
Share Package
—

Polycyclic

by

Bettina Eick

Fachbereich Mathematik

Universität Kassel

and

Werner Nickel

Fachbereich Mathematik

TU Darmstadt

Contents

1 Polycyclic Groups 3

2 Pcp-groups - polycyclically
presented groups 4

2.1 Introduction 4

2.2 Collectors 5

2.3 Pcp-elements – elements of a
pc-presented group 6

2.4 Methods for pcp-elements 7

2.5 Pcp-groups - groups of pcp-elements 8

2.6 Basis methods and functions for
pcp-groups 8

2.7 Igs - induced generating sequences for
subgroups 9

2.8 Pcps – polycyclic presentation
sequences for subfactors 10

2.9 Factor groups of pcp-groups . . . 12

2.10 Homomorphisms for pcp-groups . . 13

2.11 Changing the defining pc-presentation 13

2.12 Converting to pc-presentations . . 14

2.13 Some generic pcp-groups 14

2.14 Some example pcp-groups 14

3 Methods for pcp-groups 15

3.1 Orbit stabilizer methods for pcp-groups 15

3.2 Subgroup series in pcp-groups . . 15

3.3 Random methods and functions
available for pcp-groups 17

3.4 Intersection of subgroups 18

3.5 Finite subgroups 18

3.6 Subgroups of finite index 19

3.7 Functions for nilpotent groups . . 20

4 Cohomology for pcp-groups 21

4.1 Cohomology records 21

4.2 Cohomology groups 22

4.3 Extended 1-cohomology 23

4.4 Extensions and Complements . . 24

Bibliography 25

Index 26

1 Polycyclic Groups

A group G is called polycyclic if there exists a subnormal series in G with cyclic factors. Every polycyclic
group is soluble and every supersoluble group is polycyclic. The class of polycyclic groups is closed with
respect to forming subgroups, factor groups and extensions. Polycyclic groups can also be characterised as
those soluble groups in which each subgroup is finitely generated.

K. A. Hirsch has initiated the investigation of polycyclic groups in 1938, see [Hir38a], [Hir38b], [Hir46],
[Hir52], [Hir54], and their central position in infinite group theory has long been recognised since.

A well-known result of Hirsch asserts that each polycyclic group is finitely presented. In fact, a polycyclic
group has a presentation which exhibits its polycyclic structure: a pc-presentation as defined in Section 2.1.
Pc-presentations allow efficient computations with the groups they define. In particular, the word problem
is efficiently solvable in a group given by a pc-presentation. Further, subgroups and factor groups of groups
given by a pc-presentation can be handled effectively.

The share package polycyclic for GAP 4 is designed for computations with polycyclic groups which are given
by a pc-presentation. The package contains methods to solve the word problem in such groups and to handle
subgroups and factor groups of polycyclic groups. Based on these basic algorithms we present a collection
of methods to construct polycyclic groups and to investigate their structure.

In [BCRS91] and [Seg90] the theory of problems which are decidable in polycyclic-by-finite groups has been
started. As a result of these investigation we know that a large number of group theoretic problems are
decidable by algorithms in polycyclic groups. However, practical algorithms which are suitable for computer
implementations have not been obtained by this study. We have developed a new set of practical methods for
groups given by pc-presentations, see for example [Eic00], and this package is a collection of implementations
for these and other methods.

We refer to [Rob82], page 147ff, and [Seg83] for background on polycyclic groups. Further, in [Sim94] a
variation of the basic methods for groups with pc-presentation is introduced. Finally, we note that the main
GAP library contains many practical algorithms to compute with finite polycyclic groups, see Section 43 of
the reference manual.

2

Pcp-groups -
polycyclically

presented groups

2.1 Introduction

Let G be a polycyclic group and let G = C1 � C2 . . .Cn � Cn+1 = 1 be a polycyclic series, that is,
a subnormal series of G with non-trivial cyclic factors. For 1 ≤ i ≤ n we choose gi ∈ Ci such that
Ci = 〈gi ,Ci+1〉. Then the sequence (g1, . . . , gn) is called a polycyclic generating sequence of G . Let I
be the set of those i ∈ {1, . . . ,n} with ri := [Ci : Ci+1] finite. Each element of G can be written uniquely as
ge1

1 · · · gen
n with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri for i ∈ I .

Each polycyclic generating sequence of G gives raise to a power-conjugate (pc-) presentation for G
with the conjugate relations

ggj
i = ge(i,j ,j+1)

j+1 · · · ge(i,j ,n)
n for 1 ≤ j < i ≤ n,

g
g−1

j
i = g f (i,j ,j+1)

j+1 · · · g f (i,j ,n)
n for 1 ≤ j < i ≤ n,

and the power relations
gri

i = g l(i,i+1)
i+1 · · · g l(i,n)

n for i ∈ I .

Vice versa, we say that a group G is defined by a pc-presentation if G is given by a presentation of the form
above on generators g1, . . . , gn . These generators are the defining generators of G . Here, I is the set of
1 ≤ i ≤ n such that gi has a power relation. The positive integer ri for i ∈ I is called the relative order of gi .
If G is given by a pc-presentation, then G is polycyclic. The subgroups Ci = 〈gi , . . . , gn〉 form a subnormal
series G = C1 ≥ . . . ≥ Cn+1 = 1 with cyclic factors and we have that gri

i ∈ Ci+1. However, some of the
factors of this series may be smaller than ri for i ∈ I or finite if i 6∈ I ·
If G is defined by a pc-presentation, then each element of G can be described by a word of the form ge1

1 · · · gen
n

in the defining generators with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri for i ∈ I . Such a word is said to be in
collected form. In general, an element of the group can be represented by more than one collected word. If
the pc-presentation has the property that each element of G has precisely one word in collected form, then
the presentation is called confluent or consistent. If that is the case, the generators with a power relation
correspond precisely to the finite factors in the polycyclic series and ri is the order of Ci/Ci+1.

The polycyclic share package is designed for computations with polycyclic groups which are given by con-
sistent pc-presentations. In particular, all the functions described below assume that we compute with a
group defined by a consistent pc-presentation. See Section 2.2 for a routine that checks the consistency of a
pc-presentation.

Section 2. Collectors 5

2.2 Collectors

Let G be a group defined by a pc-presentation as described in Section 2.1.

The process for computing the collected form for an arbitrary word in the generators of G is called collection.
The basic idea in collection is the following. Given a word in the defining generators, one scans the word
for occurrences of adjacent generators (or their inverses) in the wrong order or occurrences of subwords gei

i
with i ∈ I and ei not in the range 0 . . . ri−1. In the first case, the appropriate conjugacy relation is used to
move the generator with the smaller index to the left. In the second case, one uses the appropriate power
relation to move the exponent of gi into the required range. These steps are repeated until a collected word
is obtained.

There are a number of different strategies for collecting a given word to collected form. The strategy im-
plemented in this package is collection from the left as described by [LGS90] and [Sim94]. We note that
the collection method in this package is currently implemented in GAP code. As this is a very time-critical
function, we plan to translate this to C-code in the near future.

The first step in defining a pc-presented group is setting up a data structure that knows the pc-presentation
and has routines that perform the collection algorithm with words in the generators of the presentation.
Such a data structure is called a collector. In this section we describe how to set up a collector by hand.

To describe the right hand sides of the relations in a pc-presentation we use either words from a free group
or generator exponent lists. The latter are lists of integers which represent a word in a free group; while
a word in a free group is a product of generators and inverses, a generator exponent list is a list in which
generator numbers and exponents alternate. Each factor gei

i in a word is represented by the entries i , j .

1I FromTheLeftCollector(n)

returns an empty data structure for a collector with n generators. No generator has a relative order and
no conjugate relations are defined. Two generators for which no conjugate relations are defined commute.
Therefore, the collector returned by this function can be used to define a free abelian group of rank n.

gap> ftl := FromTheLeftCollector(4);
<<from the left collector with 4 generators>>
gap> UpdatePolycyclicCollector(ftl);
gap> PcpGroupByCollector(ftl);
Pcp-group with orders [0, 0, 0, 0]
gap> IsAbelian(last);
true

2I SetRelativeOrder(coll, i, ro)

set the relative order in collector coll for generator i to ro. The parameter coll is a collector as returned by
the function 2.2.1, i is a generator number, i.e. an integer in the range 1, . . . ,n where n is the number of
generators of the collector and ro is a non-negative integer. If ro is 0, then the generator with number i has
infinite order and no power relation can be specified. A previously defined power relation is deleted.

3I SetPower(coll, i, rhs)

set the right hand side of the power relation for generator i in collector coll to rhs. An attempt to set the
right hand side for a generator without a relative order results in an error. Right hand sides are by default
assumed to be trivial. The parameter coll is a collector, i is a generators number and rhs is a generators
exponent list or an element from a free group.

4I SetConjugate(coll, j, i, rhs)

set the right hand side of the conjugate relation for the generators j and i . Negative generators numbers
refer to inverses of the generators. Conjugate relations are by default assumed to be trivial The parameter

6 Chapter 2. Pcp-groups - polycyclically presented groups

coll is a collector, i is a generators number and rhs is a generators exponent list or an element from a free
group.

5I UpdatePolycyclicCollector(coll)

completes the data structures of a collector. This is usually the last step in setting up a collector. Among
the steps performed is the completion of the conjugate relations. For each non-trivial conjugate relation of
a generator, the corresponding conjugate relation of the inverse generator is calculated.

6I IsConfluent(coll)

tests if the collector coll is confluent. The function return true or false accordingly.

The following example specifies a collector for the infinite dihedral group.

gap> ftl := FromTheLeftCollector(2);
<<from the left collector with 2 generators>>
gap> SetRelativeOrder(ftl, 1, 2);
gap> SetConjugate(ftl, 2, 1, [2,-1]);
gap> UpdatePolycyclicCollector(ftl);
gap> IsConfluent(ftl);
true
gap>

2.3 Pcp-elements – elements of a pc-presented group

A pcp-element is an element of a group defined by a consistent pc-presentation given by a collector.
Suppose that g1, . . . , gn are the defining generators of the collector. Recall that each element g in this group
can be written uniquely as collected word ge1

1 · · · gen
n with ei ∈ Z and 0 ≤ ei < ri for i ∈ I . The integer vector

[e1, . . . , en] is called the exponent vector of g . The following functions can be used to define pcp-elements
via their exponent vector or via an arbitrary generator exponent word as introduced in Section 2.2.

1I PcpElementByExponentsNC(coll, exp)
I PcpElementByExponents(coll, exp)

returns the pcp-element with exponent vector exp. The exponent vector is considered relative to the defining
generators of the pc-presentation.

2I PcpElementByGenExpListNC(coll, word)
I PcpElementByGenExpList(coll, word)

returns the pcp-element with generators exponent list word . The generators exponent list is considered
relative to the defining generators of the pc-presentation.

These functions return pcp-elements in the category IsPcpElement. Presently, the only representation im-
plemented for this category is IsPcpElementRep. (This allows us to be a little sloppy right now. The basic
set of operations for IsPcpElement has not been defined yet. This is going to happen in one of the next
version, certainly as soon as the need for different representations arises.)

3I IsPcpElement(obj)

returns true if the object obj is a pcp-element.

4I IsPcpElementRep(obj)

returns true if the object obj is represented as a pcp-element.

Section 4. Methods for pcp-elements 7

2.4 Methods for pcp-elements

Now we can describe attributes and functions for pcp-elements. The four basic attributes of a pcp-element,
Collector, Exponents, GenExpList and NameTag are computed at the creation of the pcp-element. All
other attributes are determined at runtime.

Let g be a pcp-element and g1, . . . , gn a polycyclic generating sequence of the underlying pc-presented group.
Let C1, . . . ,Cn be the polycyclic series defined by g1, . . . , gn .

The depth of a non-trivial element g of a pcp-group (with respect to the defining generators) is the integer
i such that g ∈ Ci \ Ci+1. The depth of the trivial element is defined to be n + 1. If g 6= 1 has depth i and
gei

i · · · gen
n is the collected word for g , then ei is the leading exponent of g .

If g has depth i , then we call ri = [Ci : Ci+1] the factor order of g . If r < ∞, then the smallest positive
integer l with g l ∈ Ci+1 is the called relative order of g . If r =∞, then the relative order of g is defined
to be 0. The index e of 〈g ,Ci+1〉 in Ci/Ci+1 is called relative index of g . We have that r = el .

We call a pcp-element normed, if its leading exponent is equal to its relative index. For each pcp-element
g there exists an integer e such that ge is normed.

1I Collector(g)

the collector to which the pcp-element g belongs.

2I Exponents(g)

returns the exponent vector of the pcp-element g wrt the defining generating set of the underlying collector.

3I GenExpList(g)

returns the generators exponent list of the pcp-element g wrt the defining generating set of the underlying
collector.

4I NameTag(g)

the name used for printing the pcp-element g . Printing is done by using the name tag and appending the
generator number of g .

5I Depth(g)

returns the depth of the pcp-element g relative to the defining generators.

6I LeadingExponent(g)

returns the leading exponent of pcp-element g relative to the defining generators. If g is the identity element,
the functions returns ’fail’

7I RelativeOrder(g)

returns the relative order of the pcp-element g with respect to the defining generators.

8I RelativeIndex(g)

returns the relative index of the pcp-element g with respect to the defining generators.

9I FactorOrder(g)

returns the factor order of the pcp-element g with respect to the defining generators.

10I NormingExponent(g)

returns a positive integer e such that the pcp-element g raised to the power of e is normed.

11I NormedPcpElement(g)

returns the normed element corresponding to the pcp-element g .

8 Chapter 2. Pcp-groups - polycyclically presented groups

2.5 Pcp-groups - groups of pcp-elements

A pcp-group is a group consisting of pcp-elements such that all pcp-elements in the group share the same
collector. Thus the group G defined by a polycyclic presentation and all its subgroups are pcp-groups.

1I PcpGroupByCollectorNC(coll)
I PcpGroupByCollector(coll)

returns a pcp-group build from the collector coll .

2I Group(gens, id)

returns the group generated by the pcp-elements gens with identity id .

3I Subgroup(G, gens)

returns a subgroup of the pcp-group G generated by the list gens of pcp-elements from G .

gap> ftl := FromTheLeftCollector(2);;
gap> SetRelativeOrder(ftl, 1, 2);
gap> SetConjugate(ftl, 2, 1, [2,-1]);
gap> UpdatePolycyclicCollector(ftl);
gap> G:= PcpGroupByCollectorNC(ftl);
Pcp-group with orders [2, 0]
gap> Subgroup(G, GeneratorsOfGroup(G){[2]});
Pcp-group with orders [0]

2.6 Basis methods and functions for pcp-groups

Pcp-groups are groups in the GAP sense and hence all generic GAP methods for groups can be applied for
pcp-groups. However, for a number of group theoretic questions GAP does not provide generic methods that
can be applied to pcp-groups. For some of these questions there are functions provided in polycyclic.

In this section we describe some important basic functions which are available for pcp-groups. A number of
higher-level functions are outlined in later sections and chapters.

Let U ,V and N are subgroups of a pcp-group.

1I U = V

decides if U and V are equal as sets.

2I Size(U)

returns the size of U .

3I Random(U)

returns a random element of U .

4I Index(U , V)

returns the index of V in U if V is a subgroup of U . The function does not check if V is a subgroup of U
and if it is not, the result is not meaningful.

5I g ∈ U

checks if g is an element of U .

6I Elements(U)

returns a list containing all elements of U . This functions will not terminate if U is infinite.

Section 7. Igs - induced generating sequences for subgroups 9

7I IsSubgroup(U , V)

tests if V is a subgroup of U .

8I IsNormal(U , V)

tests if V is normal in U .

9I ClosureGroup(U , V)

returns the group generated by U and V .

10I NormalClosure(U , V)

returns the normal closure of V under action of U .

11I U / N

return the factor group of U modulo N . Clearly, N must be normal in U .

12I HirschLength(U)

returns the Hirsch length of U .

13I CommutatorSubgroup(U , V)

returns the group generated by all commutators [u, v] with u in U and v in V .

14I PRump(U , p)

returns the subgroup U ′U p of U where p is a prime number.

15I IsNilpotentGroup(U)

checks whether U is nilpotent.

16I IsAbelian(U)

checks whether U is abelian.

17I IsElementaryAbelian(U)

checks whether U is elementary abelian.

18I IsFreeAbelian(U)

checks whether U is free abelian.

2.7 Igs - induced generating sequences for subgroups

A subgroup of a pcp-group G can be defined by a set of generators as described in Section 2.5. However,
many computations with a subgroup U need an induced generating sequence or igs of U . An igs is a
sequence of generator of U whose list of exponent vectors form a matrix in upper triangular form. Note that
there may exist many igs of U . The first one calculated for U is stored as an attribute.

An induced generating sequence of a subgroup of a pcp-group G is a list of elements of G . An igs is called
normed, if each element in the list is normed. Moreover, it is canonical, if the exponent vector matrix is
in Hermite Normal Form. The following functions can be used to compute induced generating sequence for
a given subgroup U of G .

10 Chapter 2. Pcp-groups - polycyclically presented groups

1I Igs(U)
I Igs(gens)
I IgsParallel(gens, gens2)

returns an induced generating sequence of the subgroup U of a pcp-group. In the second for the subgroup is
given via a generating set gens. The third form computes an igs for the subgroup generated by gens carrying
gens2 through as shadows.

2I Ngs(U)
I Ngs(igs)

returns a normed induced generating sequence of the subgroup U of a pcp-group. The second form takes an
igs as input and norms it.

3I Cgs(U)
I Cgs(igs)
I CgsParallel(gens, gens2)

returns a canonical generating sequence of the subgroup U of a pcp-group. In the second form the function
takes an igs as input and returns a canonical generating sequence. The third version takes a generating set
and computes a canonical generating sequence carrying gens2 through as shadows.

For a large number of methods for pcp-groups U we will first of all determine an igs for U . Hence it might
speed up computations, if a known igs for a group U is set a priori. The following functions can be used for
this purpose.

4I SubgroupByIgs(G, igs)
I SubgroupByIgs(G, igs, gens)

returns the subgroup of the pcp-group G generated by the elements of the induced generating sequence igs.
Note that igs must be an induced generating sequence of the subgroup generated by the elements of the
igs. In the second form igs is a igs for a subgroup and gens are some generators. The function returns the
subgroup generated by igs and gens.

5I AddToIgs(igs, gens)
I AddToIgsParallel(igs, gens, igs2, gens2)
I AddIgsToIgs(igs, igs2)

sifts the elements in the list gens into igs. The second version has the same functionality and carries
shadows. The third version is available for efficiency reasons and assumes that the second list igs2 is not
only a generating set, but an igs.

2.8 Pcps – polycyclic presentation sequences for subfactors

A subfactor of a pcp-group G is again a polycyclic group for which a polycyclic presentation can computed.
However, to compute a polycyclic presentation for a given subfactor can be time-consuming. Hence we
introduce polycyclic presentation sequences or Pcp to compute more efficiently with subfactors. (Note
that a subgroup is also a subfactor and thus can be handled by a pcp)

A pcp for a pcp-group U or a subfactor U /N can be created with one of the following functions.

1I Pcp(U)
I Pcp(U , N)
I Pcp(U , ”snf”)
I Pcp(U , N , ”snf”)

returns a polycyclic presentation sequence for the subgroup U or the quotient group U modulo N . If the
parameter "snf" is present, the function can only be applied to an abelian subgroup U or abelian subfactor

Section 8. Pcps – polycyclic presentation sequences for subfactors 11

U /N . The pcp returned will correspond to a decomposition of the abelian group into a direct product of
cyclic groups.

A pcp is a component object which behaves similar to a list representing an igs of the subfactor in question.
The basic functions to obtain the stored values of this component object are as follows. Let pcp be a pcp
for a subfactor U /N of the defining pcp-group G .

2I GeneratorsOfPcp(pcp)

this returns a list of elements of U corresponding to an igs of U /N .

3I pcp[i]

returns the i -th element of pcp.

4I Length(pcp)

returns the number of generators in pcp.

5I RelativeOrdersOfPcp(pcp)

the relative orders of the igs in U/N .

6I DenominatorOfPcp(pcp)

returns an igs of N .

7I NumeratorOfPcp(pcp)

returns an igs of U .

8I GroupOfPcp(pcp)

returns U .

9I OneOfPcp(pcp)

returns the identity element of G .

The two main features of pcp are the possibility to compute exponent vectors wrt to a pcp and to compute
the group defined by the corresponding igs of U /N .

10I ExponentsByPcp(pcp, g)

returns the exponent vector of g with respect to the generators of pcp. This is the exponent vector of gN
with respect to the igs of U/N .

11I PcpGroupByPcp(pcp)

returns the group whose defining generators correspond to the generators of pcp.

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> pcp := Pcp(G);
Pcp [g1, g2] with orders [2, 0]
gap> pcp[1];
g1
gap> Length(pcp);
2
gap> RelativeOrdersOfPcp(pcp);
[2, 0]

12 Chapter 2. Pcp-groups - polycyclically presented groups

gap> DenominatorOfPcp(pcp);
[]
gap> NumeratorOfPcp(pcp);
[g1, g2]
gap> GroupOfPcp(pcp);
Pcp-group with orders [2, 0]
gap> OneOfPcp(pcp);
identity

gap> G := PcpExamples[5];
Pcp-group with orders [2, 0, 0, 0]
gap> D := DerivedSubgroup(G);
Pcp-group with orders [0, 0, 0]
gap> GeneratorsOfGroup(G);
[g1, g2, g3, g4]
gap> GeneratorsOfGroup(D);
[g2^-2, g3^-2, g4^2]

an ordinary pcp for G / D
gap> pcp1 := Pcp(G, D);
Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2]

a pcp for G/D in independent generators
gap> pcp2 := Pcp(G, D, "snf");
Pcp [g2, g3, g1] with orders [2, 2, 4]

gap> g := Random(G);
g1*g2^-4*g3*g4^2

compute the exponent vector of g in G/D wrt pcp1
gap> ExponentsByPcp(pcp1, g);
[1, 0, 1, 0]

compute the exponent vector of g in G/D wrt pcp2
gap> ExponentsByPcp(pcp2, g);
[0, 1, 1]

2.9 Factor groups of pcp-groups

Pcp’s for subfactors of pcp-groups have already been described above. These are usually used within algo-
rithms to compute with pcp-groups. However, it is also possible to explicitly construct factor groups and
their corresponding natural homomorphisms.

1I NaturalHomomorphism(G, N)

returns the natural homomorphism G → G/N . Its image is the factor group G/N .

2I G/N
I FactorGroup(G, N)

returns the desired factor as pcp-group without giving the explicit homomorphism. This function is just a
wrapper for PcpGroupByPcp(Pcp(G, N)).

Section 11. Changing the defining pc-presentation 13

2.10 Homomorphisms for pcp-groups

IsPcpGHBI is a representation used to define group homomorphisms by generators and images from a pcp-
group into another pcp-group. Such homomorphisms can be compared and multiplied. Moreover, we provide
the following functions.

IsToPcpGHBI is a representation used to define group homomorphisms by generators and images from an
arbitrary group into a pcp-group. Here, only very restricted functionality is provided. This is mostly used
for converting other groups to pcp-groups.

1I GroupHomomorphismByImages(G, H , gens, imgs)

returns the homomorphism from the (pcp-) group G to the pcp-group H mapping the generators of G in
the list gens to the corresponding images in the list imgs of elements of H .

2I Kernel(hom)

returns the kernel of the homomorphism hom from a pcp-group to a pcp-group.

3I Image(hom)
I Image(hom, U)
I Image(hom, g)

returns the image of the whole group, of U and of g , respectively, under the homomorphism hom.

4I PreImage(hom, U)

returns the complete preimage of the subgroup U under the homomorphism home. If the domain of hom is
not a pcp-group, then this function only works properly if hom is injective.

5I PreImagesRepresentative(hom, g)

returns a preimage of the element g under the homomorphism hom.

6I IsInjective(hom)

checks if the homomorphism hom is injective.

2.11 Changing the defining pc-presentation

The following functions should actually return isomorphisms.

1I RefinedPcpGroup(G)

returns a new pcp-group isomorphic to G whose defining polycyclic presentation is refined; that is, the
corresponding polycyclic series has prime or infinite factors only. If H is the new group, then H ! · bijection
is the isomorphism G → H .

2I PcpGroupBySeries(ser)

returns a new pcp-group isomorphic to the first subgroup G of the given series ser such that its defining
pcp refines the given series. The series must be subnormal and H ! · bijection is the isomorphism G → H .

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> U := Subgroup(G, [Pcp(G)[2]^1440]);
Pcp-group with orders [0]
gap> F := G/U;
Pcp-group with orders [2, 1440]
gap> RefinedPcpGroup(F);
Pcp-group with orders [2, 2, 2, 2, 2, 2, 3, 3, 5]

14 Chapter 2. Pcp-groups - polycyclically presented groups

gap> ser := [G, U, TrivialSubgroup(G)];
[Pcp-group with orders [2, 0],
Pcp-group with orders [0],
Pcp-group with orders []]

gap> PcpGroupBySeries(ser);
Pcp-group with orders [2, 1440, 0]

2.12 Converting to pc-presentations

1I IsomorphismPcpGroup(G)

returns a pcp-group isomorphic to G if G is a pc-group or a soluble permutation group.

2I IsomorphismPcGroup(G)

returns a pc-group if G is a finite pcp-group.

2.13 Some generic pcp-groups

There are the following generic pcp-groups available.

1I AbelianPcpGroup(n, rels)

constructs the abelian group on n generators such that generator i has order rels[i]. If this order is infinite,
then rels[i] should be either unbound or 0.

2I DihedralPcpGroup(n)

constructs the dihedral group of order n. If n is not an even integer, then ’fail’ is returned. If n is not an
integer, then the infinite dihedral group is returned.

3I UnitriangularPcpGroup(n)

returns a pcp-group isomorphic to the group of upper triangular matrices in GL(n,Z).

4I SubgroupUnitriangularPcpGroup(mats)

returns the subgroup generated by the upper triangular matrices in mats as a pcp-group.

2.14 Some example pcp-groups

1I ExampleOfMetabelianGroup(a, k)

returns an example of a metabelian group.

2I PcpExamples

is a list of pcp-groups which can serve as first examples to try some of the functions in this package.

3I EddiesExamples

a list with more examples provided by Eddie Lo.

4I NqExamples

a list of nilpotent pcp-groups generated by the Nilpotent Quotient Algorithm.

3 Methods for pcp-groups

This is a description of some higher level functions of the polycyclic share package of GAP 4. Throughout
this chapter we let G be a pc-presented group and we consider algorithms for subgroups U and V of G .

3.1 Orbit stabilizer methods for pcp-groups

The following two functions are implementations of the polycyclic group algorithm to compute orbits and
stabilizers, if the orbits are finite.

1I PcpOrbitStabilizer(point, gens, acts, oper)
I PcpOrbitsStabilizers(points, gens, acts, oper)

The input gens can an igs or a pcp of a pcp-group U . The elements in the list gens act as the elements in
the list acts and the function oper on the given points. The first function returns a record containing ’orbit’
and ’stab’. The latter is an induced igs of the stabilizer. The second function returns a list of records, each
record contains ’repr’ and ’stab’.

Both of these functions run forever on infinite orbits.

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> mats := [[[-1,0],[0,1]], [[1,1],[0,1]]];;
gap> pcp := Pcp(G);
Pcp [g1, g2] with orders [2, 0]
gap> PcpOrbitStabilizer([0,1], pcp, mats, OnRight);
rec(orbit := [[0, 1]],

stab := [g1, g2],
word := [[[1, 1]], [[2, 1]]])

3.2 Subgroup series in pcp-groups

Many algorithm for pcp-groups work by induction using some series through the group. In this section we
prove a number of useful series for pcp-groups. Note that an efa series is a normal series with elementary
or free abelian factors. See [Eic00] for an outline on the algorithms of a number of the available series.

1I PcpSeries(U)

returns the polycyclic series of U defined by an igs of U .

2I EfaSeries(U)

returns a normal series of U with elementary or free abelian factors.

3I DerivedSeries(U)

the derived series of U .

16 Chapter 3. Methods for pcp-groups

4I RefinedDerivedSeries(U)

the derived series of U refined to an efa series such that in each abelian factor of the derived series the free
abelian factor is at the top.

5I RefinedDerivedSeriesDown(U)

the derived series of U refined to an efa series such that in each abelian factor of the derived series the free
abelian factor is at the bottom.

6I LowerCentralSeries(U)

the lower central series of U . If U does not have a largest nilpotent quotient group, then this function may
not terminate.

7I TorsionByPolyEFSeries(U)

returns an efa series of U such that all torsion-free factors are at the top and all finite factors are at the
bottom. Such a series might not exist for U and in this case the function returns fail.

gap> G := PcpExamples[5];
Pcp-group with orders [2, 0, 0, 0]
gap> Igs(G);
[g1, g2, g3, g4]

gap> PcpSeries(G);
[Pcp-group with orders [2, 0, 0, 0],
Pcp-group with orders [0, 0, 0],
Pcp-group with orders [0, 0],
Pcp-group with orders [0],
Pcp-group with orders []]

gap> List(PcpSeries(G), Igs);
[[g1, g2, g3, g4], [g2, g3, g4], [g3, g4], [g4], []]

Algorithms for pcp-groups often use an efa series of G and work down over the factors of this series. Usually,
pcp’s of the factors are more useful than the actual factors. Hence we provide the following.

8I PcpsBySeries(ser)
I PcpsBySeries(ser, ”snf”)

returns a list of pcp’s corresponding to the factors of the series. If the second argument is present, then each
pcp corresponds to a decomposition of the abelian groups into direct factors.

9I PcpsOfEfaSeries(U)

return a list of pcp’s corresponding to an efa series of U .

gap> G := PcpExamples[5];
Pcp-group with orders [2, 0, 0, 0]

Section 3. Random methods and functions available for pcp-groups 17

gap> PcpsBySeries(DerivedSeries(G));
[Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2],
Pcp [g2^-2, g3^-2, g4^2] with orders [0, 0, 4],
Pcp [g4^8] with orders [0]]

gap> PcpsBySeries(RefinedDerivedSeries(G));
[Pcp [g1, g2, g3] with orders [2, 2, 2],
Pcp [g4] with orders [2],
Pcp [g2^2, g3^2] with orders [0, 0],
Pcp [g4^2] with orders [2],
Pcp [g4^4] with orders [2],
Pcp [g4^8] with orders [0]]

gap> PcpsBySeries(RefinedDerivedSeries(G), "snf");
[Pcp [g1, g2, g3] with orders [2, 2, 2],
Pcp [g4] with orders [2],
Pcp [g2^2, g3^2] with orders [0, 0],
Pcp [g4^2] with orders [2],
Pcp [g4^4] with orders [2],
Pcp [g4^8] with orders [0]]

gap> PcpsOfEfaSeries(G);
[Pcp [g1] with orders [2],
Pcp [g2] with orders [0],
Pcp [g3] with orders [0],
Pcp [g4] with orders [0]]

3.3 Random methods and functions available for pcp-groups

Below we introduce a function which computes orbit and stabilizer using a random method. This function
always terminates, also if the orbit is infinite. But the returned orbit or stabilizer might be incomplete. This
function is used in the random methods to compute normalizers and centralizers.

1I RandomOrbitStabilizerPcpGroup(U , point, oper)

2I RandomCentralizerPcpGroup(U , g)

3I RandomCentralizerPcpGroup(U , V)

4I RandomNormalizerPcpGroup(U , V)

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> mats := [[[-1, 0],[0,1]], [[1,1],[0,1]]];
[[[-1, 0], [0, 1]], [[1, 1], [0, 1]]]
gap> pcp := Pcp(G);
Pcp [g1, g2] with orders [2, 0]

gap> RandomPcpOrbitStabilizer([1,0], pcp, mats, OnRight).stab;
#I Orbit longer than limit: exiting.
[]

18 Chapter 3. Methods for pcp-groups

gap> g := Igs(G)[1];
g1
gap> RandomCentralizerPcpGroup(G, g);
#I Stabilizer not increasing: exiting.
Pcp-group with orders [2]
gap> Igs(last);
[g1]

3.4 Intersection of subgroups

Currently, only intersections of subgroups U ,N ≤ G can be computed if N is normalising U . See [Sim94]
for an outline of the algorithm.

1I NormalIntersection(U , N)

3.5 Finite subgroups

There are various finite subgroups of interest in polycyclic groups. See [Eic00] for a description of the
algorithms underlying the functions in this section.

1I TorsionSubgroup(U)

If the set of elements of finite order forms a subgroup, then we call it the torsion subgroup. This function
determines the torsion subgroup of U , if it exists, and returns fail otherwise. Note that a torsion subgroup
does always exist if U is nilpotent.

2I NormalTorsionSubgroup(U)

Each polycyclic groups has a unique largest finite normal subgroup. This function computes it for U .

3I IsTorsionFree(U)

This function checks if U is torsion free. It returns true or false.

4I FiniteSubgroupClasses(U)

There exist only finitely many conjugacy classes of finite subgroups in a polycyclic group U and this function
can be used to compute them. The algorithm underlying this function proceeds by working down a normal
series of U with elementary or free abelian factors. The following function can be used to give the algorithm
a specific series.

5I FiniteSubgroupClassesBySeries(U , pcps)

gap> G := NqExamples[2];
Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0]
gap> TorsionSubgroup(G);
Pcp-group with orders [5, 2]
gap> NormalTorsionSubgroup(G);
Pcp-group with orders [5, 2]
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[Pcp-group with orders [5, 2]^G,
Pcp-group with orders [2]^G,
Pcp-group with orders [5]^G,
Pcp-group with orders []^G]

Section 6. Subgroups of finite index 19

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> TorsionSubgroup(G);
fail
gap> NormalTorsionSubgroup(G);
Pcp-group with orders []
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[Pcp-group with orders [2]^G,
Pcp-group with orders [2]^G,
Pcp-group with orders []^G]

3.6 Subgroups of finite index

Here we outline functions to determine various types of subgroups of finite index in polycyclic groups. Again,
see [Eic00] for a description of the algorithms underlying the functions in this section.

1I MaximalSubgroupClassesPIndex(U , p)

Each maximal subgroup of a polycyclic group U has p-power index for some prime p. This function can
be used to determine conjugacy class representatives of all maximal subgroups of p-power index for a given
prime p.

2I LowIndexSubgroupClasses(U , n)

There are only finitely many subgroups of a given index in a polycyclic group U . This function computes
conjugacy classes of all subgroups of index n in U .

3I LowIndexNormals(U , n)

This function computes the normal subgroups of index n in U .

4I NilpotentByAbelianNormalSubgroup(U)

This function returns a normal subgroup N of finite index in U such that N is nilpotent-by-abelian. Note
that such a subgroup exists in every polycyclic group. Note that this function is not very efficient.

gap> G := PcpExamples[2];
Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> MaximalSubgroupClassesPIndex(G, 61);;
gap> max := List(last, Representative);;
gap> List(max, x -> Index(G, x));
[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 226981]

gap> LowIndexSubgroupClasses(G, 61);;
gap> low := List(last, Representative);;
gap> List(low, x -> Index(G, x));
[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61]

20 Chapter 3. Methods for pcp-groups

3.7 Functions for nilpotent groups

1I MinimalGeneratingSet(U)

2I Centre(U)

3I UpperCentralSeries(U)

gap> G := NqExamples[1];
Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 5, 5, 4, 0, 6,
5, 5, 4, 0, 10, 6]

gap> IsNilpotent(G);
true

gap> PcpsBySeries(LowerCentralSeries(G));
[Pcp [g1, g2] with orders [0, 0],
Pcp [g3] with orders [0],
Pcp [g4] with orders [0],
Pcp [g5] with orders [0],
Pcp [g6, g7] with orders [0, 0],
Pcp [g8] with orders [0],
Pcp [g9, g10] with orders [0, 0],
Pcp [g11, g12, g13] with orders [5, 4, 0],
Pcp [g14, g15, g16, g17, g18] with orders [5, 5, 4, 0, 6],
Pcp [g19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

gap> PcpsBySeries(UpperCentralSeries(G));
[Pcp [g1, g2] with orders [0, 0],
Pcp [g3] with orders [0],
Pcp [g4] with orders [0],
Pcp [g5] with orders [0],
Pcp [g6, g7] with orders [0, 0],
Pcp [g8] with orders [0],
Pcp [g9, g10] with orders [0, 0],
Pcp [g11, g12, g13] with orders [5, 4, 0],
Pcp [g14, g15, g16, g17, g18] with orders [5, 5, 4, 0, 6],
Pcp [g19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

gap> MinimalGeneratingSet(G);
[g1, g2]

4

Cohomology
for pcp-groups

The share package polycyclic provides methods to compute the first and second cohomology group for a
pcp-group U and a finite dimensional ZU or FU module A where F is a finite field. The algorithm for
determining the first cohomology group are outlined in [Eic00].

4.1 Cohomology records

First we need some methods to create a module for a pcp-group U . This module can either be defined
externally via a matrix operation of U or internally using an elementary or free abelian normal subfactor.

1I CRRecordByMats(U , mats)

creates an external module. The input mats is a list of integer or finite field matrices. This list corresponds
to Pcp(U) and defines the matrix action of the elements of Pcp(U).

2I CRRecordBySubgroup(U , A)
I CRRecordByPcp(U , pcp)

creates an internal module. The input A or pcp defines an elementary or free abelian normal subgroup or
subfactor of U .

The returned cohomology record C contains the following entries:

factor
a pcp of the acting group. If the module is external, then this is Pcp(U). If the module is internal,
then this is Pcp(U, A) or Pcp(U, GroupOfPcp(pcp)).

mats, invs and one
the matrix action of factor with acting matrices, their inverses and the identity matrix.

dim and char
the dimension and characteristic of the matrices.

relators and enumrels
the relators of factor as words and an enumeration list for them.

central
is true, if the matrices mats are all trivial. This is used locally for efficiency reasons.

And additionally, if C defines an internal module, then it contains:

group
the original group U .

normal
this is either Pcp(A) or the input pcp.

extension
information on the extension of A by U/A.

22 Chapter 4. Cohomology for pcp-groups

4.2 Cohomology groups

Let U be a pcp-group and A a free or elementary abelian pcp-group and a U -module. By Z i (U ,A) be
denote the group of i -th cocycles and by B i (U ,A) the i -th coboundaries. The factor Z i (U ,A)/B i (U ,A) is
the i -th cohomology group. Since A is elementary or free abelian, the groups Z i (U ,A) and B i (U ,A) are
elementary or free abelian groups as well.

The polycyclic share package provides methods to compute first and second cohomology group for a polycyclic
group U . We write all involved groups additively and we use an explicit description by bases for them. Let
C be the cohomology record corresponding to U and A.

Let f1, . . . , fn be the elements in the entry factor of the cohomology record C . Then we use the following
embedding of the first cocycle group to describe 1-cocycles and 1-coboundaries: Z 1(U ,A) → An : δ 7→
(δ(f1), . . . , δ(fn))

For the second cohomology group we recall that each element of Z 2(U ,A) defines an extension H of A by
U . Thus there is a pc-presentation of H extending the pc-presentation of U given by the record C . The
extended presentation is defined by tails in A; that is, each relator in the record entry relators is extended
by an element of A. The concatenation of these tails yields a vector in Al where l is the length of the record
entry relators of C . We use these tail vectors to describe Z 2(U ,A) and B2(U ,A). Note that this description
is dependent on the chosen presentation in C . However, the factor Z 2(U ,A)/B2(U ,A) is independent of
the chosen presentation.

The following functions are available to compute explicitly the first and second cohomology group as de-
scribed above.

1I OneCoboundariesCR(C)

2I OneCocyclesCR(C)

3I TwoCoboundariesCR(C)

4I TwoCocyclesCR(C)

5I OneCohomologyCR(C)

6I TwoCohomologyCR(C)

The first 4 functions return bases of the corresponding group. The last 2 functions need to describe a factor
of additive abelian groups. They return the following descriptions for these factors.

gcc
the basis of the cocycles of C .

gcb
the basis of the coboundaries of C .

factor
a description of the factor of cocycles by coboundaries. Usually, it would be most convenient to use
additive mappings here. However, these are not available in case that A is free abelian and thus we
use a description of this additive map as record. This record contains

Section 3. Extended 1-cohomology 23

gens
a base for the image.

rels
relative orders for the image.

imgs
the images for the elements in gcc.

prei
preimages for the elements in gens.

denom
the kernel of the map; that is, another basis for gcb.

4.3 Extended 1-cohomology

In some cases more information on the first cohomology group is of interest. In particular, if we have an
internal module given and we want to compute the complements using the first cohomology group, then we
need additional information. This extended version of first cohomology is obtained by the following functions.

1I OneCoboundariesEX(C)

returns a record consisting of the entries

basis
a basis for B1(U ,A) ≤ An .

transf
There is a derivation mapping from A to Bˆ1(U,A). This mapping is described here as transforma-
tion from A to basis.

fixpts
the fixed points of A. This is also the kernel of the derivation mapping.

2I OneCocyclesEX(C)

returns a record consisting of the entries

basis
a basis for Z 1(U ,A) ≤ An .

transl
a special solution. This is only of interest in case that C is an internal module and in this case
it gives the translation vector in An used to obtain complements corresponding to the elements in
basis. If C is not an internal module, then this vector is always the zero vector.

3I OneCohomologyEX(C)

returns the combined information on the first cohomology group.

24 Chapter 4. Cohomology for pcp-groups

4.4 Extensions and Complements

The natural applications of first and second cohomology group is the determination of extensions and
complements. Let C be a cohomology record.

1I ComplementCR(C, c)

returns the complement corresponding to the 1-cocycle c. In the case that C is an external module, we
construct the split extension of U with A first and then determine the complement. In the case that C is
an internal module, the vector c must be an element of the affine space corresponding to the complements
as described by OneCocyclesEX.

2I ComplementsCR(C)

returns all complements using the correspondence to Z 1(U ,A). Further, this function returns fail, if Z 1(U ,A)
is infinite.

3I ComplementClassesCR(C)

returns complement classes using the correspondence to H 1(U ,A). Further, this function returns fail, if
H 1(U ,A) is infinite.

4I ComplementClassesEfaPcps(U , N , pcps)

Let N be a normal subgroup of U . This function returns the complement classes to N in U . The classes
are computed by iteration over the U -invariant efa series of N described by pcps. If at some stage in this
iteration infinitely many complements are discovered, then the function returns fail. (Even though there
might be only finitely many conjugacy classes of complements to N in U .)

5I ComplementClasses([V ,] U , N)

Let N and U be normal subgroups of V with N ≤ U ≤ V . This function attempts to compute the V -
conjugacy classes of complements to N in U . The algorithm proceeds by iteration over a V -invariant efa
series of N . If at some stage in this iteration infinitely many complements are discovered, then the algorithm
returns fail.

6I ExtensionCR(C, c)

returns the extension corresponding to the 2-cocycle c.

7I ExtensionsCR(C)

returns all extensions using the correspondence to Z 2(U ,A). Further, this function returns fail, if Z 2(U ,A)
is infinite.

8I ExtensionClassesCR(C)

returns extension classes using the correspondence to H 2(U ,A). Further, this function returns fail, if
H 2(U ,A) is infinite.

9I SplitExtensionPcpGroup(U , mats)

returns the split extension of U by the U -module described by mats.

Bibliography

[BCRS91] G. Baumslag, F.B. Cannonito, D.J.S. Robinson, and D. Segal. The algorithmic theory of polycyclic-
by-finite groups. J. Alg., 142:118 – 149, 1991.

[Eic00] B. Eick. Computing with infinite polycyclic groups. In Groups and Computation III, Amer. Math.
Soc. DIMACS Series. (DIMACS, 1999), 2000.

[Hir38a] K.A. Hirsch. On infinite soluble groups (I). Proc. London Math. Soc., 44(2):53–60, 1938.

[Hir38b] K.A. Hirsch. On infinite soluble groups (II). Proc. London Math. Soc., 44(2):336–414, 1938.

[Hir46] K.A. Hirsch. On infinite soluble groups (III). J. London Math. Soc., 49(2):184–94, 1946.

[Hir52] K.A. Hirsch. On infinite soluble groups (IV). J. London Math. Soc., 27:81–85, 1952.

[Hir54] K.A. Hirsch. On infinite soluble groups (V). J. London Math. Soc., 29:250–251, 1954.

[LGS90] C[harles] R. Leedham-Green and L[eonard] H. Soicher. Collection from the left and other strategies.
J. Symbolic Comput., 9(5 & 6):665–675, 1990.

[Rob82] D.J. Robinson. A Course in the Theory of Groups, volume 80 of Graduate Texts in Math. Springer-
Verlag, New York, Heidelberg, Berlin, 1982.

[Seg83] D. Segal. Polycyclic Groups. Cambridge University Press, Cambridge, 1983.

[Seg90] D. Segal. Decidable properties of polycyclic groups. Proc. London Math. Soc. (3), 61:497–528, 1990.

[Sim94] C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
AbelianPcpGroup, 14
AddIgsToIgs, 10
AddToIgs, 10
AddToIgsParallel, 10

B
Basis methods and functions for pcp-groups, 8

C
Centre, 19
Cgs, 10
CgsParallel, 10
Changing the defining pc-presentation, 13
ClosureGroup, 9
Cohomology groups, 21
Cohomology records, 21
Collector, 7
Collectors, 4
CommutatorSubgroup, 9
ComplementClasses, 24
ComplementClassesCR, 24
ComplementClassesEfaPcps, 24
ComplementCR, 23
ComplementsCR, 23
Converting to pc-presentations, 14
CRRecordByMats, 21
CRRecordByPcp, 21
CRRecordBySubgroup, 21

D
DenominatorOfPcp, 11
Depth, 7
DerivedSeries, 15
DihedralPcpGroup, 14

E
EddiesExamples, 14
EfaSeries, 15
Elements, 8

ExampleOfMetabelianGroup, 14
Exponents, 7
ExponentsByPcp, 11
Extended 1-cohomology, 23
ExtensionClassesCR, 24
ExtensionCR, 24
Extensions and Complements, 23
ExtensionsCR, 24

F
FactorGroup, 12
Factor groups of pcp-groups, 12
FactorOrder, 7
FiniteSubgroupClasses, 18
FiniteSubgroupClassesBySeries, 18
Finite subgroups, 18
FromTheLeftCollector, 5
Functions for nilpotent groups, 19

G
GeneratorsOfPcp, 11
GenExpList, 7
Group, 8
GroupHomomorphismByImages, 13
GroupOfPcp, 11

H
HirschLength, 9
Homomorphisms for pcp-groups, 12

I
Igs, 9
Igs - induced generating sequences for subgroups, 9
IgsParallel, 9
Image, 13
Index, 8
Intersection of subgroups, 18
Introduction, 4
IsAbelian, 9
IsConfluent, 6

Index 27

IsElementaryAbelian, 9
IsFreeAbelian, 9
IsInjective, 13
IsNilpotentGroup, 9
IsNormal, 8
IsomorphismPcGroup, 14
IsomorphismPcpGroup, 14
IsPcpElement, 6
IsPcpElementRep, 6
IsSubgroup, 8
IsTorsionFree, 18

K
Kernel, 13

L
LeadingExponent, 7
Length, 11
LowerCentralSeries, 16
LowIndexNormals, 19
LowIndexSubgroupClasses, 19

M
MaximalSubgroupClassesPIndex, 19
Methods for pcp-elements, 6
MinimalGeneratingSet, 19

N
NameTag, 7
NaturalHomomorphism, 12
Ngs, 9
NilpotentByAbelianNormalSubgroup, 19
NormalClosure, 9
NormalIntersection, 18
NormalTorsionSubgroup, 18
NormedPcpElement, 7
NormingExponent, 7
NqExamples, 14
NumeratorOfPcp, 11

O
OneCoboundariesCR, 22
OneCoboundariesEX, 23
OneCocyclesCR, 22
OneCocyclesEX, 23
OneCohomologyCR, 22
OneCohomologyEX, 23
OneOfPcp, 11
Orbit stabilizer methods for pcp-groups, 15

P

Pcp, 10
Pcp-elements – elements of a pc-presented group, 6
Pcp-groups - groups of pcp-elements, 7
PcpElementByExponents, 6
PcpElementByExponentsNC, 6
PcpElementByGenExpList, 6
PcpElementByGenExpListNC, 6
PcpExamples, 14
PcpGroupByCollector, 7
PcpGroupByCollectorNC, 7
PcpGroupByPcp, 11
PcpGroupBySeries, 13
PcpOrbitsStabilizers, 15
PcpOrbitStabilizer, 15
Pcps – polycyclic presentation sequences for

subfactors, 10
PcpsBySeries, 16
PcpSeries, 15
PcpsOfEfaSeries, 16
PreImage, 13
PreImagesRepresentative, 13
PRump, 9

R
Random, 8
RandomCentralizerPcpGroup, 17
Random methods and functions available for pcp-

groups, 17
RandomNormalizerPcpGroup, 17
RandomOrbitStabilizerPcpGroup, 17
RefinedDerivedSeries, 15
RefinedDerivedSeriesDown, 15
RefinedPcpGroup, 13
RelativeIndex, 7
RelativeOrder, 7
RelativeOrdersOfPcp, 11

S
SetConjugate, 5
SetPower, 5
SetRelativeOrder, 5
Size, 8
Some example pcp-groups, 14
Some generic pcp-groups, 14
SplitExtensionPcpGroup, 24
Subgroup, 8
SubgroupByIgs, 10
Subgroup series in pcp-groups, 15
Subgroups of finite index, 19

28 Index

SubgroupUnitriangularPcpGroup, 14

T
TorsionByPolyEFSeries, 16
TorsionSubgroup, 18
TwoCoboundariesCR, 22
TwoCocyclesCR, 22

TwoCohomologyCR, 22

U
UnitriangularPcpGroup, 14
UpdatePolycyclicCollector, 5
UpperCentralSeries, 19

	Contents
	Polycyclic Groups
	Pcp-groups - polycyclically presented groups
	Introduction
	Collectors
	Pcp-elements -- elements of a pc-presented group
	Methods for pcp-elements
	Pcp-groups - groups of pcp-elements
	Basis methods and functions for pcp-groups
	Igs - induced generating sequences for subgroups
	Pcps -- polycyclic presentation sequences for subfactors
	Factor groups of pcp-groups
	Homomorphisms for pcp-groups
	Changing the defining pc-presentation
	Converting to pc-presentations
	Some generic pcp-groups
	Some example pcp-groups

	Methods for pcp-groups
	Orbit stabilizer methods for pcp-groups
	Subgroup series in pcp-groups
	Random methods and functions available for pcp-groups
	Intersection of subgroups
	Finite subgroups
	Subgroups of finite index
	Functions for nilpotent groups

	Cohomology for pcp-groups
	Cohomology records
	Cohomology groups
	Extended 1-cohomology
	Extensions and Complements

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U

