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1 About GUAVA

GUAVA is a GAP 4 package for computing with codes. Except for the automorphism group and isomorphism
testing functions, which make use of J.S. Leon’s partition backtrack programs, GUAVA is written in the GAP
language. Several algorithms that need the speed were integrated in the GAP kernel. Please send your bug
reports to the email address: gap-trouble@dcs.st-and.ac.uk

GUAVA is primarily designed for the construction and analysis of codes. The functions can be divided into
three subcategories:

Construction of codes:
GUAVA can construct unrestricted, linear and cyclic codes. Information about the code is stored
in a record, together with operations applicable to the code.

Manipulations of codes:
Manipulation transforms one code into another, or constructs a new code from two codes. The new
code can profit from the data in the record of the old code(s), so in these cases calculation time
decreases.

Computations of information about codes:
GUAVA can calculate important data of codes very fast. The results are stored in the code record.

1.1 Acknowledgements

GUAVA was written by Jasper Cramwinckel, Erik Roijackers, and Reinald Baart. as a final project during
their study of Mathematics at the Delft University of Technology, department of Pure Mathematics, and in
Aachen, at Lehrstuhl D fuer Mathematik.

In version 1.3, new functions were added by Eric Minkes, also from Delft University of Technology.

JC,ER and RB would like to thank the GAP people at the RWTH Aachen for their support, A.E. Brouwer
for his advice and J. Simonis for his supervision.

The GAP 4 version of GUAVA was created by Lea Ruscio and is maintained by David Joyner.

1.2 Installing GUAVA

To install GUAVA (as a GAP4 Package) unpack the archive file in a directory in the pkg hierarchy of your
version of GAP4. (This might be the pkg directory of the GAP4 home directory; it is however also possible to
keep an additional pkg directory in your private directories, see section 74.2 of the GAP4 reference manual
for details on how to do this.)

After unpacking GUAVA the GAP-only part of GUAVA is installed. The parts of GUAVA depending on
J. Leon’s backtrack programs package (for computing automorphism groups) are only available in a UNIX
environment, where you should proceed as follows:

Go to the newly created guava directory and call ./configure path where path is the path to the GAP
home directory. So for example, if you install the package in the main pkg directory call
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./configure ../..

This will fetch the architecture type for which GAP has been compiled last and create a Makefile. Now call

make

to compile the binary and to install it in the appropriate place.

This completes the installation of GUAVA for a single architecture. If you use this installation of GUAVA
on different hardware platforms you will have to compile the binary for each platform separately. This is
done by calling configure and make for the package anew immediately after compiling GAP itself for the
respective architecture. If your version of GAP is already compiled (and has last been compiled on the same
architecture) you do not need to compile GAP again; it is sufficient to call the configure script in the GAP
home directory.

1.3 Loading GUAVA

After starting up GAP, the GUAVA package needs to be loaded. Load GUAVA by typing at the GAP prompt:

gap> RequirePackage( "guava" );

If GUAVA isn’t already in memory, it is loaded and its beautiful banner is displayed.

If you are a frequent user of GUAVA, you might consider putting this line in your .gaprc file.



2 Codewords

A codeword is basically just a vector of finite field elements. In GUAVA, a codeword is a record, with this
base vector as its most important element.

Codewords have been implemented in GUAVA mainly because of their easy interfacing with the user. The
user can input codewords in different formats, and output information is formatted in a readable way.

Codewords work together with codes (see 3), although many operations are available on codewords them-
selves.

The first section describes how codewords are constructed (see 2.1.2 and 2.1.3).

Sections 2.2 and 2.3 describe the arithmetic operations applicable to codewords.

Section 2.4 describe functions that convert codewords back to vectors or polynomials (see 2.4.1 and 2.4.2).

Section 2.5 describe functions that change the way a codeword is displayed (see 2.5.1 and 2.5.2).

Finally, Section 2.6 describes a function to generate a null word (see 2.6.1) and some functions for extarcting
properties of codewords (see 2.6.2, 2.6.3 and 2.6.4).

2.1 Construction of Codewords

1I Codeword( obj [, n] [, F] )

Codeword returns a codeword or a list of codewords constructed from obj . The object obj can be a vector,
a string, a polynomial or a codeword. It may also be a list of those (even a mixed list).

If a number n is specified, all constructed codewords have length n. This is the only way to make sure that
all elements of obj are converted to codewords of the same length. Elements of obj that are longer than n
are reduced in length by cutting of the last positions. Elements of obj that are shorter than n are lengthened
by adding zeros at the end. If no n is specified, each constructed codeword is handled individually.

If a Galois field F is specified, all codewords are constructed over this field. This is the only way to make
sure that all elements of obj are converted to the same field F (otherwise they are converted one by one).
Note that all elements of obj must have elements over F or over Integers. Converting from one Galois field
to another is not allowed. If no F is specified, vectors or strings with integer elements will be converted to
the smallest Galois field possible.

Note that a significant speed increase is achieved if F is specified, even when all elements of obj already
have elements over F .

Every vector in obj can be a finite field vector over F or a vector over Integers. In the last case, it is
converted to F or, if omitted, to the smallest Galois field possible.

Every string in obj must be a string of numbers, without spaces, commas or any other characters. These
numbers must be from 0 to 9. The string is converted to a codeword over F or, if F is omitted, over the
smallest Galois field possible. Note that since all numbers in the string are interpreted as one-digit numbers,
Galois fields of size larger than 10 are not properly represented when using strings.

Every polynomial in obj is converted to a codeword of length n or, if omitted, of a length dictated by the
degree of the polynomial. If F is specified, a polynomial in obj must be over F .
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Every element of obj that is already a codeword is changed to a codeword of length n. If no n was specified,
the codeword doesn’t change. If F is specified, the codeword must have base field F .

gap> c := Codeword([0,1,1,1,0]);
[ 0 1 1 1 0 ]
gap> VectorCodeword( c );
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ]
gap> c2 := Codeword([0,1,1,1,0], GF(3));
[ 0 1 1 1 0 ]
gap> VectorCodeword( c2 );
[ 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ]
gap> Codeword([c, c2, "0110"]);
[ [ 0 1 1 1 0 ], [ 0 1 1 1 0 ], [ 0 1 1 0 ] ]
gap> p := UnivariatePolynomial(GF(2), [Z(2)^0, 0*Z(2), Z(2)^0]);
Z(2)^0+x_1^2
gap> Codeword(p);
x^2 + 1

2I Codeword( obj, C )

In this format, the elements of obj are converted to elements of the same vector space as the elements of
a code C . This is the same as calling Codeword with the word length of C (which is n) and the field of C
(which is F ).

gap> C := WholeSpaceCode(7,GF(5));
a cyclic [7,7,1]0 whole space code over GF(5)
gap> Codeword(["0220110", [1,1,1]], C);
[ [ 0 2 2 0 1 1 0 ], [ 1 1 1 0 0 0 0 ] ]
gap> Codeword(["0220110", [1,1,1]], 7, GF(5));
[ [ 0 2 2 0 1 1 0 ], [ 1 1 1 0 0 0 0 ] ]

3I IsCodeword( obj )

IsCodeword returns true if obj , which can be an object of arbitrary type, is of the codeword type and false
otherwise. The function will signal an error if obj is an unbound variable.

gap> IsCodeword(1);
false
gap> IsCodeword(ReedMullerCode(2,3));
false
gap> IsCodeword("11111");
false
gap> IsCodeword(Codeword("11111"));
true

2.2 Comparisons of Codewords

1I c 1 = c 2
I c 1 <> c 2

The equality operator = evaluates to true if the codewords c 1 and c 2 are equal, and to false otherwise.
The inequality operator <> evaluates to true if the codewords c 1 and c 2 are not equal, and to false
otherwise.

Note that codewords are equal if and only if their base vectors are equal. Whether they are represented as
a vector or polynomial has nothing to do with the comparison.
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Comparing codewords with objects of other types is not recommended, although it is possible. If c 2 is the
codeword, the other object c 1 is first converted to a codeword, after which comparison is possible. This
way, a codeword can be compared with a vector, polynomial, or string. If c 1 is the codeword, then problems
may arise if c 2 is a polynomial. In that case, the comparison always yields a false, because the polynomial
comparison is called (see Comparisons of Polynomials).

gap> P := UnivariatePolynomial(GF(2), Z(2)*[1,0,0,1]);
Z(2)^0+x_1^3
gap> c := Codeword(P, GF(2));
x^3 + 1
gap> P = c; # codeword operation
true
gap> c2 := Codeword("1001", GF(2));
[ 1 0 0 1 ]
gap> c = c2;
true

2.3 Arithmetic Operations for Codewords

The following operations are always available for codewords. The operands must have a common base field,
and must have the same length. No implicit conversions are performed.

1I c 1 + c 2

The operator + evaluates to the sum of the codewords c 1 and c 2.

2I c 1 - c 2

The operator - evaluates to the difference of the codewords c 1 and c 2.

3I C + c
I c + C

The operator + evaluates to the coset code of code C after adding a codeword c to all codewords. See 5.1.18.

In general, the operations just described can also be performed on vectors, strings or polynomials, although
this is not recommended. The vector, string or polynomial is first converted to a codeword, after which
the normal operation is performed. For this to go right, make sure that at least one of the operands is a
codeword. Further more, it will not work when the right operand is a polynomial. In that case, the polynomial
operations (’FiniteFieldPolynomialOps’) are called, instead of the codeword operations (’CodewordOps’).

Some other code-oriented operations with codewords are described in 3.2.

2.4 Functions that Convert Codewords to Vectors or Polynomials
1I VectorCodeword( obj )

Here obj can be a code word or a list of code words. This function retyurns the corresponding vectors over
a finite field.

gap> a := Codeword("011011");; VectorCodeword(a);
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ]

2I PolyCodeword( obj )

PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted from obj . The
object obj can be a code word, or a list of codewords.

gap> a := Codeword("011011");; PolyCodeword(a);
x_1+x_1^2+x_1^4+x_1^5
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2.5 Functions that Change the Display Form of a Codeword

1I TreatAsVector( obj )

TreatAsVector adapts the codewords in obj to make sure they are printed as vectors. obj may be a codeword
or a list of codewords. Elements of obj that are not codewords are ignored. After this function is called, the
codewords will be treated as vectors. The vector representation is obtained by using the coefficient list of
the polynomial.

Note that this only changes the way a codeword is printed. TreatAsVector returns nothing, it is called only
for its side effect. The function VectorCodeword converts codewords to vectors (see 2.4.1).

gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
x^22 + x^20 + x^17 + x^14 + x^13 + x^12 + x^11 + x^10
gap> TreatAsVector(c);
gap> c;
[ 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 ]

2I TreatAsPoly( obj )

TreatAsPoly adapts the codewords in obj to make sure they are printed as polynomials. obj may be a
codeword or a list of codewords. Elements of obj that are not codewords are ignored. After this function is
called, the codewords will be treated as polynomials. The finite field vector that defines the codeword is used
as a coefficient list of the polynomial representation, where the first element of the vector is the coefficient
of degree zero, the second element is the coefficient of degree one, etc, until the last element, which is the
coefficient of highest degree.

Note that this only changes the way a codeword is printed. TreatAsPoly returns nothing, it is called only
for its side effect. The function PolyCodeword converts codewords to polynomials (see 2.4.2).

gap> a := Codeword("00001",GF(2));
[ 0 0 0 0 1 ]
gap> TreatAsPoly(a); a;
x^4
gap> b := NullWord(6,GF(4));
[ 0 0 0 0 0 0 ]
gap> TreatAsPoly(b); b;
0

2.6 Other Codeword Functions

1I NullWord( n )
I NullWord( n, F )
I NullWord( C )

NullWord returns a codeword of length n over the field F of only zeros. The default for F is GF(2). n must
be greater then zero. If only a code C is specified, NullWord will return a null word with the word length
and the Galois field of C .
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gap> NullWord(8);
[ 0 0 0 0 0 0 0 0 ]
gap> Codeword("0000") = NullWord(4);
true
gap> NullWord(5,GF(16));
[ 0 0 0 0 0 ]
gap> NullWord(ExtendedTernaryGolayCode());
[ 0 0 0 0 0 0 0 0 0 0 0 0 ]

2I DistanceCodeword( c 1, c 2 )

DistanceCodeword returns the Hamming distance from c1 to c2. Both variables must be codewords with
equal word length over the same Galois field. The Hamming distance between two words is the number of
places in which they differ. As a result, DistanceCodeword always returns an integer between zero and the
word length of the codewords.

gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);
4
gap> DistanceCodeword(b, a);
4
gap> DistanceCodeword(a, a);
0

3I Support( c )

Support returns a set of integers indicating the positions of the non-zero entries in a codeword c.

gap> a := Codeword("012320023002");; Support(a);
[ 2, 3, 4, 5, 8, 9, 12 ]
gap> Support(NullWord(7));
[ ]

The support of a list with codewords can be calculated by taking the union of the individual supports. The
weight of the support is the length of the set.

gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List(L, i -> Support(i)));
[ 1, 2, 3, 5 ]
gap> Length(S);
4

4I WeightCodeword( c )

WeightCodeword returns the weight of a codeword c, the number of non-zero entries in c. As a result,
WeightCodeword always returns an integer between zero and the word length of the codeword.

gap> WeightCodeword(Codeword("22222"));
5
gap> WeightCodeword(NullWord(3));
0
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> Minimum(List(AsSSortedList(C){[2..Size(C)]}, WeightCodeword ) );
3
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A code basically is nothing more than a set of codewords. We call these the elements of the code. A
codeword is a sequence of elements of a finite field GF(q) where q is a prime power. Depending on the type
of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in more detail in
Chapter 2.

In GUAVA, codes can be defined by their elements (this will be called an unrestricted code), by a generator
matrix (a linear code) or by a generator polynomial (a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a name.

gap> C := ElementsCode(["1100", "1010", "0001"], "example code",
> GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

An (n,M , d) code is a code with word length n, size M and minimum distance d . If the minimum
distance has not yet been calculated, the lower bound and upper bound are printed. So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater than or
equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and less than
or equal to 4.

gap> MinimumDistance(C);
2
gap> C;
a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace of GF (q)n , the code is called linear. If a code is linear, it can be
defined by its generator matrix or parity check matrix. The generator matrix is a basis for the elements
of a code, the parity check matrix is a basis for the nullspace of the code.

gap> G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF(3)

So a linear [n, k , d ]r code is a code with word length n, dimension k , minimum distance d and
covering radius r .

If the code is linear and all cyclic shifts of its elements are again codewords, the code is called cyclic. A
cyclic code is defined by its generator polynomial or check polynomial. All elements are multiples of
the generator polynomial modulo a polynomial x n − 1 where n is the word length of the code. Multiplying
a code element with the check polynomial yields zero (modulo the polynomial x n − 1).

gap> G := GeneratorPolCode(Indeterminate(GF(2))+Z(2)^0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible that GUAVA does not know that an unrestricted code is linear. This situation occurs for example
when a code is generated from a list of elements with the function ElementsCode (see 4.1.1). By calling the
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function IsLinearCode (see 3.3.2), GUAVA tests if the code can be represented by a generator matrix. If so,
the code record and the operations are converted accordingly.

gap> L := Z(2)*[ [0,0,0], [1,0,0], [0,1,1], [1,1,1] ];;
gap> C := ElementsCode( L, GF(2) );
a (3,4,1..3)1 user defined unrestricted code over GF(2)
# so far, {\GUAVA} does not know what kind of code this is
gap> IsLinearCode( C );
true # it is linear
gap> C;
a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator
matrix, that in fact are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length, size or dimension
and minimum distance, followed by a short description and the base field of the code. The function Display
gives a more detailed description, showing the construction history of the code.

GUAVA doesn’t place much emphasis on the actual encoding and decoding processes; some algorithms have
been included though. Encoding works simply by multiplying an information vector with a code, decoding
is done by the function Decode. For more information about encoding and decoding, see sections 3.2 and
3.10.1.

gap> R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [ 1, 0, 1, 1 ] * R;
[ 1 0 0 1 1 0 0 1 ]
gap> Decode( R, w );
[ 1 0 1 1 ]
gap> Decode( R, w + "10000000" ); # One error at the first position
[ 1 0 1 1 ] # Corrected by Guava

Sections 3.1 and 3.2 describe the operations that are available for codes.

Section 3.3 describe the functions that tests whether an object is a code and what kind of code it is (see
3.3.1, 3.3.2 and 3.3.3) and various other boolean functions for codes.

Section 3.4 describe functions about equivalence and isomorphism of codes (see 3.4.1, 3.4.2 and 3.4.3).

Section 3.5 describes functions that work on domains (see Chapter 30 in the GAP Reference Manual).

Section 3.6 describes functions for printing and displaying codes.

Section 3.7 describes functions that return the matrices and polynomials that define a code (see 3.7.1, 3.7.2,
3.7.3, 3.7.4, 3.7.5).

Section 3.8 describes functions that return the basic parameters of codes (see 3.8.1, 3.8.2 and 3.8.4).

Section 3.9 describes functions that return distance and weight distributions (see 3.9.1, 3.9.2, 3.9.3 and
3.9.4).

Section 3.10 describes functions that are related to decoding (see 3.10.1, 3.10.2, 3.10.3 and 3.10.4).

In Chapters 4 and 5 we follow on, describing functions that generate and manipulate codes.
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3.1 Comparisons of Codes

1I C 1 = C 2
I C 1 <> C 2

The equality operator = evaluates to true if the codes C 1 and C 2 are equal, and to false otherwise. The
inequality operator <> evaluates to true if the codes C 1 and C 2 are not equal, and to false otherwise.

Note that codes are equal if and only if their elements are equal. Codes can also be compared with objects
of other types. Of course they are never equal.

gap> M := [ [0, 0], [1, 0], [0, 1], [1, 1] ];;
gap> C1 := ElementsCode( M, GF(2) );
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = C1;
false
gap> C2 := GeneratorMatCode( [ [1, 0], [0, 1] ], GF(2) );
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap> C1 = C2;
true
gap> ReedMullerCode( 1, 3 ) = HadamardCode( 8 );
true
gap> WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false

Another way of comparing codes is IsEquivalent, which checks if two codes are equivalent (see 3.4.1).

3.2 Operations for Codes

1I C 1 + C 2

The operator + evaluates to the direct sum of the codes C 1 and C 2. See 5.2.1.

2I C + c
I c + C

The operator + evaluates to the coset code of code C after adding c to all elements of C . See 5.1.18.

3I C 1 * C 2

The operator * evaluates to the direct product of the codes C 1 and C 2. See 5.2.3.

4I x * C

The operator * evaluates to the element of C belonging to information word x . x may be a vector, polynomial,
string or codeword or a list of those. This is the way to do encoding in GUAVA. C must be linear, because in
GUAVA, encoding by multiplication is only defined for linear codes. If C is a cyclic code, this multiplication
is the same as multiplying an information polynomial x by the generator polynomial of C (except for the
result not being a codeword type). If C is a linear code, it is equal to the multiplication of an information
vector x by the generator matrix of C (again, the result then is not a codeword type).

To decode, use the function Decode (see 3.10.1).

5I c in C

The in operator evaluates to true if C contains the codeword or list of codewords specified by c. Of course,
c and C must have the same word lengths and base fields.
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gap> C:= HammingCode( 2 );; eC:= AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ] ]
gap> eC[2] in C;
true
gap> [ 0 ] in C;
false

6I IsSubset(C 1,C 2)

returns true if C 2 is a subcode of C 1, i.e. if C 1 contains at least all the elements of C 2.

gap> IsSubset( HammingCode(3), RepetitionCode( 7 ) );
true
gap> IsSubset( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap> IsSubset( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true

3.3 Boolean Functions for Codes

1I IsCode( obj )

IsCode returns true if obj , which can be an object of arbitrary type, is a code and false otherwise. Will
cause an error if obj is an unbound variable.

gap> IsCode( 1 );
false
gap> IsCode( ReedMullerCode( 2,3 ) );
true

2I IsLinearCode( obj )

IsLinearCode checks if object obj (not necessarily a code) is a linear code. If a code has already been
marked as linear or cyclic, the function automatically returns true. Otherwise, the function checks if a basis
G of the elements of obj exists that generates the elements of obj . If so, G is a generator matrix of obj and
the function returns true. If not, the function returns false.

gap> C := ElementsCode( [ [0,0,0],[1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode( C );
true
gap> IsLinearCode( ElementsCode( [ [1,1,1] ], GF(2) ) );
false
gap> IsLinearCode( 1 );
false

3I IsCyclicCode( obj )

IsCyclicCode checks if the object obj is a cyclic code. If a code has already been marked as cyclic, the
function automatically returns true. Otherwise, the function checks if a polynomial g exists that generates
the elements of obj . If so, g is a generator polynomial of obj and the function returns true. If not, the
function returns false.
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gap> C := ElementsCode( [ [0,0,0], [1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> # GUAVA does not know the code is cyclic
gap> IsCyclicCode( C ); # this command tells GUAVA to find out
true
gap> IsCyclicCode( HammingCode( 4, GF(2) ) );
false
gap> IsCyclicCode( 1 );
false

4I IsPerfectCode( C )

IsPerfectCode returns true if C is a perfect code. For a code with odd minimum distance d = 2t + 1, this
is the case when every word of the vector space of C is at distance at most t from exactly one element of
C . Codes with even minimum distance are never perfect.

In fact, a code that is not trivial perfect (the binary repetition codes of odd length, the codes consisting
of one word, and the codes consisting of the whole vector space), and does not have the parameters of a
Hamming- or Golay-code, cannot be perfect.

gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> IsPerfectCode( H );
true
gap> IsPerfectCode( ElementsCode( [ [1,1,0], [0,0,1] ], GF(2) ) );
true
gap> IsPerfectCode( ReedSolomonCode( 6, 3 ) );
false
gap> IsPerfectCode(BinaryGolayCode());
true

5I IsMDSCode( C )

IsMDSCode returns true if C is a Maximum Distance Seperable code, or MDS code for short. A linear
[n, k , d ]-code of length n, dimension k and minimum distance d is an MDS code if k = n − d + 1, in
other words if C meets the Singleton bound (see 6.1.1). An unrestricted (n,M , d) code is called MDS if
k = n − d + 1, with k equal to the largest integer less than or equal to the logarithm of M with base q , the
size of the base field of C .

Well known MDS codes include the repetition codes, the whole space codes, the even weight codes (these
are the only binary MDS Codes) and the Reed-Solomon codes.

gap> C1 := ReedSolomonCode( 6, 3 );
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode( C1 );
true # 6-3+1 = 4
gap> IsMDSCode( QRCode( 23, GF(2) ) );
false

6I IsSelfDualCode( C )

IsSelfDualCode returns true if C is self-dual, i.e. when C is equal to its dual code (see also 5.1.16). If a
code is self-dual, it automatically is self-orthogonal (see 3.3.7).

If C is a non-linear code, it cannot be self-dual, so false is returned. A linear code can only be self-dual
when its dimension k is equal to the redundancy r .
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gap> IsSelfDualCode( ExtendedBinaryGolayCode() );
true
gap> C := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode( C ) = C;
true

7I IsSelfOrthogonalCode( C )

IsSelfOrthogonalCode returns true if C is self-orthogonal. A code is self-orthogonal if every element of
C is orthogonal to all elements of C , including itself. In the linear case, this simply means that the generator
matrix of C multiplied with its transpose yields a null matrix.

In addition, a code is self-dual if it contains all vectors that its elements are orthogonal to (see 3.3.6).

gap> R := ReedMullerCode(1,4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode(R);
true
gap> IsSelfDualCode(R);
false

3.4 Equivalence and Isomorphism of Codes

1I IsEquivalent( C 1, C 2 )

IsEquivalent returns true if C 1 and C 2 are equivalent codes. This is the case if C 1 can be obtained
from C 2 by carrying out column permutations. GUAVA only handles binary codes. The external program
desauto from J.S. Leon is used to compute the isomorphism between the codes. If C 1 and C 2 are equal,
they are also equivalent.

Note that the algorithm is very slow for non-linear codes.

gap> x:= Indeterminate( GF(2) );; pol:= x^3+x+1;
Z(2)^0+x_1+x_1^3
gap> H := GeneratorPolCode( pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode(3, GF(2));
false
gap> IsEquivalent(H, HammingCode(3, GF(2)));
true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)

2I CodeIsomorphism( C 1, C 2 )

If the two codes C 1 and C 2 are equivalent codes (see 3.4.1), CodeIsomorphism returns the permutation
that transforms C 1 into C 2. If the codes are not equivalent, it returns false.

gap> x:= Indeterminate( GF(2) );; pol:= x^3+x+1;
Z(2)^0+x_1+x_1^3
gap> H := GeneratorPolCode( pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)
gap> PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));
true
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3I AutomorphismGroup( C )

AutomorphismGroup returns the automorphism group of a binary code C . This is the largest permuta-
tion group of degree n such that each permutation applied to the columns of C again yields C . GUAVA
uses the external program desauto from J.S. Leon to compute the automorphism group. The function
PermutedCode permutes the columns of a code (see 5.1.5).

gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap> AutomorphismGroup(R);
Sym( [ 1 .. 7 ] )

# every permutation keeps R identical
gap> C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap> AutomorphismGroup(C);
Group([ (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) ])
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList(C2);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap> C2 = C;
true

3.5 Domain Functions for Codes

These are some GAP functions that work on Domains in general. Their specific effect on Codes is explained
here.

1I IsFinite( C )

IsFinite is an implementation of the GAP domain function IsFinite. It returns true for a code C .

gap> IsFinite( RepetitionCode( 1000, GF(11) ) );
true

2I Size( C )

Size returns the size of C , the number of elements of the code. If the code is linear, the size of the code is
equal to qk , where q is the size of the base field of C and k is the dimension.

gap> Size( RepetitionCode( 1000, GF(11) ) );
11
gap> Size( NordstromRobinsonCode() );
256

3I LeftActingDomain( C )

LeftActingDomain returns the base field of a code C . Each element of C consists of elements of this base
field. If the base field is F , and the word length of the code is n, then the codewords are elements of F n . If
C is a cyclic code, its elements are interpreted as polynomials with coefficients over F .
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gap> C1 := ElementsCode([[0,0,0], [1,0,1], [0,1,0]], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap> LeftActingDomain( C1 );
GF(2^2)
gap> LeftActingDomain( HammingCode( 3, GF(9) ) );
GF(3^2)

4I Dimension( C )

Dimension returns the parameter k of C , the dimension of the code, or the number of information symbols
in each codeword. The dimension is not defined for non-linear codes; Dimension then returns an error.

gap> Dimension( NullCode( 5, GF(5) ) );
0
gap> C := BCHCode( 15, 4, GF(4) );
a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)
gap> Dimension( C );
9
gap> Size( C ) = Size( LeftActingDomain( C ) ) ^ Dimension( C );
true

5I AsSSortedList( C )

AsSSortedList returns a list of the elements of C . These elements are of the codeword type (see 2). Note
that for large codes, generating the elements may be very time- and memory-consuming. For generating a
specific element or a subset of the elements, use CodewordNr (see 3.5.6).

gap> C := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ],
[ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ],
[ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]

gap> CodewordNr( C, [ 1, 2 ] );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ] ]

6I CodewordNr( C, list )

CodewordNr returns a list of codewords of C . list may be a list of integers or a single integer. For each integer
of list , the corresponding codeword of C is returned. The correspondence of a number i with a codeword
is determined as follows: if a list of elements of C is available, the i th element is taken. Otherwise, it is
calculated by multiplication of the i th information vector by the generator matrix or generator polynomial,
where the information vectors are ordered lexicographically.
So CodewordNr(C, i) is equal to AsSSortedList(C)[i]. The latter function first calculates the set of all
the elements of C and then returns the i th element of that set, whereas the former only calculates the i th

codeword.

gap> R := ReedSolomonCode(2,2);
a cyclic [2,1,2]1 Reed-Solomon code over GF(3)
gap> AsSSortedList(R);
[ [ 0 0 ], [ 1 1 ], [ 2 2 ] ]
gap> CodewordNr(R, [1,3]);
[ [ 0 0 ], [ 2 2 ] ]
gap> C := HadamardCode( 16 );
a (16,32,8)5..6 Hadamard code of order 16 over GF(2)
gap> AsSSortedList(C)[17] = CodewordNr( C, 17 );
true
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3.6 Printing and Displaying Codes

1I Print( C )

Print prints information about C . This is the same as typing the identifier C at the GAP-prompt.

If the argument is an unrestricted code, information in the form

a (<n>,<M>,<d>)<r> ... code over GF(q)

is printed, where n is the word length, M the number of elements of the code, d the minimum distance and
r the covering radius.

If the argument is a linear code, information in the form

a linear [<n>,<k>,<d>]<r> ... code over GF(q)

is printed, where n is the word length, k the dimension of the code, d the minimum distance and r the
covering radius.

In all cases, if d is not yet known, it is displayed in the form

<lowerbound>,..,<upperbound>

and if r is not yet known, it is displayed in the same way.

The function Display gives more information. See 3.6.3.

gap> C1 := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap> Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

2I String( C )

String returns information about C in a string. This function is used by Print (see Print).

3I Display( C )

Display prints the method of construction of code C . With this history, in most cases an equal or equivalent
code can be reconstructed. If C is an unmanipulated code, the result is equal to output of the function Print
(see 3.6.1).

gap> Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap> C1 := ExtendedCode( HammingCode(2) );;
gap> C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap> Display( LengthenedCode( UUVCode( C1, C2 ) ) );
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of

a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of

a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)
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3.7 Generating (Check) Matrices and Polynomials
1I GeneratorMat( C )

GeneratorMat returns a generator matrix of C . The code consists of all linear combinations of the rows of
this matrix.
If until now no generator matrix of C was determined, it is computed from either the parity check matrix,
the generator polynomial, the check polynomial or the elements (if possible), whichever is available.
If C is a non-linear code, the function returns an error.

gap> GeneratorMat( HammingCode( 3, GF(2) ) );
[ <an immutable GF2 vector of length 7>, <an immutable GF2 vector of length 7>

, <an immutable GF2 vector of length 7>,
<an immutable GF2 vector of length 7> ]

gap> GeneratorMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0 ] ]
gap> GeneratorMat( NullCode( 14, GF(4) ) );
[ ]

2I CheckMat( C )

CheckMat returns a parity check matrix of C . The code consists of all words orthogonal to each of the rows
of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The parity check
matrix is computed from either the generator matrix, the generator polynomial, the check polynomial or
the elements of C (if possible), whichever is available.
If C is a non-linear code, the function returns an error.

gap> CheckMat( HammingCode(3, GF(2) ) );
[ <an immutable GF2 vector of length 7>, <an immutable GF2 vector of length 7>

, <an immutable GF2 vector of length 7> ]
gap> CheckMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5) ],
[ 0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2 ] ]

gap> CheckMat( WholeSpaceCode( 12, GF(4) ) );
[ ]

3I GeneratorPol( C )

GeneratorPol returns the generator polynomial of C . The code consists of all multiples of the generator
polynomial modulo x n − 1 where n is the word length of C . The generator polynomial is determined from
either the check polynomial, the generator or check matrix or the elements of C (if possible), whichever is
available.
If C is not a cyclic code, the function returns false.

gap> GeneratorPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0+x_1
gap> GeneratorPol( WholeSpaceCode( 4, GF(2) ) );
Z(2)^0
gap> GeneratorPol( NullCode( 7, GF(3) ) );
-Z(3)^0+x_1^7

4I CheckPol( C )

CheckPol returns the check polynomial of C . The code consists of all polynomials f with f ∗ h = 0(mod
x n − 1), where h is the check polynomial, and n is the word length of C . The check polynomial is computed
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from the generator polynomial, the generator or parity check matrix or the elements of C (if possible),
whichever is available.

If C if not a cyclic code, the function returns an error.

gap> CheckPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0+x_1+x_1^2
gap> CheckPol(WholeSpaceCode(4, GF(2)));
Z(2)^0+x_1^4
gap> CheckPol(NullCode(7,GF(3)));
Z(3)^0

5I RootsOfCode( C )

RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic code C . These are finite field
elements in the splitting field of the generator polynomial, GF (qm), m is the multiplicative order of the size
of the base field of the code, modulo the word length.

The reverse proces, constructing a code from a set of roots, can be carried out by the function RootsCode
(see 4.4.3).

gap> C1 := ReedSolomonCode( 16, 5 );
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode( C1 );
[ Z(17), Z(17)^2, Z(17)^3, Z(17)^4 ]
gap> C2 := RootsCode( 16, last );
a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> C1 = C2;
true

3.8 Parameters of Codes

1I WordLength( C )

WordLength returns the parameter n of C , the word length of the elements. Elements of cyclic codes are
polynomials of maximum degree n − 1, as calculations are carried out modulo x n − 1.

gap> WordLength( NordstromRobinsonCode() );
16
gap> WordLength( PuncturedCode( WholeSpaceCode(7) ) );
6
gap> WordLength( UUVCode( WholeSpaceCode(7), RepetitionCode(7) ) );
14

2I Redundancy( C )

Redundancy returns the redundancy r of C , which is equal to the number of check symbols in each element.
If C is not a linear code the redundancy is not defined and Redundancy returns an error.

If a linear code C has dimension k and word length n, it has redundancy r = n − k .
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gap> C := TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> Redundancy(C);
5
gap> Redundancy( DualCode(C) );
6

3I MinimumDistance( C )

MinimumDistance returns the minimum distance of C , the largest integer d with the property that every
element of C has at least a Hamming distance d (see 2.6.2) to any other element of C . For linear codes, the
minimum distance is equal to the minimum weight. This means that d is also the smallest positive value
with w [d + 1] 6= 0, where w is the weight distribution of C (see 3.9.1). For unrestricted codes, d is the
smallest positive value with w [d + 1] 6= 0, where w is the inner distribution of C (see 3.9.2).

For codes with only one element, the minimum distance is defined to be equal to the word length.

gap> C := MOLSCode(7);; MinimumDistance(C);
3
gap> WeightDistribution(C);
[ 1, 0, 0, 24, 24 ]
gap> MinimumDistance( WholeSpaceCode( 5, GF(3) ) );
1
gap> MinimumDistance( NullCode( 4, GF(2) ) );
4
gap> C := ConferenceCode(9);; MinimumDistance(C);
4
gap> InnerDistribution(C);
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]

4I MinimumDistance( C, w )

In this form, MinimumDistance returns the minimum distance of a codeword w to the code C , also called
the distance to C . This is the smallest value d for which there is an element c of the code C which is
at distance d from w . So d is also the minimum value for which D [d + 1] 6= 0, where D is the distance
distribution of w to C (see 3.9.4).

Note that w must be an element of the same vector space as the elements of C . w does not necessarily
belong to the code (if it does, the minimum distance is zero).

gap> C := MOLSCode(7);; w := CodewordNr( C, 17 );
[ 3 3 6 2 ]
gap> MinimumDistance( C, w );
0
gap> C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3 # so w no longer belongs to C

3.9 Distributions

1I WeightDistribution( C )

WeightDistribution returns the weight distribution of C , as a vector. The i th element of this vector contains
the number of elements of C with weight i −1. For linear codes, the weight distribution is equal to the inner
distribution (see 3.9.2).

Suppose w is the weight distribution of C . If C is linear, it must have the zero codeword, so w [1] = 1 (one
word of weight 0).



22 Chapter 3. Codes

gap> WeightDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 0, 18, 0, 0, 0, 1 ]
gap> WeightDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ]
gap> WeightDistribution( WholeSpaceCode( 5, GF(2) ) );
[ 1, 5, 10, 10, 5, 1 ]

2I InnerDistribution( C )

InnerDistribution returns the inner distribution of C . The i th element of the vector contains the average
number of elements of C at distance i − 1 to an element of C . For linear codes, the inner distribution is
equal to the weight distribution (see 3.9.1).

Suppose w is the inner distribution of C . Then w [1] = 1, because each element of C has exactly one
element at distance zero (the element itself). The minimum distance of C is the smallest value d > 0 with
w [d + 1] 6= 0, because a distance between zero and d never occurs. See 3.8.4.

gap> InnerDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap> InnerDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ]

3I OuterDistribution( C )

The function OuterDistribution returns a list of length qn , where q is the size of the base field of C and
n is the word length. The elements of the list consist of an element of (GF (q))n (this is a codeword type)
and the distribution of distances to the code (a list of integers). This table is very large, and for n > 20
it will not fit in the memory of most computers. The function DistancesDistribution (see 3.9.4) can be
used to calculate one entry of the list.

gap> C := RepetitionCode( 3, GF(2) );
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
[ [ [ 0 0 0 ], [ 1, 0, 0, 1 ] ], [ [ 1 1 1 ], [ 1, 0, 0, 1 ] ],
[ [ 0 0 1 ], [ 0, 1, 1, 0 ] ], [ [ 1 1 0 ], [ 0, 1, 1, 0 ] ],
[ [ 1 0 0 ], [ 0, 1, 1, 0 ] ], [ [ 0 1 1 ], [ 0, 1, 1, 0 ] ],
[ [ 0 1 0 ], [ 0, 1, 1, 0 ] ], [ [ 1 0 1 ], [ 0, 1, 1, 0 ] ] ]

gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution( C, Codeword("110") ) = OD[4][2];
true

4I DistancesDistribution( C, w )

DistancesDistribution returns a distribution of the distances of all elements of C to a codeword w in the
same vector space. The i th element of the distance distribution is the number of codewords of C that have
distance i − 1 to w . The smallest value d with w [d + 1] 6= 0 is defined as the distance to C (see 3.8.4).

gap> H := HadamardCode(20);
a (20,40,10)6..8 Hadamard code of order 20 over GF(2)
gap> c := Codeword("10110101101010010101", H);
[ 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 ]
gap> DistancesDistribution(H, c);
[ 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 7, 0, 1, 0, 0, 0, 0, 0 ]
gap> MinimumDistance(H, c);
5 # distance to H
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3.10 Decoding Functions

1I Decode( C, c )

Decode decodes c with respect to code C . c is a codeword or a list of codewords. First, possible errors
in c are corrected, then the codeword is decoded to an information codeword x . If the code record has a
field specialDecoder, this special algorithm is used to decode the vector. Hamming codes and BCH codes
have such a special algorithm. Otherwise, syndrome decoding is used. Encoding is done by multiplying the
information vector with the code (see 3.2).

A special decoder can be created by defining a function

C!.SpecialDecoder := function(C, c) ... end;

The function uses the arguments C , the code record itself, and c, a vector of the codeword type, to decode
c to an information word. A normal decoder would take a codeword c of the same word length and field as
C , and would return a information word of length k , the dimension of C . The user is not restricted to these
normal demands though, and can for instance define a decoder for non-linear codes.

gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := "1010"*C; # encoding
[ 1 0 1 1 0 1 0 ]
gap> Decode(C, c); # decoding
[ 1 0 1 0 ]
gap> Decode(C, Codeword("0010101"));
[ 1 1 0 1 ] # one error corrected
gap> C!.SpecialDecoder := function(C, c)
> return NullWord(Dimension(C));
> end;
function ( C, c ) ... end
gap> Decode(C, c);
[ 0 0 0 0 ] # new decoder always returns null word

2I Syndrome( C, c )

Syndrome returns the syndrome of word c with respect to a code C . c is a word of the vector space of C .
If c is an element of C , the syndrome is a zero vector. The syndrome can be used for looking up an error
vector in the syndrome table (see 3.10.3) that is needed to correct an error in c.

A syndrome is not defined for non-linear codes. Syndrome then returns an error.

gap> C := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr( C, 7 );
[ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 ]
gap> Syndrome( C, v );
[ 0 0 0 0 ]
gap> Syndrome( C, Codeword( "000000001100111" ) );
[ 1 1 1 1 ]
gap> Syndrome( C, Codeword( "000000000000001" ) );
[ 1 1 1 1 ] # the same syndrome: both codewords are in the same

# coset of C

3I SyndromeTable( C )

SyndromeTable returns a syndrome table of a linear code C , consisting of two columns. The first column
consists of the error vectors that correspond to the syndrome vectors in the second column. These vectors
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both are of the codeword type. After calculating the syndrome of a word c with Syndrome (see 3.10.2), the
error vector needed to correct c can be found in the syndrome table. Subtracting this vector from c yields
an element of C . To make the search for the syndrome as fast as possible, the syndrome table is sorted
according to the syndrome vectors.

gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable(H);
[ [ [ 0 0 0 ], [ 0 0 ] ], [ [ 1 0 0 ], [ 0 1 ] ],

[ [ 0 1 0 ], [ 1 0 ] ], [ [ 0 0 1 ], [ 1 1 ] ] ]
gap> c := Codeword("101");
[ 1 0 1 ]
gap> c in H;
false # c is not an element of H
gap> Syndrome(H,c);
[ 1 0 ] # according to the syndrome table,

# the error vector [ 0 1 0 ] belongs to this syndrome
gap> c - Codeword("010") in H;
true # so the corrected codeword is

# [ 1 0 1 ] - [ 0 1 0 ] = [ 1 1 1 ],
# this is an element of H

4I StandardArray( C )

StandardArray returns the standard array of a code C . This is a matrix with elements of the codeword
type. It has qr rows and qk columns, where q is the size of the base field of C , r is the redundancy of C ,
and k is the dimension of C . The first row contains all the elements of C . Each other row contains words
that do not belong to the code, with in the first column their syndrome vector (see 3.10.2).

A non-linear code does not have a standard array. StandardArray then returns an error.

Note that calculating a standard array can be very time- and memory- consuming.

gap> StandardArray(RepetitionCode(3));
[ [ [ 0 0 0 ], [ 1 1 1 ] ], [ [ 0 0 1 ], [ 1 1 0 ] ],
[ [ 0 1 0 ], [ 1 0 1 ] ], [ [ 1 0 0 ], [ 0 1 1 ] ] ]



4 Generating Codes

In this chapter we describe functions for generating codes.

Section 4.1 describes function for generating unrestricted codes.

Section 4.2 describes function for generating linear codes.

Finally, Section 4.4 describes functions for generating cyclic codes.

4.1 Generating Unrestricted Codes

In this section we start with functions that creating code from user defined matrices or special matrices (see
4.1.1, 4.1.3, 4.1.4 and 4.1.6). These codes are unrestricted codes; they may later be discovered to be linear
or cyclic.

The next functions generate random codes (see 4.1.7) and the Nordstrom-Robinson code (see 4.1.8), respec-
tively.

Finally, we describe two functions for generating Greedy codes. These are codes that contructed by gathering
codewords from a space (see 4.1.9 and 4.1.10).

1I ElementsCode( L [, Name ], F )

ElementsCode creates an unrestricted code of the list of elements L, in the field F . L must be a list of
vectors, strings, polynomials or codewords. Name can contain a short description of the code.

If L contains a codeword more than once, it is removed from the list and a GAP set is returned.

gap> M := Z(3)^0 * [ [1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2] ];;
gap> C := ElementsCode( M, "example code", GF(3) );
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance( C );
4
gap> AsSSortedList( C );
[ [ 0 1 2 2 ], [ 1 0 1 1 ], [ 2 2 0 0 ] ]

2I HadamardCode( H , t )
I HadamardCode( H )

In the first form HadamardCode returns a Hadamard code from the Hadamard matrix H , of the t th kind. In
the second form, t = 3 is used.

A Hadamard matrix is a square matrix H with H ∗H T = −n ∗ In , where n is the size of H . The entries of
H are either 1 or -1.

The matrix H is first transformed into a binary matrix An (by replacing the 1s by 0s and the -1s by 1s).

The first kind (t = 1) is created by using the rows of An as elements, after deleting the first column. This
is a (n − 1,n,n/2) code. We use this code for creating the Hadamard code of the second kind (t = 2), by
adding all the complements of the already existing codewords. This results in a (n − 1, 2n,n/2 − 1) code.
The third code (t = 3) is created by using the rows of An (without cutting a column) and their complements
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as elements. This way, we have an (n, 2n,n/2) code. The returned code is generally an unrestricted code,
but for n = 2r , the code is linear.

gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> HadamardCode( H4, 1 );
a (3,4,2)1 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4, 2 );
a (3,8,1)0 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)

3I HadamardCode( n, t )
I HadamardCode( n )

In the first form HadamardCode returns a Hadamard code with parameter n of the t th kind. In the second
form, t = 3 is used.

When called in these forms, HadamardCode first creates a Hadamard matrix (see 6.2.4), of size n and then
follows the same procedure as described above. Therefore the same restrictions with respect to n as for
Hadamard matrices hold.

gap> C1 := HadamardCode( 4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> C1 = HadamardCode( H4 );
true

4I ConferenceCode( H )

ConferenceCode returns a code of length n − 1 constructed from a symmetric conference matrix H . H
must be a symmetric matrix of order n, which satisfies H ∗ H T = ((n − 1) ∗ I . n = 2(mod 4). The rows of
1/2(H + I +J ), 1/2(−H + I +J ), plus the zero and all-ones vectors form the elements of a binary non-linear
(n − 1, 2 ∗ n, 1/2 ∗ (n − 2)) code.

gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
> [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
gap> C1 := ConferenceCode( H6 );
a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode( C1 );
false

5I ConferenceCode( n )

GUAVA constructs a symmetric conference matrix of order n + 1 (n = 1(mod 4)) and uses the rows of that
matrix, plus the zero and all-ones vectors, to construct a binary non-linear (n, 2∗ (n +1), 1/2∗ (n−1)) code.

gap> C2 := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C2 );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ],
[ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ],
[ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]

6I MOLSCode( n, q )
I MOLSCode( q )

MOLSCode returns an (n, q2,n−1) code over GF(q). The code is created from n−2 Mutually Orthogonal
Latin Squares (MOLS) of size q∗q . The default for n is 4. GUAVA can construct a MOLS code for n−2 ≤ q ;
q must be a prime power, q > 2. If there are no n − 2 MOLS, an error is signalled.
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Since each of the n − 2 MOLS is a q ∗ q matrix, we can create a code of size q2 by listing in each code
element the entries that are in the same position in each of the MOLS. We precede each of these lists with
the two coordinates that specify this position, making the word length become n.

The MOLS codes are MDS codes (see 3.3.5).

gap> C1 := MOLSCode( 6, 5 );
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
gap> mols := List( [1 .. WordLength(C1) - 2 ], function( nr )
> local ls, el;
> ls := NullMat( Size(LeftActingDomain(C1)), Size(LeftActingDomain(C1)) );
> for el in VectorCodeword( AsSSortedList( C1 ) ) do
> ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
> od;
> return ls;
> end );;
gap> AreMOLS( mols );
true
gap> C2 := MOLSCode( 11 );
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)

7I RandomCode( n, M , F )

RandomCode returns a random unrestricted code of size M with word length n over F . M must be less than
or equal to the number of elements in the space GF (q)n .

The function RandomLinearCode returns a random linear code (see 4.2.11).

gap> C1 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance(C1);
3
gap> C2 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> C1 = C2;
false

8I NordstromRobinsonCode()

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code with word length n = 16 and
minimum distance d = 6 over GF(2). This is a non-linear (16, 256, 6) code.

gap> C := NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode( C );
0

9I GreedyCode( L, d, F )

GreedyCode returns a Greedy code with design distance d over F . The code is constructed using the Greedy
algorithm on the list of vectors L. This algorithm checks each vector in L and adds it to the code if its
distance to the current code is greater than or equal to d . It is obvious that the resulting code has a
minimum distance of at least d .

Note that Greedy codes are often linear codes.

The function LexiCode creates a Greedy code from a basis instead of an enumerated list (see 4.1.10).
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gap> C1 := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
> (1,4) ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C1 = C2;
false

10I LexiCode( n, d, F )

In this format, Lexicode returns a Lexicode with word length n, design distance d over F . The code is
constructed using the Greedy algorithm on the lexicographically ordered list of all vectors of length n over
F . Every time a vector is found that has a distance to the current code of at least d , it is added to the code.
This results, obviously, in a code with minimum distance greater than or equal to d .

gap> C := LexiCode( 4, 3, GF(5) );
a (4,17,3..4)2..4 lexicode over GF(5)

11I LexiCode( B, d, F )

When called in this format, LexiCode uses the basis B instead of the standard basis. B is a matrix of vectors
over F . The code is constructed using the Greedy algorithm on the list of vectors spanned by B , ordered
lexicographically with respect to B .

gap> B := [ [Z(2)^0, 0*Z(2), 0*Z(2)], [Z(2)^0, Z(2)^0, 0*Z(2)] ];;
gap> C := LexiCode( B, 2, GF(2) );
a linear [3,1,2]1..2 lexicode over GF(2)

Note that binary Lexicodes are always linear.

The function GreedyCode creates a Greedy code that is not restricted to a lexicographical order (see 4.1.9).

4.2 Generating Linear Codes

In this section we describe functions for constructing linear codes. A linear code always has a generator or
check matrix.

The first two functions generate linear codes from the generator matrix (4.2.1) or check matrix (4.2.2). All
linear codes can be constructed with these functions.

The next functions we describe generate some well known codes, like Hamming codes (4.2.3), Reed-Muller
codes (4.2.4) and the extended Golay codes (4.3.2 and 4.3.4).

A large and powerful family of codes are alternant codes. They are obtained by a small modification of the
parity check matrix of a BCH code (see 4.2.5, 4.2.6, 4.2.8 and 4.2.9).

Finally, we describe a function for generating random linear codes (see 4.2.11).

1I GeneratorMatCode( G [, Name ], F )

GeneratorMatCode returns a linear code with generator matrix G . G must be a matrix over Galois field F .
Name can contain a short description of the code. The generator matrix is the basis of the elements of the
code. The resulting code has word length n, dimension k if G is a k ∗ n-matrix. If GF (q) is the field of the
code, the size of the code will be qk .

If the generator matrix does not have full row rank, the linearly dependent rows are removed. This is done
by the function BaseMat (see 24.10.1) and results in an equal code. The generator matrix can be retrieved
with the function GeneratorMat (see 3.7.1).
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gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := GeneratorMatCode( G, GF(3) );
a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a linear [5,5,1]0 code defined by generator matrix over GF(2)
gap> GeneratorMatCode( List( AsSSortedList( NordstromRobinsonCode() ),
> x -> VectorCodeword( x ) ), GF( 2 ) );
a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
# This is the smallest linear code that contains the N-R code

2I CheckMatCode( H [, Name ], F )

CheckMatCode returns a linear code with check matrix H . H must be a matrix over Galois field F . Name
can contain a short description of the code. The parity check matrix is the transposed of the nullmatrix
of the generator matrix of the code. Therefore, c ∗ H T = 0 where c is an element of the code. If H is a
r ∗ n-matrix, the code has word length n, redundancy r and dimension n − r .

If the check matrix does not have full row rank, the linearly dependent rows are removed. This is done by
the function BaseMat (see 24.10.1) and results in an equal code. The check matrix can be retrieved with the
function CheckMat (see 3.7.2).

gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := CheckMatCode( G, GF(3) );
a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
gap> CheckMat(C1);
[ [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ],
[ 0*Z(3), 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ]

gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a cyclic [5,0,5]5 code defined by check matrix over GF(2)

3I HammingCode( r, F )

HammingCode returns a Hamming code with redundancy r over F . A Hamming code is a single-error-
correcting code. The parity check matrix of a Hamming code has all nonzero vectors of length r in its
columns, except for a multiplication factor. The decoding algorithm of the Hamming code (see 3.10.1)
makes use of this property.

If q is the size of its field F , the returned Hamming code is a linear [(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r , 3]
code.

gap> C1 := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode( 3, GF(9) );
a linear [91,88,3]1 Hamming (3,9) code over GF(9)

4I ReedMullerCode( r, k )

ReedMullerCode returns a binary Reed-Muller code R(r , k) with dimension k and order r . This is a code
with length 2k and minimum distance 2k−r . By definition, the r th order binary Reed-Muller code of length
n = 2m , for 0 ≤ r ≤ m, is the set of all vectors f , where f is a Boolean function which is a polynomial of
degree at most r .
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gap> ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

5I AlternantCode( r, Y , F )
I AlternantCode( r, Y , alpha, F )

AlternantCode returns an alternant code, with parameters r , Y and alpha (optional). r is the design
redundancy of the code. Y and alpha are both vectors of length n from which the parity check matrix is
constructed. The check matrix has entries of the form a j

i yi . If no alpha is specified, the vector [1, a, a2, ··, an−1]
is used, where a is a primitive element of a Galois field F .

gap> Y := [ 1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot( 2, 7 );;
gap> alpha := List( [0..6], i -> a^i );;
gap> C := AlternantCode( 2, Y, alpha, GF(8) );
a linear [7,3,3..4]3..4 alternant code over GF(8)

6I GoppaCode( G, L )

GoppaCode returns a Goppa code from Goppa polynomial G , having coefficients in a Galois Field GF (qm).
L must be a list of elements in GF (qm), that are not roots of G . The word length of the code is equal
to the length of L. The parity check matrix contains entries of the form a j

i G(ai ), ai in L. The function
VerticalConversionFieldMat converts this matrix to a matrix with entries in GF (q) (see 6.2.9).

gap> x := Indeterminate( GF(2), "x" );;
gap> G := x^2 + x + 1;; L := AsSSortedList( GF(8) );;
gap> C := GoppaCode( G, L );
a linear [8,2,5]3 Goppa code over GF(2)

7I GoppaCode( G, n )

When called with parameter n, GUAVA constructs a list L of length n, such that no element of L is a root
of G .

gap> x := Indeterminate( GF(2), "x" );;
gap> G := x^2 + x + 1;;
gap> C := GoppaCode( G, 8 );
a linear [8,2,5]3 Goppa code over GF(2)

8I GeneralizedSrivastavaCode( a, w, z, F )
I GeneralizedSrivastavaCode( a, w, z, t, F )

GeneralizedSrivastavaCode returns a generalized Srivastava code with parameters a, w , z , t . a = a1, ···, an
and w = w1, · · ·,ws are lists of n + s distinct elements of F = GF (qm), z is a list of length n of nonzero
elements of GF (qm). The parameter t determines the designed distance: d ≥ st +1. The parity check matrix
of this code has entries of the form zi

(ai − wl )k

VerticalConversionFieldMat converts this matrix to a matrix with entries in GF (q) (see 6.2.9). The
default for t is 1. The original Srivastava codes (see 4.2.9) are a special case t = 1, zi = aµi for some µ.
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gap> a := Filtered( AsSSortedList( GF(2^6) ), e -> e in GF(2^3) );;
gap> w := [ Z(2^6) ];; z := List( [1..8], e -> 1 );;
gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );
a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2)

9I SrivastavaCode( a, w, F )
I SrivastavaCode( a, w, mu, F )

SrivastavaCode returns a Srivastava code with parameters a, w , mu. a = a1, · · ·, an and w = w1, · · ·,ws are
lists of n + s distinct elements of F = GF (qm). The default for mu is 1. The Srivastava code is a generalized
Srivastava code (see 4.2.8), in which z i = amu

i for some mu and t = 1.

gap> a := AsSSortedList( GF(11) ){[2..8]};;
gap> w := AsSSortedList( GF(11) ){[9..10]};;
gap> C := SrivastavaCode( a, w, 2, GF(11) );
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode( C );
true # Always true if F is a prime field

10I CordaroWagnerCode( n )

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code of length n and dimension 2
having the best possible minimum distance d . This code is just a little bit less trivial than RepetitionCode
(see 4.4.11).

gap> C := CordaroWagnerCode( 11 );
a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 0 0 0 0 ], [ 0 0 0 0 1 1 1 1 1 1 1 ],
[ 1 1 1 1 0 0 0 1 1 1 1 ], [ 1 1 1 1 1 1 1 0 0 0 0 ] ]

11I RandomLinearCode( n, k , F )

RandomLinearCode returns a random linear code with word length n, dimension k over field F .

To create a random unrestricted code, use RandomCode (see 4.1.7).

gap> C := RandomLinearCode( 15, 4, GF(3) );
a linear [15,4,1..6]6..10 random linear code over GF(3)

12I BestKnownLinearCode( n, k , F )

BestKnownLinearCode returns the best known linear code of length n, dimension k over field F . The function
uses the tables described in section 6.1.12 to construct this code.

gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> C1 = BinaryGolayCode();
true
gap> Display( BestKnownLinearCode( 8, 4, GF(4) ) );
a linear [8,4,4]2..3 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]3 repetition code over GF(4)
V: a cyclic [4,1,4]3 repetition code over GF(4)
gap> C := BestKnownLinearCode(131,47);
a linear [131,47,28..32]23..68 shortened code
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13I BestKnownLinearCode( rec )

In this form, rec must be a record containing the fields lowerBound, upperBound and construction. It uses
the information in this field to construct a code. This form is meant to be used together with the function
BoundsMinimumDistance (see 6.1.12), if the bounds are already calculated.

gap> bounds := BoundsMinimumDistance( 20, 17, GF(4) );
rec( n := 20, k := 17, q := 4,
references := rec( HM := [ "%T this reference is unknown, for more info",

"%T contact A.E. Brouwer (aeb@cwi.nl)" ] ),
construction := [ <Operation "ShortenedCode">,

[ [ <Operation "HammingCode">, [ 3, 4 ] ], [ 1 ] ] ], lowerBound := 3,
lowerBoundExplanation := [ "Lb(20,17)=3, by shortening of:",

"Lb(21,18)=3, reference: HM" ], upperBound := 3,
upperBoundExplanation :=
[ "Ub(20,17)=3, otherwise construction B would contradict:",
"Ub(3,1)=3, repetition code" ] )

gap> C := BestKnownLinearCode( bounds );
a linear [20,17,3]2 shortened code
gap> C = BestKnownLinearCode( 20, 17, GF(4) );
true

4.3 Golay Codes

1I BinaryGolayCode()

BinaryGolayCode returns a binary Golay code. This is a perfect [23,12,7] code. It is also cyclic, and has
generator polynomial g(x ) = 1 + x 2 + x 4 + x 5 + x 6 + x 10 + x 11. Extending it results in an extended Golay
code (see 4.3.2). There’s also the ternary Golay code (see 4.3.3).

gap> BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
true
gap> IsPerfectCode(BinaryGolayCode());
true

2I ExtendedBinaryGolayCode( )

ExtendedBinaryGolayCode returns an extended binary Golay code. This is a [24, 12, 8] code. Puncturing in
the last position results in a perfect binary Golay code (see 4.3.1). The code is self-dual (see 3.3.6).

gap> C := ExtendedBinaryGolayCode();
a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> P := PuncturedCode(C);
a linear [23,12,7]3 punctured code
gap> P = BinaryGolayCode();
true

3I TernaryGolayCode()

TernaryGolayCode returns a ternary Golay code. This is a perfect [11,6,5] code. It is also cyclic, and has
generator polynomial g(x ) = 2 + x 2 + 2x 3 + x 4 + x 5. Extending it results in an extended Golay code (see
4.3.4). There’s also the binary Golay code (see 4.3.1).
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gap> TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
true

4I ExtendedTernaryGolayCode( )

ExtendedTernaryGolayCode returns an extended ternary Golay code. This is a [12, 6, 6] code. Puncturing
this code results in a perfect ternary Golay code (see 4.3.3). The code is self-dual (see 3.3.6).

gap> C := ExtendedTernaryGolayCode();
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> P := PuncturedCode(C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true

4.4 Generating Cyclic Codes

The elements of a cyclic code C are all multiples of a polynomial g(x ), where calculations are carried out
modulo x n − 1. Therefore, the elements always have a degree less than n. A cyclic code is an ideal in the
ring of polynomials modulo x n − 1. The polynomial g(x ) is called the generator polynomial of C . This
is the unique monic polynomial of least degree that generates C . It is a divisor of the polynomial x n − 1.
The check polynomial is the polynomial h(x ) with g(x ) ∗ h(x ) = x n − 1. Therefore it is also a divisor of
x n − 1. The check polynomial has the property that c(x ) ∗ h(x ) = 0(mod (x n − 1)) for every codeword c(x ).
The first two functions described generate cyclic codes from a given generator or check polynomial. All cyclic
codes can be constructed using these functions.
Next are described the two cyclic Golay codes (see 4.3.1 and 4.3.3).
Then functions that generate cyclic codes from a prescribed set of roots of the generator polynomial are
described, including the BCH codes (see 4.4.3, 4.4.5, 4.4.6 and 4.4.7).
Finally we describe the trivial codes (see 4.4.9, 4.4.10, 4.4.11), and CyclicCodes (4.4.12).

1I GeneratorPolCode( g, n [, Name ], F )

GeneratorPolCode creates a cyclic code with a generator polynomial g , word length n, over F . Name can
contain a short description of the code.
If g is not a divisor of x n − 1, it cannot be a generator polynomial. In that case, a code is created with
generator polynomial gcd(g , x n−1), i.e. the greatest common divisor of g and x n−1. This is a valid generator
polynomial that generates the ideal (g). See 4.4.

gap> x:= Indeterminate( GF(2) );; P:= x^2+1;
Z(2)^0+x^2
gap> G := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( G );
Z(2)^0+x
gap> G2 := GeneratorPolCode( x+1, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( G2 );
Z(2)^0+x

2I CheckPolCode( h, n [, Name ], F )

CheckPolCode creates a cyclic code with a check polynomial h, word length n, over F . Name can contain
a short description of the code.
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If h is not a divisor of x n − 1, it cannot be a check polynomial. In that case, a code is created with check
polynomial gcd(h, x n −1), i.e. the greatest common divisor of h and x n −1. This is a valid check polynomial
that yields the same elements as the ideal (h). See 4.4.

gap> x:= Indeterminate( GF(3) );; P:= x^2+2;
-Z(3)^0+x_1^2
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
-Z(3)^0+x_1
gap> Gcd(P, X(GF(3))^7-1);
-Z(3)^0+x_1

3I RootsCode( n, list )

This is the generalization of the BCH, Reed-Solomon and quadratic residue codes (see 4.4.5, 4.4.6 and 4.4.7).
The user can give a length of the code n and a prescribed set of zeros. The argument list must be a valid list
of primitive n th roots of unity in a splitting field GF (qm). The resulting code will be over the field GF (q).
The function will return the largest possible cyclic code for which the list list is a subset of the roots of the
code. From this list, GUAVA calculates the entire set of roots.

gap> a := PrimitiveUnityRoot( 3, 14 );
Z(3^6)^52
gap> C1 := RootsCode( 14, [ a^0, a, a^3 ] );
a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance( C1 );
4
gap> b := PrimitiveUnityRoot( 2, 15 );
Z(2^4)
gap> C2 := RootsCode( 15, [ b, b^2, b^3, b^4 ] );
a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode( 15, 5, GF(2) );
true

4I RootsCode( n, list, F )

In this second form, the second argument is a list of integers, ranging from 0 to n-1. The resulting code will
be over a field F . GUAVA calculates a primitive n th root of unity, α, in the extension field of F . It uses the
set of the powers of α in the list as a prescribed set of zeros.

gap> C := RootsCode( 4, [ 1, 2 ], GF(5) );
a cyclic [4,2,3]2 code defined by roots over GF(5)
gap> RootsOfCode( C );
[ Z(5), Z(5)^2 ]
gap> C = ReedSolomonCode( 4, 3 );
true

5I BCHCode( n, d , F )
I BCHCode( n, b, d, F )

The function BCHCode returns a Bose-Chaudhuri-Hockenghem code (or BCH code for short). This is
the largest possible cyclic code of length n over field F , whose generator polynomial has zeros

ab , ab+1, · · ·, ab+d−2,
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where a is a primitive n th root of unity in the splitting field GF (qm), b is an integer > 1 and m is the
multiplicative order of q modulo n. Default value for b is 1. The length n of the code and the size q of the
field must be relatively prime. The generator polynomial is equal to the product of the minimal polynomials
of X b ,X b+1, · · ·,X b+d−2.
Special cases are b = 1 (resulting codes are called narrow-sense BCH codes), and n = qm − 1 (known
as primitive BCH codes). GUAVA calculates the largest value of d f́or which the BCH code with designed
distance d ćoincides with the BCH code with designed distance d . This distance is called the Bose distance
of the code. The true minimum distance of the code is greater than or equal to the Bose distance.
Printed are the designed distance (to be precise, the Bose distance) delta, and the starting power b.

gap> C1 := BCHCode( 15, 3, 5, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> DesignedDistance( C1 );
7
gap> C2 := BCHCode( 23, 2, GF(2) );
a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance( C2 );
5
gap> MinimumDistance(C2);
7

6I ReedSolomonCode( n, d )

ReedSolomonCode returns a Reed-Solomon code of length n, designed distance d . This code is a primitive
narrow-sense BCH code over the field GF (q), where q = n + 1. The dimension of an RS code is n − d + 1.
According to the Singleton bound (see 6.1.1) the dimension cannot be greater than this, so the true minimum
distance of an RS code is equal to d and the code is maximum distance separable (see 3.3.5).

gap> C1 := ReedSolomonCode( 3, 2 );
a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
gap> C2 := ReedSolomonCode( 4, 3 );
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode( C2 );
[ Z(5), Z(5)^2 ]
gap> IsMDSCode(C2);
true

7I QRCode( n, F )

QRCode returns a quadratic residue code. If F is a field GF (q), then q must be a quadratic residue modulo
n. That is, an x exists with x 2 = q(mod n). Both n and q must be primes. Its generator polynomial is
the product of the polynomials x − a i . a is a primitive n th root of unity, and i is an integer in the set of
quadratic residues modulo n.

gap> C1 := QRCode( 7, GF(2) );
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent( C1, HammingCode( 3, GF(2) ) );
true
gap> C2 := QRCode( 11, GF(3) );
a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
gap> C2 = TernaryGolayCode();
true

8I FireCode( G, b )

FireCode constructs a (binary) Fire code. G is a primitive polynomial of degree m, factor of x r − 1. b an
integer 0 ≤ b ≤ m not divisible by r , that determines the burst length of a single error burst that can be



36 Chapter 4. Generating Codes

corrected. The argument G can be a polynomial with base ring GF (2), or a list of coefficients in GF (2).
The generator polynomial is defined as the product of G and x 2b−1 + 1.

gap> x:= Indeterminate( GF(2) );; G:= x^3+x^2+1;
Z(2)^0+x^2+x^3
gap> Factors( G );
[ Z(2)^0+x^2+x^3 ]
gap> C := FireCode( G, 3 );
a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance( C );
4 # Still it can correct bursts of length 3

9I WholeSpaceCode( n, F )

WholeSpaceCode returns the cyclic whole space code of length n over F . This code consists of all polynomials
of degree less than n and coefficients in F .

gap> C := WholeSpaceCode( 5, GF(3) );
a cyclic [5,5,1]0 whole space code over GF(3)

10I NullCode( n, F )

NullCode returns the zero-dimensional nullcode with length n over F . This code has only one word: the all
zero word. It is cyclic though!

gap> C := NullCode( 5, GF(3) );
a cyclic [5,0,5]5 nullcode over GF(3)
gap> AsSSortedList( C );
[ [ 0 0 0 0 0 ] ]

11I RepetitionCode( n, F )

RepetitionCode returns the cyclic repetition code of length n over F . The code has as many elements as
F , because each codeword consists of a repetition of one of these elements.

gap> C := RepetitionCode( 3, GF(5) );
a cyclic [3,1,3]2 repetition code over GF(5)
gap> AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ], [ 2 2 2 ], [ 4 4 4 ], [ 3 3 3 ] ]
gap> IsPerfectCode( C );
false
gap> IsMDSCode( C );
true

12I CyclicCodes( n, F )

CyclicCodes returns a list of all cyclic codes of length n over F . It constructs all possible generator poly-
nomials from the factors of x n − 1. Each combination of these factors yields a generator polynomial after
multiplication.

13I NrCyclicCodes( n, F )

The function NrCyclicCodes calculates the number of cyclic codes of length n over field F .
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gap> NrCyclicCodes( 23, GF(2) );
8
gap> codelist := CyclicCodes( 23, GF(2) );
[ a cyclic [23,23,1]0 enumerated code over GF(2),
a cyclic [23,22,1..2]1 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2),
a cyclic [23,1,23]11 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2) ]

gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode( 23, GF(2) ) in codelist;
true
gap> CordaroWagnerCode( 23 ) in codelist;
false # This code is not cyclic



5 Manipulating Codes

In this chapter we describe several functions GUAVA uses to manipulate codes. Some of the best codes are
obtained by starting with for example a BCH code, and manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than to use the original code. For
example, if the dimension of the code is larger than half the word length, it is generally faster to compute the
weight distribution by first calculating the weight distribution of the dual code than by directly calculating
the weight distribution of the original code. The size of the dual code is smaller in these cases.

Because GUAVA keeps all information in a code record, in some cases the information can be preserved after
manipulations. Therefore, computations do not always have to start from scratch.

In Section 5.1, we describe functions that take a code with certain parameters, modify it in some way and
return a different code (see 5.1.1, 5.1.2, 5.1.4, 5.1.5, 5.1.6, 5.1.7, 5.1.9, 5.1.10, 5.1.11, 5.1.13, 5.1.14, 5.1.15,
5.1.16, 5.1.17, 5.1.19, 5.1.21 and 5.1.18).

In Section 5.2, we describe functions that generate a new code out of two codes (see 5.2.1, 5.2.2, 5.2.3, 5.2.4
and 5.2.5).

5.1 Functions that Generate a New Code from a Given Code

1I ExtendedCode( C [, i ] )

ExtendedCode extends the code C i times and returns the result. i is equal to 1 by default. Extending is
done by adding a parity check bit after the last coordinate. The coordinates of all codewords now add up
to zero. In the binary case, each codeword has even weight.

The word length increases by i . The size of the code remains the same. In the binary case, the minimum
distance increases by one if it was odd. In other cases, that is not always true.

A cyclic code in general is no longer cyclic after extending.

gap> C1 := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> C2 := ExtendedCode( C1 );
a linear [8,4,4]2 extended code
gap> IsEquivalent( C2, ReedMullerCode( 1, 3 ) );
true
gap> List( AsSSortedList( C2 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8 ]
gap> C3 := EvenWeightSubcode( C1 );
a linear [7,3,4]2..3 even weight subcode

To undo extending, call PuncturedCode (see 5.1.2). The function EvenWeightSubcode (see 5.1.4) also returns
a related code with only even weights, but without changing its word length.
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2I PuncturedCode( C )

PuncturedCode punctures C in the last column, and returns the result. Puncturing is done simply by
cutting off the last column from each codeword. This means the word length decreases by one. The minimum
distance in general also decrease by one.

3I PuncturedCode( C, L )

PuncturedCode punctures C in the columns specified by L, a list of integers. All columns specified by L are
omitted from each codeword. If l is the length of L (so the number of removed columns), the word length
decreases by l . The minimum distance can also decrease by l or less.

Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured in all the columns
where a word of minimal weight is unequal to zero, the dimension of the resulting code decreases.

gap> C1 := BCHCode( 15, 5, GF(2) );
a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)
gap> C2 := PuncturedCode( C1 );
a linear [14,7,4]3..5 punctured code
gap> ExtendedCode( C2 ) = C1;
false
gap> PuncturedCode( C1, [1,2,3,4,5,6,7] );
a linear [8,7,1]1 punctured code
gap> PuncturedCode( WholeSpaceCode( 4, GF(5) ) );
a linear [3,3,1]0 punctured code # The dimension decreased from 4 to 3

ExtendedCode extends the code again (see 5.1.1) although in general this does not result in the old code.

4I EvenWeightSubcode( C )

EvenWeightSubcode returns the even weight subcode of C , consisting of all codewords of C with even
weight. If C is a linear code and contains words of odd weight, the resulting code has a dimension of one
less. The minimum distance always increases with one if it was odd. If C is a binary cyclic code, and g(x ) is
its generator polynomial, the even weight subcode either has generator polynomial g(x ) (if g(x ) is divisible
by x −1) or g(x )∗ (x −1) (if no factor x −1 was present in g(x )). So the even weight subcode is again cyclic.

Of course, if all codewords of C are already of even weight, the returned code is equal to C .

gap> C1 := EvenWeightSubcode( BCHCode( 8, 4, GF(3) ) );
an (8,33,4..8)3..8 even weight subcode
gap> List( AsSSortedList( C1 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6, 8, 4, 4,
4, 6, 4, 6, 8, 4, 6, 8 ]

gap> EvenWeightSubcode( ReedMullerCode( 1, 3 ) );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

ExtendedCode also returns a related code of only even weights, but without reducing its dimension (see
5.1.1).

5I PermutedCode( C, L )

PermutedCode returns C after column permutations. L is the permutation to be executed on the columns
of C . If C is cyclic, the result in general is no longer cyclic. If a permutation results in the same code as C ,
this permutation belongs to the automorphism group of C (see 3.4.3). In any case, the returned code is
equivalent to C (see 3.4.1).
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gap> C1 := PuncturedCode( ReedMullerCode( 1, 4 ) );
a linear [15,5,7]5 punctured code
gap> C2 := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = C1;
false
gap> p := CodeIsomorphism( C1, C2 );
( 2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap> C3 := PermutedCode( C1, p );
a linear [15,5,7]5 permuted code
gap> C2 = C3;
true

6I ExpurgatedCode( C, L )

ExpurgatedCode expurgates code C by throwing away codewords in list L. C must be a linear code. L
must be a list of codeword input. The generator matrix of the new code no longer is a basis for the codewords
specified by L. Since the returned code is still linear, it is very likely that, besides the words of L, more
codewords of C are no longer in the new code.

gap> C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList(C1), i -> WeightCodeword(i) = 3 );;
gap> C2 := ExpurgatedCode( C1, L );
a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
gap> WeightDistribution( C2 );
[ 1, 0, 0, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

This function does not work on non-linear codes. For removing words from a non-linear code, use Re-
movedElementsCode (see 5.1.9). For expurgating a code of all words of odd weight, use EvenWeightSubcode
(see 5.1.4).

7I AugmentedCode( C, L )

AugmentedCode returns C after augmenting. C must be a linear code, L must be a list of codeword input.
The generator matrix of the new code is a basis for the codewords specified by L as well as the words
that were already in code C . Note that the new code in general will consist of more words than only the
codewords of C and the words L. The returned code is also a linear code.

gap> C31 := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> C32 := AugmentedCode(C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> C32 = ReedMullerCode( 2, 3 );
true

8I AugmentedCode( C )

When called without a list of codewords, AugmentedCode returns C after adding the all-ones vector to the
generator matrix. C must be a linear code. If the all-ones vector was already in the code, nothing happens
and a copy of the argument is returned. If C is a binary code which does not contain the all-ones vector,
the complement of all codewords is added.
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gap> C1 := CordaroWagnerCode(6);
a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap> Codeword( [0,0,1,1,1,1] ) in C1;
true
gap> C2 := AugmentedCode( C1 );
a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap> Codeword( [1,1,0,0,0,0] ) in C2;
true

The function AddedElementsCode adds elements to the codewords instead of adding them to the basis (see
5.1.10).

9I RemovedElementsCode( C, L )

RemovedElementsCode returns code C after removing a list of codewords L from its elements. L must be a
list of codeword input. The result is an unrestricted code.

gap> C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList(C1), i -> WeightCodeword(i) = 3 );;
gap> C2 := RemovedElementsCode( C1, L );
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap> WeightDistribution( C2 );
[ 1, 0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> MinimumDistance( C2 );
3 # C2 is not linear, so the minimum weight does not have to

# be equal to the minimum distance

Adding elements to a code is done by the function AddedElementsCode (see 5.1.10). To remove codewords
from the base of a linear code, use ExpurgatedCode (see 5.1.6).

10I AddedElementsCode( C, L )

AddedElementsCode returns code C after adding a list of codewords L to its elements. L must be a list of
codeword input. The result is an unrestricted code.

gap> C1 := NullCode( 6, GF(2) );
a cyclic [6,0,6]6 nullcode over GF(2)
gap> C2 := AddedElementsCode( C1, [ "111111" ] );
a (6,2,1..6)3 code with 1 word(s) added
gap> IsCyclicCode( C2 );
true
gap> C3 := AddedElementsCode( C2, [ "101010", "010101" ] );
a (6,4,1..6)2 code with 2 word(s) added
gap> IsCyclicCode( C3 );
true

To remove elements from a code, use RemovedElementsCode (see 5.1.9). To add elements to the base of a
linear code, use AugmentedCode (see 5.1.7).

11I ShortenedCode( C )

ShortenedCode returns code C shortened by taking a cross section. If C is a linear code, this is done by
removing all codewords that start with a non-zero entry, after which the first column is cut off. If C was
a [n, k , d ] code, the shortened code generally is a [n − 1, k − 1, d ] code. It is possible that the dimension
remains the same; it is also possible that the minimum distance increases.



42 Chapter 5. Manipulating Codes

gap> C1 := HammingCode( 4 );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := ShortenedCode( C1 );
a linear [14,10,3]2 shortened code

If C is a non-linear code, ShortenedCode first checks which finite field element occurs most often in the first
column of the codewords. The codewords not starting with this element are removed from the code, after
which the first column is cut off. The resulting shortened code has at least the same minimum distance as
C .

gap> C1 := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> MinimumDistance( C1 );
2
gap> C2 := ShortenedCode( C1 );
a (3,2,2..3)1..2 shortened code
gap> AsSSortedList( C2 );
[ [ 0 0 0 ], [ 1 0 1 ] ]

12I ShortenedCode( C, L )

When called in this format, ShortenedCode repeats the shortening process on each of the columns specified
by L. L therefore is a list of integers. The column numbers in L are the numbers as they are before the
shortening process. If L has l entries, the returned code has a word length of l positions shorter than C .

gap> C1 := HammingCode( 5, GF(2) );
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C2 := ShortenedCode( C1, [ 1, 2, 3 ] );
a linear [28,23,3]2 shortened code
gap> OptimalityLinearCode( C2 );
0

The function LengthenedCode lengthens the code again (only for linear codes), see 5.1.13. In general, this
is not exactly the inverse function.

13I LengthenedCode( C [, i ] )

LengthenedCode returns code C lengthened. C must be a linear code. First, the all-ones vector is added
to the generator matrix (see 5.1.7). If the all-ones vector was already a codeword, nothing happens to the
code. Then, the code is extended i times (see 5.1.1). i is equal to 1 by default. If C was an [n, k ] code, the
new code generally is a [n + i , k + 1] code.

gap> C1 := CordaroWagnerCode( 5 );
a linear [5,2,3]2 Cordaro-Wagner code over GF(2)
gap> C2 := LengthenedCode( C1 );
a linear [6,3,2]2..3 code, lengthened with 1 column(s)

ShortenedCode shortens the code, see 5.1.11. In general, this is not exactly the inverse function.

14I ResidueCode( C [, w ] )

The function ResidueCode takes a codeword c of C of weight w (if w is omitted, a codeword of minimal
weight is used). C must be a linear code and w must be greater than zero. It removes this word and all its
linear combinations from the code and then punctures the code in the coordinates where c is unequal to
zero. The resulting code is an [n − w , k − 1, d − bw ∗ (q − 1)/qc] code.
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gap> C1 := BCHCode( 15, 7 );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 := ResidueCode( C1 );
a linear [8,4,4]2 residue code
gap> c := Codeword( [ 0,0,0,1,0,0,1,1,0,1,0,1,1,1,1 ], C1);;
gap> C3 := ResidueCode( C1, c );
a linear [7,4,3]1 residue code

15I ConstructionBCode( C )

The function ConstructionBCode takes a binary linear code C and calculates the minimum distance of the
dual of C (see 5.1.16). It then removes the columns of the parity check matrix of C where a codeword of the
dual code of minimal weight has coordinates unequal to zero. the resulting matrix is a parity check matrix
for an [n − dd , k − dd + 1,≥ d ] code, where dd is the minimum distance of the dual of C .

gap> C1 := ReedMullerCode( 2, 5 );
a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode( C1 );
a linear [24,9,8]5..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance( 24, 9, GF(2) );
rec( n := 24, k := 9, q := 2, references := rec( ),
construction := [ <Operation "UUVCode">,

[ [ <Operation "UUVCode">, [ [ <Operation "DualCode">,
[ [ <Operation "RepetitionCode">, [ 6, 2 ] ] ] ],

[ <Operation "CordaroWagnerCode">, [ 6 ] ] ] ],
[ <Operation "CordaroWagnerCode">, [ 12 ] ] ] ], lowerBound := 8,

lowerBoundExplanation := [ "Lb(24,9)=8, u u+v construction of C1 and C2:",
"Lb(12,7)=4, u u+v construction of C1 and C2:",
"Lb(6,5)=2, dual of the repetition code",
"Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner code" ],

upperBound := 8,
upperBoundExplanation := [ "Ub(24,9)=8, otherwise construction B would contr\

adict:", "Ub(18,4)=8, Griesmer bound" ] )
# so C2 is optimal

16I DualCode( C )

DualCode returns the dual code of C . The dual code consists of all codewords that are orthogonal to the
codewords of C . If C is a linear code with generator matrix G , the dual code has parity check matrix G (or
if C has parity check matrix H , the dual code has generator matrix H ). So if C is a linear [n, k] code, the
dual code of C is a linear [n, n-k] code. If C is a cyclic code with generator polynomial g(x ), the dual code
has the reciprocal polynomial of g(x ) as check polynomial.

The dual code is always a linear code, even if C is non-linear.

If a code C is equal to its dual code, it is called self-dual.

gap> R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> RD := DualCode( R );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> R = RD;
true
gap> N := WholeSpaceCode( 7, GF(4) );
a cyclic [7,7,1]0 whole space code over GF(4)
gap> DualCode( N ) = NullCode( 7, GF(4) );
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true

17I ConversionFieldCode( C )

ConversionFieldCode returns code C after converting its field. If the field of C is GF(qm), the returned
code has field GF(q). Each symbol of every codeword is replaced by a concatenation of m symbols from
GF(q). If C is an (n,M , d1) code, the returned code is a (n ∗m,M , d2) code, where d2 > d1.

See also 6.2.10.

gap> R := RepetitionCode( 4, GF(4) );
a cyclic [4,1,4]3 repetition code over GF(4)
gap> R2 := ConversionFieldCode( R );
a linear [8,2,4]3..4 code, converted to basefield GF(2)
gap> Size( R ) = Size( R2 );
true
gap> GeneratorMat( R );
[ [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ]
gap> GeneratorMat( R2 );
[ [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ]

18I CosetCode( C, w )

CosetCode returns the coset of a code C with respect to word w . w must be of the codeword type. Then, w
is added to each codeword of C , yielding the elements of the new code. If C is linear and w is an element
of C , the new code is equal to C , otherwise the new code is an unrestricted code.

Generating a coset is also possible by simply adding the word w to C . See 3.2.

gap> H := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := Codeword("1011011");; c in H;
false
gap> C := CosetCode(H, c);
a (7,16,3)1 coset code
gap> List(AsSSortedList(C), el-> Syndrome(H, el));
[ [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
[ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
[ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ] ]

# All elements of the coset have the same syndrome in H

19I ConstantWeightSubcode( C, w )

ConstantWeightSubcode returns the subcode of C that only has codewords of weight w . The resulting code
is a non-linear code, because it does not contain the all-zero vector.

gap> N := NordstromRobinsonCode();; WeightDistribution(N);
[ 1, 0, 0, 0, 0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1 ]
gap> C := ConstantWeightSubcode(N, 8);
a (16,30,6..16)5..8 code with codewords of weight 8
gap> WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]

20I ConstantWeightSubcode( C )

In this format, ConstantWeightSubcode returns the subcode of C consisting of all minimum weight code-
words of C .
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gap> eg := ExtendedTernaryGolayCode();; WeightDistribution(eg);
[ 1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24 ]
gap> C := ConstantWeightSubcode(eg);
a (12,264,6..12)3..6 code with codewords of weight 6
gap> WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0 ]

21I StandardFormCode( C )

StandardFormCode returns C after putting it in standard form. If C is a non-linear code, this means the
elements are organized using lexicographical order. This means they form a legal GAP Set.

If C is a linear code, the generator matrix and parity check matrix are put in standard form. The generator
matrix then has an identity matrix in its left part, the parity check matrix has an identity matrix in its right
part. Although GUAVA always puts both matrices in a standard form using BaseMat, this never alters the
code. StandardFormCode even applies column permutations if unavoidable, and thereby changes the code.
The column permutations are recorded in the construction history of the new code (see 3.6.3). C and the
new code are of course equivalent.

If C is a cyclic code, its generator matrix cannot be put in the usual upper triangular form, because then
it would be inconsistent with the generator polynomial. The reason is that generating the elements from
the generator matrix would result in a different order than generating the elements from the generator
polynomial. This is an unwanted effect, and therefore StandardFormCode just returns a copy of C for cyclic
codes.

gap> G := GeneratorMatCode( Z(2) * [ [0,1,1,0], [0,1,0,1], [0,0,1,1] ],
> "random form code", GF(2) );
a linear [4,2,1..2]1..2 random form code over GF(2)
gap> Codeword( GeneratorMat( G ) );
[ [ 0 1 0 1 ], [ 0 0 1 1 ] ]
gap> Codeword( GeneratorMat( StandardFormCode( G ) ) );
[ [ 1 0 0 1 ], [ 0 1 0 1 ] ]

5.2 Functions that Generate a New Code from Two Given Codes
1I DirectSumCode( C 1, C 2 )

DirectSumCode returns the direct sum of codes C 1 and C 2. The direct sum code consists of every codeword
of C 1 concatenated by every codeword of C 2. Therefore, if C i was a (ni ,Mi , di ) code, the result is a
(n1 + n2,M1 ∗M2,min(d1, d2)) code.

If both C 1 and C 2 are linear codes, the result is also a linear code. If one of them is non-linear, the direct
sum is non-linear too. In general, a direct sum code is not cyclic.

Performing a direct sum can also be done by adding two codes (see Sevction 3.2). Another often used method
is the “u, u+v”-construction, described in 5.2.2.

gap> C1 := ElementsCode( [ [1,0], [4,5] ], GF(7) );;
gap> C2 := ElementsCode( [ [0,0,0], [3,3,3] ], GF(7) );;
gap> D := DirectSumCode(C1, C2);;
gap> AsSSortedList(D);
[ [ 1 0 0 0 0 ], [ 1 0 3 3 3 ], [ 4 5 0 0 0 ], [ 4 5 3 3 3 ] ]
gap> D = C1 + C2; # addition = direct sum
true

2I UUVCode( C 1, C 2 )

UUVCode returns the so-called (u|u + v) construction applied to C 1 and C 2. The resulting code consists
of every codeword u of C 1 concatenated by the sum of u and every codeword v of C 2. If C 1 and C 2
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have different word lengths, sufficient zeros are added to the shorter code to make this sum possible. If C i
is a (ni ,Mi , di ) code, the result is a (n1 + max (n1,n2),M1 ∗M2,min(2 ∗ d1, d2)) code.

If both C 1 and C 2 are linear codes, the result is also a linear code. If one of them is non-linear, the UUV
sum is non-linear too. In general, a UUV sum code is not cyclic.

The function DirectSumCode returns another sum of codes (see 5.2.1).

gap> C1 := EvenWeightSubcode(WholeSpaceCode(4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode(4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap> R := UUVCode(C1, C2);
a linear [8,4,4]2 U U+V construction code
gap> R = ReedMullerCode(1,3);
true

3I DirectProductCode( C 1, C 2 )

DirectProductCode returns the direct product of codes C 1 and C 2. Both must be linear codes. Suppose
C i has generator matrix Gi . The direct product of C 1 and C 2 then has the Kronecker product of G1

and G2 as the generator matrix (see KroneckerProduct).

If C i is a [ni , ki , di ] code, the direct product then is a [n1 ∗ n2, k1 ∗ k2, d1 ∗ d2] code.

gap> L1 := LexiCode(10, 4, GF(2));
a linear [10,5,4]2..4 lexicode over GF(2)
gap> L2 := LexiCode(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap> D := DirectProductCode(L1, L2);
a linear [80,20,12]20..45 direct product code

4I IntersectionCode( C 1, C 2 )

IntersectionCode returns the intersection of codes C 1 and C 2. This code consists of all codewords that
are both in C 1 and C 2. If both codes are linear, the result is also linear. If both are cyclic, the result is
also cyclic.

gap> C := CyclicCodes(7, GF(2));
[ a cyclic [7,7,1]0 enumerated code over GF(2),
a cyclic [7,6,1..2]1 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,0,7]7 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2),
a cyclic [7,1,7]3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2) ]

gap> IntersectionCode(C[6], C[8]) = C[7];
true

5I UnionCode( C 1, C 2 )

UnionCode returns the union of codes C 1 and C 2. This code consists of the union of all codewords of
C 1 and C 2 and all linear combinations. Therefore this function works only for linear codes. The function
AddedElementsCode can be used for non-linear codes, or if the resulting code should not include linear
combinations. See 5.1.10. If both arguments are cyclic, the result is also cyclic.
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gap> G := GeneratorMatCode([[1,0,1],[0,1,1]]*Z(2)^0, GF(2));
a linear [3,2,1..2]1 code defined by generator matrix over GF(2)
gap> H := GeneratorMatCode([[1,1,1]]*Z(2)^0, GF(2));
a linear [3,1,3]1 code defined by generator matrix over GF(2)
gap> U := UnionCode(G, H);
a linear [3,3,1]0 union code
gap> c := Codeword("010");; c in G;
false
gap> c in H;
false
gap> c in U;
true



6

Bounds on Codes,
Special Matrices and

Miscellaneous Functions

In this chapter we describe functions that determine bounds on the size and minimum distance of codes
(Section 6.1), functions that work with special matrices GUAVA needs for several codes (see Section 6.2),
and constructing codes or performing calculations with codes (see Section 6.3).

6.1 Bounds on codes

This section describes the functions that calculate estimates for upper bounds on the size and minimum
distance of codes. Several algorithms are known to compute a largest number of words a code can have
with given length and minimum distance. It is important however to understand that in some cases the true
upper bound is unknown. A code which has a size equal to the calculated upper bound may not have been
found. However, codes that have a larger size do not exist.

A second way to obtain bounds is a table. In GUAVA, an extensive table is implemented for linear codes over
GF(2), GF(3) and GF(4). It contains bounds on the minimum distance for given word length and dimension.
For binary codes, it contains entries for word length less than or equal to 257. For codes over GF (3) and
GF (4), it contains entries for word length less than or equal to 130.

Firstly, we describe functions that compute specific upper bounds on the code size (see 6.1.1, 6.1.2, 6.1.3,
6.1.4, 6.1.5 and 6.1.6).

Next we describe a function that computes GUAVA’s best upper bound on the code size (see 6.1.7).

Then we describe two functions that compute a lower and upper bound on the minimum distance of a code
(see 6.1.8 and 6.1.10).

Finally, we describe a function that returns a lower and upper bound on the minimum distance with given
parameters and a description of how the bounds were obtained (see 6.1.12).

1I UpperBoundSingleton( n, d, q )

UpperBoundSingleton returns the Singleton bound for a code of length n, minimum distance d over a field
of size q . This bound is based on the shortening of codes. By shortening an (n,M , d) code d − 1 times, an
(n − d + 1,M , 1) code results, with M ≤ qn−d+1 (see 5.1.11). Thus

M ≤ qn−d+1

Codes that meet this bound are called maximum distance separable (see 3.3.5).
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gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true

2I UpperBoundHamming( n, d, q )

The Hamming bound (also known as sphere packing bound) returns an upper bound on the size of a
code of length n, minimum distance d , over a field of size q . The Hamming bound is obtained by dividing
the contents of the entire space GF (q)n by the contents of a ball with radius b(d − 1)/2c. As all these balls
are disjoint, they can never contain more than the whole vector space.

M ≤ qn

V (n, e)

where M is the maxmimum number of codewords and V (n, e) is equal to the contents of a ball of radius
e (see 6.3.1). This bound is useful for small values of d . Codes for which equality holds are called perfect
(see 3.3.4).

gap> UpperBoundHamming( 15, 3, 2 );
2048
gap> C := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );
2048

3I UpperBoundJohnson( n, d )

The Johnson bound is an improved version of the Hamming bound (see 6.1.2). In addition to the Hamming
bound, it takes into account the elements of the space outside the balls of radius e around the elements of
the code. The Johnson bound only works for binary codes.

gap> UpperBoundJohnson( 13, 5 );
77
gap> UpperBoundHamming( 13, 5, 2);
89 # in this case the Johnson bound is better

4I UpperBoundPlotkin( n, d, q )

The function UpperBoundPlotkin calculates the sum of the distances of all ordered pairs of different code-
words. It is based on the fact that the minimum distance is at most equal to the average distance. It is a
good bound if the weights of the codewords do not differ much. It results in:

M ≤ d
d − (1− 1/q)n

M is the maximum number of codewords. In this case, d must be larger than (1− 1/q)n, but by shortening
the code, the case d < (1− 1/q)n is covered.
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gap> UpperBoundPlotkin( 15, 7, 2 );
32
gap> C := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);
32
gap> WeightDistribution(C);
[ 1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1 ]

5I UpperBoundElias( n, d, q )

The Elias bound is an improvement of the Plotkin bound (see 6.1.4) for large codes. Subcodes are used to
decrease the size of the code, in this case the subcode of all codewords within a certain ball. This bound is
useful for large codes with relatively small minimum distances.

gap> UpperBoundPlotkin( 16, 3, 2 );
12288
gap> UpperBoundElias( 16, 3, 2 );
10280

6I UpperBoundGriesmer( n, d, q )

The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal symbols
in each row of the generator matrix of the code. By omitting the coordinates in which all rows have a zero,
a smaller code results. The Griesmer bound is obtained by repeating this proces until a trivial code is left
in the end.

gap> UpperBoundGriesmer( 13, 5, 2 );
64
gap> UpperBoundGriesmer( 18, 9, 2 );
8 # the maximum number of words for a linear code is 8
gap> Size( PuncturedCode( HadamardCode( 20, 1 ) ) );
20 # this non-linear code has 20 elements

7I UpperBound( n, d, q )

UpperBound returns the best known upper bound A(n, d) for the size of a code of length n, minimum
distance d over a field of size q . The function UpperBound first checks for trivial cases (like d = 1 or n = d)
and if the value is in the built-in table. Then it calculates the minimum value of the upper bound using
the methods of Singleton (see 6.1.1), Hamming (see 6.1.2), Johnson (see 6.1.3), Plotkin (see 6.1.4) and Elias
(see 6.1.5). If the code is binary, A(n, 2 ∗ l − 1) = A(n + 1, 2 ∗ l), so the UpperBound takes the minimum of
the values obtained from all methods for the parameters (n, 2 ∗ l − 1) and (n + 1, 2 ∗ l).

gap> UpperBound( 10, 3, 2 );
85
gap> UpperBound( 25, 9, 8 );
1211778792827540

8I LowerBoundMinimumDistance( C )

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of code C .
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gap> C := BCHCode( 45, 7 );
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance( C );
7 # designed distance is lower bound for minimum distance

9I LowerBoundMinimumDistance( n, k, F )

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of the best
known linear code of length n, dimension k over field F . It uses the mechanism explained in section 6.1.12.

gap> LowerBoundMinimumDistance( 45, 23, GF(2) );
10

10I UpperBoundMinimumDistance( C )

In this form, UpperBoundMinimumDistance returns an upper bound for the minimum distance of code C .
For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum of the possibly
known value from the method of construction, the weight of the generators, and the value from the table
(see 6.1.12).

gap> C := BCHCode( 45, 7 );;
gap> UpperBoundMinimumDistance( C );
9

11I UpperBoundMinimumDistance( n, k, F )

In this form, UpperBoundMinimumDistance returns an upper bound for the minimum distance of the best
known linear code of length n, dimension k over field F . It uses the mechanism explained in section 6.1.12.

gap> UpperBoundMinimumDistance( 45, 23, GF(2) );
11

12I BoundsMinimumDistance( n, k, F )

The function BoundsMinimumDistance calculates a lower and upper bound for the minimum distance of an
optimal linear code with word length n, dimension k over field F . The function returns a record with the
two bounds and an explenation for each bound. The function Display can be used to show the explanations.

The values for the lower and upper bound are obtained from a table. GUAVA has tables containing lower and
upper bounds for q = 2(n ≤ 257), 3 and 4(n ≤ 130). These tables were derived from the table of Brouwer &
Verhoeff. For codes over other fields and for larger word lengths, trivial bounds are used.

The resulting record can be used in the function BestKnownLinearCode (see 4.2.12) to construct a code
with minimum distance equal to the lower bound.

gap> bounds := BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bounds );
an optimal linear [7,3,d] code over GF(2) has d=4
------------------------------------------------------------------------------
Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u u+v construction of C1 and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code
------------------------------------------------------------------------------
Ub(7,3)=4, Griesmer bound
# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.
gap> C := BestKnownLinearCode( bounds );; Display( C );
a linear [7,3,4]2..3 shortened code of
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a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)

6.2 Special matrices in GUAVA

This section explains functions that work with special matrices GUAVA needs for several codes.

Firstly, we describe some matrix generating functions (see 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5).

Next we describe two functions regarding a standard form of matrices (see 6.2.6 and 6.2.7).

Then we describe functions that return a matrix after a manipulation (see 6.2.8, 6.2.9 and 6.2.10).

Finally, we describe functions that do some tests on matrices (see 6.2.11 and 6.2.12).

1I KrawtchoukMat( n , q )

KrawtchoukMat returns the n + 1 by n + 1 matrix K = (kij ) defined by kij = Ki (j ) for i , j = 0, · · ·,n. Ki (j )
is the Krawtchouk number (see 6.3.2). n must be a positive integer and q a prime power. The Krawtchouk
matrix is used in the MacWilliams identities, defining the relation between the weight distribution of a
code of length n over a field of size q , and its dual code. Each call to KrawtchoukMat returns a new matrix,
so it is safe to modify the result.

gap> PrintArray( KrawtchoukMat( 3, 2 ) );
[ [ 1, 1, 1, 1 ],
[ 3, 1, -1, -3 ],
[ 3, -1, -1, 3 ],
[ 1, -1, 1, -1 ] ]

gap> C := HammingCode( 3 );; a := WeightDistribution( C );
[ 1, 0, 0, 7, 7, 0, 0, 1 ]
gap> n := WordLength( C );; q := Size( LeftActingDomain( C ) );;
gap> k := Dimension( C );;
gap> q^( -k ) * KrawtchoukMat( n, q ) * a;
[ 1, 0, 0, 0, 7, 0, 0, 0 ]
gap> WeightDistribution( DualCode( C ) );
[ 1, 0, 0, 0, 7, 0, 0, 0 ]

2I GrayMat( n, F )

GrayMat returns a list of all different vectors (see Vectors) of length n over the field F , using Gray ordening.
n must be a positive integer. This order has the property that subsequent vectors differ in exactly one
coordinate. The first vector is always the null vector. Each call to GrayMat returns a new matrix, so it is
safe to modify the result.

gap> GrayMat(3);
[ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2) ], [ Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2) ] ]

gap> G := GrayMat( 4, GF(4) );; Length(G);
256 # the length of a GrayMat is always $q^n$
gap> G[101] - G[100];
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
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3I SylvesterMat( n )

SylvesterMat returns the n by n Sylvester matrix of order n. This is a special case of the Hadamard
matrices (see 6.2.4). For this construction, n must be a power of 2. Each call to SylvesterMat returns a
new matrix, so it is safe to modify the result.

gap> PrintArray(SylvesterMat(2));
[ [ 1, 1 ],
[ 1, -1 ] ]

gap> PrintArray( SylvesterMat(4) );
[ [ 1, 1, 1, 1 ],
[ 1, -1, 1, -1 ],
[ 1, 1, -1, -1 ],
[ 1, -1, -1, 1 ] ]

4I HadamardMat( n )

HadamardMat returns a Hadamard matrix of order n. This is an n by n matrix with the property that the
matrix multiplied by its transpose returns n times the identity matrix. This is only possible for n = 1,n = 2
or in cases where n is a multiple of 4. If the matrix does not exist or is not known, HadamardMat returns
an error. A large number of construction methods is known to create these matrices for different orders.
HadamardMat makes use of two construction methods (among which the Sylvester construction (see 6.2.3)).
These methods cover most of the possible Hadamard matrices, although some special algorithms have not
been implemented yet. The following orders less than 100 do not have an implementation for a Hadamard
matrix in GUAVA:28, 36, 52, 76, 92·

gap> C := HadamardMat(8);; PrintArray(C);
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ],
[ 1, -1, 1, -1, 1, -1, 1, -1 ],
[ 1, 1, -1, -1, 1, 1, -1, -1 ],
[ 1, -1, -1, 1, 1, -1, -1, 1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1 ],
[ 1, -1, 1, -1, -1, 1, -1, 1 ],
[ 1, 1, -1, -1, -1, -1, 1, 1 ],
[ 1, -1, -1, 1, -1, 1, 1, -1 ] ]

gap> C * TransposedMat(C) = 8 * IdentityMat( 8, 8 );
true

5I MOLS( q )
I MOLS( q, n )

MOLS returns a list of n Mutually Orthogonal Latin Squares (MOLS). A Latin square of order q is
a q by q matrix whose entries are from a set Fq of q distinct symbols (GUAVA uses the integers from 0 to
q) such that each row and each column of the matrix contains each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set, every ordered
pair of elements that are in the same position in these matrices occurs exactly once.

n must be less than q . If n is omitted, two MOLS are returned. If q is not a prime power, at most 2 MOLS
can be created. For all values of q with q > 2 and q 6= 6, a list of MOLS can be constructed. GUAVA however
does not yet construct MOLS for q mod 4 = 2. If it is not possible to construct n MOLS, the function
returns false.

MOLS are used to create q-ary codes (see 4.1.6).
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gap> M := MOLS( 4, 3 );;PrintArray( M[1] );
[ [ 0, 1, 2, 3 ],
[ 1, 0, 3, 2 ],
[ 2, 3, 0, 1 ],
[ 3, 2, 1, 0 ] ]

gap> PrintArray( M[2] );
[ [ 0, 2, 3, 1 ],
[ 1, 3, 2, 0 ],
[ 2, 0, 1, 3 ],
[ 3, 1, 0, 2 ] ]

gap> PrintArray( M[3] );
[ [ 0, 3, 1, 2 ],
[ 1, 2, 0, 3 ],
[ 2, 1, 3, 0 ],
[ 3, 0, 2, 1 ] ]

gap> MOLS( 12, 3 );
false

6I PutStandardForm( M )
I PutStandardForm( M , idleft )

PutStandardForm puts a matrix M in standard form, and returns the permutation needed to do so. idleft
is a boolean that sets the position of the identity matrix in M . If idleft is set to true, the identity matrix
is put in the left side of M . Otherwise, it is put at the right side. The default for idleft is true.

The function BaseMat also returns a similar standard form, but does not apply column permutations. The
rows of the matrix still span the same vector space after BaseMat, but after calling PutStandardForm, this
is not necessarily true.

gap> M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2), Z(2) ] ]

gap> PutStandardForm(M); # identity at the left side
(2,3)
gap> PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]

gap> PutStandardForm(M, false); # identity at the right side
(1,4,3)
gap> PrintArray(M);
[ [ 0*Z(2), Z(2), Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]

7I IsInStandardForm( M )
I IsInStandardForm( M , idleft )

IsInStandardForm determines if M is in standard form. idleft is a boolean that indicates the position of
the identity matrix in M . If idleft is true, IsInStandardForm checks if the identity matrix is at the left side
of M , otherwise if it is at the right side. The default for idleft is true. The elements of M may be elements
of any field. To put a matrix in standard form, use PutStandardForm (see 6.2.6).
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gap> IsInStandardForm(IdentityMat(7, GF(2)));
true
gap> IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);
true
gap> IsInStandardForm([[1, 3, 2, 7]]);
true
gap> IsInStandardForm(HadamardMat(4));
false

8I PermutedCols( M , P )

PermutedCols returns a matrix M with a permutation P applied to its columns.

gap> M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);
[ [ 1, 2, 3, 4 ],
[ 1, 2, 3, 4 ] ]

gap> PrintArray(PermutedCols(M, (1,2,3)));
[ [ 3, 1, 2, 4 ],
[ 3, 1, 2, 4 ] ]

9I VerticalConversionFieldMat( M , F )

VerticalConversionFieldMat returns the matrix M with its elements converted from a field F = GF (qm),
q prime, to a field GF (q). Each element is replaced by its representation over the latter field, placed vertically
in the matrix.

If M is a k by n matrix, the result is a k ∗m by n matrix, since each element of GF (qm) can be represented
in GF (q) using m elements.

gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3^2), Z(3^2)^5 ],
[ Z(3^2)^5, Z(3^2) ] ]

gap> DefaultField( Flat(M) );
GF(3^2)
gap> VCFM := VerticalConversionFieldMat( M, GF(9) );; PrintArray(VCFM);
[ [ 0*Z(3), 0*Z(3) ],
[ Z(3)^0, Z(3) ],
[ 0*Z(3), 0*Z(3) ],
[ Z(3), Z(3)^0 ] ]

gap> DefaultField( Flat(VCFM) );
GF(3)

A similar function is HorizontalConversionFieldMat (see 6.2.10).

10I HorizontalConversionFieldMat( M , F )

HorizontalConversionFieldMat returns the matrix M with its elements converted from a field F =
GF (qm), q prime, to a field GF (q). Each element is replaced by its representation over the latter field,
placed horizontally in the matrix.

If M is a k by n matrix, the result is a k ∗m by n ∗m matrix. The new word length of the resulting code is
equal to n ∗m, because each element of GF (qm) can be represented in GF (q) using m elements. The new
dimension is equal to k ∗m because the new matrix should be a basis for the same number of vectors as the
old one.

ConversionFieldCode uses horizontal conversion to convert a code (see 5.1.17).
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gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3^2), Z(3^2)^5 ],
[ Z(3^2)^5, Z(3^2) ] ]

gap> DefaultField( Flat(M) );
GF(3^2)
gap> HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);
[ [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ],
[ Z(3)^0, Z(3)^0, Z(3), Z(3) ],
[ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ],
[ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ]

gap> DefaultField( Flat(HCFM) );
GF(3)

A similar function is VerticalConversionFieldMat (see 6.2.9).

11I IsLatinSquare( M )

IsLatinSquare determines if a matrix M is a latin square. For a latin square of size n by n, each row and
each column contains all the integers 1, . . . ,n exactly once.

gap> IsLatinSquare([[1,2],[2,1]]);
true
gap> IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);
false

12I AreMOLS( L )

AreMOLS determines if L is a list of mutually orthogonal latin squares (MOLS). For each pair of latin squares
in this list, the function checks if each ordered pair of elements that are in the same position in these matrices
occurs exactly once. The function MOLS creates MOLS (see 6.2.5).

gap> M := MOLS(4,2);
[ [ [ 0, 1, 2, 3 ], [ 1, 0, 3, 2 ], [ 2, 3, 0, 1 ], [ 3, 2, 1, 0 ] ],
[ [ 0, 2, 3, 1 ], [ 1, 3, 2, 0 ], [ 2, 0, 1, 3 ], [ 3, 1, 0, 2 ] ] ]

gap> AreMOLS(M);
true

6.3 Miscellaneous functions

In this section we describe several functions GUAVA uses for constructing codes or performing calculations
with codes.

1I SphereContent( n, t, F )

SphereContent returns the content of a ball of radius t around an arbitrary element of the vectorspace F n .
This is the cardinality of the set of all elements of F n that are at distance (see 2.6.2) less than or equal to t
from an element of F n .

In the context of codes, the function is used to determine if a code is perfect. A code is perfect if spheres
of radius t around all codewords contain exactly the whole vectorspace, where t is the number of errors the
code can correct.
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gap> SphereContent( 15, 0, GF(2) );
1 # Only one word with distance 0, which is the word itself
gap> SphereContent( 11, 3, GF(4) );
4984
gap> C := HammingCode(5);
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
#the minimum distance is 3, so the code can correct one error
gap> ( SphereContent( 31, 1, GF(2) ) * Size(C) ) = 2 ^ 31;
true

2I Krawtchouk( k, i, n, q )

Krawtchouk returns the Krawtchouk number Kk (i). q must be a primepower, n must be a positive integer,
k must be a non-negative integer less then or equal to n and i can be any integer. (See 6.2.1).

gap> Krawtchouk( 2, 0, 3, 2);
3

3I PrimitiveUnityRoot( F, n )

PrimitiveUnityRoot returns a primitive nth root of unity in an extension field of F . This is a finite
field element a with the property an = 1mod n, and n is the smallest integer such that this equality holds.

gap> PrimitiveUnityRoot( GF(2), 15 );
Z(2^4)
gap> last^15;
Z(2)^0
gap> PrimitiveUnityRoot( GF(8), 21 );
Z(2^6)^3

4I ReciprocalPolynomial( P )

ReciprocalPolynomial returns the reciprocal of polynomial P . This is a polynomial with coefficients of P
in the reverse order. So if P = a0+a1X +···+anX n , the reciprocal polynomial is P ′ = an +an−1X +···+a0X n .

gap> P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );
Z(3)^0+x_1^2-x_1^3
gap> RecP := ReciprocalPolynomial( P );
-Z(3)^0+x_1+x_1^3
gap> ReciprocalPolynomial( RecP ) = P;
true

5I ReciprocalPolynomial( P , n )

In this form, the number of coefficients of P is considered to be at least n (possibly with zero coefficients at
the highest degrees). Therefore, the reciprocal polynomial P álso has degree at least n.

gap> P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );
Z(3)^0+x_1^2-x_1^3
gap> ReciprocalPolynomial( P, 6 );
-x_1^3+x_1^4+x_1^6

In this form, the degree of P is considered to be at least n (if not, zero coefficients are added). Therefore,
the reciprocal polynomial P álso has degree at least n.

6I CyclotomicCosets( q, n )

CyclotomicCosets returns the cyclotomic cosets of q modulo n. q and n must be relatively prime. Each of
the elements of the returned list is a list of integers that belong to one cyclotomic coset. Each coset contains
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all multiplications of the coset representative by q , modulo n. The coset representative is the smallest
integer that isn’t in the previous cosets.

gap> CyclotomicCosets( 2, 15 );
[ [ 0 ], [ 1, 2, 4, 8 ], [ 3, 6, 12, 9 ], [ 5, 10 ],
[ 7, 14, 13, 11 ] ]

gap> CyclotomicCosets( 7, 6 );
[ [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]

7I WeightHistogram( C )
I WeightHistogram( C, h )

The function WeightHistogram plots a histogram of weights in code C . The maximum length of a column is
h. Default value for h is 1/3 of the size of the screen. The number that appears at the top of the histogram
is the maximum value of the list of weights.

gap> H := HammingCode(2, GF(5));
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution(H);
[ 1, 0, 0, 80, 120, 264, 160 ]
gap> WeightHistogram(H);
264----------------

*
*
*
*
* *

* * *
* * * *
* * * *

+--------+--+--+--+--
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7 Extensions to GUAVA

In this chapter some extensions added in Version 1.3 to GUAVA will be discussed. The most important
extensions are new code constructions and new algorithms and bounds for the covering radius. Another
important function is the implementation of the algorithm of Leon for finding the minimum distance.

7.1 Some functions for the covering radius

Together with the new code constructions, the new functions for computing (the bounds of) the covering
radius are the most important additions to GUAVA. These additions required a change in the fields of a code
record. In previous versions of GUAVA, the covering radius field was an integer field, called coveringRadius.
To allow the code-record to contain more information about the covering radius, this field has been replaced
by a field called boundsCoveringRadius. This field contains a vector of possible values of the covering radius
of the code. If the value of the covering radius is known, then the length of this vector is one.

This means that every instance of coveringRadius in the version 1.2 were changed to boundsCoveringRa-
dius. There is also an advantage to this: if bounds for a specific type of code are known, they can be
implemented (and they have been). This has been especially useful for the Reed-Muller codes.

Of course, the main covering radius function dispatcher, CoveringRadius, had to be changed to incorporate
these changes. Previously, this dispatcher called code.operations.CoveringRadius. The problem these
functions had was that they only worked if the redundancy was not too large. Another problem was that the
algorithm for linear and cyclic codes was written in C (in the kernel of GAP). This did not allow the user to
interrupt the function, except by pressing ctrl-C twice, which exits GAP altogether. For more information,
check the section on the (new) CoveringRadius (7.1.1) function.

Perhaps the most interesting new covering radius function is IncreaseCoveringRadiusLowerBound (7.1.4).
It uses a probabilistic algorithm that tries to find better lower bounds of the covering radius of a code. It
works best when the dimension is low, thereby giving a sort of complement function to CoveringRadius.
When the dimension is about half the length of a code, neither algorithm will work, although IncreaseC-
overingRadiusLowerBound is specifically designed to avoid memory problems, unlike CoveringRadius.

The function ExhaustiveSearchCoveringRadius (7.1.5) tries to find the covering radius of a code by
exhaustively searching the space in which the code lies for coset leaders.

A number of bounds for the covering radius in general have been implemented, including some well known
bounds like the sphere-covering bound, the redundancy bound and the Delsarte bound. These function
all start with LowerBoundCoveringRadius (see 7.1.8, 7.1.9, 7.1.10, 7.1.11, 7.1.12, 7.1.13, 7.1.14, 7.1.8) or
UpperBoundCoveringRadius (sections 7.1.15, 7.1.16, 7.1.17, 7.1.18, 7.1.19).

The functions GeneralLowerBoundCoveringRadius (7.1.6) and GeneralUpperBoundCoveringRadius (7.1.7)
try to find the best known bounds for a given code. BoundsCoveringRadius (7.1.2) uses these functions to
return a vector of possible values for the covering radius.

To allow the user to enter values in the .boundsCoveringRadius record herself, the function SetCover-
ingRadius is provided.
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1I CoveringRadius( code )

CoveringRadius is a function that already appeared in earlier versions of GUAVA, but it is changed to reflect
the implementation of new functions for the covering radius.

If there exists a function called SpecialCoveringRadius in the operations field of the code, then this
function will be called to compute the covering radius of the code. At the moment, no code-specific functions
are implemented.

If the length of BoundsCoveringRadius (see 7.1.2), is 1, then the value in

code.boundsCoveringRadius

is returned. Otherwise, the function

code.operations.CoveringRadius

is executed, unless the redundancy of code is too large. In the last case, a warning is issued.

If you want to overrule this restriction, you might want to execute

code.operations.CoveringRadius

yourself. However, this algorithm might also issue a warning that it cannot be executed, but this warning
is sometimes issued too late, resulting in GAP exiting with an memory error. If it does run, it can only be
stopped by pressing ctrl-C twice, thereby quitting GAP. It will not enter the usual break-loop. Therefore
it is recommended to save your work before trying code.operations.CoveringRadius.

gap> CoveringRadius( BCHCode( 17, 3, GF(2) ) );
3
gap> CoveringRadius( HammingCode( 5, GF(2) ) );
1
gap> code := ReedMullerCode( 1, 9 );;
gap> CoveringRadius( code );
CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.
Try to use IncreaseCoveringRadiusLowerBound( <code> ).
(see the manual for more details).
The covering radius of <code> lies in the interval:
[ 240 .. 248 ]

2I BoundsCoveringRadius( code )

BoundsCoveringRadius returns a list of integers. The first entry of this list is the maximum of some lower
bounds for the covering radius of code, the last entry the minimum of some upper bounds of code.

If the covering radius of code is known, a list of length 1 is returned.

BoundsCoveringRadius makes use of the functions GeneralLowerBoundCoveringRadius and GeneralUp-
perBoundCoveringRadius.

gap> BoundsCoveringRadius( BCHCode( 17, 3, GF(2) ) );
[ 3 .. 4 ]
gap> BoundsCoveringRadius( HammingCode( 5, GF(2) ) );
[ 1 ]

3I SetCoveringRadius( code, intlist )

SetCoveringRadius enables the user to set the covering radius herself, instead of letting GUAVA compute
it. If intlist is an integer, GUAVA will simply put it in the boundsCoveringRadius field. If it is a list of
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integers, however, it will intersect this list with the boundsCoveringRadius field, thus taking the best of
both lists. If this would leave an empty list, the field is set to intlist .

Because some other computations use the covering radius of the code, it is important that the entered value
is not wrong, otherwise new results may be invalid.

gap> code := BCHCode( 17, 3, GF(2) );;
gap> BoundsCoveringRadius( code );
[ 3 .. 4 ]
gap> SetCoveringRadius( code, [ 2 .. 3 ] );
gap> BoundsCoveringRadius( code );
[ [ 2 .. 3 ] ]

4I IncreaseCoveringRadiusLowerBound( code [, stopdistance ] [, startword ] )

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of the covering radius of code. It
does this by means of a probabilistic algorithm. This algorithm takes a random word in GF (q)n (or startword
if it is specified), and, by changing random coordinates, tries to get as far from code as possible. If changing
a coordinate finds a word that has a larger distance to the code than the previous one, the change is made
permanent, and the algorithm starts all over again. If changing a coordinate does not find a coset leader
that is further away from the code, then the change is made permanent with a chance of 1 in 100, if it gets
the word closer to the code, or with a chance of 1 in 10, if the word stays at the same distance. Otherwise,
the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in a sub-
optimal situation (the coset leader corresponding to such a situation (i.e. no coordinate of this coset leader
can be changed in such a way that we get at a larger distance from the code) is called an orphan).

If the algorithm finds a word that has distance stopdistance to the code, it ends and returns that word,
which can be used for further investigations.

The variable InfoCoveringRadius can be set to Print to print the maximum distance reached so far every
1000 runs. The alogrithm can be interrupted with ctrl-C, allowing the user to look at the word that is
currently being examined (called current), or to change the chances that the new word is made permanent
(these are called staychance and downchance). If one of these variables is i , then it corresponds with a i
in 100 chance.

At the moment, the algorithm is only useful for codes with small dimension, where small means that the
elements of the code fit in the memory. It works with larger codes, however, but when you use it for codes
with large dimension, you should be very patient. If running the algorithm quits GAP (due to memory
problems), you can change the global variable CRMemSize to a lower value. This might cause the algorithm
to run slower, but without quitting GAP. The only way to find out the best value of CRMemSize is by
experimenting.

5I ExhaustiveSearchCoveringRadius( code )

ExhaustiveSearchCoveringRadius does an exhaustive search to find the covering radius of code. Every
time a coset leader of a coset with weight w is found, the function tries to find a coset leader of a coset with
weight w + 1. It does this by enumerating all words of weight w + 1, and checking whether a word is a coset
leader. The start weight is the current known lower bound on the covering radius.

6I GeneralLowerBoundCoveringRadius( code )

GeneralLowerBoundCoveringRadius returns a lower bound on the covering radius of code. It uses as many
functions which names start with LowerBoundCoveringRadius as possible to find the best known lower
bound (at least that GUAVA knows of) together with tables for the covering radius of binary linear codes
with length not greater than 64.



62 Chapter 7. Extensions to GUAVA

7I GeneralUpperBoundCoveringRadius( code )

GeneralUpperBoundCoveringRadius returns an upper bound on the covering radius of code. It uses as
many functions which names start with UpperBoundCoveringRadius as possible to find the best known
upper bound (at least that GUAVA knows of).

8I LowerBoundCoveringRadiusSphereCovering( n, M [, F ], false )
I LowerBoundCoveringRadiusSphereCovering( n, r [, F ] [, true ] )

If the last argument of LowerBoundCoveringRadiusSphereCovering is false, then it returns a lower bound
for the covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of
a code of length n and covering radius r .

F is the field over which the code is defined. If F is omitted, it is assumed that the code is over GF(2).

The bound is computed according to the sphere covering bound:

MVq(n, r) ≥ qn

where Vq(n, r) is the size of a sphere of radius r in GF(q)n .

9I LowerBoundCoveringRadiusVanWee1( n, M [, F ], false )
I LowerBoundCoveringRadiusVanWee1( n, r [, F ] [, true ] )

If the last argument of LowerBoundCoveringRadiusVanWee1 is false, then it returns a lower bound for the
covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of a code
of length n and covering radius r .

F is the field over which the code is defined. If F is omitted, it is assumed that the code is over GF(2).

The Van Wee bound is an improvement of the sphere covering bound:
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10I LowerBoundCoveringRadiusVanWee2( n, M , false )
I LowerBoundCoveringRadiusVanWee2( n, r [, true ] )

If the last argument of LowerBoundCoveringRadiusVanWee2 is false, then it returns a lower bound for the
covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of a code
of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality:
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11I LowerBoundCoveringRadiusCountingExcess( n, M , false )
I LowerBoundCoveringRadiusCountingExcess( n, r [, true ] )

If the last argument of LowerBoundCoveringRadiusCountingExcess is false, then it returns a lower bound
for the covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of
a code of length n and covering radius r .
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This bound only works for binary codes. It is based on the following inequality:

M (ρV2(n, r) + εV2(n, r − 1)) ≥ (ρ+ ε)2n ,

where

ε = (r + 1)
⌈

n + 1
r + 1

⌉
− (n + 1)

and

ρ =
{

n − 3 + 2
n if r = 2

n − r − 1 if r ≥ 3

12I LowerBoundCoveringRadiusEmbedded1( n, M , false )
I LowerBoundCoveringRadiusEmbedded1( n, r [, true ] )

If the last argument of LowerBoundCoveringRadiusEmbedded1 is false, then it returns a lower bound for
the covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of a
code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality:

M
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r

)
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where A(n, d) denotes the maximal cardinality of a (binary) code of length n and minimum distance d . The
function UpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than LowerBoundCoveringRadiusEmbedded2,
sometimes it is the other way around.

13I LowerBoundCoveringRadiusEmbedded2( n, M , false )
I LowerBoundCoveringRadiusEmbedded2( n, r [, true ] )

If the last argument of LowerBoundCoveringRadiusEmbedded2 is false, then it returns a lower bound for
the covering radius of a code of size M and length n. Otherwise, it returns a lower bound for the size of a
code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality:

M
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2
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r
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≥ 2n − 2A(n, 2r + 1)

(
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r

)
,

where A(n, d) denotes the maximal cardinality of a (binary) code of length n and minimum distance d . The
function UpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than LowerBoundCoveringRadiusEmbedded2,
sometimes it is the other way around.

14I LowerBoundCoveringRadiusInduction( n, r )

LowerBoundCoveringRadiusInduction returns a lower bound for the size of a code with length n and
covering radius r .

If n = 2r + 2 and r ≥ 1, the returned value is 4.

If n = 2r + 3 and r ≥ 1, the returned value is 7.
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If n = 2r + 4 and r ≥ 4, the returned value is 8.

Otherwise, 0 is returned.

15I UpperBoundCoveringRadiusRedundancy( code )

UpperBoundCoveringRadiusRedundancy returns the redundancy of code as an upper bound for the covering
radius of code. code must be a linear code.

16I UpperBoundCoveringRadiusDelsarte( code )

UpperBoundCoveringRadiusDelsarte returns an upper bound for the covering radius of code. This upper-
bound is equal to the external distance of code, this is the minimum distance of the dual code, if code is
a linear code.

17I UpperBoundCoveringRadiusStrength( code )

UpperBoundCoveringRadiusStrength returns an upper bound for the covering radius of code.

First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have a zero). If
the remaining code has strength 1 (i.e. each coordinate contains each element of the field an equal number
of times), then it returns q−1

q m + (n −m) (where q is the size of the field and m is the length of punctured
code), otherwise it returns n. This bound works for all codes.

18I UpperBoundCoveringRadiusGriesmerLike( code )

This function returns an upper bound for the covering radius of code, which must be linear, in a Griesmer-like
fashion. It returns

n −
k∑

i=1

⌈
d
q i

⌉
19I UpperBoundCoveringRadiusCyclicCode( code )

This function returns an upper bound for the covering radius of code, which must be a cyclic code. It returns

n − k + 1−
⌈

w(g(x ))
2

⌉
,

where g(x ) is the generator polynomial of code.

7.2 New code constructions

In this section we describe some new constructions for codes. The first constructions are variations on the
direct sum construction, most of the time resulting in better codes than the direct sum.

The piecewise constant code construction stands on its own. Using this construction, some good codes have
been obtained.

The last five constructions yield linear binary codes with fixed minimum distances and covering radii. These
codes can be arbitrary long.

1I ExtendedDirectSumCode( L, B, m )

The extended direct sum construction is described in an article by Graham and Sloane. The resulting code
consists of m copies of L, extended by repeating the codewords of B m times.

Suppose L is an [nL, kL]rL code, and B is an [nL, kB ]rB code (non-linear codes are also permitted). The length
of B must be equal to the length of L. The length of the new code is n = mnL, the dimension (in the case
of linear codes) is k ≤ mkL + kB , and the covering radius is r ≤ bmΨ(L,B)c, with
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Ψ(L,B) = max
u∈F nL

2

1
2kB

∑
v∈B

d(L, v + u)·

However, this computation will not be executed, because it may be too time consuming for large codes.

If L ⊆ B , and L and B are linear codes, the last copy of L is omitted. In this case the dimension is
k = mkL + (kB − kL).

gap> c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := WholeSpaceCode( 7, GF(2) );
a cyclic [7,7,1]0 whole space code over GF(2)
gap> e := ExtendedDirectSumCode( c, d, 3 );
a linear [21,15,1..3]2 3-fold extended direct sum code

2I AmalgatedDirectSumCode( c 1, c 2 [, check ] )

AmalgatedDirectSumCode returns the amalgated direct sum of the codes c 1 and c 2. The amalgated direct
sum code consists of all codewords of the form (u | 0 | v) if (u | 0) ∈ c1 and (0 | v) ∈ c2 and all codewords of
the form (u | 1 | v) if (u | 1) ∈ c1 and (1 | v) ∈ c2. The result is a code with length n = n1 + n2 − 1 and size
M <= M1 ·M2/2.

If both codes are linear, they will first be standardized, with information symbols in the last and first
coordinates of the first and second code, respectively.

If c1 is a normal code with the last coordinate acceptable, and c2 is a normal code with the first coordinate
acceptable, then the covering radius of the new code is r <= r1 + r2. However, checking whether a code is
normal or not is a lot of work, and almost all codes seem to be normal. Therefore, an option check can be
supplied. If check is true, then the codes will be checked for normality. If check is false or omitted, then the
codes will not be checked. In this case it is assumed that they are normal. Acceptability of the last and first
coordinate of the first and second code, respectively, is in the last case also assumed to be done by the user.

gap> c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := ReedMullerCode( 1, 4 );
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> e := DirectSumCode( c, d );
a linear [23,9,3]7 direct sum code
gap> f := AmalgatedDirectSumCode( c, d );;
gap> MinimumDistance( f );;
gap> CoveringRadius( f );; # takes some time
gap> f;
a linear [22,8,3]7 amalgated direct sum code

3I BlockwiseDirectSumCode( c 1, l 1, c 2, l 2 )

BlockwiseDirectSumCode returns a subcode of the direct sum of c 1 and c 2. The fields of c 1 and c 2
should be same. l 1 and l 2 are two equally long lists with elements from the spaces where c 1 and c 2 are
in, respectively, or l 1 and l 2 are two equally long lists containing codes. The union of the codes in l 1 and
l 2 must be c 1 and c 2, respectively.

In the first case, the blockwise direct sum code is defined as

bds =
⋃

1≤i≤l

(c1 + (l1)i )⊕ (c2 + (l2)i ),
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where l is the length of l 1 and l 2, and ⊕ is the direct sum.

In the second case, it is defined as

bds =
⋃

1≤i≤l

((l1)i ⊕ (l2)i )·

The length of the new code is n = n1 + n2.

gap> c := HammingCode( 3, GF(2) );;
gap> d := EvenWeightSubcode( WholeSpaceCode( 6, GF(2) ) );;
gap> BlockwiseDirectSumCode( c, [[ 0,0,0,0,0,0,0 ],[ 1,0,1,0,1,0,0 ]],
> d, [[ 0,0,0,0,0,0 ],[ 1,0,1,0,1,0 ]] );
a (13,1024,1..13)1..2 blockwise direct sum code

4I PiecewiseConstantCode( part, weights [, field ] )

PiecewiseConstantCode returns a code with length n =
∑

ni , where part = [n1, . . . ,nk ]. weights is a list
of constraints, each of length k . The default field is GF(2).

A constraint is a list of integers, and a word c = (c1, . . . , ck ) (according to part) is in the resulting code if
and only if |ci | = w (l)

i for all 1 ≤ i ≤ k for some constraint w (l) ∈ constraints.

An example might make things clearer:

gap> PiecewiseConstantCode( [ 2, 3 ],
> [ [ 0, 0 ], [ 0, 3 ], [ 1, 0 ], [ 2, 2 ] ],
> GF(2) );
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> AsSSortedList(last);
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 0 0 ], [ 1 0 0 0 0 ], [ 1 1 0 1 1 ],
[ 1 1 1 0 1 ], [ 1 1 1 1 0 ] ]

The first constraint is satisfied by codeword 1, the second by codeword 2, the third by codewords 3 and 4,
and the fourth by codewords 5, 6 and 7.

7.3 Gabidulin codes

These five codes are derived from an article by Gabidulin, Davydov and Tombak [GDT91]. These five codes
are defined by check matrices. Exact definitions can be found in the article.

The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code, and the enlarged
Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the article.

These codes have fixed minimum distance and covering radius, but can be arbitrarily long. They are defined
through check matrices.

1I GabidulinCode( m, w1, w2 )

GabidulinCode yields a code of length 5 · 2m−2 − 1, redundancy 2m − 1, minimum distance 3 and covering
radius 2. w1 and w2 should be elements of GF(2m−2).

2I EnlargedGabidulinCode( m, w1, w2, e )

EnlargedGabidulinCode yields a code of length 7 · 2m−2 − 2, redundancy 2m, minimum distance 3 and
covering radius 2. w1 and w2 are elements of GF(2m−2). e is an element of GF(2m). The core of an enlarged
Gabidulin code consists of a Gabidulin code.
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3I DavydovCode( r, v, ei, ej )

DavydovCode yields a code of length 2v + 2r−v − 3, redundancy r , minimum distance 4 and covering radius
2. v is an integer between 2 and r − 2. ei and ej are elements of GF(2v) and GF(2r−v), respectively.

4I TombakCode( m, e, beta, gamma, w1, w2 )

TombakCode yields a code of length 15 ·2m−3−3, redundancy 2m, minimum distance 4 and covering radius 2.
e is an element of GF(2m). beta and gamma are elements of GF(2m−1). w1 and w2 are elements of GF(2m−3).

5I EnlargedTombakCode( m, e, beta, gamma, w1, w2, u )

EnlargedTombakCode yields a code of length 23 · 2m−4 − 3, redundancy 2m − 1, minimum distance 4 and
covering radius 2. The parameters m, e, beta, gamma, w1 and w2 are defined as in TombakCode. u is an
element of GF(2m−1). The code of an enlarged Tombak code consists of a Tombak code.

gap> GabidulinCode( 4, Z(4)^0, Z(4)^1 );
a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
gap> EnlargedGabidulinCode( 4, Z(4)^0, Z(4)^1, Z(16)^11 );
a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
gap> DavydovCode( 6, 3, Z(8)^1, Z(8)^5 );
a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
gap> TombakCode( 5, Z(32)^6, Z(16)^14, Z(16)^10, Z(4)^0, Z(4)^1 );
a linear [57,47,4]2 Tombak code (m=5) over GF(2)
gap> EnlargedTombakCode( 6, Z(32)^6, Z(16)^14, Z(16)^10,
> Z(4)^0, Z(4)^0, Z(32)^23 );
a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

7.4 Some functions related to the norm of a code

In this section, some functions that can be used to compute the norm of a code and to decide upon its
normality are discussed.

1I CoordinateNorm( code, coord )

CoordinateNorm returns the norm of code with respect to coordinate coord . If Ca = {c ∈ code|ccoord = a},
then the norm of code with respect to coord is defined as

max
v∈GF(q)n

q∑
a=1

d(x ,Ca),

with the convention that d(x ,Ca) = n if Ca is empty.

gap> CoordinateNorm( HammingCode( 3, GF(2) ), 3 );
3

2I CodeNorm( code )

CodeNorm returns the norm of code. The norm of a code is defined as the minimum of the norms for the
respective coordinates of the code. In effect, for each coordinate CoordinateNorm is called, and the minimum
of the calculated numbers is returned.
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gap> CodeNorm( HammingCode( 3, GF(2) ) );
3

3I IsCoordinateAcceptable( code, coord )

IsCoordinateAcceptable returns true if coordinate coord of code is acceptable. A coordinate is called
acceptable if the norm of the code with respect to that coordinate is not more than two times the covering
radius of the code plus one.

gap> IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );
true

4I GeneralizedCodeNorm( code, subcode1, subcode2, ..., subcodek )

GeneralizedCodeNorm returns the k -norm of code with respect to k subcodes.

gap> c := RepetitionCode( 7, GF(2) );;
gap> ham := HammingCode( 3, GF(2) );;
gap> d := EvenWeightSubcode( ham );;
gap> e := ConstantWeightSubcode( ham, 3 );;
gap> GeneralizedCodeNorm( ham, c, d, e );
4

5I IsNormalCode( code )

IsNormalCode returns true if code is normal. A code is called normal if the norm of the code is not more than
two times the covering radius of the code plus one. Almost all codes are normal, however some (non-linear)
abnormal codes have been found.

Often, it is difficult to find out whether a code is normal, because it involves computing the covering
radius. However, IsNormalCode uses much information from the literature about normality for certain code
parameters.

gap> IsNormalCode( HammingCode( 3, GF(2) ) );
true

6I DecreaseMinimumDistanceLowerBound( code, s, iterations )

DecreaseMinimumDistanceLowerBound is an implementation of the algorithm for the minimum distance
by Leon [Leo91]. This algorithm tries to find codewords with small minimum weights. The parameter s is
described in the article, the best results are obtained if it is close to the dimension of the code. The parameter
iterations gives the number of runs that the algorithm will perform.

The result returned is a record with two fields; the first, mindist, gives the lowest weight found, and word
gives the corresponding codeword.

7.5 New miscellaneous functions

In this section, some new miscellaneous functions are described, including weight enumerators, the MacWilliams-
transform and affinity and almost affinity of codes.

1I CodeWeightEnumerator( code )

CodeWeightEnumerator returns a polynomial of the following form:

f (x ) =
n∑

i=0

Ai x i ,
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where Ai is the number of codewords in code with weight i .

gap> CodeWeightEnumerator( ElementsCode( [ [ 0,0,0 ], [ 0,0,1 ],
> [ 0,1,1 ], [ 1,1,1 ] ], GF(2) ) );
x^3 + x^2 + x + 1
gap> CodeWeightEnumerator( HammingCode( 3, GF(2) ) );
x^7 + 7*x^4 + 7*x^3 + 1

2I CodeDistanceEnumerator( code, word )

CodeDistanceEnumerator returns a polynomial of the following form:

f (x ) =
n∑

i=0

Bi x i ,

where Bi is the number of codewords with distance i to word .

If word is a codeword, then CodeDistanceEnumerator returns the same polynomial as CodeWeightEnumer-
ator.

gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[0,0,0,0,0,0,1] );
x^6 + 3*x^5 + 4*x^4 + 4*x^3 + 3*x^2 + x
gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1] );
x^7 + 7*x^4 + 7*x^3 + 1 # ‘[1,1,1,1,1,1,1]’ $\in$ ‘HammingCode( 3, GF(2 ) )’

3I CodeMacWilliamsTransform( code )

CodeMacWilliamsTransform returns a polynomial of the following form:

f (x ) =
n∑

i=0

Ci x i ,

where Ci is the number of codewords with weight i in the dual code of code.

gap> CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );
7*x^4 + 1

4I IsSelfComplementaryCode( code )

IsSelfComplementaryCode returns true if

v ∈ code ⇒ 1− v ∈ code,

where 1 is the all-one word of length n.

gap> IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true
gap> IsSelfComplementaryCode( EvenWeightSubcode(
> HammingCode( 3, GF(2) ) ) );
false

5I IsAffineCode( code )

IsAffineCode returns true if code is an affine code. A code is called affine if it is an affine space. In other
words, a code is affine if it is a coset of a linear code.
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gap> IsAffineCode( HammingCode( 3, GF(2) ) );
true
gap> IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
> [ 1, 0, 0, 0, 0, 0, 0 ] ) );
true
gap> IsAffineCode( NordstromRobinsonCode() );
false

6I IsAlmostAffineCode( code )

IsAlmostAffineCode returns true if code is an almost affine code. A code is called almost affine if the size
of any punctured code of code is qr for some r , where q is the size of the alphabet of the code. Every affine
code is also almost affine, and every code over GF(2) and GF(3) that is almost affine is also affine.

gap> code := ElementsCode( [ [0,0,0], [0,1,1], [0,2,2], [0,3,3],
> [1,0,1], [1,1,0], [1,2,3], [1,3,2],
> [2,0,2], [2,1,3], [2,2,0], [2,3,1],
> [3,0,3], [3,1,2], [3,2,1], [3,3,0] ],
> GF(4) );;
gap> IsAlmostAffineCode( code );
true
gap> IsAlmostAffineCode( NordstromRobinsonCode() );
false

7I IsGriesmerCode( code )

IsGriesmerCode returns true if code, which must be a linear code, is Griesmer code, and false otherwise.

A code is called Griesmer if its length satisfies

n = g [k , d ] =
k−1∑
i=0

d d
q i e·

gap> IsGriesmerCode( HammingCode( 3, GF(2) ) );
true
gap> IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );
false

8I CodeDensity( code )

CodeDensity returns the density of code. The density of a code is defined as

M ·Vq(n, t)
qn ,

where M is the size of the code, Vq(n, t) is the size of a sphere of radius t in qn , t is the covering radius of
the code and n is the length of the code.

gap> CodeDensity( HammingCode( 3, GF(2) ) );
1
gap> CodeDensity( ReedMullerCode( 1, 4 ) );
14893/2048
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