FORMAT

A GAP4 Package
On Formations

Bettina Eick and C.R.B. Wright

Universitat Braunschweig
and
University of Oregon

©2000 by

Bettina Eick
Institut fiir Geometrie, Universitat Braunschweig, Pockelsstrasse 14, 38106 Braunschweig

www.tu-bs.de/ ~beick
b.eick@tu-bs.de

Charles R.B. Wright
Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.
www.uoregon.edu/~wright

wright@math.uoregon.edu

Lo =R, ST VU

Introduction to FORMAT
Formations in GAP
Residual Functions
FNormalizers

Covering Subgroups
Formation Examples
Other Applications
Bibliography

Index

Contents

10
11
12
16
17
18

Introduction
to FORMAT

The GAP4 package FORMAT provides functions to compute with formations of finite solvable groups. In
addition to tools for constructing and combining formations, the package contains functions to compute F-
residual subgroups and to construct F-normalizers and F-covering subgroups determined by locally defined
formations. System normalizers and Carter subgroups are available as special cases, and the F-normalizer
functions also apply to the computation of complements. The corresponding algorithms, together with
applications and a complexity analysis, are described in [EW].

The package permits the computation of formation-theoretic subgroups not only for a number of classical
formations, such as nilpotent, supersolvable or p-length 1 groups, but for other formations that the user may
define. It also allows computation with classes of finite solvable groups defined by normal subgroup functions
(see [DH92], pages 395 ff). Attention may be restricted to the subgroups of a single group, a feature that has
applications in the computation of complements to elementary abelian normal subgroups in finite solvable
groups (see [EW]). An example of such an application is given in Section 7.

This documentation contains only a brief account of the main formation-theoretic ideas. For a much more
complete treatment we refer the reader to [DH92]. Fundamental ideas of formation theory are described in
[Gas63] and [CH67].

In the following sections we first describe the GAP definition of a formation and the examples of standard
formations that are included in the package. We also present some functions that obtain new formations
from ones already defined or that modify defined formations slightly. (See Section 2.)

Then we describe functions that compute formation-theoretic subgroups of finite solvable groups (see Sections
3,4 and 5).

Finally we provide examples from a GAP session (see Sections 6 and 7) to illustrate the functions in the
package.

1»

Formations in GAP

A formation is a class of groups closed under taking epimorphic images and subdirect products. Closure
under subdirect products is equivalent to the property that each finite group G has a unique smallest normal
subgroup G¥ with factor group G/G7 in F. The subgroup G7 is called the F-residual subgroup of G.
Thus, for example, the derived subgroup of G is its residual for the formation of abelian groups, and the
residual for the formation of nilpotent groups is the last term of the descending central series.

In FORMAT a formation is described by a function that computes G for each (finite solvable) group G,
and from that perspective F consists of the groups G for which G7 is trivial. To define a formation that is
not one of the standard examples provided (see below), one must give GAP an identifier for the formation
and also some method for computing residual subgroups.

Some of the most interesting formations can also be described by “local definition.” For each prime p let
F(p) be a formation or the empty class, and let F be the class of all finite solvable groups G such that
for each prime p and each p-chief factor H/K of G the group of automorphisms that G induces on H/K
by conjugation belongs to F(p). Then F is a formation, with local definition {F(p) | p is prime }. The
set {p | p is prime and F(p) # (0} is called the support of F. A p-chief factor is F-central in case G
induces an F(p)-group on it or, equivalently, in case G (r) centralizes it. It is possible to define a formation
in FORMAT by giving such a local definition. Indeed one can define a kind of generalized formation by
giving what is called a normal subgroup function or screen, which specifies arbitrary normal subgroups,
not necessarily of form G7(?)| to test “centrality.” Section 7 describes one such usage of general screens.
Most applications of formation theory to solvable groups require local definition, as do the GAP functions
for computing F-normalizers and F-covering subgroups.

Formation(rec) @)
Formation(str [, primes 1) O

The definition of a formation in FORMAT begins with the creation of a record rec, which must contain a
name component and at least one of the components fResidual or fScreen. The component name is a string,
fResidual is a function that computes a normal subgroup of each group, and fScreen is a function of two
variables, a group and a prime, that returns a normal subgroup of the input group.

In the second form the function Formation can be used to obtain a formation from the supplied library of
formations. The formations provided are:
Formation("Nilpotent")

The formation of nilpotent groups,

Formation("Supersolvable")
The formation of supersolvable groups,

Formation("Abelian")
The formation of abelian groups,

Formation("ElementaryAbelianProduct")
The formation of direct products of elementary abelian groups,

Formation("PNilpotent", prime)
The formation of p-nilpotent groups for p = prime,

3>

4»

5»

6>

i d

8»

9>

Formation("PiGroups", primes)
The formation of m-groups for = = the set primes,

Formation("PLengthOne", prime)
The formation of groups of p-length 1 for p = prime.

IsFormation(F) C
NameOfFormation(F) A
ResidualFunctionOfFormation(F) A

IsFormation returns true if and only if F' is a GAP formation. NameOfFormation returns the name of a
formation and ResidualFunctionOfFormation returns the residual function of a formation.

ScreenOfFormation(F) A

If F is locally defined by some screen {F(p) | p is prime }, then HasScreenOfFormation(F) is true,
Screen0fFormation(F) is a function of two variables, group and prime, and the command ScreenOf-
Formation(F)(G, p) returns GF® if p is in the support of F and gives the empty list otherwise.

SupportOfFormation(F) A

The attribute SupportO0fFormation is optional. It may be bound by SetSupport0fFormation. If Support-
OfFormation is not bound, then the support of the formation is taken to be the set of all primes. In case
the support of F' is a finite set of primes, then SupportOfFormation(F') is a list of those primes, and
HasSupportOfFormation(F) returns true. In case the support of F' is an infinite set but not the set of all
primes, then the user will need to make sure, perhaps with ChangedSupport or SetSupportOfFormation,
that all primes dividing the orders of relevant groups are considered.

ChangedSupport(F, primes) 0]

This function may be used to change the support of a formation. Let F' be a formation and primes a list
of primes. Then ChangedSupport returns a formation with a new name whose support is the intersection of
the support of F' and primes.

IsIntegrated(F) P

The local definition is called integrated in case F(p) C F for each prime p. The property IsIntegrated
is also optional. It makes sense only if HasScreenOfFormation(F) is true. Notice that some of the
functions described below will require that HasScreenOfFormation(F), HasIsIntegrated(F) and
IsIntegrated(F') are true. If unbound, this property can be bound with SetIsIntegrated, but it is up
to the user to determine whether such a setting is appropriate. Section 6 contains an example of such usage.

Integrated(F) Q)

A local definition of a formation may always be replaced by an integrated one without changing the formation
itself, though the meaning of F-central may change. Let F' be a locally defined formation with name name.
If F is already integrated, then Integrated(F') yields F' itself. Otherwise, it yields a formation nameInt
that is abstractly the same as F' but has integrated local definition.

F1 = F2
Fi < F2

Two formations F'I and F2 are considered to be equal in case they have the same name. The natural ordering
on strings gives an ordering on formations. This ordering is useful for organizing key-dependent lists but has
no mathematical significance.

Intersection(F1, F2) 0]

The intersection F := F1 N F2 of two formations F1 and F2 is again a formation. Intersection produces
the new formation (namelAndname2), which has attribute ResidualFunctionOfFormation if either F'I or
F2 does, has FScreen whenever both formations have it, and is integrated if both are.

8 Chapter 2. Formations in GAP

10» ProductOfFormations(F1, F2) O

The product of two formations F'1 and F2 is the formation F' such that a finite group G is a member of F' if
and only if G¥? is in F1. (Notice that the product of F1 by F2 is not necessarily equal to the product of F2
by F1,and unless F1 is normal subgroup-closed the product need not contain all extensions of a group in F'1
by a group in F2.) The function Product0fFormations(F1, F2) yields the product (namelByname2)
of the two formations. The product has the attribute ResidualFunctionOfFormation and has the attribute
Screen0fFormation whenever both F7 and F2 have this entry or whenever both HasScreenOfFormation(
F2) and not HasSupportOfFormation(FI) are true. In these cases the property IsIntegrated will
be inherited if possible.

1»

2»

4»

5»

6>

Residual Functions

ResidualWrtFormation(G, F) O

Let G be a finite solvable group and F' a formation. Then ResidualWrtFormation returns the F-residual
subgroup of G.

The following special cases have their own functions.

NilpotentResidual(G) A
This is the last term of the descending central series of G.

PResidual(G, p) O
This is the smallest normal subgroup of G whose index is a power of the prime p.

PiResidual(G, primes) O
This is the smallest normal subgroup of G whose index is divisible only by primes in the list primes.
CoprimeResidual(G, primes) Q)
This is the smallest normal subgroup of G whose index is divisible only by primes not in the list primes.
ElementaryAbelianProductResidual(G) A

This is the smallest normal subgroup of G whose factor group is a direct product of groups of prime order.

FNormalizers

Let F be an integrated locally defined formation, and let G be a finite solvable group with Sylow complement
basis ¥ := {S? | p divides |G|}. Let 7 be the set of prime divisors of the order of G that are in the support of
F and 7 the remaining prime divisors of the order of G. Then the F-normalizer of G with respect to X is
defined to be () = S* N, cr N¢(G7 ()N SP). The special case F(p) = {1} for all p defines the formation of
nilpotent groups, whose JF-normalizers ﬂp N¢(SP) are the system normalizers of G. The F-normalizers
of a group G for a given F are all conjugate. They cover F-central chief factors and avoid F-hypereccentric
ones.

FNormalizerWrtFormation(G, F) O
SystemNormalizer(G) A

If F is a locally defined integrated formation in GAP and G is a finite solvable group, then the function
FNormalizerWrtFormation returns an F-normalizer of G. The function SystemNormalizer yields a system
normalizer of G.

The underlying algorithm here requires G to have a special pcgs (see SpecialPcgs), so the algorithm’s first
step is to compute such a pcgs for G if one is not known. The complement basis X associated with this
pcgs is then used to compute the F-normalizer of G with respect to . This process means that in the case
of a finite solvable group G that does not have a special pcgs, the first call of FNormalizerWrtFormation
(or similarly of FormationCoveringGroup) will take longer than subsequent calls, since it will include the
computation of a special pcgs.

The FNormalizerWrtFormation algorithm next computes an F-system for G, a complicated record that
includes a pcgs corresponding to a normal series of G whose factors are either F-central or F-hypereccentric.
A subset of this pcgs then exhibits the F-normalizer of G determined by 3. The list ComputedFNormaliz-
erWrtFormations(G) stores the F-normalizers of G that have been found for various formations F'.

The FNormalizerWrtFormation function can be used to study the subgroups of a single group G, as illus-
trated in an example in Section 7. In that case it is sufficient to have a function ScreenOfFormation that
returns a normal subgroup of G on each call.

2>

Covering Subgroups

Let X be a collection of groups closed under taking homomorphic images. An X-covering subgroup of a
group G is a subgroup FE satisfying

(©) E e X, and EV = U whenever E < U < G with U/V € X.

It follows from the definition that an X-covering subgroup F of G is also X-covering in every subgroup U of
G that contains F, and an easy argument shows that F is an X'-projector of every such U, i.e., E satisfies

(P) EK /K is an X-maximal subgroup of U/K whenever K is normal in U.

Gaschiitz showed that if F is a locally defined formation, then every finite solvable group has an F-covering
subgroup. Indeed, locally defined formations are the only formations with this property. For such formations
the F-projectors and F-covering subgroups of a solvable group coincide and form a single conjugacy class
of subgroups. (See [DH92] for details.)

CoveringSubgroupl(G, F) 0O
CoveringSubgroup2(G, F) O
CoveringSubgroupWrtFormation(G, F) @)

If F' is a locally defined integrated formation in GAP and if G is a finite solvable group, then the command
CoveringSubgroupl(G, F) returnsan F-covering subgroup of G. The function CoveringSubgroup2 uses
a different algorithm to compute F-covering subgroups. The user may choose either function. Experiments
with large groups suggest that CoveringSubgroupl is somewhat faster. CoveringSubgroupWrtFormation
checks first to see if either of these two functions has already computed an F-covering subgroup of G, and
if not, then it calls FCoveringGroupl to compute one.

Nilpotent-covering subgroups are also called Carter subgroups.

CarterSubgroup(G) A

The command CarterSubgroup(G) is equivalent to CoveringSubgroupWrtFormation(G, Formation(
"Nilpotent")).

All of these functions call upon F-normalizer algorithms as subroutines.

Formation Examples

The following is a GAP session that illustrates the various functions in the package. We have chosen to
work with the symmetric group Sy and the special linear group SL(2,3) as examples, because it is easy to
print and read the results of computations for these groups, and the answers can be checked by inspection.
However, both Sy and SL(2,3) are extremely small examples for the algorithms in FORMAT. In [EW] we
describe effective application of the algorithms to groups of composition length as much as 61, for which the
computations take a few seconds to complete. The file grp contains some of these groups and other groups
readable as GAP4 input.

gap> RequirePackage("format");;
A primitive banner appears.

First we define S; as a permutation group and compute some subgroups of it.

gap> G := SymmetricGroup(4);

Sym(C [1 ..4171)

gap> SystemNormalizer(G); CarterSubgroup(G);
Group([(3,4) 1)

Group([(3,4), (1,3)(2,4), (1,2)(3,4 1)

Now we take the formation of supersolvable groups from the examples and look at it.

gap> sup := Formation("Supersolvable");

formation of Supersolvable groups

gap> KnownAttributes0fObject(sup); KnownPropertiesOfObject (sup);
["NameOfFormation", "ScreenOfFormation"]

["IsIntegrated"]

We can look at the screen for sup.

gap> ScreenOfFormation(sup) ;

<0Operation "AbelianExponentResidual">

gap> ScreenOfFormation(sup) (G,2); ScreenOfFormation(sup) (G,3);
Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4 DD

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4) 1D

We get the residuals for G of the formations of abelian groups of exponent 1 (= 2 — 1) and of exponent 2
(=3-1).
Notice that sup does not yet have a residual function. Let’s compute some subgroups of G corresponding to

sup.

gap> ResidualWrtFormation(G, sup);
Group([(1,2)(3,4), (1,4)(2,3) 1)
gap> KnownAttributes0fObject (sup);
["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

The residual function for sup was required and created.

gap> FNormalizerWrtFormation(G, sup);

Group([(3,4), (2,4,3) 1)

gap> CoveringSubgroupWrtFormation(G, sup);

Group([(3,4), (2,4,3) 1)

gap> KnownAttributes0fObject(G);

["Size", "One", "SmallestMovedPoint", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "TrivialSubmagmaWithOne",
"MultiplicativeNeutralElement", "DerivedSubgroup", "IsomorphismPcGroup",
"IsomorphismSpecialPcGroup", "Pcgs", "PcgsElementaryAbelianSeries",
"StabChainOptions", "ComputedResidualWrtFormations",
"ComputedAbelianExponentResiduals", "ComputedFNormalizerWrtFormations",
"ComputedCoveringSubgroupls", "ComputedCoveringSubgroup2s",
"SystemNormalizer", "CarterSubgroup"]

The AbelianExponentResiduals were computed in connection with the local definition of sup. (AbelianEx-
ponentResidual (G, n) returns the smallest normal subgroup of G whose factor group is abelian of exponent

dividing n-1.) Here are some of the other records.

gap> ComputedResidualWrtFormations(G) ;

[formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3) 1)]

gap> ComputedFNormalizerWrtFormations(G) ;

[formation of Nilpotent groups , Group([(3,4) 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1) 1]

gap> ComputedCoveringSubgroup2s(G) ;

L]

gap> ComputedCoveringSubgroupls(G) ;

[formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4) 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1)]

The call by CoveringSubgroupWrtFormation was to CoveringSubgroupl, not CoveringSubgroup2.
We could also have started with a pc group or a nice enough matrix group.

gap> s4 := SmallGroup(IdGroup(G));
<pc group of size 24 with 4 generators>

This is Sy again. The answers just look different now.

gap> SystemNormalizer(s4); CarterSubgroup(s4);
Group([f1 1)
Group([f1, f4, £3xf4 1)

Similarly, we have SL(2,3) and an isomorphic pc group.
gap> sl := SpeciallinearGroup(2,3);
SL(2,3)

gap> h := SmallGroup(IdGroup(sl));
<pc group of size 24 with 4 generators>

We get the following subgroups.

gap> CarterSubgroup(sl); Size(last);

<group of 2x2 matrices in characteristic 3>
6

gap> SystemNormalizer(h); CarterSubgroup(h);
Group([f1, f4 1)

Group([f1, f4 1)

Now let’s make new formations from old.

14 Chapter 6. Formation Examples
gap> ab := Formation("Abelian");

formation of Abelian groups

gap> KnownProperties0fObject(ab); KnownAttributesO0fObject (ab);

L1

["NameOfFormation", "ResidualFunctionOfFormation"]

gap> nil2 := Formation("PNilpotent",2);

formation of 2Nilpotent groups

gap> KnownPropertiesO0fObject(nil2); KnownAttributesOfObject(nil2);

["IsIntegrated"]

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

Compute the product and check some attributes.

gap> form := ProductOfFormations(ab, nil2);
formation of (AbelianBy2Nilpotent) groups

gap> KnownAttributes0fObject(form);

["NameOfFormation", "ResidualFunctionOfFormation"]

Now the product in the other order, which is locally defined.

gap> form2 := ProductOfFormations(nil2, ab);

formation of (2NilpotentByAbelian) groups

gap> KnownAttributes0fObject (form?2);

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation" 1]

We check the results on G, which is still Sy.

gap> ResidualWrtFormation(G, form); ResidualWrtFormation(G, form2);
Group((Q))

Group([(1,3)(2,4), (1,2)(3,4) 1D

gap> KnownPropertiesO0fObject (form2);

[1]

Although form?2 is not integrated, we can make an integrated formation that differs from form2 only in its
local definition, i.e., whose residual subgroups are the same as those for form2.

gap> Integrated(form2);
formation of (2NilpotentByAbelian)Int groups

FNormalizerWrtFormation and CoveringSubgroupWrtFormation both require integrated formations, so
they silently replace form2 by this last formation without, however, changing form2.

gap> FNormalizerWrtFormation(G, form2); CoveringSubgroupWrtFormation(G, form?2);

Group([(3,4), (2,4,3) 1)

Group([(3,4), (2,4,3) 1)

gap> KnownPropertiesOfObject (form?2);

L1

gap> ComputedCoveringSubgroupls(G);

[formation of (2NilpotentByAbelian)Int groups , Group([(3,4), (2,4,3) 1),
formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4) 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1)]

gap> ComputedResidualWrtFormations(G);

[formation of (2NilpotentByAbelian) groups ,

Group([(1,3)(2,4), (1,2)(3,4) 1),

formation of (AbelianBy2Nilpotent) groups , Group(Q)),

formation of 2Nilpotent groups , Group([(1,2)(3,4), (1,3)(2,4) 1),
formation of Abelian groups , Group([(1,3,2), (2,4,3) 1),

15

formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3) 1)]
Lots of work has been going on behind the scenes.

Before we compute an intersection, we construct yet another formation.

gap> pig := Formation("PiGroups", [2,5]);

formation of (2,5)-Group groups with support [2, 5]

gap> form := Intersection(pig, nil2);

formation of ((2,5)-GroupAnd2Nilpotent) groups with support [2, 5]

gap> KnownAttributes0fObject(form);

["NameOfFormation", "ScreenOfFormation", "SupportOfFormation",
"ResidualFunctionOfFormation"]

Let’s cut down the support of nil2 to {2, 5}.

gap> form3 := ChangedSupport(nil2, [2,5]);
formation of Changed2Nilpotent[2, 5] groups
gap> SupportOfFormation(form3) ;

[2, 5]

gap> form = form3;

false

Although the formations defined by form and form3 are abstractly identical, GAP has no way to know this
fact, and so distinguishes them.

We can mix the various operations, too.

gap> ProductOfFormations(Intersection(pig, nil2), sup);

formation of (((2,5)-GroupAnd2Nilpotent)BySupersolvable) groups

gap> Intersection(pig, ProductOfFormations(nil2, sup));

formation of ((2,5)-GroupAnd(2NilpotentBySupersolvable)) groups with support
[2, 5]

Now let’s define our own formation.

gap> preform := rec(name := "MyQOwn",

> fScreen := function(G, p)

> return DerivedSubgroup(G);

> end);

rec(name := "MyOwn", fScreen := function(G, p) ... end)
gap> form := Formation(preform) ;

formation of MyOwn groups
gap> KnownAttributes0fObject(form); KnownPropertiesOfObject(form);
["NameOfFormation", "ScreenOfFormation"]

[1
In fact, the definition is integrated. Let’s tell GAP so and compute some related subgroups.

gap> SetIsIntegrated(form, true);

gap> ResidualWrtFormation(G, form);
Group([(1,3)(2,4), (1,2)(3,4) 1D

gap> FNormalizerWrtFormation(G, form);
Group([(3,4), (2,4,3) 1)

gap> CoveringSubgroupl(G, form);
Group([(3,4), (2,4,3) 1)

These answers are consistent with the fact that MyOwn is really just the formation of abelian by nilpotent
groups.

Other Applications

Up to this point our screens, i.e., normal subgroup functions, have yielded local formation residual subgroups,
but there is no requirement that they do so. Screens for which the selected normal subgroups can be arbitrary
have applications beyond formation theory. Chapter V of [CH67] contains an account of a generalized
normalizer theory built from them, and Wright ([Wri73a] and [Wri73b]) uses them to construct internal
versions of formations that are conceptually related to ordinary formations much as Fitting sets are related
to Fitting classes.

A major application of the generalized normalizers is to speed up computation of complements to normal
factors (see [EW]). Suppose that G is a finite solvable group with an elementary abelian normal subgroup
A for which there exists a normal subgroup N of G containing A such that N/A is nilpotent and [N, A] =
A. Then A has a complement in G, and all complements are conjugate—indeed, they can be viewed as
generalized F-normalizers. We will show the idea, which of course is most useful with very large groups, by
using FNormalizerWrtFormation to find a complement to an elementary abelian normal subgroup, in this
case to K in Sy with NV = Ay.

We need to define a formation F in GAP (not a real formation, of course, just a local version) such that
ScreenOfFormation(F) (s4,p) returns N for every call. In order to call FNormalizerWrtFormation we
must also set the property IsIntegrated to true.

gap> preform := rec(name := "ForComplement",

> fScreen := function(H, p)

> return Subgroup(H, Generators0fGroup(H){[2,3,4]1});
> end);;

gap> form := Formation(preform) ;

formation of ForComplement groups
gap> SetIsIntegrated(form, true);

Now we may use the FNormalizerWrtFormation function with s4 to get the complement, an S5. (Recall
that unless form already thinks it’s integrated, FNormalizerWrtFormation will automatically integrate form
before running its computations, which may not be the desired behavior.)

gap> comp := FNormalizerWrtFormation(s4, form); Size(comp);
Group([f1, £2 1)
6

A user who wanted to employ the F-normalizer technique to compute very many complements in this
way would probably wish to create a new GAP function by extracting portions of the code that computes
F-systems.

Bibliography

[CH67] R. W. Carter and T. O. Hawkes. The F-normalizers of a finite soluble group. J. Alg., 5:175 — 201,
1967.

[DH92] K. Doerk and T. O. Hawkes. Finite soluble groups. Walter de Gruyter, 1992.

[EW] B. Eick and C. R. B. Wright. Computing subgroups by exhibition in finite solvable groups. To
appear in J. Symbolic Comp.

[Gas63] W. Gaschiitz. Zur theorie der endlichen auflésbaren gruppen. Math. Z., 80:300 — 305, 1963.
[Wri73a] C. R. B. Wright. An internal approach to covering groups. J. Alg., 25:128 — 145, 1973.
[Wri73b] C. R. B. Wright. On internal formation theory. Math. Z., 134:1 — 9, 1973.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

C Intersection, 7
CarterSubgroup, 11 IsFormation, 7
ChangedSupport, 7 IsIntegrated, 7
CoprimeResidual, 9 N

Cover}ngSubgroupi, 1 NameOfFormation, 7
CoveringSubgroup2, 11 . .

. . NilpotentResidual, 9
CoveringSubgroupWrtFormation, 11
E P
PiResidual, 9

ElementaryAbelianProductResidual, 9 PResidual, 9

F ProductOfFormations, 7
FNormalizerWrtFormation, 10 R
format, 5

ResidualFunctionOfFormation, 7

Formation, 6 . .
’ ResidualWrtFormation, 9

formation, comparison, 7
equality, 7 S

I ScreenOfFormation, 7

SupportOfFormation, 7

Int ted
ntegrated, 7 SystemNormalizer, 10

	
	Contents
	Introduction to FORMAT
	Formations in GAP
	Residual Functions
	FNormalizers
	Covering Subgroups
	Formation Examples
	Other Applications
	Bibliography
	Index
	C
	E
	F
	I
	N
	P
	R
	S

