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1 What is ITC?

ITC stands for Interactive Todd Coxeter, it is a program that allows you to execute interactively single
steps in an enumeration of the cosets of a subgroup of a finitely presented group using the graphics surface
XGAP of GAP and thus to see in various windows exactly what is happening. In this chapter we will

– discuss the background situation that led to the concept of this program,

– very briefly point to literature about coset enumeration,

– talk about envisaged use of ITC, and

– explain some technical points.

1.1 Background

Coset Enumeration, in the sequel abbreviated as CE, also known as the Todd-Coxeter procedure, is not only
the oldest but also one of the most often used tools in Computational Group Theory and also probably the
most often implemented one.

An easy introduction to CE and some of its variants is given in [Neu82]. In his book [Sim94] Charles Sims
puts CE into a much more general context based on the theory of automata. Both texts provide a fairly
comprehensive guide to the extensive literature on CE. So we will assume in the sequel that the user of this
manual understands the basic ideas of CE. We will use as far as possible the terminology of [Neu82].

The main GAP library does contain routines for executing coset enumerations (see Section 45.5 in the GAP
reference manual). These routines are partly written in the GAP language but for efficiency also use GAP
kernel functions written in C. Some of these programs are used by ITC.

The most efficient implementation of CE, allowing many “strategies”, at present is the package ACE by
George Havas and Colin Ramsey, which will also soon be available as a share package of GAP (see [Ram99]).

It should be understood that ITC is no competitor for ACE. ACE can successfully deal with coset enumer-
ations with millions of cosets. On the other hand handling coset tables graphically on the screen, even with
using scrolling, in practice limits the use of ITC to tables with a few thousand rows. For that reason also
the speed of the single step in the enumeration does not matter as much and ITC therefore is not tuned for
speed in the way ACE is.

1.2 Teaching CE

In texts on CE usually examples are demonstrated, and whenever one teaches the method in class, one will
have to work through some examples. In printing as well as on the blackboard this suffers from a certain
difficulty: In CE a number of tables, the “coset table”, the “subgroup tables”, and the “relation tables” are
being changed all the time, one has to gain information from (the closing of rows of) subgroup and relation
tables and has to transfer this information into all relevant places of all tables. Sometimes, when so-called
“coincidences” occur, one even has to erase and modify already existing entries in tables. Describing such
steps in some detail as well as the ever changing tables soon occupy many pages in printing. Doing them in
front of a class one can pretty soon get confused, forgetting to make entries or changes etc.
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So it is a natural demand to have a program that allows one to perform such steps in windows on the screen
of a computer where such changes can be cleanly made, are transferred to all relevant places in all tables
automatically, and are marked by colours so that one can really “play” through nontrivial examples. This
is what ITC provides. So in a first place it can be considered as a teaching tool.

1.3 Experimenting with CE Strategies

However we hope that ITC can also be used for experiments that ultimately may lead to a better under-
standing of existing methods or even the design of new ones.

As explained in many papers about CE, the sequence in which steps are made has great influence on the
efficiency of the methods. To be more exact: CE is basically a method of trial and error in which one
defines cosets of a subgroup of a finitely presented group by constructing coset representatives as words in
the generators of the group. But only the termination of the method (the closing of the tables) in the end
guarantees that one has not made a mistake by defining more than one word representing the same coset.
The discovery of such a mistake and its removal is what is called “handling a coincidence” and it is the
number of occurrences of such mistakes (the number of coincidences encountered) that may vary immensely
depending on the chosen sequence of definition of pretended representatives.

Therefore many different “strategies” for CE have been discussed in the literature, and programs such as
ACE allow one to use a wide variety of such strategies. However in spite of very detailed case studies, in
particular by George Havas, that lead to certain “rules of thumb”, no strategy is uniformly the best one, a
strategy that is good for one presentation may turn out to be much less good for another one (see for instance
[CDHW73], [Hav91], [HR01], and [HR99]). The possibility to try one’s own strategy stepwise interactively
therefore can be used to get some more insight into CE which to some extent is an art rather than a science.

Already in the building of ITC a nice side product was obtained from such experimentation: It is important
to understand that in many cases coincidences cannot be completely avoided for a CE to terminate. However
when many coincidences have occurred, one is led to ask if there is not a shorter sequence of definitions
leading to the closure of the tables. Starting from a given CE with coincidences involved, one may try to
“prune” the definition sequence from definitions that in retrospect can be recognized as being redundant.
Such a procedure has for instance been employed many years ago “by hand” by John Leech in a search
for a short definition sequence for the Fibonacci Group F (2, 7) that we will take as one of our examples. A
very nice discussion of this idea and its history is given in Margaret Edeson’s Master’s Thesis (see [Ede89]).
Using ITC such “pruning” was first done interactively. This led to an algorithm that is described in the
section “The Short-cut Method” (see Section 3.5). It is now part of ITC and can be called by short-cut
(see 5.2.9). In fact with the above mentioned old challenge problem of F (2, 7), it beats the formerly best
known definition sequence leading to closure of the tables.

Since ITC will store sequences of definitions we intend in the future to investigate the possibility to improve
runs of a “Modified TC” (MTC) by using such “pruned” definition sequences.

1.4 How does it work?

ITC is written using the graphics facilities provided by the GAP4 Share Package XGAP. We refer to the
XGAP manual for a general description of these.

The ITC Coset Table as well as the Relation Tables and Subgroup Tables can be depicted in windows, and
definitions be made in these by mouse click. Moreover tables with the sequence of definitions, of pending
coincidences, and of gaps of length 1 in Subgroup or Relation Tables can be inspected in further windows
and be used for deciding about the next step. A number of menus allow certain actions to be called.

In addition to the Coset Table Window which plays a special role, three different kinds of windows are used
in ITC:
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Pull-down menus
are used with the “top buttons” of the Coset Table (see 5.1). Clicking one of these will pop up a
menu from which you can select actions of ITC. You do this by holding the left mouse button while
moving the pointer to the respective entry in the menu and releasing the mouse button there. Then
the respective action of the program will be executed while the menu vanishes.

Query windows
(sometimes also called transient windows) are used when the user has to specify additonal (in most
cases numerical) data for an action to be performed. E.g. a user wanting to fill rows has to specify
in such a query window which rows shall be filled. Note that no further action can be taken while
such a query window is open. All other possibilities to operate ITC are disabled until the user has
made the needed decision and closed the window. Such query windows are opened by clicking the
following menu entries in the menus opened via the top buttons of the Coset Table Window: In
the menu of Settings: change default table size (see 5.1.3), extend table size (see 5.1.4);
in the menu of File: read definitions from file (see 5.1.10), write definitions to file
(see 5.1.11), and write standardized table to file (see 5.1.12). Also such query windows are
opened by the following “bottom buttons” of the Coset Table Window: scroll by (see 5.2.2),
scroll to (see 5.2.1), Felsch (see 5.2.3), fill gaps (see 5.2.6), fill rows (see 5.2.5), back to
(see 5.2.7), HLT (see 5.2.4), short-cut (see 5.2.9), and mark cosets (see 5.2.15).

All other windows
are ordinary display windows that can stay open while operations are caused by using other
buttons or windows. Each of these display windows contains a top button Sheet that via a pull-
down menu allows one either to write the contents of the display window to a PostScript file or
to close this display window. See the paragraph Button Sheet in Section 5.1. A display window
is opened by clicking the menu entry show current settings (see 5.1.8) in the menu opened via
the top button Settings. Further display windows are opened by clicking the following bottom
buttons in the Coset Table Window: show rels (see 5.2.10), show subgrp (see 5.2.11), show defs
(see 5.2.12), show gaps (see 5.2.13), and show coincs (see 5.2.14). Further display windows can be
opened by clicking with the right mouse button: coset numbers or dots in the Coset Table (see 4.1),
entries in the Table of Definitions (see 4.8), entries in the List of Length 1 Gaps (see 4.9), and entries
in the List of Pending Coincidences (see 4.10). Also the Subgroup Tables (see 4.7) and the Relation
Tables (see 4.5) are display windows that can be opened by clicking the respective entries in the
List of Subgroup Generators (see 4.6) or the List of Relators (see 4.4), respectively. The windows of
Relation Tables and of Subgroup Tables differ from the other display windows in a technical way:
Like the Coset Table Window, they stay open while the contents of the displayed tables changes.
Moreover, the Relation Tables are scrolled parallel to the Coset Table (see 4.5).

Depending on the window system and window manager you use, placing a new window on your screen
might be done automatically or might require you to use the mouse to choose a position for the window and
pressing the left mouse button to place the window.

Making a window active is system and window manager dependent, in most cases you have either to move
the pointer inside the window or you have to click the title bar of the window.

We recommend to switch on title bars for all windows in your window manager setup. This seems to avoid
a small bug in at least one window manager we know of and makes it easier to move your windows around.
For the twm window manager for example you can achieve this with the option DecorateTransients.

If you do not want to do this and experience problems with small dialog boxes that do not accept text
entered via the keyboard, try to start up XGAP with the command line option -W. This invokes some code
within XGAP which works around a bug in some window managers.

Please note that because of some 16 bit limitations in the underlying X toolkit the present implementation
of XGAP may not be able to handle very large virtual windows properly. For instance, sheets containing
more than 1630 coset definitions may be corrupt.
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In the following chapters we will describe the possibilities to work with windows in a systematic way and
by way of examples of the use of ITC.

1.5 Acknowledgements and Addresses

We thank Max Neunhöffer for providing the needed environment in his package XGAP and Thomas Breuer
for frequent advice. A first version of ITC was implemented, still under GAP 3, by Ludger Hippe as part of
his “Staatsexamensarbeit” in 1997.
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2 How to Start?

2.1 Starting XGAP

You begin an ITC session by starting XGAP. On most systems this is done by completing the provided line

user@host:~>

to

user@host:~> xgap

on the command line. Ask your system administrator if this does not work. This command will create a new
window, the so called GAP Window, in which GAP is awaiting your input.

During a typical ITC session various windows will be opened to display the involved tables and further
information. The size of the characters displayed in these windows and hence the sizes of the windows
themselves are determined by the so-called fonts used.

The XGAP package knows five different fonts, tiny, small, normal, large, and huge (see the XGAP manual
for details), but the ITC routines use only two of them, namely small and normal. So, if the default ITC
window sizes are invonvenient for you, you need only to change the values of these two fonts. You may do
this by starting XGAP with one or two additional arguments of the form ”-small font” or ”-normal font”
where font has to be a font which is known to your system. You can get a list of all available fonts via the
command

user@host:~> xlsfonts

Example:

user@host:~> xgap -small 6x12 -normal 8x13

2.2 Starting ITC

At the top of the GAP Window opened by XGAP you will see a “title bar” with three buttons: GAP, Run,
and Help. Clicking either of these will pop up a menu, in which you may choose between several options.

You can always interrupt a computation by making the GAP Window active and pressing CTRL-C . You
will get the same effect selecting Interrupt in the Run menu.

In the GAP Window, as usual, the GAP prompt

gap>

will indicate that GAP is awaiting your input.

If it is not loaded automatically, first load the ITC package by

gap> RequirePackage( "itc" );

See 74.3.1 in the GAP Reference Manual.
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Then you may input a finitely presented group, say g , and a subgroup, say h, of it, the cosets of which you
want to enumerate using ITC. The format of this input is the same as usual in GAP, see Chapter 45 of the
GAP reference manual for the details.

ITC will in several of its windows have to display generators of the free group which is used to describe the
presentation. Note that ITC will use the names of the generators of this free group, if these names consist
of at most three symbols. Otherwise ITC will use names of the form g1, g2, ... up to at most g99 for the
generators of the free group (if the group has more than 99 generators, an error message will be given). A
choice of short and easily distinguishable names for the generators of the free group is hence advisable.

Now you are ready to start the ITC using the command InteractiveTC.

1I InteractiveTC( g, h ) F

Called with a group g and a subgroup h, this will open the “Coset Table Window”, which really serves a
multiple purpose:

– It shows the Coset Table and allows certain operations by mouse click in this Coset Table. We will
describe the details in Section 4.1 of Chapter 4. In this chapter also a description of all other tables is
given that can be shown on the screen by ITC.

– Directly below the Coset Table space is left for one row of text in which some warnings will be given
(in red) by ITC if the user tries to invoke actions that in the present state are not possible, e. g. if the
user tries to call the short-cut function while the tables have not yet closed (see Section 4.2).

– It provides up to date information on the state that an interactive coset enumeration has reached in
the “Information Line” (see 4.3).

– It also provides a number of buttons which can be used in the interactive handling of a coset enumeration
by ITC. We will describe this aspect in a separate chapter “Buttons and Menus” (Chapter 5).

The initial table size for the ITC Coset Table is set by default to 1000. You can change this default table size
using the menu entry change default table size in the menu of the top button Settings, (see 5.1.3). If
during a run of a CE the table size does not suffice, you can extend it using the menu entry extend table
size (see 5.1.4) in the same menu.
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For the meaning of terms used and the mathematical background we again refer to [Neu82]. In particular,
we will quote as “Mendelsohn Condition” the condition formulated in Lemma 1 and Theorem 2 of that
paper for eventual termination of a CE. In Sections 3.1 and 3.3 of this chapter, respectively, we describe
briefly what the two basic operations “Making a Definition” and “Handling a Coincidence” do in ITC. In
Section 3.2 we introduce some “Definition Strategies” from which a definition sequence can be put together
if one does not want to define it step by step. Sections 3.4 and 3.5 describe methods by which one can
modify existing definition sequences. The latter one may be of particular interest because it tries to “prune”
a posteriori a definition sequence that has led to closure of all tables only after a number of coincidences
had to be handled.

In the subsequent chapters we will then refer to these operations and strategies.

3.1 Making a Definition

ITC provides the possibility to define new coset numbers by clicking into certain places in various tables.

In each of these cases a new coset number will be defined to represent a coset that is the product (from the
right) of an already defined coset with coset number i by an element x which is a generator or its inverse.
If c is the highest coset number defined so far, this new coset number will be c + 1. It should be clear from
understanding the idea of CE that this new coset number may in fact (by a different word in the generators)
represent a coset for which a (lower) number has already been defined, and that this fact may only become
apparent much later in the CE process.

The new coset number c +1 is inserted into all relevant places in the coset table and all other tables. Also all
consequences of this definition are entered into all tables, which in particular will get a new row c + 1. This
newly defined coset number will occur in red colour in all places and so will the entries made as consequence
of this definition. Entries that were previously coloured red get recoloured black.

Note however that as a consequence of this definition we may have obtained one or several coincidences. If
this happens and if the coincidence handling is switched on (see coincidence handling on, 5.1.5, in the
menu of the top button Settings) several coset numbers may get eliminated, and as the newly defined one
may be among them, in fact it may not appear at all on the screen.

3.2 Some Definition Strategies

Already the first implementations of CE used different “strategies” for defining coset numbers, many inter-
esting comparisons of their merits can be found in papers of George Havas and also in Sims’ book [Sim94].
Not all but some are availavble in ITC, but those that are come in two forms.

– Either ITC can be asked to try to close the table following a chosen strategy. All commands to do this
can be chosen from the menu pulled down using the top button Close (see 5.1.9 ff.).

– Or one can prescribe that ITC follows such a strategy only for a number of steps. This can in principle
be done using bottom buttons. However since there are several choices of filling gaps of length 1, one
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has to specify this choice before specifying the number of such “fill gaps” steps. This choice can be
made using the possibilities offered in the menu pulled down by the top button Settings (see 5.1.7).

In the sequel we will describe the available strategies independently of their being used in one or the other
way.
The Felsch Strategy (named after Hartmut Felsch, who first implemented it completely, see [Fel61], al-
though according to John Leech, see [Lee84], the strategy was already used before in a partial implementa-
tion by Bandler, see [Ban56]) proceeds to define new coset numbers by row-wise from left to right filling the
empty places of the Coset Table. It should be noted that of course quite different definition sequences can
be obtained by just permuting the columns of the Coset Table. Using ITC this can either be achieved by
renumbering the generators in the input of the group, or by filling lines in a different order “by hand”. The
Felsch strategy automatically fulfills the “Mendelsohn Condition” and hence is bound to stop eventually if
the index of h in g is finite.
The HLT Strategy is named after B. Haselgrove, J. Leech, and H. F. Trotter, see [Lee84]. Its idea is to
go for finding consequences soon by making definitions such that rows in Subgroup and Relation Tables get
filled. Originally (when computers were still very slow) after a definition made in this way no search for
consequences was started in order to save time, but only the consequences obtained “on purpose” by filling
a row were noted. In ITC this is not the case, after each definition a complete search for all consequences
is made, so that what we call HLT is not quite the original method. Note that by a pure HLT strategy the
Mendelsohn Condition is not guaranteed. The CE may run into infinite loops although the index of h in g
is finite. In programs such as ACE therefore in order to guarantee the Mendelsohn Condition the default
HLT is modified by closing a row of the Coset Table after all corresponding rows of Relation Tables have
been closed. Note that this is not done in ITC because we want to provide the user with the possibility to
experiment with clearly understood alternatives, not with a safe program to enumerate millions of cosets.
Filling gaps of length 1 in relation (or subgroup) tables has in particular been propagated by George
Havas. The idea is that this is the “cheapest” way to obtain consequences. As will be seen in the examples,
in particular that of the Fibonacci Group F (2, 7), the result heavily depends on the choice of one of the
sometimes many gaps of length 1 to be filled. (Note in particular that these can occur not only in the
Relation Tables that are shown by ITC, but also in relation tables belonging to cyclicly permuted relators.)
To explain the different strategies available in ITC for filling gaps of length 1 we have to introduce the notions
of the equivalence class and of the weight of a gap of length 1.
Let a gap of length 1 in a Relation Table or Subgroup Table between coset numbers i and j be filled by
defining a new coset number k in this place. Then, still excluding the newly introduced kth row, this fills
two places in the Coset Table which we call a “pair” of “dots” (These places will indeed be marked by dots
in the ITC Coset Table). On the set of all dots in the Coset Table we define the finest equivalence relation
in which “paired” dots are equivalent. So each gap of length 1 in a Subgroup or Relation Table determines
a unique equivalence class of dots, and the length of this class is defined to be the “weight” of the gap of
length 1. For each class we define its “representative” to be the first of its dots with respect to the usual
row-wise from left to right ordering of positions in the Coset Table. (Instead of speaking of equivalnce classes
of dots, we will sometimes also speak of equivalence classes of gaps of length 1.)
For choosing the next gap of length 1 we can now define several strategies:

strategy 1 (first gap)
Here the gap belonging to the first dot in the row-wise from left to right scan of the Coset Table
(irrespective of its weight) is filled.

strategy 2 (first rep of maximal weight)
Here among the equivalence classes of gaps of maximal weight the one is chosen for which the
representative dot occurs first in the row-wise from left to right scan of the Coset Table.

strategy 3 (last rep of maximal weight)
Here among the equivalence classes of gaps of maximal weight the one is chosen for which the
representative dot occurs last in the row-wise from left to right scan of the Coset Table.
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3.3 Handling a Coincidence

Whenever a row in a Subgroup or Relation Table closes because of a new definition made we will get a
consequence, saying that the product of a coset with number i by x , a generator or its inverse, equals a coset
with number j . This fact may not yet be “known” in the Coset Table, in which case it is entered into the
Coset Table, or it may already be known in exactly this form in the Coset Table, in which case no action
is needed. However the Coset Table may also contain already the information that the product of the coset
with number i by x equals a coset with number k different from j . In this case we learn that j and k really
denote the same coset.

When such a “coincidence” is detected, and if k is bigger than j , say, all consequences of the fact that then
the j th and the kth row of the Coset Table must describe the same facts are saved in the j th row and other
rows of the Coset Table, before the kth row is declared “dead”. (See [Neu82] for a simplified description of
that process and a justification why it preserves all essential features of a coset table.)

This is done automatically in ITC if the coincidence handling is switched on, it can be done “by hand” if it
is switched off (see 5.1.5).

Note that as a consequence of handling a particular coincidence new ones may be detected. All these are
worked off automatically or must be worked off “by hand”, respectively, before new definitions can be made.

3.4 Sorting Definitions

The purpose of this method is to modify definition sequences in order to be able to compare different such
sequences. This will be done by constructing from a given definition sequence a “canonical” one by reordering
and renumbering coset numbers. The method proceeds as follows.

In a first step all cosets obtained from the coset with number 1 by multiplication with generators or their
inverses will be arranged in the order in which they occur in a row-wise scan of the Coset Table from left
to right. Then the first of these is taken and an analogous step is performed with its images under all the
generators and their inverses. The coset numbers obtained in this way are appended to the sequence obtained
in the first step. After that the same is done again and again in obvious analogy to this second step until
all coset numbers in the Coset Table have been rearranged by this procedure.

Then the coset numbers are changed according to this new ordering.

The definition sequence thus obtained is now processed by CE (with prescribed definition sequence). In this
CE some of the coset numbers may get eliminated by coincidences, so that the resulting definition sequence
may be shorter (but can never get longer) than the original one. Moreover because of such a coincidence the
intended ordering may again be disturbed. If that is the case, the whole procedure – as described up to
this point – is repeated. However since the second definition sequence will be lexicographically earlier than
the first one we must arrive at a stable sequence after a finite number of repetitions of such procedures.

This “Sorting Definitions” is applied to the definition sequence after all tables have been closed. Note that
if the original definition sequence will have been obtained by a pure Felsch strategy, it will not be changed
by this Sorting Definition method.

We remark that this method can be used independently of the Short-cut method (to be described next)
before or after it. Combining the two methods may in fact improve but also deteriorate results.
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3.5 The Short-cut Method

It is easy to construct examples of presentations of finite groups such that any coset enumeration process
will have to define some “redundant” coset numbers, that is, will have to handle some “coincidences” before
finding the order of that group. An easy example is the trivial group presented on one generator x by the
relators x 5 and x 7. In such cases it is a natural challenge to find definition sequences that reach the result
with few coincidences showing up. No method is known that will construct a definition sequence with a
number of coincidences guaranteed to be minimal. The package ACE by George Havas and Colin Ramsey
(see [Ram99]) contains various strategies that have proven to be very efficient in constructing from scratch
definition sequences involving few coincidences.

Here we describe a different approach, namely to try a posteriori to construct a definition sequence with few
coincidences by “pruning” an already existing definition sequence that had led to coincidences. We call this
the “Short-cut method”.

Let a definition sequence be given that at the end after defining a last coset number n leads to closure of the
tables. We trace back the sequence of those definitions from n to coset number 1 that were actually used to
reach coset number n. Say k coset numbers occur in that sequence which we number i1 = 1, · · ·, ik = n.
We mark these k coset numbers as being “indispensable” and move their sequence to the beginning of a
new definition sequence. In general not all coset numbers defined in the CE will occur in the sequence of
indispensables, so we complement the sequence of indispensables by the remaining coset numbers in the order
in which they occurred in the original definition sequence. If we now start a CE with that new definition
sequence, it must definitely close after having worked through this whole series, however it may in fact lead
to closure after only a subset of these definitions.

With the definition sequence obtained from this second CE (that at the beginning will still retain indispens-
ables) we now repeat the same procedure starting again from the last coset defined before closure, if this
was not yet marked indispensable. The subsequence thus obtained is again marked indispensable and moved
to the beginning of the previously existing definition sequence. Behind these, we put again all remaining
coset numbers of the previously obtained sequence and then start a CE again. (Note that those marked
“indispensable” in the first “loop” now come behind those marked “indispensable” in the second “loop” and
that some of the “indispensables” of the first “loop” may now in fact vanish in this second CE).

Obviously this process can be iterated as long as not all coset numbers in one of the sequences obtained on
the way are marked indispensable. Once this is the case, the Short-cut method stops.

ITC also allows one to prescribe the number of “loops” to be performed.

As can be seen from the examples, the Short-cut method works with surprising success. In the case of some
presentations that for a long time have been used as challenges for finding the shortest definition sequence
leading to closure, the Short-cut method even improved on results that had been found “by hand” with
quite some effort by experts on CE.

However it should be emphasized again that no claim is made that the method will find the minimal number
of cosets needed to reach closure. In fact the examples given show that the result of the Short-cut method
depends on the definition sequence that it starts from.

Although yielding its result only a posteriori, we hope that beyond answering challenges, finding a short
definition sequence may become of use in algorithms such as the modified TC if this is implemented to follow
a prescribed definition sequence.



4 The Tables

Usually table entries in all tables are black. Red indicates that these entries were the result of the last step
that has been performed by ITC. Coset numbers can also be coloured green using the mark cosets bottom
button (see 5.2.15) or the show defs bottom button (see 5.2.12). In case of conflict green has preference to
red.

As a general rule we state that clicking some place in one of the tables with the left mouse button will
result in an action in the process of CE, e. g. in making a definition.

There are only very few cases where clicking with the right mouse button in a table will have an effect:

– with clicking a coset number or a dot in the Coset Table (see Section 4.1),

– with clicking on an entry of the Table of Definitions (see Section 4.8),

– with clicking on an entry of the List of Length 1 Gaps (see Section 4.9 and 5.2.13), and

– with clicking on an entry of the List of Pending Coincidences (see Section 4.10).

In each of these cases clicking with the right mouse button will result in ITC displaying further information
in a new display window.

4.1 The Coset Table

The main table in any coset enumeration is the coset table. Its rows are numbered by natural numbers, the
“coset numbers”, which are defined in the process of the coset enumeration. Remember that coset numbers
denote cosets defined by representatives given by words in the generators, but until a coset enumeration is
finished, different coset numbers may represent the same coset (by different words).

Note that ITC displays on the screen only rows for “still alive” coset numbers, that is coset numbers that
have not been eliminated by coincidences.

So the first column of the ITC Coset Table displays the list of presently “still alive” coset numbers. The
further columns of the ITC Coset Table are indexed by the generators of the finitely presented group g and
their inverses.

Entries in an ITC Coset Table can either be empty, or a coset number, or a dot. An entry j in row i and
column k means that the coset with number i multiplied by the generator or inverse generator heading
column k yields the coset with number j . An empty entry indicates that nothing is yet known about the
respective product. A dot as entry indicates that making a definition in this place will close at least one row
in a subgroup or a relation table, i.e. it belongs to a “gap of length 1” (see Section 3.2).

Let h be the subgroup of the group g whose cosets are to be enumerated. At the beginning of an enumeration
ITC fills automatically those entries of the Coset Table (as well as of Subgroup and Relation Tables) that
are consequences of coset number 1 always being given to the subgroup h.

Clicking with the left mouse button an empty place or a place with a dot in the Coset Table will make a
definition in this place. That is: Let c be the last coset number defined, then a click in the place in row i
and column headed by generator or inverse generator x will define a coset number c + 1 that represents the
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product of the coset with number i by x . See Section 3.1 for details of the changes (marked in red) in the
tables caused by making such a definition.

At the same time new dots may occur in the coset table, representing places newly found to allow filling
gaps of length 1 in one of the Relation Tables or Subgroup Tables. These new dots will also be coloured red.

Clicking with the right mouse button a dot will open a window which will show a list of all those definitions
that are equivalent to the one belonging to this place in the sense that they will close the same length 1
gaps in Relation and Subgroup Tables. (Compare also 3.2 and 5.2.13).

Clicking with the left mouse button the coset number at the beginning of a row of the Coset Table will
result in closing this row by new definitions. (This way you can e. g. easily fulfill the Mendelsohn Condition
for this row requesting that images of that coset under multiplication by all generators and their inverses
must eventually get defined).

Clicking with the right mouse button the coset number at the beginning of a row of the Coset Table or any
already defined coset number in the Coset Table will open a window in which a coset representative of the
respective coset will be displayed as a word in the generators of g and their inverses. Clicking the same coset
number once more (in the same or in another position of the Coset Table) will close the coset representative
window again. (In Section 4.8 we will see that the same coset representative window can be switched on or
off also by clicking the respective row in the Table of Definitions.)

Note that only up to 30 rows of the Coset Table are displayed simultaneously on the screen but that the
Coset Table can be scrolled using the bottom buttons scroll to (see 5.2.1) and scroll by (see 5.2.2).

4.2 Warnings

Directly below the Coset Table a row is left open in which warnings will flash up in red if the user is trying
to start an action that is impossible or does not make sense in the present situation, so that e. g. certain
buttons are disabled. These are:

There are no subgroup generators
if the user clicks the bottom button show subgrp, but there are no subgroup generators specified,
i. e. one is performing a CE of the cosets of the trivial group.

There are no gaps of length 1
if the user tries to show or to fill gaps of length 1 using the bottom buttons show gaps or fill
gaps, respectively, but no such gaps of length 1 exist in any of the Subgroup or Relation Tables.

There are no more gaps of length 1
if the user had requested to perform a prescribed number of steps filling gaps of length 1, but the
supply of such gaps ran out before this number of steps had been performed.

There are no pending coincidences
if the user tries to see the list of coincidences while no such are known.

There are pending coincidences
if the user tries to make any definition while coincidences are still pending, which may be the case
only if the automatic coincidence handling is switched off. (Note that the user is informed anyhow
of the fact that coincidences are pending in the “Information Line”).

The tables are closed
if the user tries to make any definition after the tables are closed already.

The tables are not closed
if the user tries to invoke the Short-cut method before the tables are closed.

Insufficient table size
if the coset enumeration comes to a halt without closing the tables because the size for the Coset
Table was too small. In this case this size has to be extended using the menu entry extend table
size in the menu popped up via the top button Settings (see 5.1.4).
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Illegal argument
if an illegal answer has been typed into a query window, e. g. if the number of steps requested in
the query window opened by clicking the bottom button Felsch is given as a negative integer.

Illegal coset number

This command has no effect

The warning message will vanish as soon as the user performs the next allowed action.

4.3 The Information Line

Underneath the Coset Table you see a line which will all the time display three numbers that characterize
the present state of the coset enumeration:

Defined: i
means that so far i coset numbers have been defined altogether (some of which may already have
been eliminated again by the coincidence routine).

Deleted: j
means that so far j of these coset numbers have been eliminated again through the handling of
coincidences (see also Section 3.3 and 5.2.14).

Alive: k
means that k coset numbers have survived the elimination process of the coincidence handling (if
coincidences did occur at all). So obviously k = i − j . Note that during a run of ITC there is no
change (renumbering) of coset numbers after a coincidence has been handled, i. e. the sequence
of coset numbers will always be an ordered sequence of natural numbers starting with 1, but if
coincidences have been handled, it will have “holes”, i. e. no longer be consecutive. While in fact
in the internal data structure for the coset table these “dead” cosets still exist, in the Coset Table
(and Relation Tables) occurring on the screen these lines will be suppressed, so that at any given
moment the actual number of lines in the Coset Table and the Relation Tables that can be seen on
the screen will be k , (not i). This has some impact on the scrolling of the Coset Table (compare
5.2.1 and 5.2.2).

Behind these three numbers the Information Line will at certain instances also display warnings:

– When the CE has come to an end, that is, when all tables have been closed with no coincidences
pending, the text Tables Closed is shown in red.

– If the handling of coincidences has been switched off using coincidence handling off (see 5.1.5)
in the menu of the top button Settings the text Coincidence Handling OFF is shown in red until a
coincidence is really encountered (if any occur at all). Then the process will come to a halt and the
text shown will change for the warning Pending Coincidences, again shown in red. Note that this
in particular means that the tables will not have closed and the CE has not been finished yet. If the
CE process is resumed after the pending coincidences have been worked off, also the text Coincidence
Handling OFF will reappear as long as coincidence handling remains switched off and not all tables
have closed.

– If the definition sequence has been changed using the Short-cut method (see 5.2.9 as well as Section
3.5) this will be indicated by the text Short-Cut shown in red, followed by the number of “loops” that
the Short-cut method has performed (see Section 3.5). Analogously Tables sorted is shown after sort
defs (see 5.2.8) has been applied.
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4.4 The List of Relators

The List of Relators is shown in a display window that pops up after clicking the (white) bottom button
show rels (see 5.2.10).
Clicking one of the relators opens a window for the respective Relation Table (see 4.5).

4.5 The Relation Tables

For a relator that is the product of n generators or inverse generators the Relation Table is a table with
n + 1 columns. The vertical lines between the columns of the table are headed by the factors of the relator.
Each row has in its first and last place the same coset number. Further entries can either be empty or be
occupied by a coset number.
Assume that at a certain time coset numbers 1 to c have already been defined and consider an empty entry
in a Relation Table that is either the first empty one or the last empty one in its row. Then clicking such
an empty space defines coset number c + 1 in this place.
To be more explicit:
Let i be the coset number standing before an empty place and x be the generator or inverse generator
heading the vertical line in front of the empty place then by clicking this empty place c + 1 is defined to be
the coset number for the coset that is obtained as the product of the coset with coset number i by x .
Analogously let i be the coset number standing behind an empty place and x be the generator or inverse
generator heading the vertical line behind the empty place then by clicking this empty place c + 1 is defined
as the coset number of the coset obtained as the product of the coset with coset number i by x−1.
See Section 3.1 for more details on the resulting changes of the tables.
Clicking the first or the last entry of a row (that are always filled by the same coset number as soon as
this row exists) will result in filling this whole row in an analogous manner starting from the left. The
last coset number defined in this process (i.e. the rightmost one) and the consequences of its definition get
marked in red.
For the possibility to fill all ith rows in all Relation Tables you can use the green bottom button fill rows
(see 5.2.5).
Clicking on some other place already filled by a coset number will have no effect. Also clicking on an empty
place that is neither the first nor the last empty one in its row will have no effect.
Unlike most of the other display windows, but in line with the Coset Table Window, the windows of the
Relation Tables do not vanish when the contents of the Relation Tables changes but the tables change in
their windows. Note that (as with the Coset Table) only up to 30 rows of the Relation Tables are displayed
simultaneously on the screen but that the Relation Tables can be scrolled parallel to the Coset Table using
the bottom buttons scroll to (see 5.2.1) and scroll by (see 5.2.2).

4.6 The List of Subgroup Generators

The list of generators of the subgroup h is shown in a window that springs up after clicking the (white)
bottom button show subgrp (see 5.2.11).
Clicking one of the subgroup generators opens a window for the respective Subgroup Table (see 4.7).

4.7 The Subgroup Tables

Except that they have only one row that begins and ends with the coset number 1, Subgroup Tables are
exactly like Relation Tables. All that has been said about making definitions in Relation Tables holds for
Subgroup Tables as well. Also unlike most of the other display windows, but in line with the Coset Table
Window, the windows of the Subgroup Tables do not vanish when the contents of the Subgroup Tables
changes but the tables change in their windows.
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4.8 The Table of Definitions

Whenever the ITC performs a coset enumeration it saves the occurring sequence of definitions of coset
numbers in a List of Definitions. This list is not affected by coincidence handling, however it is changed if
you make new definitions or retrace to a previous state of the definition sequence using the back to bottom
button (see 5.2.7) or call the Short-cut algorithm (see 5.2.9) or the “Sorting Definitions” (see 5.2.8). To some
extent the List of Definitions reflects the history of the enumeration. It will probably be mainly of interest
for use in further computations and can for that purpose be written to a file (see write definitions to
file, 5.1.11, and read definitions from file, 5.1.10, of the top menu popped down by clicking the top
button File).

The current state of the enumeration is reflected by a second list which we will call the Table of Definitions.
It contains only the definitions of those coset numbers which are “still alive”, i. e. which have not vanished
by coincidences. and all coset numbers involved in these definitions which are not alive any more are replaced
by their alive representatives. So the Table of Definitions also changes whenever a coincidence is handled.

Upon clicking with the left mouse button the (white) bottom button show defs (5.2.12) a window appears
which displays the Table of Definitions or, to be more precise, an extract of that table consisting of the up to
30 lines corresponding to the cosets currently shown in the Coset Table Window. Like the Relation Tables
(see Section 4.5) this window does not vanish when the contents of the Table of Definitions changes but the
table changes in the window, and whenwever the Coset Table is scrolled using the bottom buttons scroll
to (see 5.2.1) and scroll by (see 5.2.2) it will be scrolled in parallel.

Clicking with the left or with the right mouse button a definition in the Table of Definitions will open a
window in which a coset representative of the coset defined here will be displayed as a word in the generators
of g and their inverses. The coset representative displayed is the one that is obtained by retracing in the
List (not the Table) of Definitions from this coset number to the coset number 1. A second click on the same
definition will close the coset representative window again. Note that the coset representative windows can
also be opened or closed by clicking a coset number in the Coset Table with the right mouse button (see
Section 4.1).

4.9 The List of Length 1 Gaps

For some background definitions for “gaps of length 1” see Section 3.2.

On clicking the (white) bottom button show gaps (see 5.2.13), either, if no gaps of length 1 exist, only a
warning There are no gaps of length 1 appears in red below the Coset Table, or a window springs up
that lists representatives of the equivalence classes of gaps of length 1 in Subgroup and Relation Tables.

A row in this list has the form i : w [ l , x ] or i : w [ l , x−1 ] respectively. Here i is just the number of the list
entry in a consecutive numbering and w is the weight of the respective equivalence class of gaps of length 1.
The remaining information describes the representative of that equivalence class (it indicates that defining
a new coset as the product of the coset with number l and generator x , or x−1, respectively, will close gaps
of length 1 of weight w in Subgroup and Relation Tables).

The idea of giving this information is that the “weight” w may be a guide for the choice of definitions that
have a strong influence on the progress of a CE.

By clicking on such a row with the left mouse button this definition will be made and together with its
consequences inserted into all relevant places in the tables. See Section 3.1 for more details.

Clicking on one of the entries in this list with the right mouse button will open a further window in which
all equivalent definitions are listed in the form [ l , x ] or [ l , x−1 ], respectively.

Clicking on any of these, again with the left mouse button, will result in making this definition. See again
Section 3.1 for details.
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4.10 The List of Pending Coincidences

Clicking the (white) bottom button show coincs (5.2.14) with the left mouse button you either get the
warning There are no pending coincidences shown in red below the Coset Table, or a window springs
up in which the list of all pending coincidences is shown. These appear in the form i = j meaning that the
coset numbers i and j really denote the same coset. If i is the larger integer then clicking such a line in the
List of Pending Coincidences will eliminate i , that is replace it by j in all occurrences in all tables and then
suppress the ith lines in all tables. See also Section 3.3.

As a consequence, more coincidences may be found, so that the List of Pending Coincidences may have
become longer.

In case coincidence handling is switched off (see coincidence handling off, 5.1.5 in the menu of the top
button Settings), the CE process will stop automatically as soon as a coincidence is encountered and then
the window for the List of Pending Coincidences will spring up automatically.

Since a coincidence really means that ITC has found two representatives, say r and s, of the same coset,
given as words in the generators of the group, the quotient r ∗ s−1 will be an element of the subgroup h.
Clicking this coincidence with the right mouse button will open a window in which the subgroup element
r ∗ s−1 will be displayed as word in the generators of g and their inverses.

As in particular George Havas has pointed out in several papers (see for instance [HR99]) it can be helpful
in some “hard” coset enumerations to add subgroup words obtained in this way from coincidences to the
subgroup generators in the GAP input of the given subgroup h and to restart ITC.
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The Coset Table Window will initially show you a coset table with columns for each of the generators of the
presently investigated group g and their inverses, in which only the consequences of giving the subgroup h
the coset number 1 are inserted (so that at the beginning it has only one row). We have already described
in Chapter 4 how to work interactively by mouse clicks in this table.

Also in that chapter (see Sections 4.2 and 4.3) we have described the warnings that may appear directly
below the Coset Table and the “Information Line” that is placed further below the coset table.

However the Coset Table Window also provides via buttons and menus access to much of the functionality
offered by ITC.

The Coset Table Window has a row of four buttons at the top: Sheet, Settings, Close, and File. We will
refer to these as the top buttons. Clicking one of these will pop up a menu from which you can select
actions in the course of a coset enumeration. You do this by holding the left mouse button while moving
the pointer to the respective entry in the menu and releasing the mouse button there. Then the respective
action of the program will be executed while the menu vanishes.

This action may consist in popping up yet another (query) window into which you have to write further
(e. g. numerical) instructions or in setting modes for the CE or in immediately performing certain changes
in the coset table and other tables.

This way of selecting actions may be felt to be uncomfortable and hence for convenience the most frequently
used actions occurring during a coset enumeration can be prompted more directly by clicking one of 18
buttons provided at the bottom of the Coset Table Window. We will refer to these as the bottom buttons.

In the section “The Top Buttons” (5.1) we will describe the menus belonging to the buttons at the top of
the coset table.

In a further section “The Bottom Buttons” (5.2) we will describe the use of the bottom buttons.

Many of the windows to be described will contain two further buttons ok and cancel. Clicking ok means
that you want the order executed that is described in the window while cancel means that you do not want
this execution. In any case, having pressed one of this buttons, you will afterwards return to where you
called this window from.

Note that buttons are in general clicked with the left mouse button.

There is one exception where clicking a bottom button with the right mouse button will have an effect
namely with showing the definitions made. This is explained in the description of the effect of the bottom
button show defs (see 5.2.12).
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5.1 The Top Buttons

Button Sheet

Note: This button also appears as a top button in each of the “display windows”.

Display windows (see Section 1.4) are opened by clicking the following bottom buttons of the Coset Table
Window: show rels (see 5.2.10), show subgrp (see 5.2.11), show defs (see 5.2.12), show gaps (see 5.2.13),
and show coincs (see 5.2.14), as well as in the display window opened by clicking the menu entry show
current settings in the menu popped up via the top button Settings (see 5.1.8).

The menu popped up by the button Sheet has only two entries:

1I save as postscript

This allows you to save the contents of the respective window (e. g. the Coset Table Window) as
a PostScript file. Releasing the left mouse button on this entry will pop up a further menu which
allows you to enter the name of the file to which you want this to be written. You are assisted doing
this by a list of names of files that exist in your directories, and from which you can choose. The
menu also offers you three more buttons: ok, cancel, and home. Choosing home will insert the name
of your home directory into the provided field while ok starts the action after you have finished the
name of the target file, and cancel brings you back to the window in which you clicked the button
Sheet.

2I close graphic sheet

This closes the display window and brings you back to the window from which you had opened it.

Button Settings

The menu popped up by this button has ten entries. Two of these allow one to influence the size of the
table provided for the coset enumeration. Seven further ones allow one to turn on or off certain modes to
be followed during the enumeration. These modes can be turned on or off at the beginning, but can also be
changed later on during the enumeration. The last menu entry allows one to open a window in which the
presently set parameters and modes are shown.

3I change default table size

This opens a query window (see Section 1.4) in which you can change the default table size from
the original value of 1000 to any positive integer you want by typing the desired size into a field
provided for this purpose, but consider that unnecessarily high values may cause garbage collections.
Clicking ok means that you accept the value now given in the field and return to the Coset Table
Window, clicking cancel brings you back there without having changed the existing default table
size. You can change your decision by going to that window again. Note that changing the default
value while a CE is under the way does not change the present table size. If you want to or have to
change the table size during a coset enumeration, you can use the next menu entry extend table
size (see 5.1.4).

4I extend table size

The text in the query window (see Section 1.4) tells you the present table size and proposes twice
that size as the value to which it should be changed. You can again alter that value. ok and cancel
have the same meaning as before.

Note that an analogous window for extending the table size will spring up if in the coset enumeration you
have exhausted the preset table size. If you extend the table size and leave by clicking ok the CE will
immediately be resumed with the extended table size being provided. If you do not extend the table size
in such a case, ITC will refuse to accept or make further definitions. If you then extend the table size using
extend table size as described in 5.1.4 the calculation can be resumed but must be restarted again.
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5I coincidence handling off
I coincidence handling on

ITC allows one to follow stepwise the handling of coincidences if such occur. Since however this
can be a fairly slow procedure that one might not want to follow in detail, this feature can be
turned on and off by these two menu entries. If coincidence handling is switched off any process will
automatically come to a halt as soon as a coincidence is encountered. At that time a window with
the list of pending coincidences will spring up and can then be used to eliminate coincidences one
by one in any wanted sequence “by hand” (see 4.10). Also in the coset table (in addition to the last
definition made) all rows get marked in red that are up for elimination. Note that while coincidences
are pending the same coset number can occur more than once in a column of an ITC Coset Table.
By default coincidence handling will be switched on if you start with a new group from the GAP
window, however if you make a new attempt with the same group having finished the last one by
the clear button (see 5.2.16) you will retain the previous choice.

6I echo on
I echo off

When you use a mouse click to perform any of the operations of ITC this will be documented by
a line of the form gap> PointerButtonDown(x,y,...) or gap> MenuSelected(u,v,...) in the
GAP window, where e. g. the integers x , y , ... specify the position in the window in which you have
clicked. This, however, does not help you easily to understand what you have done. It is not even
helpful for re-doing what you have done, because in a repeat the windows may sit in different places.
On the other hand in a long interactive run you may want to be able to reconstruct your actions,
be it – horribile dictu – that you have run into a bug that you want to report, or - rather better -
that by a stroke of luck you found the result in a particularly nice and short way. For this purpose
you can click the menu entry echo on. Having done this the GAP window will after each of these
rather ununderstandable messages print with the prefix >> readable information on the button or
menu entry, respectively, that you had clicked, in many cases simply the text written in that button
or menu entry. Since you can write in parallel everything occurring in the GAP window to a file
using the LogTo command (see 9.7.5 in the GAP reference manual) you can thus keep a record of
your interactive actions. If you do not want this feature, you can switch it off again.

7I gaps strategy 1 (first gap)
I gaps strategy 2 (first rep of max weight)
I gaps strategy 3 (last rep of max weight)

These strategies have been explained in Section 3.2. You have the option to preset the strategy
of selecting the next gap of length 1 using these menu entries. Then they can be executed using the
bottom button fill gaps (see 5.2.6). In the query window opened by clicking this bottom button
you can prescribe how many “fill gaps” steps you want to make following the preset strategy. By
default strategy 1 will be chosen.

8I show current settings

Selecting this menu entry opens a display window in which the chosen default table size and the cur-
rent table size as well as the choices of modes (coincidence handling on/off and echo on/off)
and of the strategy for choosing the next gap of length 1 are shown. As long as this window remains
open it will be updated whenever any of these values is changed.

Button Close

The menu popped up by this button allows one to choose various strategies for trying to finish the coset
enumeration. The present menu entries are
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9I close table by Felsch
I use gaps strategy 1 (first gap)
I use gaps strategy 2 (first rep of max weight)
I use gaps strategy 3 (last rep of max weight)
I close table by HLT

All these have been described in principle in Section 3.2. Note however that the “closing gaps of
length 1” strategies automatically use Felsch steps if and as long as no gap of length 1 exists at a
certain stage. If you want to see exactly how this happens you have to use the fill gaps command
(see 5.2.6) with some high number of wanted steps and to help it with Felsch steps thrown in
interactively if it gets stuck because of lack of gaps of length 1. We will demonstrate this in the first
of the examples. Note that all but the first strategy do not guarantee the Mendelsohn Condition.

Button File

The menu popped up by this button has three entries which concern reading from and writing to files
important information that may have been obtained by a longer interactive coset enumeration:

10I read definitions from file

Releasing the mouse button at this entry opens a query window (see Section 1.4) in which you can
write the name of the file. You are assisted in doing that by a list of names of files that exist in
your directories, from which you can choose. Note that this choice is disabled (and the menu text
read definitions from file coloured grey instead of black) as soon as you have started a coset
enumeration so that reading in another definiton sequence does not make sense any longer.

11I write definitions to file

If you have constructed a definition sequence that you want to keep in order to possibly reuse it,
you can write this definition sequence to a file. Releasing the mouse button at this entry opens a
query window (see Section 1.4) in which you can write the name of the file. Again you are assisted
by being offered some filenames from which you can choose. Note that a definition sequence can be
written to a file at any time during a CE, so that you can use it to proceed in different ways from a
certain state that you have reached. However note that this menu entry is disabled (and the menu
text write definition to file coloured grey instead of black) as long as no definition sequence
exists yet.

12I write standardized table to file

As mentioned e. g. also in Section 4.3 there is no renumbering of coset numbers in case some of them
are eliminated by the handling of coincidences. That means that at the end of a coset enumeration
that did involve handling of coincidences the coset numbers will form a sequence of natural numbers
that starts with 1 but has “holes”. This is inconvenient, in particular if one wants to consider
the columns of the coset table as the permutations of the cosets under right multiplication by the
respective generator (or inverse generator). Therefore after a CE has finished it is possible to write a
standardized coset table (in which in particular the coset numbers now run from 1 to the index of h
in g) to a file, which then can be processed in any wanted way by GAP. Releasing the mouse button
at this entry will open a query window (see Section 1.4) in which you can write the name of this
file. Again you are assisted by being offered file names from which you may choose. Note that this
menu entry is disabled and the text write standardized table to file coloured grey instead of
black as long as the tables have not closed. That is, only closed coset tables can be standardized
by ITC. A coset table that has been written this way to a file with name filename can be read into
GAP and assigned to a variable costab via

costab:= ReadAsFunction( filename )();
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5.2 The Bottom Buttons

The different kind of functionality of these 18 buttons is to some extent indicated by their colours.

The first two (blue) buttons just allow one to scroll to the lines of the coset table that one wants to work
with, if it contains more than 30 “alive” rows.

1I scroll to

Upon clicking this button a query window (see Section 1.4) will be opened in which you can specify
by its number the row in the Coset Table that you want to see. The Coset Table will be scrolled
up or down in such a way that the wanted row appears in the middle of the displayed part of the
Coset Table. As a default, the number of the last still alive row of the Coset Table will be offered
to you. If the specified coset number is no longer “alive” the maximal alive coset number below
the specified one is taken instead. Any displayed Relation Tables or the Table of Definitions will be
scrolled in parallel to the Coset Table.

2I scroll by

Upon clicking this button a query window (see Section 1.4) will be opened in which you can enter
into a field provided for the purpose the number of rows by which you want to scroll up or down in
the coset table. Positive integers mean scrolling up, that is to higher coset numbers, negative integers
mean scrolling down, that is to lower coset numbers. Originally the value 20 (that you may change)
is offered in this field. If you click this button a second time, the number that you had accepted last
time will be offered again, thus allowing you to glance through the Coset Table at certain intervals
without having to type in a new number each time, Note that here actual rows shown in the
tables are counted. That is, if some rows have been suppressed by coincidence handling they are
not counted, so that you may end up with rows of higher numbers than you expected. Any displayed
Relation Tables or the Table of Definitions will be scrolled in parallel to the Coset Table.

The next seven (green) buttons all give access to certain strategies to be followed through several steps in
a coset enumeration. See Section 3.2 for details.

3I Felsch

The “Felsch” strategy for performing a coset enumeration makes a sequence of definitions by row-
wise filling empty places in the coset table and by searching for all consequences after each definition
which are then immediately worked in as well as all coincidences that may be found. Upon clicking
this button a query window (see Section 1.4) will be opened, in which you can choose how many
definitions you want to have made following this strategy. As default (that you can change) the
number 1 is offered; choosing this is hence tantamount to making a definition in the first empty
place in the coset table in a row-wise scan.

4I HLT

The “HLT” strategy proceeds by filling rows of Subgroup and Relation Tables (see Section 3.2 and
note in particular that as explained there the HLT strategy of ITC deviates in some respect from
what is usually meant by the term). Upon clicking this button a query window (see Section 1.4) is
opened in which you can specify how many definitions you want to make using this strategy. If you
want to close the tables using a HLT strategy, you can use the menu entry close table by HLT
(5.1.9) in the menu opened by the top button Close.

5I fill rows

This button allows you to fill at once in all Relation and Subgroup Tables all rows that belong to
one or more prescribed coset numbers. Upon clicking this button a query window (see Section 1.4)
will be opened in which you can specify the wanted coset numbers, separated by commas. As a
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default the smallest number i is offered for which not all ith rows of Relation and Subgroup Tables
are filled yet. Note that you can only fill rows that do exist, that is rows of a coset number that
has already been defined and has not been eliminated by coincidence handling. If you violate this
condition, your order will be ignored. If you want to fill a row only in a particular Subgroup or
Relation Table or in the Coset Table you can do this by clicking at the beginning of the respective
row (see 4.1 and 4.5). Specifying the (non-existing) coset number 0 allows you to fill just the (first
and only) rows of the Subgroup Tables without filling rows in any of the Relation Tables.

6I fill gaps

Closing rows in relation or subgroup tables in which only one place is open, is the easiest way to get
immediate consequences. Such empty places are called gaps of length 1. Often several choices of
such “gaps of length 1” to be closed are possible and ITC offers various strategies to make this choice
(see Section 3.2). (Remember – compare Section 3.2 – : by inspecting the Relation Tables that you
can display by ITC you may not see all these gaps of length 1, since ITC does not display all the
relation tables that can be obtained by cyclic permutation of the relators in the given presentation.)
These strategies can be set via the top button Settings (see 5.1.7); by default strategy 1 will have
been set. Clicking the button fill gaps will open a query window (see Section 1.4), in which you
can specify how many times you want to close a gap of length 1 that is chosen by the selected
strategy. By clicking the button show gaps (see 5.2.13) you can learn which gaps of length 1 are
open at a given time. However note that by closing a particular gap of length 1 often new gaps of
length 1 will be created, so that by entering a number, say ng , bigger than the number of presently
existing gaps of length 1 into this window you will start off what might be called a “pure minimal
gap strategy”. This is often a very good strategy, however by the theory about the Todd-Coxeter
method it is not guaranteed that such a “pure minimal gap strategy” must terminate, even if the
index of h in g is finite since the so called Mendelsohn Condition might be violated (see [Neu82]). If
you click this button while no gaps of length 1 exist, a warning There are no gaps of length 1
will appear in red below the coset table. If the process runs out of gaps of length 1 before ng of such
gaps have been closed, the process will stop and a warning There are no more gaps of length
1 will appear in red below the Coset Table. Note that the strategies for closing the tables by filling
gaps of length 1 that are offered in the menu of the top button Close are not “pure minimal gap
strategies”, they throw in Felsch type definitions if no gaps of length 1 exist (see 5.1.9).

7I back to

In experimenting with various definition sequences you may want to retrace to a certain point in
your procedure. This is offered by this button. Upon clicking it a query window (see Section 1.4)
is opened that allows you to retrace to the situation after defining the coset number that
you enter into a given field. The default offered is to retrace by just one step by offering the
last-but-one defined coset number. If you enter a negative integer, the CE process is retraced by
a number of definitions that is the absolute value of the negative integer that you had entered.

8I sort defs

Clicking this button will directly apply the “Sorting Definitions” method (see Section 3.4) to the
Coset Table. Note that this button is disabled if the tables have not closed. You may sometimes
observe during the running of this method that the number Defined in the Information Line is
decreasing. When the method has come to an end this will be indicated in the Information Line by
the (red) text Tables sorted.

9I short-cut

As already pointed out in Section 3.5, the number of coincidences encountered before all tables
close may strongly depend on the definition sequence (the strategy followed). Once closure has been
reached, the definition sequence that has led to the result is kept, and in case coincidences have
occurred one may try to use it for finding a shorter definition sequence that also leads to the result.
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An algorithm that tries to do this has been developed by Volkmar Felsch. This “Short-cut” method
is described in Section 3.5, here we just mention that it goes through various cycles that each may
reduce the number of still needed definitions. By clicking the button short-cut a query window
(see Section 1.4) is opened in which you can specify the number of cycles of the Short-cut method to
be performed or can decide to let it run until it terminates having exhausted all its (finitely many)
possibilities. This stepwise reduction can be observed in the Information Line (see 4.3) where the
number of defined cosets keeps changing, and the number of cycles of the method performed so far is
displayed, until the algorithm stops. While the reduction achieved is often quite remarkable it should
be understood that no guarantee is given that the absolute minimum of needed definitions will be
found. In fact by experimenting with this feature you can see that the final number of definitions
after this “pruning” can depend on the sequence of definitions from which you start. Note that you
can inspect the definition sequence before and after this pruning using the bottom button show
defs (5.2.12). Note that the Short-cut method can only be applied after tables have closed, if you
try to invoke it before this has been achieved, a warning The tables have not closed flashes up
in red below the Coset Table and nothing happens.

Of the six white buttons five allow you to open further “display” windows (see Section 1.4), in which
additional information about the state of the coset enumeration is shown. Note that clicking the same
button a second time will close the corresponding display window.

10I show rels

Clicking this button opens a window that shows the “List of Relators” (see 4.4 for operating this).
Note that thus it indirectly gives access to the Relation Tables (see Section 4.5).

11I show subgrp

Clicking this button opens a window that shows the List of Subgroup Generators (see 4.6 for
operating this). Note that it thus indirectly gives access to the Subgroup Tables (see 4.7). If no
subgroup generators are given, that is if you try to enumerate the cosets of the trivial subgroup, no
window is opened but the warning There are no subgroup generators flashes up in red below
the Coset Table.

12I show defs

Clicking this button with the left mouse button opens a window that shows the Table of Definitions
(see 4.8). Clicking with the right mouse button will instead colour in the Coset Table all those
entries green in which the respective coset number was defined in the present definition sequence.
We hope that seeing the distribution of the definitions in the coset table may be of interest in
particular if such a definition sequence has been obtained by use of the Short-cut method (see 5.2.9
and 3.5).

13I show gaps

Clicking this button opens a window showing a list of “representatives” of the equivalence classes of
presently known gaps of length 1. See Section 3.2 and Section 4.9 for a description of the structure
and meaning of that list as well as for the operations that can be started by clicking in that list. If
no gaps of length 1 exist, no window will be opened, but a warning There are no gaps of length
1 will flash up in red below the Coset table.

14I show coincs

If no coincidences are pending upon clicking this button the warning There are no pending coin-
cidences will flash up in red below the Coset Table. Otherwise clicking this bottom button opens
a window which displays the text Pending coincidences and a list of these. See The List of
Pending Coincidences (Section 4.10) for a description of the structure and meaning of that list
and the operations that can be started by clicking in that list.
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The white button

15I mark cosets

allows one to mark certain cosets (in green colour) in all tables in order to see easily where they
occur. Clicking this bottom button opens a query window (see Section 1.4) in which you can enter the
coset numbers (separated by commas) that you want to get coloured. Entering an empty sequence
of coset numbers to be marked will erase any markings.

There are finally three red buttons, which allow you to leave your present calculation with ITC in various
ways.

16I clear

Clicking this bottom button will clear all the tables from all entries constructed in the coset enu-
meration, while keeping the group and subgroup that you had entered into GAP, so that you can
directly start anew with the same problem. The table size will be reset to the default table size, but
otherwise settings defined during the last run, for instance whether coincidence handling is switched
on or off, will remain, that is, not automatically be set to their default values. Remember that you
can inspect the present settings in the window opened via the menu entry show current settings
(5.1.8).

17I reset

This works similarly to clear except that all settings will be reset to their default values. Remember
again that you can inspect the present settings in the window opened via the menu entry show
current settings (5.1.8).

18I quit

This closes all windows and just brings you back to the GAP window. In a new start of ITC all
switches will be set to their default values. The group that you had handled will still be available
as a GAP object.



6 Examples

Here we give a number of examples to illustrate various features of ITC. Please note that input files for all
these are contained with the distribution of ITC.

6.1 A Presentation by A. Cavicchioli

The presentation used in this section as a first example of the use of ITC stems from a paper by A. Cavicchioli
(see [Cav86]). We use it here because it has also been used to explain CE in an easy introduction to
computational methods for finitely presented groups by the third author and Said Sidki, of which an English
translation is available on the GAP Web Pages, see

http://www-history.mcs.st-and.ac.uk/~gap/Info/talks.html .

The GAP input to this group will be

F := FreeGroup( "a", "b" );
a := F.1; b := F.2;
rels := [ a^-2*b*a*b^-1*a*b, a^3*b^-1*a^-2*b^-1 ];
G := F / rels;
a := G.1; b := G.2;
H := Subgroup( G, [ a ] );
InteractiveTC( G, H );

This can be replaced by reading the input file for this presentation:

ItcExample( "cav" );

Note that, since the generators of the free group were called a and b, these names will be used by ITC.

The ITC Coset Table shown in the Coset Table Window has already entries for 1 ∗ a and 1 ∗ a−1 which stem
from the fact that the subgroup is automatically given coset number 1 at the beginning and consequences
of this definition, here via the fact that the subgroup is generated by a, are inserted into the Coset Table.
You can inspect the Subgroup Table (in this case only one) by clicking the only subgroup generator in the
List of Subgroup Generators which you can get by clicking show subgrp.

We first try the simplest solution: we click the top button Close, and select close table by Felsch from
its menu. This does indeed work, filling the table with 12 rows. We can read from the Information Line that
no coincidences were encountered in this CE (the number Deleted is given as 0).

We want to try different strategies next. Rather than starting from scratch, we clear the table of all entries
created by the last CE by just clicking the (red) bottom button clear.

Without explicitly mentioning this each time we will do the same, or use reset (depending whether we also
want to keep settings or not) whenever we want to reuse the definition of the group.

Also the three “gaps of length 1” strategies offered in the menu of the top button Close will close the table
without encountering coincidences. We remember, however, that these really invoke Felsch steps if no gaps
of length 1 are available and we want in a moment to investigate if this was the case here.
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The “HLT” strategy, however, (even though it uses consequences) needs 13 definitions, i. e. produces one
coincidence.

That is, we have in this case ended with a slightly non-optimal definition sequence (which we can inspect
either in a separate window or by marking the definitions green in the Coset Table by clicking the (white)
show defs bottom button with the left or the right mouse button, respectively). We try next, if the Short-
cut method will be able to improve this definition sequence. Pressing the (green) short-cut bottom button
and not restricting the number of loops in the query window does in fact produce in five loops a definition
sequence in which no coset has to be removed.

Prescribing in a repetition of the previous experiment in the Short-cut query window only one loop shows us
that already this one loop suffices to produce a definition sequence closing the tables without coincidences.

We next want to follow some of these computations stepwise.

First we try the Felsch method stepwise. Clicking the (green) bottom button Felsch opens a query window,
in which we can enter how many Felsch steps we want to perform. The value 1 is offered, and we should in
fact use this to watch how by repeated call of one Felsch step at a time the tables close. It will be informative,
not only to watch what happens in the Coset Table, but also to watch what happens in the Relation Tables.
For this purpose we first click the (white) bottom button show rels which opens a window showing the
two relators. Clicking these opens two more windows displaying the Relation Tables. After each step the
new entries will be shown in red. While after each of the definitions of coset number 2 and 3 just two new
entries in the coset table are made, e. g. in the first case corresponding to the definition 2 = 1 ∗ b and the
trivial consequence 2 ∗ b−1 = 1, after definition of coset number 4 we observe that for the first time rows in
the relation tables close and yield further consequences and hence entries into the coset table. Again after
having defined coset number 12 the tables will be closed without a coincidence having occurred (and this is
indicated in the Information Line).

We may repeat a Felsch strategy but with larger steps, that we enter into the field of the query window that
opens after clicking the green bottom button Felsch.

We now want to return to the question what really happens when we use a “gaps of length 1” strategy
offered for closing a table:

If at the start we click show gaps, we get the message There are no gaps of length 1 and if we like, we
can (partially, compare 5.2.13!) confirm this by looking at the Subgroup Table via the bottom button show
subgrp (which turns out to be closed already) and the two Relation Tables via the bottom button show
rels which in fact each have only one row yet with gaps of length 4 and 3, respectively.

After performing a first Felsch step (using the bottom button Felsch) the situation has not improved, there
are still no gaps of length 1, however after a further Felsch step a first gap of length 1 turns up. After filling
this, no new gap of length 1 turns up, so we again resort to a Felsch step, after which we can again fill a
gap of length 1. One more Felsch step then allows us to use gap of length 1 filling four times after which a
last Felsch step is needed to close the table.

We will now try what happens if we follow a Haselgrove-Leech-Trotter kind of strategy. We can do this in
two ways:

We can use the bottom button HLT to make a number of definitions (that we can prescribe) following the
HLT strategy. If we do this, and make one definition at a time, we observe that with defining coset number
5 we have produced a coincidence and coset number 4 will get eliminated.

We can also close rows one by one. For this we press the (green) bottom button fill rows. In a query
window we are asked which row we want to fill (in all – in this case, two – Relation Tables). We choose the
proposed default value, in the first instance, so closing the first rows. This already defines five coset numbers.
However, if we watch the Information Line carefully, it tells us that in fact one of these five defined coset
numbers has already been eliminated again by a coincidence. The Coset Table shows that this has been
coset 4 (and no wonder, we have followed the same definition sequence as in our last experiment).
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If we apply a few more steps of a strategy which consists of just clicking the button fill rows and then
accepting the row number proposed by the ITC, the next proposal will be to close row 2 in each table. Doing
this brings us already to coset number 10. Then, as expected, we are offered to fill the third rows. This step
does not only lead to another definition, namely of coset number 11, but also implies that all rows up to the
seventh are already closed (you may easily check this by looking at the Relation Tables). Hence, in the next
step the proposal is to fill the eighth rows and doing this closes the tables. In these tables no coset number
4 occurs, the coset numbers run from 1 to 13 with that omission.

We may next want to see a bit closer what happens with that coincidence, and we can do so by pulling
down the Settings menu from the top button Settings and releasing the mouse button on the menu entry
coincidence handling off. If now we repeat the same procedure as last time, namely calling fill rows,
the process will come to a halt, while the coset number 4 is still “alive”. ITC warns us in the Information Line
that coincidences are pending and offers to open a window showing the coincidence(s) pending, in this case
4 = 3. We can eliminate coset number 4 by clicking this equation in the window, after which the warning
vanishes and we have the state that in the previous run we had after the first fill rows command. We can
get to the end in the same way again.

We could vary the HLT procedure by not always filling a particular row in both Relation Tables simultane-
ously, but in only one of these tables. This we can achieve by clicking the first or last entry in the chosen row
of that Relation Table. In fact, if we just proceed by closing rows of the first Relation Table we will again
get closure after one coincidence has occurred, which however can again be elimintated by the Short-cut
method, while proceeding by only closing rows in the second Relation Table, we even arrive at the result
without coincidences.

We have seen at the beginning that a Felsch strategy brought us to the end without having encountered
coincidences. Next we show how delicate all these statements are. We pretend that the columns of the Coset
Table have been reordered so that first both generators and then their inverses head the columns of the Coset
Table. Since we cannot change the program to follow a Felsch strategy with this arrangement of columns,
we do it by hand clicking consecutively the following points after having switched coincidence handling off:

1 ∗ b, 1 ∗ b−1, 2 ∗ a, 2 ∗ b, 2 ∗ a−1, 3 ∗ a, 3 ∗ b−1, 5 ∗ a, 5 ∗ b, 5 ∗ a−1·

After this one we get a coincidence 9 = 8; we remove 9 by clicking this equation in the window displaying
it, but this produces immediately a further coincidence 10 = 8, only after also removing 10 we can continue

7 ∗ b−1, 11 ∗ b, 11 ∗ a−1

which leads to closure of the tables. Thus we have encountered even two coincidences and at a different
place. short-cut will again yield a definition sequence without coincidences in only one loop.

Next let us just observe that we can in fact produce even more coincidences by using a “stupid” definition
sequence. We may e. g. first define consecutively 10 images under b and then 10 further ones under a, without
any indication of the table closing. If we next perform 3 Felsch steps, we get a first coincidence. Eliminating
this will produce a further one and so on, and if we continue (always clicking the first one of the displayed
coincidences) we will see that at certain points half a dozen coincidences are pending simultaneously. Working
these off, we will eventually arrive at a table with no further coincidences pending, but which will still not
have closed. After two more Felsch steps we reach closure again, but the definition sequence will list 26 coset
numbers. Short-cut will again reduce this to a definition sequence of 12 coset numbers but if we follow what
happens loop by loop, we see that only the fifth loop brings a reduction to 20 coset numbers, while only the
eighth (and last) loop brings the reduction to a definition sequence without coincidences.

Finally we give an example in which short-cut will not completely succeed. We first define “by hand” four
images under b−1:

1 ∗ b−1, 2 ∗ b−1, 3 ∗ b−1, 4 ∗ b−1,
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and then close the table using the Felsch strategy. The table will close after having gone through two
coincidences. If we now invoke the Short-cut method, it will reduce the definition sequence from 14 to 13
definitions, but not to 12. However in this case sort defs will bring us down to a definition sequence of 12
definitions either applied to the definition sequence of 14 definitions obtained originally or to the “pruned”
definition sequence of 13 definitions.

In this first example we have already seen some of the multitude of ways in which we can modify the basic
idea of CE. In order to demonstrate more of the functionality of ITC, we will study further examples.

6.2 The Fibonacci Group F(2,7)

The Fibonacci Group F(2,7) is cyclic of order 29, but this result is not easily obtained. The first and crucial
step is to establish that the group is in fact cyclic by showing with the help of coset enumeration that one
of the cyclic subgroups generated by one of the generators has index 1 in F(2,7). In her beautifully written
Master’s thesis [Ede89] Margaret Edeson describes the history of that proof and uses it to discuss in detail
approaches to the problem of finding a short definition sequence that will lead to the result that this index
is trivial.

In fact she documents carefully correspondence around that problem, involving in particular John Leech
and George Havas. By 1984 John Leech actually had obtained a definition sequence of 55 definitions by a
posteriori pruning (by hand) much longer definition sequences determined a priori. Again by elaborate hand
work in 1989 Margaret Edeson was able to get this number down to 53. To read her comments about at
various stages feeling unsafe whether to continue enumerations because of the fear of already having made
a mistake is not only amusing but an encouragement for developing programs such as ITC.

The GAP input for the enumeration of the cosets of the cyclic subgroup generated by the third generator
reads:

F := FreeGroup( "a", "b", "c", "d", "e", "f", "g" );
a := F.1; b := F.2; c := F.3; d := F.4; e := F.5; f := F.6; g := F.7;
rels := [
a*b*c^-1,
b*c*d^-1,
c*d*e^-1,
d*e*f^-1,
e*f*g^-1,
f*g*a^-1,
g*a*b^-1

];
G := F / rels;
c := G.3;
H := Subgroup( G, [ c ] );
InteractiveTC( G, H );

This can be replaced by reading the input file for this presentation:

ItcExample( "f27" );

Note that again ITC will print the generators of the free group using their names a, b, etc.

The Coset Table shown by ITC has already the entries for 1∗c and 1∗c−1. Moreover we note that it already
indicates gaps of length 1 by (red - meaning new) dots in the Coset Table which stem from the fact that
the relations are very short.

We first click the top button Close and choose the menu entry close table by Felsch. Rather quickly
we get closure with index 1 after 332 definitions. Deleted: 331 confirms that in fact 331 coincidences have
been removed. It will be instructive to follow this coincidence handling step by step for a few steps.
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We can do this by returning to the beginning using the bottom button clear and then selecting the menu
entry coincidence handling off in the menu of the top button Settings. Starting now close table
by Felsch again, the enumeration will stop with 332 coset numbers defined and the warning Pending
coincidences in the Information Line. At the same time a window for the Table of Pending Coincidences
is offered and this informs us that at present just one coincidence, namely 226 = 106 has been found.

We can use the scroll buttons to inspect the row 226 that will be removed by handling this coincidence.
We click the bottom button scroll to and write 226 instead of the number of the last row (332) into the
field offered, then clicking ok scrolls the Coset Table Window such that row 226 occurs in the middle of the
window. We see that row 226 is coloured red (while row 106 remains black).

We can now click, in the List of Pending Coincidences, on that coincidence 226 = 106 and this will be
eliminated. Looking again for row 226 in the Coset table (or any of the Relation Tables) we will not find
it any more, it has got suppressed, but no renumbering has taken place, row 227 now follows immediately
after row 225.

However the warning Pending coincidences has not vanished and indeed the window with the List of
Pending Coincidences now shows us two new coincidences: 124 = 43 and 229 = 21 that have now been
detected. We can repeat the same game and see that for some time the List of Pending Coincidences grows
longer and longer until (if we have the patience to follow that game to its end instead of just switching on
the automatic coincidence handling again) indeed all coincidences are worked off and index 1 is obtained.
That is, we see in this case how one single coincidence triggers the “collapse” of the Coset Table.

Invoking now the Short-cut method for the definition sequence of length 332 not prescribing the number of
loops, after 33 loops it stops with a definition sequence of 54 definitions (already one better than Leech’s
result by hand). The Short-cut method is slow enough to be able to see in the Information Line how the
number of definitions is brought down in several of the loops of the Short-cut method. It will be instructive
to do the 33 loops one by one, to see that not all of them really improve the definition sequence. In fact at
first there are some dramatic improvements of the original number of 332 definitions as shown by the number
of definitions obtained in the first six loops: 327, 251, 226, 145, 132, 127. But then the next loop brings no
improvement, and later on there are six consecutive loops during which the number of definitions stays at
64 definitions. By the way, if you do this interactively step by step, watch the counter for the number of
loops, if this does not rise any more, the method will have come to its natural end. Also the displayed text
changes: While it says i Short-cut loops as long as the Short-cut method works, it changes to Short-cut
(i loops) after the Short-cut method has stopped.

We next choose the use gaps strategy 2 (first rep of max weight) entry in the menu of the top
button Close. We are rewarded by obtaining a priori (!) a definition sequence of only 126 definitions leading
to collapse of the table (which is better than anything Leech had at his disposal). But if we expected that
now also short-cut would beat records, we are disappointed, it stops after 35 loops but still with a definition
sequence of length 57.

So finally we choose the use gaps strategy 3 (last rep of max weight). This closes after only 79
cosets defined, short-cut gets down to 54 in only 29 loops. However if we first perform three Felsch steps
(using the bottom Button Felsch and prescribing 3 in the field provided in the query window) and then
close again by use gaps strategy 3 we get once more closure after 79 definitions, but this time short-cut
brings us down to a definition sequence of length 50 (breaking all presently known records).

Of course this has not been our main goal, but rather to demonstrate the flexibility of using ITC. In fact for
somebody interested in CE it will be very fascinating to study this example further: if you use n Felsch steps
and then close by use gaps strategy 3 and follow this by the Short-cut method, the series of results will
be most puzzling. We do not want to betray it completely here - just try it out - but we mention that for
n = 20 we obtained an enumeration that we did not even finish because it went on and on (we did follow it
until it had defined more than 10000 coset numbers), while for n = 40 we were at that very good situation
of definition sequence length 79 a priori and 50 a posteriori again.

Just for comparison: close table by HLT with consequences needs 2276 definitions.



32 Chapter 6. Examples

Finally we mention that there are simple ITC strategies to find definition sequences of length 50 also if we
replace the subgroup H = 〈c〉 by any of the other cyclic subgroups generated by the generators of G . In
each of these cases it suffices to start with one or two suitable ITC commands and then again to close the
tables via use gaps strategy 3 and to apply short-cut. An appropriate start may e. g. consist of doing
10, 1, 13, or 10 Felsch steps in case H = 〈a〉, H = 〈d〉, H = 〈f 〉, or H = 〈g〉, respectively, or of clicking 1 ∗ f
or 1 ∗ a and 1 ∗ b in the Coset Table for H = 〈b〉 or H = 〈e〉, respectively.

6.3 A Presentation by B.H. Neumann

Bernhard Neumann (see e. g. [Neu79]) has discussed a famous sequence of presentations of the trivial group
of increasing difficulty for any CE method. In fact for a long time the only one that could be done was the
first of them that we consider here, (called e1 here), the next one was only recently “cracked” by George
Havas’ and Colin Ramsey’s program ACE.

The GAP input for the presentation is

F := FreeGroup( "a", "b", "c" );
a := F.1; b := F.2; c := F.3;
rels := [ c^-1*a*c*a^-2, a^-1*b*a*b^-2, b^-1*c*b*c^-2 ];
G := F / rels;
H := TrivialSubgroup( G );
InteractiveTC( G, H );

This can be replaced by the input file for this presentation:

ItcExample( "e1" );

We just mention a few results, but mainly suggest this presentation for further exercises:

close table by Felsch needs 588 definitions, short-cut reduces to 68 in 31 loops.

use gaps strategy 1 needs 119 definitions, short-cut reduces to 68 again this time in 33 loops.

use gaps strategy 2 needs 116 definitions, short-cut reduces to 68 again in 33 loops.

use gaps strategy 3 needs 119 definitions, but short-cut reduces to 64 in 27 loops, which coincides
with what Havas and Ramsey got by hand pruning a somewhat better a priori enumeration with only 81
definitions obtained by experimenting with ACE (see [HR99]).

However using 13 Felsch steps followed by closing by use gaps strategy 1 yields a definition sequence of
length 134 that is reduced to only 61 by the Short-cut method in 30 loops. The same procedure with 196
Felsch steps and closing by use gaps strategy 3 gets even down to a sequence of 60 definitions.

By the way this presentation also provides an example of a rather strong reduction of the definition sequence
by sort defs: Using close table by HLT with consequences produces a definition sequence of 672 coset
numbers that reduces to 279 under sort defs.

6.4 The Group (8,7;2,3)

As a final example we take the presentation and subgroup described by the GAP input:

F := FreeGroup( "a", "b" );
a := F.1; b := F.2;
rels := [ a^8, b^7, (a*b)^2, (a^-1*b)^3 ];
G := F / rels;
a := G.1; b := G.2;
H := Subgroup( G, [ a^2, a^-1*b ] );
InteractiveTC( G, H );

This can again be replaced by reading it from a file:
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ItcExample( "g8723" );

This presentation has also been used frequently for comparisons of CE strategies, e. g. in [CDHW73].

If we start with all parameters at default values and choose close table by Felsch the coset enumeration
will be interrupted after the definition of 1000 coset numbers and a window springs up in which it is offered to
extend table size from 1000 to and then in a field the number 2000 is proposed (that can be changed).
After clicking ok the requested extension of the table size is done and the enumeration resumed. If one clicks
cancel instead, thus rejecting the offer, one gets the warning Insufficient table size in red below the
Coset Table, and then has to decide if one wants to extend the table size (now using the menu entry of the
top button Settings) or to give up this enumeration.

The enumeration stops having defined 1306 coset numbers, but the index has turned out to be 448. short-
cut reduces this rather redundant sequence of coset numbers to 472 in 140 loops (but this already takes a
little while).

Choosing use gaps strategy 1 from the menu of Close needs 825 definitions which boil down to 470 under
short-cut in 141 loops.

For comparison we mention that the shortest definition sequence found by George Havas and Colin Ramsay
experimenting with a priori methods using ACE has length 662 (see [HR01]).
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sche Mathematik, 3:250–256, 1961.

[Hav91] George Havas. Coset enumeration strategies. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’91), Bonn 1991, pages 191–199. ACM Press, 1991.

[HR99] G. Havas and C. Ramsay. The trivial group made easy, a case study in coset enumeration. Draft
Manuscript, 1999.

[HR01] G. Havas and C. Ramsay. Experiments in coset enumeration. 2001.

[Lee84] J. Leech. Coset enumeration. In Michael D. Atkinson, editor, Computational Group Theory,
Proceedings LMS Symposium on Computational Group Theory, Durham 1982, pages 3–18.
Academic Press, 1984.

[Neu79] B. H. Neumann. Proofs. The mathematical intelligencer, 2:18–19, 1979.
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