials and hence shorter
sieving intervals gives the advantage of having smaller fa(r) to factor over the factor base. Then, Gaussian
Elimination over GF (2) is used to determine the congruences which have to be multiplied together to get a
congruence of the desired form x 2 ≡ y2 (mod n), where the involved matrix M is given by Mij = 1, if an odd
power of the j -th element of the factor base divides the i -th usable factored value, and Mij = 0 otherwise.
For this purpose it is necessary that the number of factored fa(r) is larger than the rank of M , which is
approximately given by the size of the factor base. (Compare with 3.4.1.)

gap> FactorsMPQS(Factorial(38) + 1);
[14029308060317546154181, 37280713718589679646221]

4

Getting Information
about the

Factoring Process

1I IntegerFactorizationInfo V

is an Info class (see 7.4 in the GAP Reference Manual for a description of the Info mechanism) that provides
a way of seeing what’s going on during the factoring process.

If InfoLevel(IntegerFactorizationInfo) = 1, then basic information about the factoring techniques
used is displayed. If this InfoLevel has value 2, then additionally all “relevant” steps in the factoring algo-
rithms are mentioned, and if it is set to 3, then large amounts of details of the progress of the factoring
process are shown.

For convenience,

2I FactInfo(level) F

sets the InfoLevel of IntegerFactorizationInfo to the positive integer level . In other words,

FactInfo(level);

is equivalent to:

SetInfoLevel(IntegerFactorizationInfo, level);

The informational output is not guaranteed to be literally the same in each factorization attempt to a given
integer with given parameters.

The timings in the example are given for a Pentium 200.

gap> FactInfo(2);
gap> Factors(1459^60-1);
#I
#I Check for n = b^k +/- 1
#I
697136005439518321339364341462731479643931164718338822169985761598533184155968\
687683267309071831767783053294661533309653344501590527857911683460652704454392\
2114173712945384179913214273324400 = 1459^60 - 1
#I The factors corresponding to polynomial factors are
[1458, 1460, 2127223, 2128682, 2130141, 4528179181405, 4531280671081,

4534390675481, 20518450806493943781446161, 20532514165758816624282961,
20546596816316767296268561,
421584732115767299535558510031830342788459718258721]

#I Intermediate result : [[4531280671081, 20546596816316767296268561],
[1458, 1460, 2127223, 2128682, 2130141, 4528179181405, 4534390675481,

20518450806493943781446161, 20532514165758816624282961,
421584732115767299535558510031830342788459718258721]]

14 Chapter 4. Getting Information about the Factoring Process

#I
#I Factors already found : [4531280671081, 20546596816316767296268561]
#I
#I Trial division by all primes p < 1000
#I Intermediate result : [[2, 3, 3, 3, 3, 3, 3], []]
#I Intermediate result : [[2, 2, 5, 73], []]
#I Intermediate result : [[7, 303889], []]
#I Intermediate result : [[2, 1064341], []]
#I Intermediate result : [[3, 13, 193, 283], []]
#I Intermediate result : [[5, 11, 521, 158024051], []]
#I Intermediate result : [[31, 146270666951], []]
#I Intermediate result : [[61], [336368046008097439040101]]
#I
#I Factors already found : [2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 7, 11,
13, 31, 61, 73, 193, 283, 521, 303889, 1064341, 158024051, 146270666951,
4531280671081, 20546596816316767296268561]

#I
#I Trial division by some already known primes
#I
#I Check for perfect powers
#I
#I Pollard’s Rho
Steps = 16384, Cluster = 1638
Number to be factored :
336368046008097439040101
#I Intermediate result : [[2251, 149430495783250750351], []]
#I
#I Pollard’s Rho
Steps = 16384, Cluster = 1638
Number to be factored :
20532514165758816624282961
#I
#I Pollard’s Rho
Steps = 16384, Cluster = 1638
Number to be factored :
421584732115767299535558510031830342788459718258721
#I
#I Factors already found : [2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 7, 11,
13, 31, 61, 73, 193, 283, 521, 2251, 303889, 1064341, 158024051,
146270666951, 4531280671081, 149430495783250750351,
20546596816316767296268561]

#I
#I Pollard’s p - 1
Limit1 = 10000, Limit2 = 400000
Number to be factored :
20532514165758816624282961
#I Initializing prime differences list, PrimeDiffLimit = 1000000
#I p-1 for n = 20532514165758816624282961
a : 2, Limit1 : 10000, Limit2 : 400000
#I First stage
#I Second stage
#I

15

#I Pollard’s p - 1
Limit1 = 10000, Limit2 = 400000
Number to be factored :
421584732115767299535558510031830342788459718258721
#I p-1 for n = 421584732115767299535558510031830342788459718258721
a : 2, Limit1 : 10000, Limit2 : 400000
#I First stage
#I Second stage
#I
#I Williams’ p + 1
Residues = 2, Limit1 = 2000, Limit2 = 80000
Number to be factored :
20532514165758816624282961
#I p+1 for n = 20532514165758816624282961
Residues : 2, Limit1 : 2000, Limit2 : 80000
#I Residue no. 1
#I Residue no. 2
#I
#I Williams’ p + 1
Residues = 2, Limit1 = 2000, Limit2 = 80000
Number to be factored :
421584732115767299535558510031830342788459718258721
#I p+1 for n = 421584732115767299535558510031830342788459718258721
Residues : 2, Limit1 : 2000, Limit2 : 80000
#I Residue no. 1
#I Residue no. 2
#I
#I Elliptic Curves Method (ECM)
Curves = <func.>
Init. Limit1 = <func.>, Init. Limit2 = <func.>, Delta = <func.>
Number to be factored :
20532514165758816624282961
#I ECM for n = 20532514165758816624282961
#I Digits : 26, Curves : 3
#I Initial Limit1 : 200, Initial Limit2 : 20000, Delta : 200
#I Curve no. 1 (3), Limit1 : 200, Limit2 : 20000
#I Curve no. 2 (3), Limit1 : 400, Limit2 : 40000
#I 11-digit factor 12077430061 was found in second stage
#I Intermediate result : [[12077430061, 1700073116718901], []]
#I
#I Elliptic Curves Method (ECM)
Curves = <func.>
Init. Limit1 = <func.>, Init. Limit2 = <func.>, Delta = <func.>
Number to be factored :
421584732115767299535558510031830342788459718258721
#I ECM for n = 421584732115767299535558510031830342788459718258721
#I Digits : 51, Curves : 27
#I Initial Limit1 : 200, Initial Limit2 : 20000, Delta : 200
#I Curve no. 1 (27), Limit1 : 200, Limit2 : 20000
#I Curve no. 2 (27), Limit1 : 400, Limit2 : 40000
#I Curve no. 3 (27), Limit1 : 600, Limit2 : 60000

[...]

16 Chapter 4. Getting Information about the Factoring Process

#I Curve no. 25 (27), Limit1 : 5000, Limit2 : 500000
#I Curve no. 26 (27), Limit1 : 5200, Limit2 : 520000
#I Curve no. 27 (27), Limit1 : 5400, Limit2 : 540000
#I
#I Factors already found : [2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 7, 11,
13, 31, 61, 73, 193, 283, 521, 2251, 303889, 1064341, 158024051,
12077430061, 146270666951, 4531280671081, 1700073116718901,
149430495783250750351, 20546596816316767296268561]

#I
#I Multiple Polynomial Quadratic Sieve (MPQS)
Number to be factored :
421584732115767299535558510031830342788459718258721
#I MPQS for n = 421584732115767299535558510031830342788459718258721
#I Digits : 51
#I Multiplier : 1
#I Size of factor base : 1326
#I Prime powers to be sieved : 1349
#I Length of sieving interval : 131072
#I Small prime limit : 117
#I Large prime limit : 3500186
#I Number of used a-factors : 4
#I Size of a-factors pool : 52
#I Initialization time : 11 sec.
#I
#I Sieving
#I
#I Complete factorizations over the factor base : 50
#I Relations with a large prime factor : 5
#I Relations remaining to be found : 1343
#I Total factorizations with a large prime factor : 614
#I Used polynomials : 67
#I Elapsed runtime : 39 sec.
#I Progress (relations) : 3 %
#I

[...]
#I
#I Complete factorizations over the factor base : 651
#I Relations with a large prime factor : 826
#I Relations remaining to be found : 0
#I Total factorizations with a large prime factor : 9164
#I Used polynomials : 1021
#I Elapsed runtime : 455 sec.
#I Progress (relations) : 100 %
#I
#I Creating the exponent matrix
#I Doing Gaussian Elimination, #rows = 1477, #columns = 1378
#I Processing the zero rows
#I Dependency no. 1 yielded no factor

[...]
#I Dependency no. 8 yielded no factor
#I Dependency no. 9 yielded factor 26725378467920336641
#I The factors are

17

[26725378467920336641, 15774696422795817479975816558881]
#I Digit partition : [20, 32]
#I MPQS runtime : 473.507 sec.

#I Intermediate result :
[[26725378467920336641, 15774696422795817479975816558881], []]
#I
#I The result is
[[2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 7, 11, 13, 31, 61, 73, 193, 283,

521, 2251, 303889, 1064341, 158024051, 12077430061, 146270666951,
4531280671081, 1700073116718901, 26725378467920336641,
149430495783250750351, 20546596816316767296268561,
15774696422795817479975816558881], []]

#I The total runtime was 799.408 sec

[2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 7, 11, 13, 31, 61, 73, 193, 283,
521, 2251, 303889, 1064341, 158024051, 12077430061, 146270666951,
4531280671081, 1700073116718901, 26725378467920336641,
149430495783250750351, 20546596816316767296268561,
15774696422795817479975816558881]

5

How much Time does a
Factorization take ?

5.1 The General Factorization Routine

A few words in advance: in general, it is not possible to give a precise prediction for the CPU time needed
for factoring a given integer. This time depends heavily on the sizes of the factors of the given number and
some other properties which could not be tested before actually doing the factorization. But nevertheless,
it is possible to give rough runtime estimates for numbers with given “digit partition” (this means: factors
of given sizes).

By default, after casting out the small and other “easy” factors (which should not take more than at most a
few minutes for numbers of “reasonable” size) the general factorization routine (see 2.1.1, 2.2.1) uses first
ECM (see 3.3.1) for finding factors very roughly up to the third root of the remaining composite and then
the MPQS (see 3.5.1) for doing the “rest” of the work (which will often be the most time-consuming part).

Below I will give some timings for ECM and for the MPQS because these methods are by far the most
important ones in respect to runtime statistics (the p ± 1-methods (see 3.1.1, 3.2.1) are only suitable for
finding factors with certain special properties and CFRAC (see 3.4.1) is just a slower predecessor of the
MPQS). All absolute timings are given for a Pentium 200 under Windows.

Logfiles for some examples together with their approximate runtimes can be found on my homepage

http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/FactInt/Examples.htm

5.2 Timings for ECM

The runtime of FactorsECM depends mainly on the size of the factors of the input number. On average,
finding a 12-digit factor of a 100-digit number takes about 1 min 40 s, finding a 15-digit factor of a 100-digit
number takes about 10 min and finding an 18-digit factor of a 100-digit number takes about 50 min. As a
general rule of thumb: one digit more increases the run-time by somewhat less than a factor of two. These
timings are very rough, and they may vary by a factor of 10 or more (You can compare trying an elliptic
curve with throwing a couple of dice, where a success corresponds to the case where all of them show the
same side – it is possible to be successful with the first trial, but it is also possible that this takes much
longer. In particular, all trials are independent of one another). In general, ECM is superior to Pollard’s
Rho for finding factors with at least 10 decimal digits and in the same time needed by Pollard’s Rho for
finding a 13-digit factor one can reasonably expect to find a 17-digit factor when using ECM, for which
Pollard’s Rho would need about 100 times as long as ECM. For larger factors this difference grows rapidly.
From theoretical calculations it can be stated that finding a 20-digit factor requires about 500 times as much
work as finding a 10-digit factor, finding a 30-digit factor requires about 160 times as much work as finding
a 20-digit factor and finding a 40-digit factor requires about 80 times as much work as finding a 30-digit
factor.

The default parameters are optimized for finding factors with about 15 – 35 digits. This seems to be a
sensible choice since this is the most important range for the application of ECM and for factors having
some digits more or less this should be also not too bad. (finding a factor with 30 digits or even more
requires a lot of patience – more than I had until now (a 27-digit factor is the largest one I have found
so far). ECM usually gives up when the input number n has two factors where both of them are larger

Section 3. Timings for the MPQS 19

than the third root of n (this is certainly only a rough “probabilistic” statement; in general, sometimes
– but seldom – the remaining composite has 3 factors, 4 factors should occur (hardly) never). Certainly,
the user could specify other parameters than the default ones – but giving timings for all possible cases
here is obviously impossible. The interested reader should follow the references given in the bibliography
at the end of this manual for getting information on how much curves with which parameters are usually
needed for finding factors of a given size. This depends mainly on the distribution of primes, resp. numbers
with prime factors not exceeding a certain bound. About the time needed for trying a single curve with
given smoothness bounds for a number of given size (which gives probably the best estimate for precise
runtime comparisons with other implementations) I want to mention a typical example: one curve with
(Limit1 ,Limit2) = (100000,10000000) applied to a 100-digit integer requires a total of 10 min 20 s, where
6 min 45 s are spent for the first stage and 3 min 35 s are spent for the second stage. The time needed for
the first stage is approximately linear in Limit1 and the time needed for the second stage is somewhat less
than linear in Limit2 .

5.3 Timings for the MPQS

The runtime of FactorsMPQS depends only on the size of the input number, not on the size of its factors.
Rough timings are as follows: 90 s for a 40-digit number, 10 min for a 50-digit number, 2 h for a 60-digit
number, 20 h for a 70-digit number and 100 h for a 75-digit number (this is the size of the largest number
I factored by the MPQS until now). These timings are much more precise than those given for ECM, but
they may also vary by a factor of about 2 depending on whether a good factor base could be found without
using a large multiplier or not. As a general rule of thumb: 10 digits more gives 10 times as much work.
For benchmarking purposes, I give the precise timings for some integers that I have observed: 38! + 1 (45
digits, good factor base with multiplier 1): 2 min 22 s, 40!− 1 (48 digits, not so good factor base even with
multiplier 7): 8 min 58 s, cofactor of 109333 + 1 (61 digits, good factor base with multiplier 1): 1 h 12 min.

Bibliography

[Bre89] David M. Bressoud. Factorization and Primality Testing. Springer-Verlag, 1989.

[Bre96] Richard P. Brent. Factorization of the Tenth and Eleventh Fermat Numbers, 1996.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

C
Continued Fraction Algorithm (CFRAC), 11
continued fraction approximation, 11
correctness of the results, 6

E
E(a,b)/n, 10
elliptic curve groups, 10
elliptic curve point, 10
Elliptic Curves Method (ECM), 10

F
FactInfo, 13
FactInt, 6
factor base, 11
factorization without parameters, 6
factorization with parameters, 6
FactorsCFRAC, 11
FactorsECM, 10
FactorsMPQS, 11
FactorsPminus1, 9
FactorsPplus1, 9
first stage limit, 10

G
Gaussian Elimination, 11
Generalized Number Field Sieve, 5

I
If you do not care about the methods used, 6
information about factoring process, 13
IntegerFactorization, 6
IntegerFactorizationInfo, 13

L
Lagrange’s Theorem, 9

large factors (factor base), 11

M
Multiple Polynomial Quadratic Sieve (MPQS), 11

P
partial factorization, 6
Pollard’s p-1, 9
Pollard’s Rho, 5
prime ideals, 5
projective coordinates, 11

R
RSA Laboratories, 5

S
second stage limit, 10
sieving interval, 12

T
Taking influence on the methods being used, 6
The Continued Fraction Algorithm (CFRAC), 11
The Elliptic Curves Method (ECM), 10
The General Factorization Routine, 18
The Multiple Polynomial Quadratic Sieve (MPQS),

11
Timings for ECM, 18
Timings for the MPQS, 19
trial division, 7

U
unfactored parts, 6

W
Weierstrass model, 11
Williams’ p+1, 9

	
	Contents
	Preface
	The General Factorization Routines
	If you do not care about the methods used
	Taking influence on the methods being used

	The Routines for Specific Factorization Methods
	Pollard's p-1
	Williams' p+1
	The Elliptic Curves Method (ECM)
	The Continued Fraction Algorithm (CFRAC)
	The Multiple Polynomial Quadratic Sieve (MPQS)

	Getting Information about the Factoring Process
	How much Time does a Factorization take ?
	The General Factorization Routine
	Timings for ECM
	Timings for the MPQS

	Bibliography
	Index
	C
	E
	F
	G
	I
	L
	M
	P
	R
	S
	T
	U
	W

