
GAPDoc

(Version 0.99)

Frank L übeck
Max Neunhöffer

Frank L übeck — Email: Frank.Luebeck@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Frank.Luebeck
Max Neunhöffer — Email: Max.Neunhoeffer@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Max.Neunhoeffer

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://Max.Neunhoeffer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Max.Neunhoeffer

GAPDoc 2

Copyright

c© 2000 by Frank L̈ubeck and Max Neunḧoffer
We adopt the copyright regulations ofGAP as detailed in the copyright notice in theGAP manual.

Contents

1 Introduction and Example 4
1.1 XML . 4
1.2 A complete example . 5
1.3 Some questions. 8

2 How To Type a GAPDoc Document 9
2.1 General XML Syntax. 9

2.1.1 Head of XML Document. 9
2.1.2 Comments . 9
2.1.3 Processing Instructions. 10
2.1.4 Names in XML and Whitespace. 10
2.1.5 Elements . 10
2.1.6 Start Tags. 10
2.1.7 End Tags . 10
2.1.8 Combined Tags for Empty Elements. 10
2.1.9 Entities . 11
2.1.10 Special Characters in XML. 11
2.1.11 CDATA . 11
2.1.12 Encoding of an XML document. 11
2.1.13 Well Formed and Valid XML Documents. 11

2.2 EnteringGAPDoc Documents . 12
2.2.1 More Special Characters. 12
2.2.2 Mathematical Formulae. 13
2.2.3 More Entities . 13

3 The Document Type Definition 14
3.1 What is a DTD?. 14
3.2 Overall Document Structure. 14

3.2.1 <Book> . 15
3.2.2 <TitlePage> . 15
3.2.3 <Title> . 15
3.2.4 <Subtitle> . 16
3.2.5 <Version> . 16
3.2.6 <Author> . 17
3.2.7 <Date> . 17
3.2.8 <Abstract> . 17

3

GAPDoc 4

3.2.9 <Copyright> . 17
3.2.10 <Acknowledgements> . 17
3.2.11 <Colophon> . 17
3.2.12 <TableOfContents> . 17
3.2.13 <Bibliography> . 18
3.2.14 <TheIndex> . 18

3.3 Sectioning Elements . 18
3.3.1 <Body> . 18
3.3.2 <Chapter> . 19
3.3.3 <Heading> . 19
3.3.4 <Appendix> . 19
3.3.5 <Section> . 19
3.3.6 <Subsection> . 20

3.4 ManSection . 20
3.4.1 <ManSection> . 20
3.4.2 <Func> . 21
3.4.3 <Oper> . 21
3.4.4 <Meth> . 22
3.4.5 <Filt> . 22
3.4.6 <Prop> . 22
3.4.7 <Attr> . 22
3.4.8 <Var> . 23
3.4.9 <Fam> . 23
3.4.10 <InfoClass> . 23

3.5 Cross Referencing and Citations. 23
3.5.1 <Ref> . 24
3.5.2 <Label> . 25
3.5.3 <Cite> . 25
3.5.4 <Index> . 25
3.5.5 <URL> . 25
3.5.6 <Email> . 25
3.5.7 <Homepage> . 26

3.6 Structural Elements like Lists. 26
3.6.1 <List> . 26
3.6.2 <Mark> . 26
3.6.3 <Item> . 26
3.6.4 <Enum> . 27
3.6.5 <Table> . 27

3.7 Types of Text . 27
3.7.1 <Emph> and<E> . 28
3.7.2 <Quoted> and<Q> . 28
3.7.3 <Keyword> and<K> . 28
3.7.4 <Arg> and<A> . 28
3.7.5 <Code> and<C> . 28
3.7.6 <File> and<F> . 28
3.7.7 <Button> and . 29
3.7.8 <Package> . 29

GAPDoc 5

3.7.9 <Listing> . 29
3.7.10 <Log> and<Example> . 29
3.7.11 <Verb> . 29

3.8 Elements for Mathematical Formulae. 30
3.8.1 <Math> and<Display> . 30
3.8.2 <M> . 30

3.9 Everything else . 31
3.9.1 <Alt> . 31
3.9.2 <Par> and<P> . 32

4 Distributing a Document into Several Files 33
4.1 The Conventions . 33
4.2 A Tool for Collecting a Document. 34

4.2.1 ComposedXMLString . 34

5 The Converters 35
5.1 Producing Documentation from Source Files. 35

5.1.1 MakeGAPDocDoc . 37
5.2 Parsing XML Documents. 37

5.2.1 ParseTreeXMLString. 37
5.2.2 DisplayXMLStructure . 38
5.2.3 ApplyToNodesParseTree. 38
5.2.4 CheckAndCleanGapDocTree. 38
5.2.5 AddParagraphNumbersGapDocTree. 39

5.3 The Converters . 39
5.3.1 GAPDoc2LaTeX . 39
5.3.2 GAPDoc2Text . 40
5.3.3 GAPDoc2TextPrintTextFiles. 40
5.3.4 AddPageNumbersToSix. 41
5.3.5 PrintSixFile . 41
5.3.6 GAPDoc2HTML . 41
5.3.7 GAPDoc2HTMLPrintHTMLFiles . 42

5.4 Parsing BibTeX Files. 42
5.4.1 ParseBibFiles. 42
5.4.2 NormalizeNameAndKey. 43
5.4.3 WriteBibFile . 43

5.5 Text Utilities . 44
5.5.1 WHITESPACE . 44
5.5.2 TextAttr . 44
5.5.3 FormatParagraph. 45
5.5.4 SubstitutionSublist. 45
5.5.5 StripBeginEnd . 46
5.5.6 StripEscapeSequences. 46
5.5.7 RepeatedString. 46
5.5.8 NumberDigits. 46
5.5.9 PositionMatchingDelimiter. 47
5.5.10 WordsString . 47

GAPDoc 6

5.6 Print Utilities . 47
5.6.1 PrintTo1. 47
5.6.2 StringPrint . 48
5.6.3 PrintFormattedString. 48
5.6.4 Page. 48
5.6.5 StringFile . 48

A The file 3k+1.xml 49

B The File gapdoc.dtd 51

Chapter 1

Introduction and Example

The main purpose of theGAPDoc package is to define a file format for documentation ofGAP-
programs and -packages. The problem is that such documentation should be readable in several
output formats. For example it should be possible to read the documentation inside the terminal in
whichGAP is running (a text mode) and there should be a printable version in high typesetting quality
(produced by some version of TEX). It is also popular to viewGAP’s online help with a Web-browser
via an HTML-version of the documentation. Nowadays one can use LATEX and standard viewer pro-
grams to produce and view on the screendvi- or pdf-files with full support of internal and external
hyperlinks. Certainly there will be other interesting document formats and tools in this direction in
the future.

Our aim is to find aformat for writingthe documentation which allows a relatively easy translation
into the output formats just mentioned and which hopefully makes it easy to translate to future output
formats as well.

To make documentation written in theGAPDoc format directly usable, we also provide a set of
programs, called converters, which produce text-, hyperlinked LATEX- and HTML-output versions of
a GAPDoc document. These programs are developed by the first named author. They run completely
insideGAP, i.e., no external programs are needed. You only needlatex andpdflatex to process the
LATEX output. These programs are described in Chapter5.

1.1 XML

The definition of theGAPDoc format uses XML, the “eXtendible Markup Language”. This is a
standard (defined by the W3C consortium, seehttp://www.w3c.org) which lays down a syntax for
adding markup to a document or to some data. It allows to define document structures via introducing
markupelementsand certain relations between them. This is done in adocument type definition.
The filegapdoc.dtd contains such a document type definition and is the central part of theGAPDoc
package.

The easiest way for getting a good idea about this is probably to look at an example. The Ap-
pendixA contains a short but completeGAPDoc document for a fictitious share package. In the next
section we will go through this document, explain basic facts about XML and theGAPDoc document
type, and give pointers to more details in later parts of this documentation.

In the last Section1.3of this introductory chapter we try to answer some general questions about
the decisions which lead to theGAPDoc package.

7

http://www.w3c.org

GAPDoc 8

1.2 A complete example

In this section we recall the lines from the example document in AppendixA and give some explana-
tions.

from 3k+1.xml
<?xml version="1.0" encoding="ISO-8859-1"?>

This line just tells a human reader and computer programs that the file is a document with XML
markup and that the text is encoded in the ISO-8859-1, also called ISO-latin1 character set. This is a
nowadays widely used extension of the ASCII character set which contains all special characters of
Western European languages (e.g., German umlauts and French accented characters).

from 3k+1.xml
<!-- A complete "fake package" documentation

$Id: intro.xml,v 1.5 2001/11/16 15:20:47 gap Exp $
-->

Everything in a XML file between “<!--” and “-->” is a comment and not part of the document
content.

from 3k+1.xml
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

This line says that the document contains markup which is defined in the system filegapdoc.dtd
and that the markup obeys certain rules defined in that file (the endingdtd means “document type
definition”). It further says that the actual content of the document consists of an element with name
“Book”. And we can really see that the remaining part of the file is enclosed as follows:

from 3k+1.xml
<Book Name="3k+1">

[...] (content omitted)
</Book>

This demonstrates the basics of the markup in XML. This part of the document is an “element”. It
consists of the “start tag”<Book Name="3k+1">, the “element content” and the “end tag”</Book>
(end tags always start with</). This element also has an “attribute”Name whose “value” is3k+1.

If you know HTML, this will look familiar to you. But there are some important differences: The
element nameBook and attribute nameName arecase sensitive. The value of an attribute mustalways
be enclosed in quotes. In XMLeveryelement has a start and end tag (which can be combined for
elements defined as “empty”, see for example<TableOfContents/> below).

If you know LATEX, you are familiar with quite different types of markup, for example: The equiv-
alent of theBook element in LATEX is \begin{document} ... \end{document}. The sectioning
in LATEX is not done by explicit start and end markup, but implicitly via heading commands like
\section. Other markup is done by using braces{} and putting some commands inside. And for
mathematical formulae one can use the$ for the startand the end of the markup. In XMLall markup
looks similar to that of theBook element.

The content of the book starts with a title page.
from 3k+1.xml

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör

GAPDoc 9

<Email>3kplusone@dev.null</Email>
</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

The content of theTitlePage element consists again of elements. In Chapter3 we describe which
elements are allowed within aTitlePage and that their ordering is prescribed in this case. In the
(stupid) name of the author you see that a German umlaut is used directly (in ISO-latin1 encoding).

Contrary to LATEX- or HTML-files this markup does not say anything about the actual layout of
the title page in any output version of the document. It just adds information about themeaningof
pieces of text.

Within theCopyright element there are two more things to learn about XML markup. The<P/>
is a complete element. It is a combined start and end tag. This shortcut is allowed for elements which
are defined to be always “empty”, i.e., to have no content. You may have already guessed that<P/>
is used as a paragraph separator. Note that empty lines do not separate paragraphs (as in LATEX).

The other construct we see here is©right;. This is an example of an “entity” in XML and
is a macro for some substitution text. Here we use an entity as a shortcut for a complicated expression
which makes it possible that the termcopyright is printed as some text like(C) in text terminal
output and as a copyright character in other output formats. InGAPDoc we predefine some entities,
in particular certain “special characters” must be typed via entities, for example “<”, “>” and “&” to
avoid a misinterpretation as XML markup. But also the special characters in LATEX are written with
entities, since they need a different handling in a LATEX and a text output format, see2.1.10and2.2.1
for more details. It is possible to define additional entities for your document inside the<!DOCTYPE
... declaration, see2.2.3.

Note that elements in XML must always be properly nested, as in this example. A construct like
<a>... is not allowed.

from 3k+1.xml
<TableOfContents/>

This is another example of an “empty element”. It just means that a table of contents for the whole
document should be included into any output version of the document.

After this the main text of the document follows inside certain sectioning elements:
from 3k+1.xml

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>

[...] (content omitted)
</Section>
<Section> <Heading>Program</Heading>

[...] (content omitted)
</Section>

</Chapter>
</Body>

These elements are used similarly to “\chapter” and “\section” in LATEX. But note that the explicit
end tags are necessary here.

GAPDoc 10

The sectioning commands allow to assign an optional attribute “Label”. This can be used for
referring to a section inside the document.

The text of the first section starts as follows. The whitespace in the text is unimportant and the
indenting is not necessary.

from 3k+1.xml
Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), i \in \N,</M> with <M>n(1, k) = k</M> and else

Here we come to the interesting question how to type mathematical formulae in aGAPDoc document.
We did not find any alternative for writing formulae in TEX syntax. (There is MATHML, but even
simple formulae contain a lot of markup, become quite unreadable and they are cumbersome to type.
Furthermore there seem to be no tools available which translate such formulae in a nice way into TEX
and text.) So, formulae are typed as in LATEX. There are three types of elements containing formulae:
“M”, “Math” and “Display”. The first two are for in-text formulae and the third is for displayed
formulae. Here “M” and “Math” are equivalent, when translating aGAPDoc document into LATEX.
But they are handled differently for terminal text (and HTML) output. For the content of an “M”-
element there are defined rules for a translation into well readable terminal text. More complicated
formulae are in “Math” or “Display” elements and they are just printed as they are typed in text output.
So, to make a section well readable inside a terminal window you should try to put as many formulae
as possible into “M”-elements. In our example text we used the notationn(i, k) instead ofn i(k)
because it is easier to read in text mode. See Sections2.2.2and3.9for more details.

A few lines further on we find two non-internal references.
from 3k+1.xml

problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>

The first within the “Cite”-element is the citation of a book. InGAPDoc we use the widely used
BibTeX database format for reference lists. This does not use XML but has a well documented
structure which is easy to parse. And many people have collections of references readily available
in this format. The reference list in an output version of the document is produced with the empty
element

from 3k+1.xml
<Bibliography Databases="3k+1" />

close to the end of our example file. The attribute “Databases” give the name(s) of the database (.bib)
files which contain the references.

Putting a Web-address into an “URL”-element allows to create a hyperlink in output formats which
allow this.

The second section of our example contains a special kind of subsection defined inGAPDoc.
from 3k+1.xml

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>

GAPDoc 11

gap> ThreeKPlusOneSequence(101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

A “ManSection” contains the description of some function, operation, method, filter and so on. The
“Func”-element describes the name of afunction (there are also similar elements “Oper”, “Meth”,
“Filt” and so on) and names for its arguments, optional arguments enclosed in square brackets. See
Section3.4for more details.

In the “Description” we write the argument names as “A”-elements. A good description of a
function should usually contain an example of its use. For this there are some verbatim-like elements
in GAPDoc, like “Example” above (here, clearly, whitespace matters which causes a slightly strange
indenting).

The text contains an internal reference to the first section via the explicitly defined label
sec:theory.

The first section also contains a “Ref”-element which refers to the function described here. Note
that there is no explicit label for such a reference. The pair<Func Name="ThreeKPlusOneSequence"
Arg="k[, max]"/> and<Ref Func="ThreeKPlusOneSequence"/> does the cross referencing (and
hyperlinking if possible) implicitly via the name of the function.

Here is one further element from our example document which we want to explain.
from 3k+1.xml

<TheIndex/>

This is again an empty element which just says that an output version of the document should contain
an index. Many entries for the index are generated automatically because the “Func” and similar
elements implicitly produce such entries. It is also possible to include explicit additional entries in the
index.

1.3 Some questions

Are those XML files too ugly to read and edit? Just have a look and decide yourself. The markup
needs more characters than most TEX or LATEX markup. But the structure of the document is
easier to see. If you configure your favorite editor well, you do not need more key strokes for
typing the markup than in LATEX.

Why do we not use LATEX alone? LATEX is good for writing books. But LATEX files are generally
difficult to parse and to process to other output formats like text for browsing in a terminal
window or HTML (or new formats which may become popular in the future).GAPDoc markup
is one step more abstract than LATEX insofar as it describes meaning instead of appearance of
text. The inner workings of LATEX are too complicated to learn without pain, which makes it
difficult to overcome problems that occur occasionally.

Why XML and not a newly defined markup language? XML is a standard that is more and more
widely used. Lots of people have thought about it. Years of experience with SGML went into
the design. It is easy to parse and lots of tools are already available and there will be more in
the future. (Our experience was however, that only a few of them are usable currently.)

Chapter 2

How To Type a GAPDoc Document

In this chapter we give a more formal description of what you need to start to type documentation
in GAPDoc XML format. Many details were already explained by example in Section1.2 of the
introduction.

We donot answer the question “How towrite a GAPDoc document?” in this chapter. You can
(hopefully) find an answer to this question by studying the example in the introduction, see1.2, and
learning about more details in the reference Chapter3.

The definite source for all details of the official XML standard with useful annotations is:
http://www.xml.com/axml/axml.html
Although this document must be quite technical, it is surprisingly well readable.

2.1 General XML Syntax

We will now discuss the pieces of text which can occur in a general XML document. We start with
those pieces which do not contribute to the actual content of the document.

2.1.1 Head of XML Document

Each XML document should have a head which states that it is an XML document in some encoding
and which XML-defined language is used. In case of aGAPDoc document this should always look as
in the following example.

Example
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

See2.1.12for a remark on the “encoding” statement.
(There may be local entity definitions inside theDOCTYPE statement, see Subsection2.2.3below.)

2.1.2 Comments

A “comment” in XML starts with the character sequence “<!--” and ends with the sequence “-->”.
Between these sequences there must not be two adjacent dashes “--”.

12

http://www.xml.com/axml/axml.html

GAPDoc 13

2.1.3 Processing Instructions

A “processing instruction” in XML starts with the character sequence “<?” followed by a name
(“xml” is only allowed at the very beginning of the document to declare it being an XML document,
see2.1.1). After that any characters may follow, except that the ending sequence “?>” must not occur
within the processing instruction.

And now we turn to those parts of the document which contribute to its actual content.

2.1.4 Names in XML and Whitespace

A “name” in XML (used for element and attribute identifiers, see below) must start with a letter (in the
encoding of the document) or with a colon “:” or underscore “” character. The following characters
may also be digits, dots “.” or dashes “-”.

This is a simplified description of the rules in the standard, which are concerned with lots of
unicode ranges to specify what a “letter” is.

Sequences only consisting of the following characters are considered aswhitespace: blanks, tabs,
carriage return characters and new line characters.

2.1.5 Elements

The actual content of an XML document consists of “elements”. An element has some “content” with
a leading “start tag” (2.1.6) and a trailing “end tag” (2.1.7). The content can contain further elements
but they must be properly nested. One can define elements whose content is always empty, those
elements can also be entered with a single combined tag (2.1.8).

2.1.6 Start Tags

A “start-tag” consists of a less-than-character “<” directly followed (without whitespace) by an ele-
ment name (see2.1.4), optional attributes, optional whitespace, and a greater-than-character “>”.

An “attribute” consists of some whitespace and then its name followed by an equal sign “=”
which is optionally enclosed by whitespace, and the attribute value, which is enclosed either in single
or double quotes. The attribute value may not contain the type of quote used as a delimiter or the
characters “<” and “&”.

Note especially that no whitespace is allowed between the starting “<” character and the element
name. The quotes around an attribute value cannot be omitted. The names of elements and attributes
arecase sensitive.

2.1.7 End Tags

An “end tag” consists of the two characters “</” directly followed by the element name, optional
whitespace and a greater-than-character “>”.

2.1.8 Combined Tags for Empty Elements

Elements which always have empty content can be written with a single tag. This looks like a start
tag (see2.1.6) exceptthat the trailing greater-than-character “>” is substituted by the two character
sequence “/>”.

GAPDoc 14

2.1.9 Entities

An “entity” in XML is a macro for some substitution text. There are two types of entities.
A “character entity” can be used to specify characters in the encoding of the document (can be use-

ful for entering non-ASCII characters which you cannot manage to type in directly). They are entered
with a sequence “&#”, directly followed by either some decimal digits or an “x” and some hexadec-
imal digits, directly followed by a semicolon “;”. Using such a character entity is just equivalent to
typing the corresponding character directly.

Then there are references to “named entities”. They are entered with an ampersand character
“&” directly followed by a name which is directly followed by a semicolon “;”. Such entities must
be declared somewhere by giving a substitution text. This text is included in the document and the
document is parsed again afterwards. The exact rules are a bit subtle but you probably want to use
this only in simple cases. Important entities forGAPDoc are described in2.1.10, 2.2.1and2.2.3.

2.1.10 Special Characters in XML

We have seen that the less-than-character “<” and the ampersand character “&” start a tag or entity
reference in XML. To get these characters into the document text one has to use entity references,
namely “<” to get “<” and “&” to get “&”. Furthermore “>” should sometimes be used to
get “>”.

Another possibility is to use aCDATA statement explained in2.1.11.

2.1.11 CDATA

Pieces of text which contain many characters which can be misinterpreted as markup can be enclosed
by the character sequences “<![CDATA[” and “]]>”. Everything between these sequences is consid-
ered as content of the document and is not further interpreted as XML text. All the rules explained
so far in this section donot applyto such a part of the document. The only document content which
cannot be entered directly inside aCDATA statement is the sequence “]]>”. This can be entered as
“]]>” outside theCDATA statement.

Example
A nesting of tags like <a> is not allowed.

2.1.12 Encoding of an XML document

We suggest to use the ISO-8859-1 or ISO-latin1 encoding for writingGAPDoc XML documents.
This character set contains the ASCII characters and all special characters from Western European
languages like German umlauts or French accented characters. Text in this character set can be used
directly with LATEX and many current default terminal fonts support this character set.

2.1.13 Well Formed and Valid XML Documents

We want to mention two further important words which are often used in the context of XML docu-
ments. A piece of text becomes a “well formed” XML document if all the formal rules described in
this section are fulfilled.

But this says nothing about the content of the document. To give this content a meaning one needs
a declaration of the element and corresponding attribute names as well as of named entities which are
allowed. Furthermore there may be restrictions how such elements can be nested. Thisdefinition of

GAPDoc 15

an XML based markup languageis done in a “document type definition”. An XML document which
contains only elements and entities declared in such a document type definition and obeys the rules
given there is called “valid (with respect to this document type definition)”.

The main file of theGAPDoc package isgapdoc.dtd. This contains such a definition of a markup
language. We are not going to explain the formal syntax rules for document type definitions in this
section. But in Chapter3 we will explain enough about it to understand the filegapdoc.dtd and so
the markup language defined there.

2.2 Entering GAPDoc Documents

Here are some additional rules for writingGAPDoc XML documents.

2.2.1 More Special Characters

Since one purpose ofGAPDoc documents is to produce a high quality LATEX output version we have
to pay attention to characters with a special meaning in LATEX or in XML. These are the following
characters:

“&”, “<”, “>”, “ #”, “ $”, “ %”, “ ˜”, “ \”, “ {”, “ }”, “ ”, “ ˆ” and “ ” (the last one is a non-breakable
space, similar to LATEX’s “ ˜” character).

The right way to access these symbols is by using “entities”, see2.1.9. The following table shows
what to type to get these characters in the output text of the document.

& &tamp;
< &tlt;
> &tgt;
&hash;
$ $
% &percent;
˜ ˜
\ &bslash;
{ &obrace;
} &cbrace;

&uscore;
ˆ &circum;

Table: What to type for special characters in character data

Note that the first three have an extra “t” at the beginning in comparison with the standard entities
of XML described in2.1.10. The difference is necessary because for example “&tamp;” produces
“\&” for LATEX to actually get an ampersand character in the printed version. Use “&” if you want
to pass an ampersand character without a backslash in front directly to LATEX.

Inside attribute values you shouldnot use these entities. Instead use the corresponding characters
directly. The reason is that attribute values are often used as labels in LATEX and it is easier to process
this properly with the direct input of the characters.

Also, these entities arenot used inside mathematical formulae, see2.2.2below.

GAPDoc 16

2.2.2 Mathematical Formulae

Mathematical formulae inGAPDoc are typed as in LATEX. They must be the content of one of three
types ofGAPDoc elements concerned with mathematical formulae: “Math”, “ Display”, and “M” (see
Sections3.8.1and3.8.2for more details). The first two correspond to LATEX’s math mode and display
math mode. The last one is a special form of the “Math” element type, that imposes certain restrictions
on the content. On the other hand the content of an “M” element is processed in a well defined way for
text terminal or HTML output.

The remarks about special characters in2.2.1do not apply to the content of these elements. But
the special characters “<” and “&” for XML must be entered via the entities described in2.1.10or by
using aCDATA statement, see2.1.11.

2.2.3 More Entities

In GAPDoc there are some more predefined entities:

&GAP; GAP
&GAPDoc; GAPDoc
&TeX; TEX
&LaTeX; LATEX
&BibTeX; BibTeX
&MeatAxe; MeatAxe
&XGAP; XGAP
©right; c©

Table: Predefined Entities in theGAPDoc system

One can define further local entities right inside the head (see2.1.1) of aGAPDoc XML document
as in the following example.

Example
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Book SYSTEM "gapdoc.dtd"
[<!ENTITY MyEntity "some longish <E>text</E> possibly with markup">
]>

These additional definitions go into the<!DOCTYPE tag in square brackets. Such new entities are used
like this: &MyEntity;

Chapter 3

The Document Type Definition

In this chapter we first explain what a “document type definition” is and then describegapdoc.dtd in
detail. That file together with the current chapter define how aGAPDoc document has to look like. It
can be found in the main directory of theGAPDoc package and it is reproduced in AppendixB.

We do not give many examples in this chapter which is more intended as a formal reference
for all GAPDoc elements. Instead we provide an extra document with book nameGAPDocExample
(also accessible from theGAP online help). This uses all the constructs introduced in this chapter
and you can easily compare the source code and how it looks like in the different output formats.
Furthermore recall that many basic things about XML markup were already explained by example in
the introductory chapter1.

3.1 What is a DTD?

A document type definition (DTD) is a formal declaration of how an XML document has to be struc-
tured. It is itself structured such that programs that handle documents can read it and treat the docu-
ments accordingly. There are for example parsers and validity checkers that use the DTD to validate
an XML document, see2.1.13.

The main thing a DTD does is to specify which elements may occur in documents of a certain
document type, how they can be nested, and what attributes they can or must have. So, for each
element there is a rule.

Note that a DTD cannotensure that a document which is “valid” also makes sense to the convert-
ers! It only says something about the formal structure of the document.

For the remaining part of this chapter we have divided the elements ofGAPDoc documents into
several subsets, each of which will be discussed in one of the next sections.

See the following three subsections to learn by example, how a DTD works. We do not want to be
too formal here, but just enable the reader to understand the declarations ingapdoc.dtd. For precise
descriptions of the syntax of DTD’s see again the official standard in:

http://www.xml.com/axml/axml.html

3.2 Overall Document Structure

A GAPDoc document contains on its top level exactly one element with nameBook. This element is
declared in the DTD as follows:

17

http://www.xml.com/axml/axml.html

GAPDoc 18

3.2.1 <Book>
From gapdoc.dtd

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

After the keywordELEMENT and the nameBook there is a list in parentheses. This is a comma separated
list of names of elements which can occur (in the given order) in the content of aBook element.
Each name in such a list can be followed by one of the characters “?”, “ *” or “ +”, meaning that the
corresponding element can occur zero or one time, an arbitrary number of times, or at least once,
respectively. Without such an extra character the corresponding element must occur exactly once.
Instead of one name in this list there can also be a list of elements names separated by “|” characters,
this denotes any element with one of the names (i.e., “|” means “or”).

So, theBook element must contain first aTitlePage element, then an optionalTableOfContents
element, then aBody element, then zero or more elements of typeAppendix, then an optional
Bibliography element, and finally an optional element of typeTheIndex.

Note thatonly these elements are allowed in the content of theBook element. No other elements
or text is allowed in between. An exception of this is that there may be whitespace between the end tag
of one and the start tag of the next element - this should be ignored when the document is processed
to some output format. An element like this is called an element with “element content”.

The second declaration starts with the keywordATTLIST and the element nameBook. After that
there is a triple of whitespace separated parameters (in general an arbitrary number of such triples,
one for each allowed attribute name). The first (Name) is the name of an attribute for aBook element.
The second (CDATA) is always the same for all of our declarations, it means that the value of the
attribute consists of “character data”. The third parameter#REQUIRED means that this attribute must
be specified with anyBook element. Later we will also see optional attributes which are declared as
#IMPLIED.

3.2.2 <TitlePage >
From gapdoc.dtd

<!ELEMENT TitlePage (Title, Subtitle?, Version?, Author+, Date?, Abstract?,
Copyright? , Acknowledgements? , Colophon?)>

Within this element information for the title page is collected. Note that more than one author can
be specified. The elements must appear in this order because there is no sensible way to specify in a
DTD something like “the following elements may occur in any order but each exactly once”.

Before going on with the other elements inside theBook element we explain the elements for the
title page.

3.2.3 <Title >
From gapdoc.dtd

<!ELEMENT Title (%Text;)*>

GAPDoc 19

Here is the last construct you need to understand for readinggapdoc.dtd. The expression “%Text;”
is a so-called “parameter entity”. It is something like a macro within the DTD. It is defined as follows:

From gapdoc.dtd
<!ENTITY % Text "%InnerText; | List | Enum | Table">

This means, that every occurrence of “%Text;” in the DTD is replaced by the expression
From gapdoc.dtd

%InnerText; | List | Enum | Table

which is then expanded further because of the following definition:
From gapdoc.dtd

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Cite | Label |
Ref | Index" >

These are the only two parameter entities we are using. They expand to lists of element names which
are explained in the sequeland the keyword#PCDATA (concatenated with the “or” character “|”).

So, the element (Title) is of so-called “mixed content”: It can containparsed character data
which does not contain further markup (#PCDATA) or any of the other above mentioned elements.
Mixed content must always have the asterisk qualifier (like inTitle) such that any sequence of
elements (of the above list) and character data can be contained in aTitle element.

The %Text; parameter entity is used in all places in the DTD, where “normal text” should be
allowed, including lists, enumerations, and tables, butnosectioning elements.

The%InnerText; parameter entity is used in all places in the DTD, where “inner text” should be
allowed. This means, that no structures like lists, enumerations, and tables are allowed. This is used
for example in headings.

3.2.4 <Subtitle >
From gapdoc.dtd

<!ELEMENT Subtitle (%Text;)*>

Contains the subtitle of the document.

3.2.5 <Version >
From gapdoc.dtd

<!ELEMENT Version (#PCDATA|Alt)*>

Note that the version can only contain character data and no further markup elements (except forAlt,
which is necessary to resolve the entities described in2.2.3). The converters willnot put the word
“Version” in front of the text in this element.

GAPDoc 20

3.2.6 <Author >
From gapdoc.dtd

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->

As noted in the comment there may be more than one element of this type. This elements should
contain the name of an author and probably anEmail-address and/or WWW-Homepage element for
this author, see3.5.6and3.5.7.

3.2.7 <Date >
From gapdoc.dtd

<!ELEMENT Date (#PCDATA)>

Only character data is allowed in this element which gives a date for the document. No automatic
formatting is done.

3.2.8 <Abstract >
From gapdoc.dtd

<!ELEMENT Abstract (%Text;)*>

This element contains an abstract of the whole book.

3.2.9 <Copyright >
From gapdoc.dtd

<!ELEMENT Copyright (%Text;)*>

This element is used for the copyright notice. Note the©right; entity as described in section
2.2.3.

3.2.10 <Acknowledgements >
From gapdoc.dtd

<!ELEMENT Acknowledgements (%Text;)*>

This element contains the acknowledgements.

3.2.11 <Colophon >
From gapdoc.dtd

<!ELEMENT Colophon (%Text;)*>

The “colophon” page is used to say something about the history of a document.

3.2.12 <TableOfContents >
From gapdoc.dtd

<!ELEMENT TableOfContents EMPTY>

This element may occur in theBook element after theTitlePage element. If it is present, a table of
contents is generated and inserted into the document. Note that because this element is declared to be
EMPTY one can use the abbreviation

From gapdoc.dtd
<TableOfContents/>

to denote this empty element.

GAPDoc 21

3.2.13 <Bibliography >
From gapdoc.dtd

<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>

This element may occur in theBook element after the lastAppendix element. If it is present, a
bibliography section is generated and inserted into the document. The attributeDatabases must be
specified and refers to BibTeX databases. The databases must be separated by commas and mustnot
have a.bib extension. A bibliography style may be specified with theStyle attribute. The optional
Style attribute (for LATEX output of the document) must also be specified without the.bst extension
(the default isalpha). See also section3.5.3for a description of theCite element which is used to
include bibliography references into the text.

The reference for the format of BibTeX database files is [1, Appendix B].

3.2.14 <TheIndex >
From gapdoc.dtd

<!ELEMENT TheIndex EMPTY>

This element may occur in theBook element after theBibliography element. If it is present, an
index is generated and inserted into the document. There are elements inGAPDoc which implicitly
generate index entries (e.g.,Func (3.4.2)) and there is an elementIndex (3.5.4)for explicitly adding
index entries.

3.3 Sectioning Elements

A GAPDoc book is divided intochapters, sections, andsubsections. The idea is of course, that a
chapter consists of sections, which in turn consist of subsections. However for the sake of flexibility,
the rules are not too restrictive. Firstly, text is allowed everywhere in the body of the document (and
not only within sections). Secondly, the chapter level may be omitted. The exact rules are described
below.

Appendicesare a flavor of chapters, occurring after all regular chapters. There is a special type
of subsection called “ManSection”. This is a subsection devoted to the description of a function,
operation or variable. It is analogous to a manpage in the UNIX environment. Usually each function,
operation, method, and so on should have its ownManSection.

Cross referencing is done on the level ofSubsections, respectivelyManSections. The topics in
GAP’s online help are also pointing to subsections. So, they should not be too long.

We start our description of the sectioning elements “top-down”:

3.3.1 <Body>

TheBody element marks the main part of the document. It must occur after theTableOfContents
element. There is a big difference betweeninsideandoutsideof this element: Whereas regular text
is allowed nearly everywhere in theBody element and its subelements, this is not true for theoutside.
This has also implications on the handling of whitespace.Outsidesuperfluous whitespace is usually
ignored when it occurs between elements.Insideof the Body element whitespace matters because
character data is allowed nearly everywhere. Here is the definition in the DTD:

GAPDoc 22

From gapdoc.dtd
<!ELEMENT Body (%Text;| Chapter | Section)*>

The fact thatChapter andSection elements are allowed here leads to the possibility to omit the
chapter level entirely in the document. For a description of%Text; see3.2.3.

(Remark: The purpose of this element is to make sure that avalid GAPDoc document has a correct
overall structure, which is only possible when the top elementBook has element content.)

3.3.2 <Chapter >
From gapdoc.dtd

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

A Chapter element can have aLabel attribute, such that this chapter can be referenced later on with
a Ref element (see section3.5.1). Note that you have to specify a label to reference the chapter as
there is no automatic labelling!

Chapter elements can contain text (for a description of%Text; see3.2.3), Section elements,
andHeading elements.

The followingadditionalrule cannot be stated in the DTD because we want aChapter element to
have mixed content. There must beexactly oneHeading element in theChapter element, containing
the heading of the chapter. Here is its definition:

3.3.3 <Heading >
From gapdoc.dtd

<!ELEMENT Heading (%InnerText;)*>

This element is used for headings inChapter, Section, Subsection, andAppendix elements. It
may only contain%InnerText; (for a description see3.2.3).

Each of the mentioned sectioning elements must contain exactly one directHeading element (i.e.,
one which is not contained in another sectioning element).

3.3.4 <Appendix >
From gapdoc.dtd

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

The Appendix element behaves exactly like aChapter element (see3.3.2) except for the position
within the document and the numbering. While chapters are counted with numbers (1., 2., 3., ...) the
appendices are counted with capital letters (A., B., ...).

Again there is an optionalLabel attribute used for references.

3.3.5 <Section >
From gapdoc.dtd

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

GAPDoc 23

A Section element can have aLabel attribute, such that this section can be referenced later on with a
Ref element (see section3.5.1). Note that you have to specify a label to reference the section as there
is no automatic labelling!

Section elements can contain text (for a description of%Text; see3.2.3), Heading elements,
and subsections.

There must be exactly one directHeading element in aSection element, containing the heading
of the section.

Note that a subsection is either aSubsection element or aManSection element.

3.3.6 <Subsection >
From gapdoc.dtd

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

TheSubsection element can have aLabel attribute, such that this subsection can be referenced later
on with aRef element (see section3.5.1). Note that you have to specify a label to reference the
subsection as there is no automatic labelling!

Subsection elements can contain text (for a description of%Text; see3.2.3), andHeading
elements.

There must be exactly oneHeading element in aSubsection element, containing the heading of
the subsection.

Another type of subsection is aManSection, explained now:

3.4 ManSection

ManSections are intended to describe a function, operation, method, variable, or some other technical
instance. It is analogous to a manpage in the UNIX environment.

3.4.1 <ManSection >
From gapdoc.dtd

<!ELEMENT ManSection (((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

TheManSection element can have aLabel attribute, such that this subsection can be referenced later
on with aRef element (see section3.5.1). But this is probably rarely necessary because the elements
Func and so on (explained below) generate automatically labels for cross referencing.

The content of aManSection element is one or more elements describing certain items inGAP,
each of them optionally followed by aReturns element, followed by aDescription element, which
contains%Text; (see3.2.3) describing it. (Remember to include examples in the description as often
as possible, see3.7.10). The classes of itemsGAPDoc knows of are: functions (Func), operations
(Oper), methods (Meth), filters (Filt), properties (Prop), attributes (Attr), variables (Var), families

GAPDoc 24

(Fam), and info classes (InfoClass). OneManSection should only describe several of such items
when these are very closely related.

Each element for an item corresponding to aGAP function can be followed by aReturns element.
In output versions of the document the string “Returns: ” will be put in front of the content text. The
text in theReturns element should usually be a short hint about the type of object returned by the
function. This is intended to give a good mnemonic for the use of a function (together with a good
choice of names for the formal arguments).

ManSections are also sectioning elements which count as subsections. A possible heading is
generated automatically from the first element.

3.4.2 <Func>
From gapdoc.dtd

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a function. TheName
attribute is required and its value is the name of the function. The value of theArg attribute (also
required) contains the full list of arguments including optional parts, which are denoted by square
brackets. The arguments are separated by whitespace or commas.

The name of the function is also used as label for cross referencing. When the name of the function
appears in the text of the document it shouldalwaysbe written with theRef element, see3.5.1. This
allows to use a unique typesetting style for function names and automatic cross referencing.

If the optionalLabel attribute is given, it is appended (with a colon: in between) to the name of
the function for cross referencing purposes. The text of the label can also appear in the document text.
So, it should be a kind of short explanation.

Example
<Func Arg="x[, y]" Name="LibFunc" Label="for my objects"/>

The optionalComm attribute should be a short description of the function, usually at most one line
long.

This element automatically produces an index entry with the name of the function and, if present,
the text of theLabel attribute as subentry (see also3.2.14and3.5.4).

3.4.3 <Oper>
From gapdoc.dtd

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of an operation. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

Note that multiple descriptions of the same operation may occur in a document because there
may be several declarations inGAP. Furthermore there may be severalManSections for methods

GAPDoc 25

of this operation (see3.4.4) which also use the same name. For reference purposes these must be
distinguished by differentLabel attributes.

3.4.4 <Meth>
From gapdoc.dtd

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a method. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

Due to the fact that it often happens that many methods are installed for the same operation it
seems to be interesting to document them independently. This is possible by using the same method
name in differentManSections. It is however required that these subsections and those describing the
corresponding operation are distinguished by differentLabel attributes.

3.4.5 <Filt >
From gapdoc.dtd

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a filter. The first four
attributes are used in the same way as in theFunc element (see3.4.2), except that theArg attribute is
optional.

The Type attribute can be any string, but it is thought to be something like “Category” or
“Representation”.

3.4.6 <Prop >
From gapdoc.dtd

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a property. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

3.4.7 <Attr >
From gapdoc.dtd

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED

GAPDoc 26

Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of an attribute (inGAP). The
attributes are used exactly in the same way as in theFunc element (see3.4.2).

3.4.8 <Var >
From gapdoc.dtd

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within aManSection element to document a global variable. The attributes are
used exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.4.9 <Fam>
From gapdoc.dtd

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within aManSection element to document a family. The attributes are used
exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.4.10 <InfoClass >
From gapdoc.dtd

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within aManSection element to document an info class. The attributes are used
exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.5 Cross Referencing and Citations

Cross referencing in theGAPDoc system is somewhat different to the usual LATEX cross referencing
in so far, that a reference knows “which type of object” it is referencing. For example a “reference to
a function” is distinguished from a “reference to a chapter”. The idea of this is, that the markup must
contain this information such that the converters can produce better output. The HTML converter can
for example typeset a function reference just as the name of the function with a link to the description
of the function, or a chapter reference as a number with a link in the other case.

Referencing is done with theRef element:

GAPDoc 27

3.5.1 <Ref >
From gapdoc.dtd

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text | Number) #IMPLIED> <!-- normally automatic -->

The Ref element is defined to beEMPTY. If one of the attributesFunc, Oper, Meth, Prop, Attr,
Var, Fam, InfoClass, Chap, Sect, Subsect, Appendix is given then there must be exactly one of
these, making the reference one to the corresponding object. TheLabel attribute can be specified in
addition to make the reference unique, for example if more than one method with a given name is
present. (Note that there is no way to specify in the DTD that exactly one of the first listed attributes
must be given, this is an additional rule.)

A reference to aLabel element defined below (see3.5.2) is done by giving theLabel attribute
and optionally theText attribute. If theText attribute is present its value is typeset in place of the
Ref element, if linking is possible (for example in HTML). If this is not possible, the section number
is typeset. This type of reference is also used for references to tables (see3.6.5).

Optionally an external reference into another book can be specified by using theBookName at-
tribute. In this case theLabel attributemustbe specified and refers to a search string as in theGAP
help system. It is guaranteed that the reference points to the position in the other book, that theGAP
help system finds as first match if one types the value of theLabel element after a question mark.

The optional attributeStyle can take only the valuesText andNumber. It can be used with
references to sectioning units and it controls, whether an explicit section number is generated or
text. Normally all references to sections generate numbers and references to aGAP object generate
the name of the corresponding object with some additional link or sectioning information, which is
the behavior ofStyle="Text". In caseStyle="Number" in all cases an explicit section number is
generated. So

Example
<Ref Subsect="Func" Style="Text"/> described in section
<Ref Subsect="Func" Style="Number"/>

produces: ‘<Func>’ described in section3.4.2.

GAPDoc 28

3.5.2 <Label >
From gapdoc.dtd

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

This element is used to define a label for referencing a certain position in the document, if this is
possible. If an exact reference is not possible (like in a printed version of the document) a reference
to the corresponding subsection is generated. The value of theName attribute must be unique under
all Label elements.

3.5.3 <Cite >
From gapdoc.dtd

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

This element is for bibliography citations. It isEMPTY by definition. The attributeKey is the key for
a lookup in a BibTeX database that has to be specified in theBibliography element (see3.2.13).
The value of theWhere attribute specifies the position in the document as in the corresponding LATEX
syntax\cite[...]{...}.

3.5.4 <Index >
From gapdoc.dtd

<!ELEMENT Index (%InnerText;)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>

This element generates an index entry. The text within the element is typeset in the index entry, which
is sorted under the value, that is specified in theKey andSubkey attributes. If they are not specified,
the typeset text itself is used as the key.

Note that allFunc and similar elements automatically generate index entries. If theTheIndex
element (3.2.14) is not present in the document allIndex elements are ignored.

3.5.5 <URL>
From gapdoc.dtd

<!ELEMENT URL (#PCDATA)> <!-- Can we define this better? -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats

that have links like HTML -->

This element is for references into the internet. The text within the element should be a valid URL. It
is typeset in the document. For the case of an output document format that supports links the value of
the attributeText is typeset as visible text for the link.

3.5.6 <Email >
From gapdoc.dtd

<!ELEMENT Email (#PCDATA)>

GAPDoc 29

This element type is the special case of an URL specifying an email address. The content of the
element should be the email address without any prefix like “mailto:”. This address is typeset by all
converters, also without any prefix. In the case of an output document format like HTML the converter
can produce a link with a “mailto:” prefix.

3.5.7 <Homepage>
From gapdoc.dtd

<!ELEMENT Homepage (#PCDATA)>

This element type is the special case of an URL specifying a WWW-homepage. The content of the
element should be the valid URL specifying a world wide web page. In comparison with theURL
element the address is visible in all output formats.

3.6 Structural Elements like Lists

The GAPDoc system offers some limited access to structural elements like lists, enumerations, and
tables. Although it is possible to use all LATEX constructs one always has to think about other output
formats. The elements in this section are guaranteed to produce something reasonable in all output
formats.

3.6.1 <List >
From gapdoc.dtd

<!ELEMENT List (((Mark,Item)|(BigMark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>

This element produces a list. Each item in the list corresponds to anItem element. EveryItem
element is optionally preceded by aMark element. The content of this is used as a marker for the
item. Note that this marker can be a whole word or even a sentence. It will be typeset in some
emphasized fashion and most converters will provide some indentation for the rest of the item.

TheOnly andNot attributes can be used to specify, that the list is included into the output by only
one type of converter (Only) or all but one type of converter (Not). Of course at most one of the two
attributes may occur in one element. The following values are allowed as of now: “LaTeX”, “ HTML”,
and “Text”. See also theAlt element in3.9.1for more about text alternatives for certain converters.

3.6.2 <Mark>
From gapdoc.dtd

<!ELEMENT Mark (%InnerText;)*>

This element is used in theList element to mark items. See3.6.1for an explanation.

3.6.3 <Item >
From gapdoc.dtd

<!ELEMENT Item (%Text;)*>

This element is used in theList, Enum, andTable elements to specify the items. See sections3.6.1,
3.6.4, and3.6.5for further information.

GAPDoc 30

3.6.4 <Enum>
From gapdoc.dtd

<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

This element is used identically to theList element (see3.6.1) except that the items may not have
marks attached to them. Instead, the items are numbered automatically. The same comments about
theOnly andNot attributes as above apply.

3.6.5 <Table >
From gapdoc.dtd

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED

Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED>
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

A table in GAPDoc consists of an optionalCaption element followed by a sequence ofRow and
HorLine elements. AHorLine element produces a horizontal line in the table. ARow element consists
of a sequence ofItem elements as they also occur inList andEnum elements. TheOnly andNot
attributes have the same functionality as described in theList element in3.6.1.

TheAlign attribute is written like a LATEX tabular alignment specifier but only the letters “l”, “ r”,
“c”, and “|” are allowed meaning left alignment, right alignment, centered alignment, and a vertical
line as delimiter between columns respectively.

If the Label attribute is there, one can reference the table with theRef element (see3.5.1) using
its Label attribute.

Usually only simple tables should be used. If you want a complicated table in the LATEX output you
should provide alternatives for text and HTML output. Note that in HTML-4.0 there is no possibility
to interpret the “|” column separators andHorLine elements as intended. There are lines between all
columns and rows or no lines at all.

3.7 Types of Text

This section covers the markup of text. Various types of “text” exist. The following elements are used
in theGAPDoc system to mark them. They mostly come in pairs, one long name which is easier to
remember and a shortcut to make the markup “lighter”.

Most of the following elements are thought to contain only character data and no further markup
elements. It is however necessary to allowAlt elements to resolve the entities described in section
2.2.3.

GAPDoc 31

3.7.1 <Emph> and<E>
From gapdoc.dtd

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

This element is used to emphasize some piece of text. It may contain%InnerText; (see3.2.3).

3.7.2 <Quoted > and<Q>
From gapdoc.dtd

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

This element is used to put some piece of text into “ ”-quotes. It may contain%InnerText; (see
3.2.3).

3.7.3 <Keyword > and<K>
From gapdoc.dtd

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

This element is used to mark something as akeyword. Usually this will be aGAP keyword such
as “if” or “ for”. No further markup elements are allowed within this element except for theAlt
element, which is necessary.

3.7.4 <Arg > and<A>
From gapdoc.dtd

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

This element is used insideDescriptions in ManSections to mark something as anargument(of
a function, operation, or such). It is guaranteed that the converters typeset those exactly as in the
definition of functions. No further markup elements are allowed within this element.

3.7.5 <Code> and<C>
From gapdoc.dtd

<!ELEMENT Code (#PCDATA|Alt)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt)*> <!-- GAP code (shortcut) -->

This element is used to mark something as a piece ofcodelike for example aGAP expression. It is
guaranteed that the converters typeset this exactly as in theListing element (compare section3.7.9.
No further markup elements are allowed within this element.

3.7.6 <File > and<F>
From gapdoc.dtd

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

This element is used to mark something as afilenameor a pathnamein the file system. No further
markup elements are allowed within this element.

GAPDoc 32

3.7.7 <Button > and
From gapdoc.dtd

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key, ...) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

This element is used to mark something as abutton. It can also be used for other items in a graphical
user interface likemenus, menu entries, or keys. No further markup elements are allowed within this
element.

3.7.8 <Package >
From gapdoc.dtd

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

This element is used to mark something as a name of apackage. This is for example used to define the
entitiesGAP, XGAP or GAPDoc (see section2.2.3). No further markup elements are allowed within
this element.

3.7.9 <Listing >
From gapdoc.dtd

<!ELEMENT Listing (#PCDATA)> <!-- This is just for GAP code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

This element is used to embed listings of programs into the document. Only character data and no
other elements are allowed in the content. You shouldnot use the character entities described in
section2.2.3but instead type the characters directly. Only the general XML rules from section2.1
apply. Note especially the usage of<![CDATA[sections described there. It is guaranteed that all
characters use a fixed width font for typesettingListing elements. Compare also the usage of the
Code andC elements in3.7.5.

TheType attribute contains a comment about the type of listed code. It may appear in the output.

3.7.10 <Log> and<Example >
From gapdoc.dtd

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->

These two elements behave exactly like theListing element (see3.7.9). They are thought for pro-
tocols ofGAP sessions. The only difference between the two is thatExample sections are intended
to be subject to an automatic manual checking mechanism used to ensure the correctness of theGAP
manual whereasLog is not touched by this.

3.7.11 <Verb>

There is one further type of verbatim-like element.
From gapdoc.dtd

<!ELEMENT Verb (#PCDATA)>

GAPDoc 33

The content of such an element is guaranteed to be put into an output version exactly as it is using
some fixed width font. Before the content a new line is started. If the line after the end of the start tag
consists of whitespace only then this part of the content is skipped.

This element is intended to be used together with theAlt element to specify pre-formatted ASCII
alternatives for complicatedDisplay formulae orTables.

3.8 Elements for Mathematical Formulae

3.8.1 <Math> and<Display >
From gapdoc.dtd

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

These elements are used for mathematical formulae. As described in section2.2.2they correspond to
LATEX’s math and display math mode respectively.

The formulae are typed in as in LATEX, exceptthat the standard XML entities, see2.1.9(in par-
ticular the characters< and&), must be escaped - either by using the corresponding entities or by
enclosing the formula between “<![CDATA[” and “]]>”. (The main reference for LATEX is [1].)

The only element type that is allowed within the formula elements is theArg or A element (see
3.7.4), which is used to typeset identifiers that are arguments toGAP functions or operations.

In text and HTML output these formula are shown as LATEX source code. For simple formulae
(and you should try to make all your formulae simple!) there is the elementM (see3.8.2) for which
there is a well defined translation into text, which can be used for text and HTML output versions
of the document. So, if possible try to avoid theMath andDisplay elements or provide useful text
substitutes for complicated formulae viaAlt elements (see3.9.1and3.7.11).

3.8.2 <M>
From gapdoc.dtd

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

The “M” element type is intended for formulae in the running text for which there is a sensible ASCII
version. For the LATEX version of aGAPDoc document theM andMath elements are equivalent. The
remarks in3.8.1about special characters and theArg element apply here as well. A document which
has all formulae enclosed inM elements can be well readable in text terminal output and printed output
versions.

The following LATEX macros have a sensible ASCII translation and are guaranteed to be translated
accordingly by text (and HTML) converters:

GAPDoc 34

\ldots ...
\mid |
\left
\right
\mathbb
\mathop
\limits
\cdot *
\ast *
\geq >=
\leq <=
\pmod mod
\equiv =
\rightarrow ->
\hookrightarrow ->
\to ->
\longrightarrow -->
\Rightarrow =>
\Longrightarrow ==>
\Leftarrow <=
\iff <=>
\mapsto ->
\leftarrow <-
\langle <

\rangle >

\setminus \
Table: LATEX macros with special text translation

In all other macros only the backslash is removed. Whitespace is normalized (to one blank) but
not removed. Note that whitespace is not added, so you may want to add a few more spaces than you
usually do in your LATEX documents.

Braces{} are removed in general, however pairs of double braces are converted to one pair of
braces. This can be used to write<M>xˆ{12}</M> for xˆ12 and<M>x {{i+1}}</M> for x {i+1}.

3.9 Everything else

3.9.1 <Alt >

This element is used to specify alternatives for different output formats within normal text. See also
sections3.6.1, 3.6.4, and3.6.5for alternatives in lists and tables.

From gapdoc.dtd
<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and

"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED

Not CDATA #IMPLIED>

GAPDoc 35

Of course exactly one of the two attributes must occur in one element. The following values are
allowed as of now: “LaTeX”, “ HTML”, and “Text”. If the Only attribute is specified then only the
corresponding converter will include the content of the element into the output document. If theNot
attribute is specified the corresponding converter will ignore the content of the element.

Within the element only%InnerText; (see3.2.3) is allowed. This is to ensure that the same set
of chapters, sections, and subsections show up in all output formats.

3.9.2 <Par > and<P>
From gapdoc.dtd

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- this is intentionally empty! -->

ThisEMPTY element marks the boundary of paragraphs. Note that an empty line in the input does not
mark a new paragraph as opposed to the LATEX convention.

(Remark: it would be much easier to parse a document and to understand its sectioning and
paragraph structure when there was an element whosecontentis the text of a paragraph. But in
practice many paragraph boundaries are implicitly clear which would make it somewhat painful to
enclose each paragraph in extra tags. The introduction of theP or Par elements as above delegates
this pain to the writer of a conversion program forGAPDoc documents.)

Chapter 4

Distributing a Document into Several
Files

In GAPDoc there are facilities to distribute a document into several files. This is for example inter-
esting, if one wants to store the documentation of some code in the same file as the code itself. Or,
if one just wants to store chapters of a document in separate files. Basically, there is only a set of
conventions how this is done and some tools to collect the text for further processing.

4.1 The Conventions

Pieces of documentation that shall be incorporated into another document are marked as follows:
Example

<#GAPDoc Label="MyPiece">
<E>This</E> is the piece.
The hash characters are removed.
<#/GAPDoc>

This piece is then included into another file by a statement like:<#Include Label="MyPiece">
Here are the exact rules, how pieces are gathered:

• All lines up to a line containing the character sequence “<#GAPDoc Label="” are ignored. The
characters on the same line before this sequence are stored as “prefix”. The characters after the
sequence up to the next double quotes character are stored as “label”. All other characters in
the line are ignored.

• The following lines up to a line containing the character sequence “<#/GAPDoc>” are stored
under the label. These lines are processed as follows: The longest possible substring from the
beginning of the line that equals the corresponding substring of the prefix is removed.

Having stored a list of labels and pieces of text gathered as above this can be used as follows.

• In GAPDoc documentation files all statements of the form “<#Include Label="Key">” are
replaced by the sequence of lines stored under the labelKey.

• Additionally, every occurrence of a statement of the form “<#Include SYSTEM
"Filename">” is replaced by the whole file stored under the nameFilename in the file system.

36

GAPDoc 37

• These substitutions are done recursively (although one should probably avoid to use this exten-
sively).

Here is another example:
Example

<#GAPDoc Label="AnotherPiece"> some characters
This text is not indented.
This text is indented by one blank.
#Not indented.
#<#/GAPDoc>

replaces<#Include Label="AnotherPiece"> by
Example

This text is not indented.
This text is indented by one blank.
Not indented.

Since these rules are very simple it is quite easy to write a program in almost any programming
language which does this gathering of text pieces and the substitutions. InGAPDoc there is theGAP
functionComposedXMLString (4.2.1) which does this.

Note that the XML-tag-like markup we have used here is not a legal XML markup, since the hash
character is not allowed in element names. The mechanism described here is a preprocessing step
which composes an XML document.

4.2 A Tool for Collecting a Document

4.2.1 ComposedXMLString

♦ ComposedXMLString(path, main, source) (function)

Returns: XML document as string
This function returns a string containing aGAPDoc XML document constructed from several

source files.
Herepath must be a path to some directory (as string or directory object),main the name of a

file in this directory andsource a list of file names, all of these relative topath. The document is
constructed via the mechanism described in Section4.1.

First the files given insource are scanned for chunks ofGAPDoc-documentation marked by
<#GAPDoc Label="..."> and</#GAPDoc> pairs. Then the filemain is read and all<#Include
... >-tags are substituted recursively by other files or chunks of documentation found in the first
step, respectively.

Example
gap> doc := ComposedXMLString("/my/dir", "manual.xml",
> ["../lib/func.gd", "../lib/func.gi"]);;

Chapter 5

The Converters

TheGAPDoc package contains a set of programs which allow to convert aGAPDoc book into several
output versions and to make them available toGAP’s online help.

Currently the following output formats are provided: text for browsing inside a terminal running
GAP, LATEX with hyperref-package for cross references via hyperlinks and HTML for reading with
a Web-browser.

5.1 Producing Documentation from Source Files

Here we explain how to use the functions which are described in more detail in the following sec-
tions. We assume that we have the main fileMyBook.xml of a book"MyBook" in the directory
/my/book/path. This contains<#Include ...>-statements as explained in Chapter4. These refer
to some other files as well as pieces of text which are found in the comments of someGAP source files
../lib/a.gd and../lib/b.gi (relative to the path above). A BibTeX databaseMyBook.bib for the
citations is also in the directory given above. We want to produce a text-,dvi-, pdf-, postscript- and
HTML-version of the document.

All the commands shown in this Section are collected in the single functionMakeGAPDocDoc
(5.1.1).

First we construct the complete XML-document as a string withComposedXMLString (4.2.1).
This interprets recursively the<#Include ...>-statements.

Example
gap> path := Directory("/my/book/path");;
gap> main := "MyBook.xml";;
gap> files := ["../lib/a.gd", "../lib/b.gi"];;
gap> bookname := "MyBook";;
gap> str := ComposedXMLString(path, main, files);;

Then we parse the document and store its structure in a tree-like data structure. The commands for
this areParseTreeXMLString (5.2.1) andCheckAndCleanGapDocTree (5.2.4).

Example
gap> r := ParseTreeXMLString(str);;
gap> CheckAndCleanGapDocTree(r);
true

38

GAPDoc 39

We first produce a LATEX version of the document.GAPDoc2LaTeX (5.3.1) returns a string containing
the LATEX source. The utility functionFileString (5.6.5) writes the content of a string to a file, we
chooseMyBook.tex.

Example
gap> l := GAPDoc2LaTeX(r);;
gap> FileString(Filename(path, Concatenation(bookname, ".tex")), l);

Assuming that you have a sufficiently good installation of TEX available (seeGAPDoc2LaTeX (5.3.1)
for details) this can be processed with a series of commands like in the following example.

Example
cd /my/book/path
latex MyBook
bibtex MyBook
makeindex MyBook
latex MyBook
latex MyBook
mv MyBook.dvi manual.dvi
dvips -o manual.ps manual.dvi
rm MyBook.aux
pdflatex MyBook
pdflatex MyBook
mv MyBook.pdf manual.pdf

After this we have advi-, pdf- and postscript version of the document in the filesmanual.dvi,
manual.pdf andmanual.ps. The first two versions contain hyperlink information which can be used
with appropriate browsers for convenient reading of the document on screen (e.g., current versions of
xdvi, respectivelyxpdf or acroread.

Furthermore we have produced a fileMyBook.pnr which isGAP-readable and contains the page
number information for each (sub-)section of the document. We will use this later.

Next we produce a text version which can be read in a terminal (window). The command is
GAPDoc2Text (5.3.2). This produces a record with the actual text and some additional information.
The text can be written chapter wise into files withGAPDoc2TextPrintTextFiles (5.3.3). The names
of these files arechap0.txt, chap1.txt and so on. The text contains some color markup using ANSI
escape sequences. One can use this with a terminal which interprets these sequences appropriately af-
ter setting theGAP variableANSI COLORS to true. For the bibliography we have to tellGAPDoc2Text
(5.3.2) the location of the BibTeX database by specifying apath as second argument.

Example
t := GAPDoc2Text(r, path);;
GAPDoc2TextPrintTextFiles(t, path);

This command constructs all parts of the document including table of contents, bibliography and
index. The functionsFormatParagraph (5.5.3) for formatting text paragraphs andParseBibFiles
(5.4.1) for reading BibTeX files withGAP may be of independent interest.

With the text version we have also produced the information which is used for searching with
GAP’s online help. We can add the page number information from the LATEX version of the document
and then print amanual.six file which is read byGAP when the document is loaded. This is done
with AddPageNumbersToSix (5.3.4) andPrintSixFile (5.3.5).

Example
gap> AddPageNumbersToSix(r, Filename(path, "MyBook.pnr"));
gap> PrintSixFile(Filename(path, "manual.six"), r, bookname);

GAPDoc 40

Finally we produce an HTML version of the document and write it (chapter wise) into files
chap0.html, chap1.html and so on. They can be read with any Web-browser. The com-
mands areGAPDoc2HTML (5.3.6) and GAPDoc2HTMLPrintHTMLFiles (5.3.7). We also add
a link from manual.html to chap0.html. You may also add a filemanual.css, see
GAPDoc2HTMLPrintHTMLFiles (5.3.7) for more details.

Example
gap> h := GAPDoc2HTML(r);;
gap> GAPDoc2HTMLPrintHTMLFiles(h, path);

5.1.1 MakeGAPDocDoc

♦ MakeGAPDocDoc(path, main, files, bookname[, gaproot]) (function)

This function collects all the commands for producing advi-, pdf-, postscript-, text- and HTML-
version of aGAPDoc document as described in Section5.1.

Herepath must be the directory (as string or directory object) containing the main filemain of
the document (given with or without the.xml extension. The argumentfiles is a list of (probably
source code) files relative topath which contain pieces of documentation which must be included in
the document, see Chapter4. And bookname is the name of the book used byGAP’s online help. The
optional argumentgaproot must be a string which gives the relative path frompath to theGAP root
directory. If this is given, the HTML files are produced with relative paths to external books.

5.2 Parsing XML Documents

Arbitrary well-formed XML documents can be parsed and browsed by the following functions.

5.2.1 ParseTreeXMLString

♦ ParseTreeXMLString(str) (function)

Returns: a record which is root of a tree structure
This function parses an XML-document stored in stringstr and returns the document in form of

a tree.
A node in this tree looks corresponds either to an XML element, or some parsed character data.

In the first case it looks as follows:
Example Node

rec(name := "Book",
attributes := rec(Name := "EDIM"),
content := [... list of nodes for content ...],
start := 312,
stop := 15610,
next := 15611)

This means thatstr[312..15610] looks like <Book Name="EDIM"> ... content ...
</Book>.

The leaves of the tree encode parsed character data as in the following example:
Example Node

rec(name := "PCDATA",
content := "text without markup ")

GAPDoc 41

This function checks whether the XML document iswell formed, see2.1.13for an explanation. If an
error in the XML structure is found, a break loop is entered and the text around the position where the
problem starts is shown. WithShow(); one can browse the original input in thePager (Reference:
Pager), starting with the line where the error occurred. All entities are resolved when they are either
entities defined in theGAPDoc package (in particular the standard XML entities) or if their definition
is included in the<!DOCTYPE ..> tag of the document.

Note thatParseTreeXMLString does not parse and interpret the corresponding document type
definition (the.dtd-file given in the<!DOCTYPE ..> tag). Hence it also does not check thevalidity
of the document (i.e., it is novalidating XML parser).

If you are using this function to parse aGAPDoc document you can use
CheckAndCleanGapDocTree (5.2.4) for some validation and additional checking of the docu-
ment structure.

5.2.2 DisplayXMLStructure

♦ DisplayXMLStructure(tree) (function)

This utility displays the tree structure of an XML document as it is returned by
ParseTreeXMLString (5.2.1) (without thePCDATA leaves).

Since this is usually quite long the result is shown using thePager (Reference: Pager).

5.2.3 ApplyToNodesParseTree

♦ ApplyToNodesParseTree(tree, fun) (function)

♦ AddRootParseTree(tree) (function)

♦ RemoveRootParseTree(tree) (function)

The functionApplyToNodesParseTree applies a functionfun to all nodes of the parse treetree
of an XML document returned byParseTreeXMLString (5.2.1).

The functionAddRootParseTree is an application of this. It adds to all nodes a component
.root which is assigned to the top nodetree. These components can be removed afterwards with
RemoveRootParseTree.

And here are utilities for processingGAPDoc XML documents.

5.2.4 CheckAndCleanGapDocTree

♦ CheckAndCleanGapDocTree(tree) (function)

Returns: nothing
The argumenttree of this function is a parse tree fromParseTreeXMLString (5.2.1) of some

GAPDoc document. This function does an (incomplete) validity check of the document according to
the document type declaration ingapdoc.dtd. It also does some additional checks which cannot be
described in the DTD (like checking whether chapters and sections have a heading). For elements
with element content the whitespace between these elements is removed.

In case of an error the break loop is entered and the position of the error in the original XML
document is printed. WithShow(); one can browse the original input in thePager (Reference:
Pager).

GAPDoc 42

5.2.5 AddParagraphNumbersGapDocTree

♦ AddParagraphNumbersGapDocTree(tree) (function)

Returns: nothing
The argumenttree must be an XML tree returned byParseTreeXMLString (5.2.1) applied to a

GAPDoc document. This function adds to each node of the tree a component.count which is of form
[Chapter[, Section[, Subsection, Paragraph]]]. Here the first three numbers should be
the same as produced by the LATEX version of the document. Text before the first chapter is counted
as chapter0 and similarly for sections and subsections. Some elements are always considered to start
a new paragraph.

5.3 The Converters

Here are more details about the conversion programs forGAPDoc XML documents.

5.3.1 GAPDoc2LaTeX

♦ GAPDoc2LaTeX(tree) (function)

Returns: LATEX document as string
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.4)).
The output is a string containing a version of the document which can be written to a file and processed
with LATEX or pdfLATEX (and probably BibTeX andmakeindex).

The output uses thereport document class and needs the following LATEX packages:a4wide,
amssymb, isolatin1, makeidx, color, fancyvrb, pslatex andhyperref. These are for example
provided by theteTeX-1.0 distribution of TEX (which in turn is used for most TEX packages of current
Linux distributions); seehttp://www.tug.org/tetex/.

In particular, the resultingdvi- or pdf-output contains (internal and external) hyperlinks which
can be very useful for online browsing of the document.

The LATEX processing also produces a file with extension.pnr which isGAP readable and contains
the page numbers for all (sub)sections of the document. This can be used byGAP’s online help; see
AddPageNumbersToSix (5.3.4). There is support for two types or XML processing instructions which
allow to change the options used for the document class or to add some extra lines to the preamble of
the LATEX document. They can be specified as in the following examples:

in top level of XML document
<?LaTeX Options="12pt"?>
<?LaTeX ExtraPreamble="\usepackage{blabla}
\newcommand{\bla}{blabla}
"?>

A hint for large documents: In many TEX installations one can easily reach some memory limitations
with documents which contain many (cross-)references. InteTeX you can look for a filetexmf.cnf
which allows to enlarge certain memory sizes.

This function works by running recursively through the document tree and calling a handler func-
tion for eachGAPDoc XML element. These handler functions are all quite easy to understand (the
greatest complications are some commands for index entries, labels or the output of page number
information). So it should be easy to adjust layout details to your own taste by slight modifications of
the program.

http://www.tug.org/tetex/

GAPDoc 43

5.3.2 GAPDoc2Text

♦ GAPDoc2Text(tree[, bibpath][, width]) (function)

Returns: record containing text files as strings and other information
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.4)).
This function produces a text version of the document which can be used withGAP’s online help
(with the "screen" viewer, seeSetHelpViewer (Reference: SetHelpViewer)). It includes title
page, bibliography and index. The bibliography is made from BibTeX databases. Their location must
be given with the argumentbibpath (as string or directory object).

The output is a record with one component for each chapter (with names"0", "1", ...,"Bib" and
"Ind"). Each such component is also a record with components

text the text of the whole chapter as a string

ssnr list of subsection numbers in this chapter (like[3, 2, 1] for chapter 3, section 2, subsec-
tion 1)

linenr corresponding list of line numbers where the subsections start

len number of lines of this chapter

The result can be written into files with the commandGAPDoc2TextPrintTextFiles (5.3.3).
As a side effect this function also produces themanual.six information which is used for search-

ing in GAP’s online help. This is stored intree.six and can be printed into amanual.six file with
PrintSixFile (5.3.5) (preferably after producing a LATEX version of the document as well and adding
the page number information totree.six, seeGAPDoc2LaTeX (5.3.1) andAddPageNumbersToSix
(5.3.4)).

The text produced by this function contains color markup via ANSI escape sequences, see
TextAttr (5.5.2). To view the colored text you need a terminal which interprets these escape se-
quences correctly and you have to set the variableANSI COLORS to true (a good place for doing this
is your.gaprc file).

With the optional argumentwidth a different length of the output text lines can be chosen. The
default is 76 and all lines in the resulting text start with two spaces. This looks good on a terminal
with a standard width of 80 characters and you probably don’t want to use this argument.

5.3.3 GAPDoc2TextPrintTextFiles

♦ GAPDoc2TextPrintTextFiles(t[, path]) (function)

Returns: nothing
The first argument must be a result returned byGAPDoc2Text (5.3.2). The second argument is

a path for the files to write, it can be given as string or directory object. The text of each chapter is
written into a separate file with namechap0.txt, chap1.txt, ...,chapBib.txt, andchapInd.txt.

If you want to make your document accessible via theGAP online help you must put at least these
files for the text version into a directory and use the name of this directory as an argument for one
of the commandsDeclarePackageDocumentation (Reference: DeclarePackageDocumentation)
or DeclarePackageAutoDocumentation (Reference: DeclarePackageAutoDocumentation). Fur-
thermore you need to put the filemanual.six into this directory, seePrintSixFile (5.3.5).

Optionally you can add thedvi- and pdf-versions of the document which are produced with
GAPDoc2LaTeX (5.3.1) to this directory. The files must have the namesmanual.dvi andmanual.pdf,

GAPDoc 44

respectively. Also you can add the files of the HTML version produced withGAPDoc2HTML (5.3.6) to
this directory, seeGAPDoc2HTMLPrintHTMLFiles (5.3.7). The handler functions inGAP for this help
format detect automatically which of the optional formats of a book are actually available.

5.3.4 AddPageNumbersToSix

♦ AddPageNumbersToSix(tree, pnrfile) (function)

Returns: nothing
Heretree must be the XML tree of aGAPDoc document, returned byParseTreeXMLString

(5.2.1). Runninglatex on the result ofGAPDoc2LaTeX (5.3.1)(tree) produces a filepnrfile (with
extension.pnr). The commandGAPDoc2Text (5.3.2)(tree) creates a componenttree.six which
contains all information about the document for theGAP online help, except the page numbers in
the .dvi, .ps, .pdf versions of the document. This command adds the missing page number
information totree.six.

5.3.5 PrintSixFile

♦ PrintSixFile(tree, bookname, fname) (function)

Returns: nothing
This function prints the.six file fname for a GAPDoc document stored intree with name

bookname. Such a file contains all information about the book which is needed by theGAP online help.
This information must first be created by calls ofGAPDoc2Text (5.3.2) andAddPageNumbersToSix
(5.3.4).

5.3.6 GAPDoc2HTML

♦ GAPDoc2HTML(tree[, bibpath[, gaproot]]) (function)

Returns: record containing HTML files as strings and other information
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.4)).
This function produces an HTML version of the document which can be read with any Web-browser
and also used withGAP’s online help (seeSetHelpViewer (Reference: SetHelpViewer)). It in-
cludes title page, bibliography, and index. The bibliography is made from BibTeX databases. Their
location must be given with the argumentbibpath (as string or directory object). If the third argument
gaproot is given and is a string then this string is interpreted as relative path toGAP’s root directory.
Reference-URLs to external HTML-books which begin with theGAP root path are then rewritten to
start with the given relative path. This makes the HTML-documentation portable provided a package
is installed in some standard location below theGAP root.

The output is a record with one component for each chapter (with names"0", "1", ...,
"Bib", and "Ind"). Each such component is also a record with components The HTML
code produced with this converter conforms to the W3C specification HTML 4.01 strict, see
http://www.w3.org/TR/html401. This means in particular that the code doesn’t contain any ex-
plicit font or color information. The layout information for a browser should be specified in a cas-
cading style sheet (CSS) file. TheGAPDoc package contains an example of such a style sheet, see
the filegapdoc.css in the root directory of the package. This file conforms to the W3C specification
CSS 2.0, seehttp://www.w3.org/TR/REC-CSS2. You may just copy that file asmanual.css into
the directory which contains the HTML version of your documentation. But, of course, you are free

http://www.w3.org/TR/html401
http://www.w3.org/TR/REC-CSS2

GAPDoc 45

to adjust it for your package, e.g., change colors or other layout details, add a background image, ...
Each of the HTML files produced by the converters contains a link to this local style sheet file called
manual.css.

text the text of an HTML file containing the whole chapter (as a string)

ssnr list of subsection numbers in this chapter (like[3, 2, 1] for chapter 3, section 2, subsec-
tion 1)

The result can be written into files with the commandGAPDoc2HTMLPrintHTMLFiles (5.3.7).
Mathematical formulae are handled as in the text converterGAPDoc2Text (5.3.2). We don’t want

to assume that the browser can use symbol fonts. SomeGAP users like to browse the online help
with lynx, seeSetHelpViewer (Reference: SetHelpViewer), which runs inside the same terminal
windows asGAP.

5.3.7 GAPDoc2HTMLPrintHTMLFiles

♦ GAPDoc2HTMLPrintHTMLFiles(t[, path]) (function)

Returns: nothing
The first argument must be a result returned byGAPDoc2HTML (5.3.6). The second argument is a

path for the files to write, it can be given as string or directory object. The text of each chapter is writ-
ten into a separate file with namechap0.html, chap1.html, ...,chapBib.html, andchapInd.html.

You can make these files accessible via theGAP online help by putting them into a directory and
using this as an argument for one of the commandsDeclarePackageDocumentation (Reference:
DeclarePackageDocumentation) or DeclarePackageAutoDocumentation (Reference: De-
clarePackageAutoDocumentation). To tell GAP that the HTML version is accessible you have to
add a filemanual.html which is a link to or a copy ofchap0.html. You may also want to put a file
manual.css into that directory, seeGAPDoc2HTML (5.3.6).

5.4 Parsing BibTeX Files

Here are functions for parsing, normalizing and printing reference lists in BibTeX format. The refer-
ence describing this format is [1, Appendix B].

5.4.1 ParseBibFiles

♦ ParseBibFiles(bibfile) (function)

Returns: list [list of bib-records, list of abbrevs, list of expansions]
This function parses a filebibfile (if this file does not exist the extension.bib is appended) in

BibTeX format and returns a list as follows:[entries, strings, texts]. Hereentries is a list
of records, one record for each reference contained inbibfile. Thenstrings is a list of abbrevia-
tions defined by@string-entries inbibfile andtexts is a list which contains in the corresponding
position the full text for such an abbreviation.

The records in entries store key-value pairs of a BibTeX reference in the formrec(key1 =
value1, ...). The names of the keys are converted to lower case. The type of the reference (i.e.,
book, article, ...) and the citation key are stored as components.Type and.Label.

As an example consider the following BibTeX file.

GAPDoc 46

my.bib
@string{ j = "Important Journal" }
@article{ AX2000, Author= "Fritz A. First and Sec, X. Y.",
TITLE="Short", journal = j, year = 2000 }

Example
gap> bib := ParseBibFiles("my.bib");
[[rec(Type := "article", Label := "AB2000",

author := "Fritz A. First and Sec, X. Y.", title := "Short",
journal := "Important Journal", year := "2000")],

["j"],
["Important Journal"]]

5.4.2 NormalizeNameAndKey

♦ NormalizeNameAndKey(r) (function)

Returns: nothing
This function normalizes in a record describing a BibTeX reference (seeParseBibFiles (5.4.1))

the author and editor fields using the description in [1, Appendix B 1.2]. The original entries are
stored in.authororig and.editororig.

Furthermore a short and a long citation key is generated.
We continue the example fromParseBibFiles (5.4.1).

Example
gap> bib[1][1];
rec(Type := "article", Label := "AB2000",

author := "First, F. A. and Sec, X. Y. ", title := "Short",
journal := "Important Journal", year := "2000",
authororig := "Fritz A. First and Sec, X. Y.", key := "FS00",
keylong := "firstsec2000")

5.4.3 WriteBibFile

♦ WriteBibFile(bibfile, bib) (function)

Returns: nothing
This is the converse ofParseBibFiles (5.4.1). Herebib must have a format as it is returned by

ParseBibFiles (5.4.1). A BibTeX file bibfile is written and the entries are formatted in a uniform
way. All given abbreviations are used while writing this file.

We continue the example fromNormalizeNameAndKey (5.4.2). The command
Example

gap> WriteBibFile("nicer.bib", bib);

produces a filenicer.bib as follows:
nicer.bib

@string{j = "Important Journal" }

@article{ AB2000,
author = {First, F. A. and Sec, X. Y.},
title = {Short},
journal = j,
year = {2000},

GAPDoc 47

key = {FS00},
authororig = {Fritz A. First and Sec, X. Y.},
keylong = {firstsec2000}

}

5.5 Text Utilities

This section describes some utility functions for handling texts withinGAP. They are used by other
functions in theGAPDoc package but may be useful for other purposes as well. We start with some
variables containing useful strings and go on with functions for parsing and reformatting text.

5.5.1 WHITESPACE

♦ WHITESPACE (global variable)

♦ CAPITALLETTERS (global variable)

♦ SMALLLETTERS (global variable)

♦ LETTERS (global variable)

♦ DIGITS (global variable)

♦ HEXDIGITS (global variable)

These variables contain sets of characters which are useful for text processing. They are defined
as follows.

WHITESPACE " \n\t\r"

CAPITALLETTERS "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

SMALLLETTERS "abcdefghijklmnopqrstuvwxyz"

LETTERS concatenation of CAPITALLETTERS and SMALLLETTERS

DIGITS "0123456789"

HEXDIGITS "0123456789ABCDEFabcdef"

5.5.2 TextAttr

♦ TextAttr (global variable)

The recordTextAttr contains strings which can be printed to change the terminal attribute for the
following characters. This only works with terminals which understand basic ANSI escape sequences.
Try the following example to see if this is the case for the terminal you are using. It shows the effect
of the foreground and background color attributes and of the.bold, .blink, .normal, .reverse
and.underscore which can partly be mixed.

Example
extra := ["CSI", "reset", "delline", "home"];;
for t in Difference(RecNames(TextAttr), extra) do

Print(TextAttr.(t), "TextAttr.", t, TextAttr.reset,"\n");
od;

GAPDoc 48

The suggested defaults for colors0..7 are black, red, green, brown, blue, magenta, cyan, white. But
this may be different for your terminal configuration.

The escape sequence.delline deletes the content of the current line and.home moves the cursor
to the beginning of the current line.

Example
for i in [1..5] do

Print(TextAttr.home, TextAttr.delline, String(i,-6), "\c");
Sleep(1);

od;

Whenever you use this in some printing routines you should make it optional. Use these attributes
only, when the variableANSI COLORS has the valuetrue.

5.5.3 FormatParagraph

♦ FormatParagraph(str[, len[, flush[, attr]]]) (function)

Returns: the formatted paragraph as string
This function formats a text given in the stringstr as a paragraph. The optional arguments have

the following meaning:

len the length of the lines of the resulting text (default is78)

flush can be"left", "right", "center" or "both", telling that lines should be flushed left,
flushed right, centered or left-right justified, respectively (default is"both")

attr is a list of two strings; the first is prepended and the second appended to each line of the
result (can for example be used for indenting,[" ", ""], or some markup,[TextAttr.bold,
TextAttr.reset], default is["", ""])

This function tries to handle markup with the escape sequences explained inTextAttr (5.5.2) cor-
rectly.

Example
gap> str := "One two three four five six seven eight nine ten eleven.";;
gap> Print(FormatParagraph(str, 25, "left", ["/* ", " */"]));
/* One two three four five */
/* six seven eight nine ten */
/* eleven. */

5.5.4 SubstitutionSublist

♦ SubstitutionSublist(list, sublist, new[, flag]) (function)

Returns: the changed list
This function looks for (non-overlapping) occurrences of a sublistsublist in a listlist (compare

PositionSublist (Reference: PositionSublist)) and returns a list where these are substituted with
the listnew.

The optional argumentflag can either be"all" (this is the default if not given) or"one". In the
second case only the first occurrence ofsublist is substituted.

If sublist does not occur inlist thenlist itself is returned (and not aShallowCopy(list)).
Example

gap> SubstitutionSublist("xababx", "ab", "a");
"xaax"

GAPDoc 49

5.5.5 StripBeginEnd

♦ StripBeginEnd(list, strip) (function)

Returns: changed string
Herelist andstrip must be lists. This function returns the sublist of list which does not contain

the leading and trailing entries which are entries ofstrip. If the result is equal tolist thenlist
itself is returned.

Example
gap> StripBeginEnd(" ,a, b,c, ", ", ");
"a, b,c"

5.5.6 StripEscapeSequences

♦ StripEscapeSequences(str) (function)

Returns: string without escape sequences
This function returns the string one gets from the stringstr by removing all escape sequences

which are explained inTextAttr (5.5.2). If str does not contain such a sequence thenstr itself is
returned.

5.5.7 RepeatedString

♦ RepeatedString(c, len) (function)

Here c must be either a character or a string andlen is a non-negative number. Then
RepeatedString returns a string of lengthlen consisting of copies ofc.

Example
gap> RepeatedString(’=’,51);
"==="
gap> RepeatedString("*=",51);
"*=*"

5.5.8 NumberDigits

♦ NumberDigits(str, base) (function)

Returns: integer
♦ DigitsNumber(n, base) (function)

Returns: string
The argumentstr of NumberDigits must be a string consisting only of an optional leading’-’

and characters in"0123456789abcdefABCDEF, describing an integer in basebase with 2≤ base ≤
16. This function returns the corresponding integer.

The functionDigitsNumber does the reverse.
Example

gap> NumberDigits("1A3F",16);
6719
gap> DigitsNumber(6719, 16);
"1A3F"

GAPDoc 50

5.5.9 PositionMatchingDelimiter

♦ PositionMatchingDelimiter(str, delim, pos) (function)

Returns: position as integer orfail
Herestr must be a string anddelim a string with two different characters. This function searches

the smallest positionr of the characterdelim[2] in str such that the number of occurrences of
delim[2] in str between positionspos+1 andr is by one greater than the corresponding number of
occurrences ofdelim[1].

If such anr exists, it is returned. Otherwisefail is returned.
Example

gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 0);
fail
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 1);
2
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 6);
11

5.5.10 WordsString

♦ WordsString(str) (function)

Returns: list of strings containing the words
This returns the list of words of a text stored in the stringstr. All non-letters are considered as

word boundaries and are removed.
Example

gap> WordsString("one_two \n three!?");
["one", "two", "three"]

5.6 Print Utilities

The following printing utilities turned out to be useful for interactive work with texts inGAP. But they
are more general and so we document them here.

5.6.1 PrintTo1

♦ PrintTo1(filename, fun) (function)

♦ AppendTo1(filename, fun) (function)

The argumentfun must be a function without arguments. Everything which is printed by a call
fun() is printed into the filefilename. As with PrintTo (Reference: PrintTo) and AppendTo
(Reference: AppendTo) this overwrites or appends to, respectively, a previous content offilename.

These functions can be particularly efficient when many small pieces of text shall be written to a
file, because no multiple reopening of the file is necessary.

Example
gap> f := function() local i;
> for i in [1..100000] do Print(i, "\n"); od; end;
gap> PrintTo1("nonsense", f); # now check the local file ‘nonsense’

GAPDoc 51

5.6.2 StringPrint

♦ StringPrint(obj1[, obj2[, ...]]) (function)

♦ StringView(obj) (function)

These functions return a string containing the output of aPrint or ViewObj call with the same
arguments.

This should be considered as a (temporary?) hack. It would be better to haveString (Reference:
String) methods for allGAP objects and to have a genericPrint (Reference: Print)-function which
just interprets these strings.

5.6.3 PrintFormattedString

♦ PrintFormattedString(str) (function)

This function prints a stringstr. The difference toPrint(str); is that no additional line breaks
are introduced byGAP’s standard printing mechanism. This can be used to print lines which are longer
than the current screen width. In particular one can print text which contains escape sequences like
those explained inTextAttr (5.5.2), where lines may have more characters thanvisible characters.

5.6.4 Page

♦ Page(...) (function)

♦ PageDisplay(obj) (function)

These functions are similar toPrint (Reference: Print) andDisplay (Reference: Display),
respectively. The difference is that the output is not sent directly to the screen, but is piped into the
current pager; seePAGER (Reference: Pager).

Example
gap> Page([1..1421]+0);
gap> PageDisplay(CharacterTable("Symmetric", 14));

5.6.5 StringFile

♦ StringFile(filename) (function)

♦ FileString(filename, str[, append]) (function)

The functionStringFile returns the content of filefilename as a string. This works efficiently
with arbitrary (binary or text) files. If something went wrong, this function returnsfail.

Conversely the functionFileString writes the content of a stringstr into the filefilename. If
the optional third argumentappend is given and equalstrue then the content ofstr is appended to
the file. Otherwise previous content of the file is deleted. This function returns the number of bytes
written orfail if something went wrong.

Both functions are quite efficient, even with large files.

Appendix A

The file 3k+1.xml

Here is the complete source of the exampleGAPDoc document3k+1.xml discussed in Section1.2.
3k+1.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- A complete "fake package" documentation
$Id: app3k1.xml,v 1.1.1.1 2001/01/05 13:37:49 gap Exp $

-->

<!DOCTYPE Book SYSTEM "gapdoc.dtd">

<Book Name="3k+1">

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör
<Email>3kplusone@dev.null</Email>

</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

<TableOfContents/>

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>

Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), i \in \N,</M> with <M>n(1, k) = k</M> and else
<M>n(i+1, k) = n(i, k) / 2</M> if <M>n(i, k)</M> is even and
<M>n(i+1, k) = 3 n(i, k) + 1</M> if <M>n(i, k)</M> is odd.
<P/>
It is not known whether for any natural number <M>k \in \N</M>
there is an <M>m \in \N</M> with <M>n(m, k) = 1</M>.
<P/>
<Package>ThreeKPlusOne</Package> provides the function <Ref

52

GAPDoc 53

Func="ThreeKPlusOneSequence"/> to explore this for given
<M>n</M>. If you really want to know something about this
problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>
for more details (and forget this package).

</Section>

<Section> <Heading>Program</Heading>
In this section we describe the main function of this package.
<ManSection>

<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>
gap> ThreeKPlusOneSequence(101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

</Section>
</Chapter>

</Body>

<Bibliography Databases="3k+1" />
<TheIndex/>

</Book>

Appendix B

The File gapdoc.dtd

For easier reference we repeat here the complete content of the filegapdoc.dtd.
gapdoc.dtd

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- ==

gapdoc.dtd - XML Document type definition for GAP documentation
By Frank Lübeck and Max Neunhöffer
== -->

<!-- $Id: gapdoc.dtd,v 1.4 2001/02/05 14:40:55 gap Exp $ -->

<!-- Note that this definition goes "bottom-up" because entities can only
be used after their definition in the file. -->

<!-- ==
Some entities:
== -->

<!-- The standard XML entities: -->

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- The following are necessary because these characters have special
meanings in either XML or LaTeX: -->

<!ENTITY tamp
"<Alt Only=’LaTeX’>\&</Alt><Alt Not=’LaTeX’>&</Alt>">

<!ENTITY tlt
"<Alt Only=’LaTeX’>{\textless}</Alt><Alt Not=’LaTeX’><</Alt>">

<!ENTITY tgt
"<Alt Only=’LaTeX’>{\textgreater}</Alt><Alt Not=’LaTeX’>></Alt>">

<!ENTITY hash "<Alt Only=’LaTeX’>\#</Alt><Alt Not=’LaTeX’>#</Alt>">
<!ENTITY dollar "<Alt Only=’LaTeX’>\$</Alt><Alt Not=’LaTeX’>$</Alt>">

54

GAPDoc 55

<!ENTITY percent
"<Alt Only=’LaTeX’>\%</Alt><Alt Not=’LaTeX’>%</Alt>">

<!ENTITY tilde
"<Alt Only=’LaTeX’>{\textasciitilde}</Alt><Alt Not=’LaTeX’>˜</Alt>">

<!ENTITY bslash
"<Alt Only=’LaTeX’>{\textbackslash}</Alt><Alt Not=’LaTeX’>\</Alt>">

<!ENTITY obrace "<Alt Only=’LaTeX’>\{</Alt><Alt Not=’LaTeX’>{</Alt>">
<!ENTITY cbrace "<Alt Only=’LaTeX’>\}</Alt><Alt Not=’LaTeX’>}</Alt>">
<!ENTITY uscore

"<Alt Only=’LaTeX’>{\textunderscore}</Alt><Alt Not=’LaTeX’>_</Alt>">
<!ENTITY circum

"<Alt Only=’LaTeX’>{\textasciicircum}</Alt><Alt Not=’LaTeX’>ˆ</Alt>">
<!ENTITY nbsp "<Alt Only=’LaTeX’>˜</Alt><Alt Not=’LaTeX’> </Alt>">

<!-- ==
Our predefined entities:
== -->

<!ENTITY GAP "<Package>GAP</Package>">
<!ENTITY GAPDoc "<Package>GAPDoc</Package>">
<!ENTITY TeX

"<Alt Only=’LaTeX’>{\TeX}</Alt><Alt Not=’LaTeX’>TeX</Alt>">
<!ENTITY LaTeX

"<Alt Only=’LaTeX’>{\LaTeX}</Alt><Alt Not=’LaTeX’>LaTeX</Alt>">
<!ENTITY BibTeX

"<Alt Only=’LaTeX’>{Bib\TeX}</Alt><Alt Not=’LaTeX’>BibTeX</Alt>">
<!ENTITY MeatAxe "<Package>MeatAxe</Package>">
<!ENTITY XGAP "<Package>XGAP</Package>">
<!ENTITY copyright

"<Alt Only=’LaTeX’>{\copyright}</Alt><Alt Not=’LaTeX’>(C)</Alt>">

<!-- ==
The following describes the "innermost" documentation text which
can occur at various places in the document like for example
section headings. It does neither contain further sectioning
elements nor environments like Enums or Lists.
== -->

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Cite | Label |
Ref | Index" >

<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and
"Not" attributes for normal text -->

GAPDoc 56

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!-- The following elements declare a certain block of InnerText to
have a certain property. They are non-terminal and can contain
any InnerText recursively. -->

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

<!-- The following is an empty element marking a paragraph boundary. -->

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- this is intentionally empty! -->

<!-- The following elements mark a word or sentence to be of a certain
kind, such that it can be typeset differently. They are terminal
elements that should only contain character data. But we have to
allow Alt elements for handling special characters. For these
elements we introduce a long name - which is easy to remember -
and a short name - which you may prefer because of the shorter
markup. -->

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

<!ELEMENT Code (#PCDATA|Alt|A)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt|A)*> <!-- GAP code (shortcut) -->

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

<!-- The following elements contain mathematical formulae. They are
terminal elements that contain character data in TeX notation. -->

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>
<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>

GAPDoc 57

<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

<!-- The following elements contain GAP related text like code,
session logs or examples. They are all terminal elements and
consist of character data which is normally typeset verbatim. The
different types of the elements only control how they are
treated. -->

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->
<!ELEMENT Listing (#PCDATA)> <!-- This is just for code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

<!-- One further verbatim element, this is truely verbatim without
any processing and intended for ASCII substitutes of complicated
displayed formulae or tables. -->

<!ELEMENT Verb (#PCDATA)>

<!-- The following elements are for cross-referencing purposes like
URLs, citations, references, and the index. All these elements
are terminal and need special methods to make up the actual
output during document generation. -->

<!ELEMENT URL (#PCDATA|Alt)*> <!-- Can we define this better? -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats

that have links like HTML -->

<!-- The following two are actually URLs, but the element name determines
the type. -->

<!ELEMENT Email (#PCDATA|Alt)*>
<!ELEMENT Homepage (#PCDATA|Alt)*>

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED

GAPDoc 58

Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text|Number) #IMPLIED> <!-- normally automatic -->

<!-- Note that only one attribute of Ref is used normally. BookName
and Style can be specified in addition to handle external
references and the typesetting style of the reference. -->

<!ELEMENT Index (%InnerText;)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>

<!-- ==
The following describes the normal documentation text which can
occur at various places in the document. It does not contain
further sectioning elements. As opposed to the InnerText element
it can contain environments like enumerations, lists, and such.
== -->

<!ENTITY % Text "%InnerText; | List | Enum | Table">

<!ELEMENT Item (%Text;)*>
<!ELEMENT Mark (%InnerText;)*>
<!ELEMENT BigMark (%InnerText;)*>

<!ELEMENT List (((Mark,Item)|(BigMark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>
<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED

Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED> <!-- A TeX tabular string -->
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

<!-- ==

GAPDoc 59

We start defining some things within the overall structure:
== -->

<!-- The TitlePage consists of several sub-elements: -->

<!ELEMENT TitlePage (Title, Subtitle?, Version?, Author+, Date?, Abstract?,
Copyright? , Acknowledgements? , Colophon?)>

<!ELEMENT Title (%Text;)*>
<!ELEMENT Subtitle (%Text;)*>
<!ELEMENT Version (%Text;)*>
<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->
<!ELEMENT Date (%Text;)*>
<!ELEMENT Abstract (%Text;)*>
<!ELEMENT Copyright (%Text;)*>
<!ELEMENT Acknowledgements (%Text;)*>
<!ELEMENT Colophon (%Text;)*>

<!-- The following things just specify some information about the
corresponding parts of the Book: -->

<!ELEMENT TableOfContents EMPTY>
<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>
<!ELEMENT TheIndex EMPTY>

<!-- ==
Now we go on with the overall structure by defining the sectioning
structure, which includes the Synopsis element:
== -->

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT ManSection (((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

<!-- Note that the ManSection element is actually a subsection with
respect to labelling, referencing, and counting of sectioning
elements. -->

<!ELEMENT Func EMPTY>

GAPDoc 60

<!ATTLIST Func Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!-- Note that Arg contains the full list of arguments, including
optional parts, which are denoted by square brackets [].
Arguments are separated by whitespace, commas count as
whitespace. -->

<!-- Note further that even if Name and Label are CDATA (and not ID)
Label must make up a unique identifier. -->

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

GAPDoc 61

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Heading (%InnerText;)*>

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that the entity %InnerText; is documentation that contains
neither sectioning elements nor environments like enumerations,
but only formulae, labels, references, citations, and other
terminal elements. -->

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that an Appendix is exactly the same as a Chapter. They
differ only in the numbering. -->

<!-- ==
At last we define the overall structure of a gapdoc Book:
== -->

<!ELEMENT Body (%Text;| Chapter | Section)*>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

<!-- Note that the entity %Text; is documentation that contains
no further sectioning elements but possibly environments like
enumerations, and formulae, labels, references, and citations.
-->

<!-- == -->

References

[1] Leslie Lamport.LATEX: A Document Preparation System. Addison-Wesley, 1985.18, 30, 42, 43

62

Index

A, 31
Abstract, 20
Acknowledgements, 20
AddPageNumbersToSix, 44
AddParagraphNumbersGapDocTree, 42
AddRootParseTree, 41
Align, 30
Alt, 34
ANSI COLORS,48
Appendix, 22
AppendTo1, 50
ApplyToNodesParseTree, 41
Arg, 31
Attr, 25
Author, 20

B, 32
Bibliography, 21
Body, 21
Book, 18
Button, 32

C, 31
CAPITALLETTERS, 47
Caption, 30
Chapter, 22
CheckAndCleanGapDocTree, 41
Cite, 28
Code, 31
Colophon, 20
ComposedXMLString, 37
Copyright, 20

Date, 20
Description, 23
DIGITS, 47
DigitsNumber, 49
Display, 33
DisplayXMLStructure, 41

E, 31
Email, 28
Emph, 31
Enum, 30
Example, 32

F, 31
Fam, 26
File, 31
FileString, 51
Filt, 25
FormatParagraph, 48
Func, 24

GAPDoc2HTML, 44
GAPDoc2HTMLPrintHTMLFiles, 45
GAPDoc2LaTeX, 42
GAPDoc2Text, 43
GAPDoc2TextPrintTextFiles, 43

Heading, 22
HEXDIGITS, 47
Homepage, 29
HorLine, 30

Index, 28
InfoClass, 26
Item, 29, 30

K, 31
Keyword, 31

Label, 28
LETTERS, 47
List, 29
Listing, 32
Log, 32

M, 33
MakeGAPDocDoc, 40
ManSection, 23

63

GAPDoc 64

Mark, 29
Math, 33
Meth, 25

NormalizeNameAndKey, 46
NumberDigits, 49

Oper, 24

P, 35
Package, 32
Page, 51
PageDisplay, 51
Par, 35
ParseBibFiles, 45
ParseTreeXMLString, 40
PositionMatchingDelimiter, 50
PrintFormattedString, 51
PrintSixFile, 44
PrintTo1, 50
Prop, 25

Q, 31
Quoted, 31

Ref, 27
RemoveRootParseTree, 41
RepeatedString, 49
Returns, 23
Row, 30

Section, 22
SMALLLETTERS, 47
StringFile, 51
StringPrint, 51
StringView, 51
StripBeginEnd, 49
StripEscapeSequences, 49
Subsection, 23
SubstitutionSublist, 48
Subtitle, 19

Table, 30
TableOfContents, 20
TextAttr, 47
TheIndex, 21
Title, 18
TitlePage, 18

URL, 28

Var, 26
Version, 19

WHITESPACE, 47
WordsString, 50
WriteBibFile, 46

XML, 7

