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We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP manual.



Contents

1 How to read this manual 5

2 What is XGAP? 6

2.1 Basics . . . . . . . . . . . 6

2.2 What you can do with XGAP . . 6

2.3 How does it work? . . . . . . 7

2.4 Historical Remarks and
Acknowledgements . . . . . . 8

3 Installing XGAP 9

3.1 Overview . . . . . . . . . . 9

3.2 What you need to install XGAP . 9

3.3 Getting and unpacking the sources . 9

3.4 Configuring and Compiling the C part 10

3.5 Installing the Startup Script . . . 11

3.6 Installing in a different than the
standard location . . . . . . . 12

4 Subgroup Lattices - Examples 13

4.1 The Subgroup Lattice of the Dihedral
Group of Order 8 . . . . . . . 13

4.2 A Partial Subgroup Lattice of the
Symmetric Group on 6 Points . . 16

4.3 A Partial Subgroup Lattice of the
Cavicchioli Group . . . . . . . 18

4.4 A Partial Subgroup Lattice of the
Trefoil Knot Group . . . . . . 20

4.5 A Partial Subgroup Lattice of a Finitely
Presented Group . . . . . . . 22

4.6 A Partial Subgroup Lattice of a Space
Group . . . . . . . . . . . 23

5 Subgroup Lattices - Systematic
Description 25

5.1 GraphicSubgroupLattice . . . . 25

5.2 GraphicSubgroupLattice, Protocol of
Group Theoretic Constructions . . 25

5.3 GraphicSubgroupLattice, Labelling of
Levels . . . . . . . . . . . 26

5.4 GraphicSubgroupLattice, Moving
Vertices . . . . . . . . . . 26

5.5 GraphicSubgroupLattice, Selecting
Vertices . . . . . . . . . . 27

5.6 GraphicSubgroupLattice, Inserting
Vertices . . . . . . . . . . 27

5.7 GraphicSubgroupLattice, Sheet Menu 28

5.8 GraphicSubgroupLattice, Poset Menu 28

5.9 GraphicSubgroupLattice, Subgroups
Menu . . . . . . . . . . . 30

5.10 GraphicSubgroupLattice, Information
Menu . . . . . . . . . . . 32

5.11 Vertex Shapes . . . . . . . . 33

5.12 GraphicSubgroupLattice for FpGroups,
Subgroups Menu . . . . . . . 33

5.13 GraphicSubgroupLattice for FpGroups,
Information Menu . . . . . . . 36

6 Graphic Sheets - Basic graphic
operations 37

6.1 Graphic Sheet Objects . . . . . 37

6.2 Graphic Objects in Sheets . . . . 39

6.3 Colors in XGAP . . . . . . . 42



Contents 3

6.4 Operations for Graphic Objects . . 43

6.5 Global Information . . . . . . 43

7 User Communication 44

7.1 Menus in Graphic Sheets . . . . 44

7.2 Mouse Events . . . . . . . . 45

7.3 Dialogs . . . . . . . . . . . 46

7.4 Popups . . . . . . . . . . . 46

8 Graphic Posets 48

8.1 Introduction . . . . . . . . . 48

8.2 Operations . . . . . . . . . 49

8.3 An Example . . . . . . . . . 56

9 Graphic Graphs 58

10 Differences to XGAP 3 59

10.1 Concept . . . . . . . . . . 59

10.2 User Interface . . . . . . . . 60

10.3 Where code has to be changed . . 60

Bibliography 61

Index 62





1

How to read
this manual

This chapter tells you exactly, which part of this manual you have to read if you want to learn certain things
about XGAP.

If you do not know anything about XGAP you might want to have a look at chapter 2. You can learn there,
what XGAP is all about, what you can do with it as a user (doing no programming) and for what you can
use XGAP within your own programs. You find also references to other sections of this manual to get into
the details.

If you want to know how to install XGAP, then you should look into chapter 3.

If you know XGAP from its GAP3 version, you will consider chapter 10 useful. There you can quickly “update”
your knowledge to the new GAP4 version and also find some technical details about the implementation,
which is nearly completely new.

Perhaps you know already, that you can display subgroup lattices interactively with XGAP and you want to
start with this right now. In this case, jump to chapters 4 and 5 immediately. However, you should make
sure first that you have a working XGAP installed!

The XGAP library is described in these and the remaining chapters of this manual. The information is
divided into the following parts:

subgroup lattices - examples

subgroup lattices - systematic description

graphic sheets
Creating and managing graphic sheets and graphic objects. This is the lowest level.

user communication
Handling of menus, dialogs, text selectors and popups.

graphic posets
Display of posets in graphic sheets.

graphic graphs
Display of mathematical graphs in graphic sheets. A lot of “routine work” for handling these things
is already done and can be used in your applications!

There is a chapter for each of these parts.
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In this chapter you find the answer to the above question beginning from a short overview up to a description
of the technical concept.

2.1 Basics

The idea of XGAP is that GAP should be able to control graphics. A graphical user interface is sometimes
easier to use than a text and command oriented one and there are mathematical applications for which it
can be quite useful to visualize objects with computer graphics.

On the other hand it is not sensible to change the whole concept and user interface of GAP because it is
not advisable to put all the facilities of GAP into a menu system. So XGAP is a separate C program running
under the X Window System, which starts up a GAP job and allows normal command execution within a
window. Note that the online help of GAP is available, however it will appear in a separate window.

In addition there is a library written in GAP, which makes it possible to open new windows, display graphics,
control menus and do other graphical user communication in GAP via the separate C part.

Built on those “simple” windows and graphic objects are other libraries which display graphs and posets in a
window and allow the user to move vertices around, select them and invoke GAP functions on mathematical
objects which belong to the graphic objects.

One “application” of these libraries is a program to display subgroup lattices interactively. So XGAP works
as a front end for mathematical operations on subgroup lattices. It is possible to “switch” between the
graphics and the GAP commands. This means that you can for example use the graphically selected vertices
resp. subgroups to do your own calculations in the command window. You can then display your results
again as vertices in the lattice.

Of course there are other applications possible and the libraries are developed with code reusage in mind.

2.2 What you can do with XGAP

XGAP graphic sheets work graphic object oriented. This means that the basic graphic objects are not pixels
but lines, rectangles, circles and so on. Although technically everything on the screen consists of pixels XGAP
remembers the structure of your graphics via higher objects. This has advantages as well as disadvantages.
Do not expect to be able to place pixel images into your XGAP graphic sheets. That is as of now not
possible with XGAP and probably will never be, because it is not the idea of the design.

What you can do is create, move around and change lines, circles, text and so forth in graphic sheets. Your
programs can communicate with the user via graphical user interfaces like mouse, menus, dialogs, and so
on.

It is very easy to link this graphical environment with your programs in the mathematical environment of
GAP. So you can very quickly implement visualizations of the mathematical objects you study. The user can
select objects, choose functions from menus and ask for more information with a few mouse clicks.

A good example for this approach is the implementation of the interactive Todd-Coxeter-Algorithm to
compute coset tables in finitely presented groups. It uses the graphical features of XGAP to give the user
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quick and easy access to the algorithm by a few mouse clicks. This program was written by Ludger Hippe
in Aachen using XGAP3 and is currently ported to XGAP4 and extended by Volkmar Felsch.

Another nice little example is in the examples subdirectory in the XGAP distribution. It was written by
Thomas Breuer (Aachen) to demonstrate the features of XGAP. The user gets a small window with a
puzzle and can solve it using the mouse. You can test this example by starting XGAP and Reading the file
pkg/xgap/examples/puzzle.g. You can do this by using

gap> ReadPkg("xgap","examples/puzzle.g");
gap> p := Puzzle(4,4);

You do not have to invent the wheel many times. For certain mathematical concepts like graphs, posets or
lattices XGAP provides implementations which can be adapted to your special situation. You can use those
parts of the code you like and substitute the other parts to adapt the behaviour of the user interface to your
wishes.

2.3 How does it work?

XGAP consists of a C program xgap (in the following xgap in typewriter style refers to this C part) separate
from GAP, and of some libraries written in the GAP language. xgap is started by the user and launches a
GAP job in the background. It then talks to this GAP job. Especially it displays all the output which comes
from GAP in the communication window and feeds everything the user types in this window into the GAP
job.

But there is also some communication with the GAP job about the graphics that should be displayed.
Because GAP has no concept of putting graphics on the screen, this part is done by xgap. Therefore there is
a protocol between the GAP part of XGAP running in the GAP session and xgap which is embedded in the
input/output stream. The user does not notice this. xgap stores all windows and graphic objects and does
all the work necessary for displaying windows and managing user communication and so on.

The GAP part of XGAP also stores all graphical information, but in form of GAP objects. The user can
inspect all these structures and use them in own programs. Changes in these structures are transmitted
through the communications protocol to xgap and are eventually displayed on the screen. User actions like
mouse clicks or keyboard events are caught by xgap and transmitted to the GAP job via function calls that
are “typed in” as if the user had typed them. So the library can work on them and change the GAP objects
accordingly.

Technically, XGAP is a share package and one of the first commands that is executed automatically within
the GAP session is a RequirePackage("xgap") call. This reads in the extra XGAP libraries. They are found
in the pkg/xgap/lib subdirectory, normally in the main GAP directory. The files contain the following:

window.g
basic definitions for the communications protocol

sheet.g[di]
graphic sheets and their operations

color.g[di]
color information

font.g[di]
text font information

menu.g[di]
menus, dialogs, popups, and user communication

gobject.g[di]
low level graphic objects and their operations
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poset.g[di]
graphic graphs and graphic posets

ilatgrp.g[di]
graphic subgroup lattices

meataxe.g[di]
support to display submodule lattices calculated within the C MeatAxe

The user normally does not need to know this or the details of it. However, it is important to understand
that the program xgap is highly machine or at least operating system dependent. There is no generic way
to access graphics across different platforms up to now. XGAP should run on all variants of Unix with the
X Window System Version 11 Release 5 or higher. As of now XGAP does not run on Microsoft Windows or
MacOS. It is also definitely not easily ported there, because some important features that are used within
XGAP are missing there (such as pseudo terminals). There are currently no plans underways to do work in
this direction. However, portations are very welcome! If you would like to put some work into this, please
contact Max Neunhöffer (email: max.neunhoeffer@math.rwth-aachen.de).

2.4 Historical Remarks and Acknowledgements

A first program for drawing a diagram showing the lattice of subgroups of a finite group that had been
calculated by a computer was implemented by H. Jürgensen in 1965 (see [FJ70]).

The design of XGAP was strongly influenced and in fact triggered by the QUOTPIC system of Derek Holt
and Sarah Rees (see [HR91]) which allows to depict graphically knowledge about normal subgroups of a
finitely presented group found by a variety of methods for the investigation of finitely presented groups. It
seemed most desirable to allow to depict in a similar way the even wider variety of information on subgroups
of groups that can be obtained by a system such as GAP.

Beginning 1993, Frank Celler developed the idea of an interface from GAP to graphic systems that allowed to
actually write commands for graphical tasks in the GAP language and together with Susanne Keitemeier (see
[Kei95]) wrote a first version of programs in XGAP for drawing diagrams representing posets of subgroups of
finite and finitely presented groups. We most gratefully acknowledge the help of Sarah Rees in implementing
the interactive lattice functions and in beta testing the GAP3 version of XGAP.

In 1998, Thomas Breuer, Frank Celler, Joachim Neubüser and Max Neunhöffer planned the new concepts
for the GAP4 version. The implementation and portation to GAP4 was done mainly by Max Neunhöffer in
1998 and 1999. Michael Ringe added the link to his MeatAxe programs. We like to thank all those who
have adapted the GAP library to the needs of the new XGAP, in particular Alexander Hulpke who has been
extremely helpful with this task.



3 Installing XGAP

Installing XGAP should be easy once you have installed GAP itself. We assume here that you want to install
XGAP in its standard location, which is in the “pkg” subdirectory of the main GAP4 installation.

3.1 Overview

You have to perform the following steps to install XGAP:

– Get the sources

– Unpack the sources with the unzoo utility

– Use the configure script to adjust everything to your specific system

– Compile the C part of XGAP

– Edit a certain startup script (if necessary) and install it in an executable location in your system

3.2 What you need to install XGAP

Being a graphical user interface to GAP, XGAP of course needs graphics. At the moment this means that
you need the X window system in the Version 11 Release 5 or newer. So you cannot use XGAP on a
Macintosh or a Microsoft Windows computer. On the other hand the type of Unix you use should not
matter. Please contact Max Neunhöffer (email: max.neunhoeffer@math.rwth-aachen.de) or post to the
gap-trouble mailing list, if you encounter problems with certain system configurations.

Because XGAP contains a C-part you need a C compiler.

3.3 Getting and unpacking the sources

You can download the sources from the same places as GAP. So the main FTP servers are:

ftp://ftp-gap.dcs.st-and.ac.uk/pub/gap/gap4/
ftp://ftp.math.rwth-aachen.de/pub/gap4/
ftp://ftp.ccs.neu.edu/pub/mirrors/ftp-gap.dcs.st-and.ac.uk/pub/gap/gap4/
ftp://pell.anu.edu.au/pub/algebra/gap4/

You need only one file with the name “xgap4r11.zoo” which is in the subdirectory for the share packages.
When you installed GAP you used the utility unzoo to unpack the distribution. You will need this here again.
See the GAP-manual for instructions on how to get and compile this. You now change your current directory
to the pkg subdirectory of the location where you installed GAP (you typed an unzoo-command, then a new
directory called “gap4” or something like that was created, this directory contains the pkg subdirectory).
The standard location would be:

# cd /usr/local/lib/gap4/pkg

Now you extract the sources for the XGAP share package:
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# unzoo -x xgap4r11.zoo
xgap/README -- extracted as text
xgap/Makefile.in -- extracted as text
xgap/configure -- extracted as text
xgap/configure.in -- extracted as text
xgap/init.g -- extracted as text
xgap/cnf/Makefile -- extracted as text
xgap/cnf/Makegap.in -- extracted as text
xgap/cnf/Makegap.top -- extracted as text
xgap/cnf/config.hin -- extracted as text
xgap/cnf/configure.in -- extracted as text
xgap/cnf/configure.out -- extracted as text
xgap/doc/answers.tex -- extracted as text
xgap/doc/diffgap3.tex -- extracted as text
/bin/mkdir: cannot make directory ‘xgap’: File exists
...

Note that the warning is not serious.

The unzoo utility unpacks the files and stores them into the apropriate subdirectories. XGAP resides com-
pletely in the following subdirectory (assuming standard location):

/usr/local/lib/gap4/pkg/xgap

3.4 Configuring and Compiling the C part

You have to change your current working directory to the “xgap” subdirectory. You do this by

# cd xgap

if your current working directory is the one, where you used unzoo. There you invoke the configure script
by:

# ./configure
creating cache ./config.cache
checking for make... make
checking host system type... i686-unknown-linux2.0.34
checking target system type... i686-unknown-linux2.0.34
checking build system type... i686-unknown-linux2.0.34
checking for gcc... gcc
checking whether the C compiler (gcc ) works... yes
checking whether the C compiler (gcc ) is a cross-compiler... no
checking whether we are using GNU C... yes
...
updating cache ./config.cache
creating ./config.status
creating Makefile
creating xgap.sh

. . . indicate omissions. This script tries to determine, which kind of operating system and libraries you have
installed and configures the source accordingly. Normally this should produce some output but no error
messages. The last step of the script produces some makefiles which are used to compile the code. You do
this by typing
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# make
if test ! -d bin; then mkdir bin; fi
if test ! -d bin/i686-unknown-linux2.0.34-gcc; \ # line broken for this manual!

then mkdir bin/i686-unknown-linux2.0.34-gcc; fi
cp cnf/configure.out bin/i686-unknown-linux2.0.34-gcc/configure
( cd bin/i686-unknown-linux2.0.34-gcc ; CC=gcc \ # line broken for this manual!

./configure --target=i686-unknown-linux2.0.34 )
creating cache ./config.cache
checking for gcc... gcc
checking whether the C compiler (gcc ) works... yes
checking whether the C compiler (gcc ) is a cross-compiler... no
checking whether we are using GNU C... yes
...
creating ./config.status
creating Makefile
creating config.h
make[1]: Entering directory \ # line broken for this manual!

‘/usr/local/lib/gap4/pkg/xgap/bin/i686-unknown-linux2.0.34-gcc’
gcc -I. -g -O2 -I/usr/X11R6/include -o xcmds.o -c ../../src.x11/xcmds.c
gcc -I. -g -O2 -I/usr/X11R6/include -o utils.o -c ../../src.x11/utils.c
...
make[1]: Leaving directory \ # line broken for this manual!

‘/usr/local/lib/gap4/pkg/xgap/bin/i686-unknown-linux2.0.34-gcc’

(a few lines were broken for typesetting purposes in this manual, the position is marked by a backslash)

Now all C sources are compiled and a binary executable is built. It is stored in a subdirectory of the “bin”
subdirectory in your “xgap” directory. The name of this location has something to do with your installation.
It could for example be

bin/i686-unknown-linux2.0.34-gcc/xgap

if you compile on a Linux system using the GNU-C-Compiler.

3.5 Installing the Startup Script

To make the startup of XGAP more convenient there is a startup script which contains also some configuration
information like the position of your GAP installation. It is in the “xgap” directory and is called “xgap.sh”.
This file is automatically generated by the configure script and normally you should not have to change
anything in it. Just copy it to some location that people have in their “PATH” environment variable, for
example to “/usr/local/bin”. This completes the installation.

If you want to change anything in the installation, you can also edit the script until the line

## STOP EDITING HERE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

You can specify the directory where GAP is installed (“GAP DIR”), the amount of memory that GAP should
use as initial workspace (“GAP MEM”), the name of the GAP-executable (“GAP PRG”) and the name of
the XGAP-executable (“XGAP PRG”). The first three are exactly the same things that you could edit in the
main GAP startup script. After that you have the possibility to control the behaviour of the XGAP startup
script. You can specify whether XGAP goes into the background (“DAEMON”) and whether it prints out
information about its parameters (“VERBOSE”). Note that it is possible to combine “DAEMON=YES”
and “VERBOSE=YES” because the script actually runs in the foreground and only the C program is put
into the background.
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3.6 Installing in a different than the standard location

It could happen that you do not want to install XGAP in its standard location, perhaps because you do not
want to bother your system administrator and have no access to the GAP directory. In this case you can
unpack XGAP in any other location within a “pkg” directory with the unzoo command as described above.
Let us call this directory “pkg” for the moment. You get an “xgap” subdirectory with all the files of XGAP
in it. You follow the standard procedure with two exceptions:

Before you can configure and compile XGAP you need a symbolic link “cnf” which is in the directory where
“pkg” is and points to the “cnf” directory in the main GAP directory. You can install this link directly after
unzooing by (remember: you are in the “pkg” directory!):

ln -s /usr/local/lib/gap4/cnf ..

if “/usr/local/lib/gap4” is the location of the main GAP installation.

You can find out where the main GAP4 installation is by starting GAP as usual and looking at the variable
GAP ROOT PATHS within GAP.

Note that you have to edit the startup script “xgap.sh” (see previous section) to adjust the paths for
“XGAP DIR” and “GAP DIR”, and possibly the name of the GAP executable “GAP PRG”. Enter your
GAP installation directory for the variable “GAP DIR” and the name of the directory that contains “pkg”
for the variable “XGAP DIR”. The variable “GAP PRG” has to contain the path to the GAP executable
relative to the “bin” subdirectory of the main GAP installation. In most cases this value will already be
correct. Note however that if GAP and XGAP are compiled on different machines, then it is possible that
these directory names differ for the GAP and XGAP executables respectively.

The script will automatically launch GAP with two directories as library path such that all GAP and XGAP
libraries will be found.
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Subgroup Lattices
- Examples

XGAP provides a graphical interface to the lattice or a partial lattice of subgroups of groups. For finitely
presented groups it gives you easy access for example to the low index, prime quotient and Reidemeister-
Schreier algorithms in order to build a partial lattice interactively. For other types of groups it provides
easy access to many of the group functions (for example, the normalizer, normal subgroups, and Sylow
subgroups).

This chapter explains how to use this interface by way of examples. Chapter 5 gives details about the various
options and menus available. These two chapters will not describe how to write your own programs using
the graphic extensions supplied by XGAP, see chapters 6 to 9 for details.

It is assumed that you have already started XGAP. On most systems you do this by typing

user@host:~> xgap

on the command line. Ask your system administrator if this does not work. This command will create a
new window, the so called GAP window, in which GAP is awaiting your input. Depending on the window
system and window manager you use, placing a new window on your screen might be done automatically or
might require you to use the mouse to choose a position for the window and pressing the left mouse button
to place the window.

The small arrow or cross you see on your screen is called a pointer. Although the device used to move this
pointer can be anything, a mouse, a track ball, a glide-pad, or even something as exotic as a rat, we will use
the term mouse to refer to this pointer device.

In case that some computation takes longer than expected, for instance the low index and the prime quotient
can be quite time consuming, you can always interrupt a computation by making the GAP window active
and pressing CTRL-C or selecting Interrupt in the Run menu. Again, making a window active is system
and window manager dependent. In most cases you either have to move the pointer inside the GAP window
or you have to click on the title bar of the GAP window.

Note that for each of the following examples there is a small GAP script in the examples subdirectory of the
XGAP home directory which contains the necessary commands. However we consider it better for learning
XGAP in a first time session if you type the commands by hand as suggested in the next few sections of this
manual.

4.1 The Subgroup Lattice of the Dihedral Group of Order 8

This section gives you an example on how to use the function GraphicSubgroupLattice (see 5.1 for details),
which will display the Hasse diagram of the subgroup lattice of a given group.

Using the dihedral group of size 8 as example the following will show you most features of the GraphicSub-
groupLattice program. This exercise is best carried out in front of XGAP, trying the various commands
yourself.

First you have to define a group in GAP, this example uses a dihedral group defined as polycyclic group.
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gap> d8 := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> SetName(d8,"d8");

Now you ask for a graphical display by

gap> s := GraphicSubgroupLattice(d8);
<graphic subgroup lattice "GraphicSubgroupLattice of d8">

XGAP will open a window containing a new graphic sheet, a menu bar (menus are described below) above
the graphic sheet and a title. On most systems the title will be either below the graphic sheet or above the
menu bar. The dimension of the graphic sheet is fixed, changing the size of the window will not change the
size of the graphic sheet, see 5.8 how to resize the graphic sheet. It is possible that the graphic sheet is larger
(depending on the lattice it might be much larger) than the window. In this case the window will contain
so called scrollbars which allow you to select the portion of the graphic sheet which will be displayed.

XGAP first shows only the whole group (which is already selected) and the trivial subgroup, connected by
a line indicating inclusion.

ConjugacyClassesSubgroups computes and returns the conjugacy classes of subgroups, so summing up the
sizes of the classes tells you how many elements the lattice has.

gap> Sum( List( ConjugacyClassesSubgroups(d8), Size ) );
10

10 is small enough to use AllSubgroups without painting the screen black. After you have clicked this menu
entry in the Subgroups menu you see the complete Hasse diagram in the graphic sheet.

The following initial remarks can be made about the graphical representation of the subgroup lattice:

– The vertex representing the trivial subgroup is labeled 1.

– Vertices representing subgroups of the same size are drawn at the same height. They are said to be “on
the same level”. In our example the subgroups that belong to the vertices 2, 4, 5, 8 and 9 all have size
2, and the subgroups of 3, 6, and 7 have size 4. The default behaviour is to place a vertex above another
one if the size of the subgroup represented by the first vertex is larger than the size of the subgroup of
the second, but see 5.1 for details. At the right edge of the graphic sheet each level is labeled with the
index of the subgroups contained. See 5.3 for details on the labelling of levels.

– Vertices belonging to the same conjugacy class are placed closely together. In our example the subgroups
of 4 and 5 form one conjugacy class.

The initial placement of the vertices chosen by GraphicSubgroupLattice might not be optimal or you might
want to choose a different one in order to exploit certain features of the diagram. It is therefore possible to
move the vertices around using the mouse.

The mouse together with the left mouse button can be used to move and select vertices. A selected vertex
is represented by a thicker circle, colored red if your screen supports color. For example, in order to move
vertex 4 use the mouse to place the pointer inside the circle around 4 and press the left mouse button. Keep
the mouse button pressed and start moving the mouse. The vertex will now follow the pointer. Because of
the height restrictions given by the size it is not possible to move 4 above 6 or below 1. It must always stay
within its level. If you release the left mouse button vertex 4 will stay at its current position and the rest of
the conjugacy class (in this example 5) will be moved to this new position.

In order to select vertex G place the pointer inside the diamond around G , press the left mouse button
and release it immediately. Do not move the mouse while you hold down the left mouse button. Vertex G
now has a slightly thicker boundary and is red if you have a color screen. There are two different ways to
select more than one vertex, see 4.2 or 5.5.
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On the top of the window, above the graphic sheet, you can see a list of menu names: Sheet, Poset, and
Subgroups. In order to open any of these pull down menus place the pointer inside the button containing
the menu name and press the left mouse button. Keep the button pressed. A pull down menu will be shown
and by moving the pointer down you can choose a menu entry. By choosing an entry and then releasing the
mouse button the entry is selected, the corresponding function is executed and the pull down menu is closed.
If you release the mouse button while the pointer is outside the pull down menu the menu is closed without
selecting any entry. Note that this behaviour is different from that of some other graphical user interfaces
such as for example Windows.
Now select Change Labels from the Poset menu. If this entry is not available you have failed to select
vertex G . After selecting Change Labels a small dialog box is opened asking for a label. Type in D8 and
press the return key or click on OK. The label of vertex G will now be changed to “D8”. Note that in the X
Window System you have to move the pointer on the text field if you want to edit the label.
In order to find out which vertex represents the centre of D8, first select vertex D8 and then the menu entry
Centres from the Subgroups menu. In case of a color screen, vertex D8 will be selected and colored red,
and vertex 2 will be colored green. The color green indicates that vertex 2 is the result of a computation.
There will also be a message in the GAP window saying that vertex 2 represents the centre of the group
belonging to vertex D8.

#I Centres (D8) --> (2)

Most of the menu entries in Subgroups should be self-explanatory, for details and the difference between
Closure and Closures see 5.9.
If you have selected some vertices (in the example D8 is now selected), and you want to investigate the
subgroups corresponding to these vertices further in GAP, the function SelectedGroups will return a list of
these subgroups (note that you can also achieve calling this function by selecting SelectedGroups to GAP
in the Subgroups menu):

gap> SelectedGroups(s);
[ d8 ]

On the other hand, the functions supplied via the Subgroups menu are by far not all functions applicable
to groups. In order to show results of a computation in GAP in the diagram, you can use SelectGroups.
The function SelectGroups allows you to mark any set of subgroups of D8 in the diagram.
For instance, you can compute the lower central series of this (nilpotent) group in GAP.

gap> l := LowerCentralSeries(d8);
[ d8, Group([ f3 ]), Group([ <identity> of ... ]) ]
gap> SelectGroups(s,l);

This lower central series corresponds to the vertices D8, 2 and 1 which will now be selected. If, as it is not
the case in this example, the subgroups are not yet depicted in the lattice, a warning appears in the GAP
command window. You have to use InsertVertex to insert a new vertex into the lattice (note that you can
also achieve this by selecting InsertVertices from GAP in the Subgroups menu, see section 5.6.1 for the
complete description of this function or section 4.2 for an example).
To summarize the above: the function SelectedGroups can be used to transfer information from the diagram
to GAP, the functions SelectGroups and InsertVertex can be used to transfer information from GAP to
the diagram.
In order to finish this example, close the window by selecting close graphic sheet from the Sheet menu.
This will close the window containing the Hasse diagram of D8.
In this example you have learned, how to display the Hasse diagram of the subgroup lattice of a group using
GraphicSubgroupLattice, how to use the mouse to move and select vertices, how to select a menu entry and
how to transfer information between the Hasse diagram and GAP using SelectGroups and SelectedGroups.
In order to learn more about the menus Sheet and Poset, which were only mentioned very briefly, see 5.7,
and 5.8.
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4.2 A Partial Subgroup Lattice of the Symmetric Group on 6 Points

This section investigates the subgroup lattice of S6.

gap> s6 := SymmetricGroup(6);
Sym( [ 1 .. 6 ] )
gap> SetName(s6,"S6");
gap> cc := ConjugacyClassesSubgroups(s6);;
gap> Sum(List(cc,Size));
1455

As there are 1455 subgroups, displaying the whole lattice of subgroups would not be helpful because there
are simply too many. Therefore this example builds only a partial subgroup lattice. We assume that you are
familiar with the general ideas, mouse actions and menus, which were discussed in 4.1.

We again start to build a partial lattice, by using GraphicSubgroupLattice (see 5.1). After you have entered

gap> s := GraphicSubgroupLattice(s6);
<graphic subgroup lattice "GraphicSubgroupLattice of S6">

XGAP will open a window containing a new graphic sheet with two connected vertices labeled 1 and G .
Vertex 1 represents the trivial subgroup and vertex G the group S6. Vertex G is already selected, so it will
be red if your screen supports color.

XGAP can automatically write a protocol of all the subsequent actions you perform via mouse clicks. This
is convenient because in comparison to normal GAP sessions you do not have the script of typed commands.
You can activate this feature by selecting Start Logging from the Subgroups menu. XGAP prompts you
for a filename via a file selector box. See 5.2 for details about this feature.

In order to find all subgroups of size 60, we cannot not use the Subgroups menu directly, so go back into
the GAP window and extract the conjugacy classes of cc whose representatives have size 60.

gap> c60 := Filtered(cc,x->Size(Representative(x))=60);;
gap> s60 := List(c60,Representative);
[ Group([ (1,2)(3,4), (1,3,5) ]), Group([ (1,2)(3,4), (1,2,3)(4,5,6) ]) ]

We now use the function InsertVertex (see 5.6.1) to add these two subgroups to your partial lattice.

gap> for g in s60 do InsertVertex(s,g); od;

Note that we could have achieved this result with the entry InsertVertices from GAP in the Subgroups
menu, see 5.6.1. The Hasse diagram now contains four vertices. The new vertices are not selected auto-
matically. You can do this as mentioned above by clicking with the left mouse button on them. Selecting
Conjugate Subgroups from the Subgroups menu adds the complete conjugacy classes. Please do this first
for vertex 2 and then for vertex 3 such that the numbering of vertices in the following description is correct!

In order to find out what type of subgroups we are looking at, use another kind of menu not discussed so far,
namely the “Information” menu. Place the pointer inside vertex 3, press the right mouse button and release
it immediately. This will pop up a new window, containing some text describing vertex 3 (as mentioned
above, depending on the window system and window manager, placing this window on the screen might
require some interaction with the mouse).
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Size 60
Index 12
IsAbelian unknown
IsCentral unknown
IsCyclic unknown
IsNilpotent false
IsNormal false
IsPerfect true
IsSimple unknown
IsSolvable false
Isomorphism unknown

Note that GAP does not yet automatically draw the conclusion that a nonsolvable subgroup is also not
abelian, cyclic or central. Place the pointer on top of the entry “Isomorphism” and press the left mouse
button. After a while this entry is changed to

Isomorphism [ 60, 5 ]

telling you that the subgroup represented by vertex 3 is isomorphic to the alternating group on five symbols.
The notation [ 60, 5 ] comes out of the small groups library and is the only information about the
isomorphism type we can get from GAP4 up to now. Select close to close the “Information” menu. Repeat
this with vertex 2, you will see that the subgroup of vertex 2 is also isomorphic to A5, however these two
A5 inside S6 are not conjugate in S6. The “Information” menu is described in detail in 5.10.

Now we want to compute the normalizers of the elements of the conjugacy class containing the subgroup of
vertex 3. You could either select vertex 3 and then Normalizers and repeat this process for the vertices 9 to
13, or you can first select the vertices 3, 9 to 13 and then select Normalizers. But how to select more than
one vertex? If you first select 3 and then 9, vertex 3 will get deselected as soon as 9 gets selected. However,
if you select vertex 3, place the pointer inside vertex 9, hold down the SHIFT key on your keyboard and
then select vertex 9 using the left mouse button, vertex 9 will be selected in addition to vertex 3. Another
method to select more than one vertex is to use the rubber band to catch vertices inside a rectangle. Place
the pointer left and a bit higher than vertex 3 outside any other vertex. Press the left mouse button
and hold it down. Now, using the mouse, move the pointer right and slightly below vertex 13. You see a
rectangle, one corner at your start position and the other following the pointer. If vertices 3 and 9 to 13
are all inside this rectangle, release the mouse button. Now these vertices are selected. Select Normalizers
from the Subgroups menu to compute and display the normalizers.

Now select vertex 3 and 4 and compute the intersection. The intersection is of size 10. Select this intersection
and use SelectedGroups to get a GAP record describing the subgroup.

gap> l := SelectedGroups(s);
[ Group([ (2,3)(4,6), (1,2)(3,4) ]) ]
gap> u := l[1];
Group([ (2,3)(4,6), (1,2)(3,4) ])

In order to find out which subgroups of the complete lattice lie above the subgroup u you can use Inter-
mediate Subgroups. You select the whole group in addition to u and choose Intermediate Subgroups in
the Subgroups menu. You get 6 groups, some of them are already in the lattice, the others are added.

There is another feature we have not seen yet. Close the current graphic sheet and start again with a fresh
one.
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gap> Close(s);
gap> s := GraphicSubgroupLattice(s6);
<graphic subgroup lattice "GraphicSubgroupLattice of S6">

In order to compute a Sylow 2 subgroup select Sylow Subgroup from the Subgroups menu. A small dialog
box will pop up asking for a prime, type in 2 and press return or click on OK. Now select this new vertex
2 representing the Sylow 2 subgroup and compute its normal subgroups. This is rather slow because the
function checks for each new vertex if the corresponding subgroup is conjugate to an old one of the same
size.

This is now the end of our partial investigation of the (partial) subgroup lattice of S6, close the graphic
sheet(s) using close graphic sheet of the Sheet menu. If you started the logging facility of XGAP as
described above you now have a file (probably called xgap.log if you did not change the default) describing
the actions we performed.

4.3 A Partial Subgroup Lattice of the Cavicchioli Group

This section investigates the following finitely presented group C2, which was first investigated by Alberto
Cavicchioli in [Cav86]:

〈a, b ; aba−2ba = b, (b−1a3b−1a−3)2 = a−1〉·

In this example we will show a way to prove a finitely presented group to be infinite, and to find some big
nonabelian factor groups of it.

The following GAP commands define C2.

gap> f := FreeGroup( "a", "b" ); a := f.1;; b := f.2;;
<free group on the generators [ a, b ]>
gap> c2 := f / [ a*b*a^-2*b*a/b, (b^-1*a^3*b^-1*a^-3)^2*a ];
<fp group on the generators [ a, b ]>
gap> SetName(c2,"c2");

We again assume that you are familiar with the general ideas, mouse actions and menus, which were discussed
in 4.1 and 4.2.

In order to build a partial lattice of a finitely presented group, you again use the function GraphicSubgroup-
Lattice. But if the first argument to GraphicSubgroupLattice is a finitely presented group the available
menus are different from the example in the previous section. After you have entered

gap> s := GraphicSubgroupLattice(c2);
<graphic subgroup lattice "GraphicSubgroupLattice of c2">

XGAP will open a window containing a new graphic sheet. Compared to the interactive lattice of a permu-
tation group as described in the previous section, there are the following differences:

– There is only one vertex instead of two. This vertex labeled G is the whole group C2. There is no vertex
for the trivial subgroup (yet).

– If you pull down the Subgroups menu, you will see that this menu is now very different. It gives you
access to various algorithms for finitely presented groups but most of the entries from the last two examples
are missing because most of the GAP functions behind these entries are not applicable to (infinite) finitely
presented groups.

This example will show you how to prove that C2 is infinite. First look at the abelian invariants in order to see
what the commutator factor group is. In order to compute the abelian invariants pop up the “Information”
menu. This is done in exactly the same manner as in the previous section. Place the pointer inside vertex
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G , press the right mouse button and release it immediately. This “Information” menu is described in detail
in 5.13.

Index 1
IsNormal true
IsFpGroup unknown
Abelian Invariants unknown
Coset Table unknown
IsomorphismFpGroup unknown
Factor Group unknown

This tells you what XGAP already knows about the group associated with vertex G . In order to compute
the abelian invariants click onto this line. After a while this entry will change to

Abelian Invariants perfect

telling you that C2 is perfect. So none of the Subgroups menu entries Abelian Prime Quotient, All
Overgroups, Conjugacy Class, Cores, Derived Subgroups, Intersection, Intersections, Normalizers
or Prime Quotient will compute any new subgroups.

In order to avoid accidents the menu entries Abelian Prime Quotient, All Overgroups, Epimorphisms
(GQuotients), Conjugacy Class, Low Index Subgroups, and Prime Quotient from the Subgroups menu
are only selectable if exactly one vertex is selected because the functions behind these entries are in general
quite time and space consuming.

Close the “Information” window and select Low Index Subgroups from the Subgroups menu. A small dialog
box will pop up asking for a limit on the index. Type in 12 and press return or click on OK. In general it
is hard to say what kind of index limit will still work, for some groups even 5 might be too much while for
others 20 works fine, see also 45.9.1.

GAP computes 10 subgroups of index 11 and 8 subgroups of index 12. If you now start to check the abelian
invariants of the index 12 subgroups you will find out that all subgroups represented by vertices 3 to 10 have
a finite commutator factor group except the subgroup belonging to vertex 4 which has an infinite abelian
quotient. Therefore the group C2 itself is infinite.

Now we want to investigate C2 a little further using GAP. Select vertices 3, 4, and 5 and switch to the GAP
window. Use SelectedGroups to get the subgroups associated with these vertices.

gap> u := SelectedGroups( s );
[ Group([ a, b*a^2*b^-2, b*a*b^2*a^-1*b^-1*a^-1*b^-1, b^4*a^-2*b^-2,

b^2*a^3*b^-1*a^-1*b^-2 ]),
Group([ a, b^2*a*b^-1*a^-1*b^-1, b^3*a^-1*b^-1, b*a*b*a^3*b^-1 ]),
Group([ a, b^2*a*b^-1*a^-1*b^-1, b*a^3*b^-2, b^4*a^-1*b^-3,

b*a*b^3*a^-1*b^-1 ]) ]

FactorCosetOperation computes for each of these subgroups ui the operation of C2 on its cosets. It returns
the result as a homomorphism of C2 onto a permutation group. The operation on ui is therefore a permutation
representation of the factor group

C2/Core(ui )·

Using DisplayCompositionSeries we can identify these factor groups.

gap> p := List( u, x -> FactorCosetOperation( c2, x ) );;
gap> l := List( p, Image );;
gap> for x in l do DisplayCompositionSeries(x); Print("\n"); od;
G (2 gens, size 95040)
M(12)

1 (0 gens, size 1)
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G (2 gens, size 660)
A(1,11) = L(2,11) ~ B(1,11) = O(3,11) ~ C(1,11) = S(2,11) ~ 2A(1,11) = U(2,11)

1 (0 gens, size 1)

G (2 gens, size 239500800)
A(12)

1 (0 gens, size 1)

(This display can look a little different according to the GAP version you use.)
So C2 contains the Mathieu group M12, the alternating group on 12 symbols and PSL(2, 11) as factor groups.
Therefore it would have been possible to find vertex 4 using Epimorphisms (GQuotients) instead of Low
Index Subgroups. Close the graphic sheet by selecting the menu entry close graphic sheet from the
Sheet menu and start with a fresh one.

gap> s := GraphicSubgroupLattice(c2);
<graphic subgroup lattice "GraphicSubgroupLattice of c2">

Select Epimorphisms (GQuotients) from the Subgroups menu. This pops up a menu similar to the “Infor-
mation” menu (see 5.12).

Sym(n)
Alt(n)
PSL(d,q)
Library
User Defined

Select PSL(d,q), which pops up a dialog box asking for a dimension. Enter 2 and click on OK . Then a second
dialog box pops up asking for a field size. Enter 11 and click on OK . After a short time of computation the
display in the Epimorphisms (GQuotients) menu changes and shows

PSL(2,11) 1 found

telling you, that GAP has found 1 epimorphism (up to inner automorphisms of PSL(2, 11)) from C2 onto
PSL(2, 11). Click on display point stabilizer to create a new vertex representing a subgroup u such that the
factor group of C2/Core(u) is isomorphic to PSL(2, 11). You could have clicked on display to create a new
vertex representing the kernel of the epimorphism.
This is now the end of our partial investigation of the (partial) subgroup lattice of C2, you have seen that C2

is infinite and contains M12, Alt(12), and PSL(2, 11) as factor groups. Close the graphic sheet by selecting
close graphic sheet from the Sheet menu.

4.4 A Partial Subgroup Lattice of the Trefoil Knot Group

This section investigates the following finitely presented group, the trefoil knot group K3.

〈a, b ; aba = bab〉

This examples shows some limitations of the methods available, in particular if infinite factors occur.

gap> f := FreeGroup( "a", "b" );
<free group on the generators [ a, b ]>
gap> k3 := f / [ f.1*f.2*f.1 / (f.2*f.1*f.2) ];
<fp group on the generators [ a, b ]>
gap> s := GraphicSubgroupLattice(k3);
<graphic subgroup lattice "GraphicSubgroupLattice">

If you compute the Abelian invariants of K3 you will see that the commutator factor group is isomorphic
to the infinite cyclic group. If you try to compute the derived subgroups it works! Just click on Derived
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Subgroups in the Subgroups menu. A vertex appears in a level marked with [ infinity, 1 ]. However,
there are not too many things you can do with such infinite index subgroups up to now, as we will illustrate
below:

First produce some more subgroups by Low Index Subgroups (for example with index limit 5). If you now
try to compare one of the new subgroups with the derived subgroup, this is possible. If you however try to
calculate the intersection of one of the finite-index subgroups with the derived subgroups, GAP will run into
an error:

Error the coset enumeration has defined more than 256000 cosets:
type ’return;’ if you want to continue with a new limit of 512000 cosets,
type ’quit;’ if you want to quit the coset enumeration,
type ’maxlimit := 0; return;’ in order to continue without a limit,
... (a few lines follow)

This can happen if the coset enumeration algorithm tries to enumerate the cosets of a subgroup with infinite
index. This situation can also occur with other operations.

You can leave this break loop by entering the command quit; or by clicking Leave Break Loop in the Run
menu of the main XGAP window.

Earlier you have computed the subgroups of index at most 5. There is one normal subgroup of index 2
belonging to vertex 6 and one of index 4 belonging to vertex 8. There is no line between those two vertices.
Select both and click on Compare Subgroups in the Subgroups menu. A line appears and the line between
vertices 8 and G vanishes. The reason for this is, that the LowIndexSubgroupsFpGroup call did not deliver the
complete inclusion info. This can always happen for finitely presented groups in XGAP. In this case you have
to compare the subgroups manually by Compare Subgroups. Note that this can mean large computations,
especially if the indices are huge.

Now select vertex 10 and choose Cores from the Subgroups menu. You will get a new vertex 12 for an index
24 subgroup. Select the vertices 12 and G and choose Intermediate Subgroups from the Subgroups menu.
You will get lots of new vertices. Note that some of them are duplicates of those which were already in
the lattice. This is because comparison of subgroups can be quite expensive and is therefore not performed
automatically in the case of finitely presented groups.

Select all vertices with a rubber band (click into the top left corner of the sheet, hold down the mouse and
move the pointer to the lower right corner, then release the mouse button), and choose Compare Subgroups
from the Subgroups menu. A few vertices will disappear and you get some messages in the GAP window
about merging of vertices.

The display is also not fully correct with respect to conjugacy classes. IntermediateSubgroups does not
return the complete information about conjugacy of subgroups. Because also conjugacy tests can be very
expensive, they are also not performed automatically for finitely presented groups. Select Test Conjugacy
from the Subgroups menu to trigger this test manually (note that all vertices are still selected!). The
vertices belonging to conjugate subgroups are arranged together and if you move those containing the
normal subgroup of index 24 above this one you recognize the subgroup lattice of the symmetric group on
4 points above that normal subgroup.

This is now the end of our partial investigation of the (partial) subgroup lattice of K3, close the graphic
sheet by selecting close graphic sheet from the Sheet menu.
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4.5 A Partial Subgroup Lattice of a Finitely Presented Group

This section describes the investigation of the following finitely presented group:

G := 〈a, b ; a6 = 1〉

We will show especially how to deal with subgroups which have a very large index like those occuring in the
prime quotient algorithm.

Define the group and open the subgroup lattice window:

gap> f := FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> g := f/[f.1^6];
<fp group on the generators [ f1, f2 ]>
gap> s := GraphicSubgroupLattice(g);
<graphic subgroup lattice "GraphicSubgroupLattice">

First compute prime quotients by Prime Quotient in the Subgroups menu. You are asked for a prime and
a class. Enter 2 and 7 respectively. You get lots of output in the GAP command window and seven new
vertices. Some of the corresponding subgroups have huge indices. Note that these groups are only represented
as kernels of epimorphisms within GAP. So explicit calculation of a coset table or a presentation could take
very long or be absolutely impossible!

Now compute epimorphisms onto the symmetric group on 3 points by Epimorphisms (GQuotients) in the
Subgroups menu, but use a polycyclic presentation as follows (the reason for this will be explained below):

gap> IdGroup(SymmetricGroup(3));
[ 6, 1 ]
gap> s3 := SmallGroup(6,1);
<pc group with 2 generators>
gap> IMAGE_GROUP := s3;;

This first determines the identification number of the symmetric group on 3 points within the small groups
library, and then fetches this group as a polycyclic group. For groups of size less than 1000 this is often a
good way to get a polycyclic presentation. Note that SymmetricGroup(3) leads to a permutation group.
The last statement stores the group in a variable which can be used by XGAP.

Select vertex G , then click on Epimorphisms (GQuotient) in the Subgroups menu and select User defined
in the window that pops up. This will always use the group stored in the global variable IMAGE GROUP. GAP
finds three epimorphisms. Display the three kernels by selecting display in the epimorphisms window.

Note that the new vertex 9 will be drawn on the line between vertices 2 and 3 because there is not yet a
vertex in the level corresponding to index 6. You can move it aside by dragging it with the mouse to some
better position within its level.

Now select vertices 8 and 11 and calculate the intersection of the two subgroups of indices 137438953472
and 6 respectively. GAP can calculate this intersection by calculating the subdirect product of the image
groups of the epimorphisms (the index of the subgroup belonging to vertex 12 in G is 412316860416 which
is three times of the index of the subgroup belonging to vertex 11). Note that this subdirect product can
only be calculated because the two image groups are polycyclic groups. This is the reason why we needed
S3 as polycyclic group earlier.

This is now the end of our partial investigation of the (partial) subgroup lattice of G , close the graphic sheet
by selecting close graphic sheet from the Sheet menu.
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4.6 A Partial Subgroup Lattice of a Space Group

This section describes an investigation of an (infinite) space group provided by the catalogue CRYSTCAT
of crystallographic groups and using the share package CRYST. Here you will see that subgroups of finite
index and of finite size can occur at the same time in a graphic subgroup lattice of an infinite group. Note
that you have to install these share packages to try this example.

Load the share packages, define the group and open the subgroup lattice window:

gap> RequirePackage("crystcat");;
gap> RequirePackage("cryst");;
gap> g := SpaceGroupBBNWZ(4,6,3,1,2);
SpaceGroupOnRightBBNWZ( 4, 6, 3, 1, 2 )
gap> s := GraphicSubgroupLattice(g);
<graphic subgroup lattice "GraphicSubgroupLattice of SpaceGroupOnRightBBNWZ( 4, \
6, 3, 1, 2 )">

This fetches the space group of dimension 4, associated crystal system number 6, Q-class 3, Z-class 1, and
space group type 2 (see the CRYSTCAT documentation for an explanation of this).

Now we calculate some maximal subgroups with finite index and choose three of them:

gap> m := MaximalSubgroupClassReps(g,rec(latticeequal := true));;
gap> mm := m{[1..3]};
[ <matrix group with 7 generators>, <matrix group with 7 generators>,
<matrix group with 7 generators> ]

Again refer to the CRYST share package documentation for an explanation of these commands. Insert this
list of three subgroups into the lattice by selecting InsertSubgroups from GAP from the Subgroups menu.

Next calculate subgroups of infinite index but with finite size:

gap> w := WyckoffPositions(g);;
gap> ww := w{[1..3]};
[ < Wyckoff position, point group 11, translation := [ 0, 1/2, 0, 0 ],

basis := [ ] >
, < Wyckoff position, point group 11, translation := [ 0, 1/2, 0, 1/2 ],
basis := [ ] >
, < Wyckoff position, point group 11, translation := [ 0, 1/2, 1/2, 0 ],
basis := [ ] >
]

gap> www := List(ww,WyckoffStabilizer);
[ <matrix group with 3 generators>, <matrix group with 3 generators>,
<matrix group with 3 generators> ]

Insert these subgroups into the lattice by selecting InsertSubgroups from GAP from the Subgroups menu.
They will be inserted in the level for groups of size 8.

Now you can compute the intersection of a subgroup with finite index and a subgroup with finite size, select
for example vertex 2 and vertex 5 and choose Intersection from the Subgroups menu. You get a new
vertex representing a subgroup of size 4.

If you now calculate the centralizers of the fifteen latticeequal maximal subgroups from above, you get among
them four non-trivial cyclic subgroups:
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gap> c := List(m,x->Centralizer(g,x));
[ <matrix group with 1 generators>, Group([ ]), Group([ ]), Group([ ]),
<matrix group with 1 generators>, Group([ ]), Group([ ]),
<matrix group with 1 generators>, Group([ ]),
<matrix group with 1 generators>, Group([ ]), Group([ ]), Group([ ]),
Group([ ]), Group([ ]) ]

Insert these into the graphic sheet by selecting Insert Vertices from GAP from the Subgroups menu. You
will get four different new vertices representing groups with infinite index and infinite size. Each such vertex
is placed into a level on its own, which is marked by [ H1, n] where n is replaced with subsequent natural
numbers (see section 5.3 for details about levels). “H1” means Hirsch length 1, that is, each subnormal series
of the group contains one and only one infinite cycle. In fact, since these are subgroups of space groups, it
indicates that the translation subgroup is of dimension 1.

(Note that by calculating the point groups of these centralizers you can in fact see, that the infinite cyclic
groups consist of translations only.)

Take two of these centralizers and calculate the closure by selecting Closure from the Subgroups menu.
You will get a new subgroup of Hirsch length 2, which is also placed on a level of its own. Next select three
of them, and calculate the closure. What do you observe? Also, select all four of them and calculate the
closure. This time you get a subgroup of index 16, hence its level is marked by this finite index rather than
a Hirsch number (which would be 4 here). Note that the finite index is used rather than the Hirsch length
for this placement.

Finally, check, whether the centralizers are normal in the whole space group by clicking on the vertices with
the right mouse button and choosing IsNormal in the “Information” window, which springs up. Now form
the closures of each of them with each of the size 8 point stabilizers. You will get some other subgroups of
Hirsch length 1. Both the centralizers and the point stabilizers are abelian. Is this also true for the closures?

This is now the end of our partial investigation of the (partial) subgroup lattice of G , close the graphic sheet
by selecting close graphic sheet from the Sheet menu.
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Subgroup Lattices -
Systematic Description

In this chapter we give details about the various options and menus available in a systematic way.

5.1 GraphicSubgroupLattice

1I GraphicSubgroupLattice( g )

GraphicSubgroupLattice creates a new graphic sheet for the Hasse diagram of the subgroup lattice of g .
The next sections describe how to select and move vertices and the following sections describe the available
menus.

gap> GraphicSubgroupLattice( DihedralGroup(8) );
<graphic subgroup lattice "GraphicSubgroupLattice">

2I GraphicSubgroupLattice( g, width, height )

In this form GraphicSubgroupLattice creates a graphic sheet of initial dimensions width times height .
However it is still possible to change these dimensions later using either the menu (described in 5.8) or the
operation Resize for graphic sheets (see 6.1.14).

This function is the same for all types of groups. It only behaves differently according to some properties of
the group. For example finitely presented groups are treated differently because other algorithms apply in
this case and some of the standard ones are not feasible to be carried out.

In contrast to the GAP3 version of XGAP all graphic subgroup lattices are interactive so you can always
remove vertices. For a finite group you can still get the full lattice by choosing All Subgroups for the whole
group.

5.2 GraphicSubgroupLattice, Protocol of Group Theoretic Constructions

XGAP offers the possibility to write a protocol of the group theoretic constructions you perform via mouse
clicks. This is convenient because otherwise you have no record of what you did. The normal GAP command
script cannot supply this because the menu entries you select do not produce useful output there.

You start the protocol facility by selecting Start logging from the Subgroups menu. You are prompted for
the file name of the protocol with a file selector box. After selecting OK in this box, all subsequent actions are
logged in the protocol file. You can switch this feature off by selecting Stop logging from the Subgroups
menu.

Note that when you select SelectedGroups to GAP from the Subgroups menu, the usual GAP logging is
also directed to the XGAP log file. This is stopped when you select InsertVertices from GAP from the
Subgroups menu. The idea of this is that you also see the GAP commands you issue within an XGAP session
in the XGAP protocol file, if you temporarily work with the keyboard instead of the mouse. See 5.9.21 and
5.9.22 for a description of the menu entries.
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5.3 GraphicSubgroupLattice, Labelling of Levels

We intend to represent subgroups of the same index at the same height of the graphic lattice. For this
purpose we introduce “levels” as horizontal slices of a graphic subgroup lattice.

All vertices for subgroups of a certain finite index are placed in exactly one common level. But what about
infinite indices?

Every level has a “level parameter”. There are three types of levels: “finite index”, “finite size”, and “infinity”.
“finite index” means, that the index of the subgroups in this level is a certain, finite natural number, the
level parameter is exactly this number. “finite size” means, that the size of the subgroups in this level is
finite and the index is either not known (to GAP) or infinity. The level parameter is the size but with a
negative sign. If the index is infinity and the size is not known, the third type applies: “infinity”. In each
“infinity” level only one vertex can exist.

This means that “finite index” takes precedence over “finite size” and “infinity”, and “finite size” takes
precedence over “infinity” if XGAP is in doubt which level to choose for a new vertex.

If the group in question is a space group provided by the CRYST share package, levels of type “infinity”
are also labelled by the Hirsch length of the subgroup, which is the number of infinite cyclic factors in any
given subnormal series. Note that this is only implemented for space groups as of this writing, although the
Hirsch length is defined for a wider range of groups.

For every graphic subgroup lattice the levels are partially ordered by the following rules:

– A “finite index” level is greater than an “infinity” level.

– An “infinity” is greater than a “finite size” level.

– The “finite index” levels are totally ordered by descending indices.

– The “finite size” levels are totally ordered by ascending sizes.

– For space groups the “infinity” levels are partially ordered by the Hirsch lengths of the subgroups.

Note that in general different “infinity” levels are not comparable in this partial order!

On the screen, the levels are of course always totally ordered with respect to their height. XGAP ensures
that this total ordering is always compatible with the abovementioned partial ordering. This means, that
the user can permute “infinity” levels, as long as this does not violate the partial order by the Hirsch lengths
and the principle, that a vertex “containing” another one is drawn higher on the screen.

Note that the level a vertex belongs to will be changed, when new information about the subgroup is
available. This happens if the user chooses any entry in the information menu and new information is
available thereafter.

5.4 GraphicSubgroupLattice, Moving Vertices

In order to move a vertex, place the pointer inside the vertex using the mouse, and press the left mouse
button. Hold the mouse button pressed, and start moving the pointer by moving the mouse. The vertex will
now follow the pointer, but it is not possible to move the vertex out of the boundaries of its level. or lower
than a vertex of a group of smaller size. As soon as you release the left mouse button the vertex will stop
following the pointer and, if the vertex was a member of a conjugacy class, the remaining elements of the
class are moved.

If you hold down the SHIFT key before moving a vertex as described above then only the selected vertex
is moved but not all members of the same class. You can realign the vertices of a class by selecting one of
them and choose Rearrange Classes in the Poset menu (see 5.8.14).
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5.5 GraphicSubgroupLattice, Selecting Vertices

Selected vertices are represented by a slightly thicker circle and, if your screen supports color, are colored
red. There are five different ways to select or deselect a vertex or a bunch of vertices.

Place the pointer inside a vertex and press the left mouse button. Release the button immediately without
moving the mouse. This will deselect all other vertices and select this vertex. If the vertex was already the
only selected vertex it is deselected.

Place the pointer inside a vertex, hold down the SHIFT key, and press the left mouse button. Release
the button immediately without moving the mouse, release the SHIFT key afterwards. If the vertex was
deselected this action will select it in addition to any other selected vertices. If the vertex was already
selected it will be deselected.

Place the pointer outside any vertex and press the left mouse button. Keep the button pressed and start
moving the pointer. This will create a rubber band rectangle. One corner at the position where you pressed
the mouse button, the opposite corner following the pointer. As soon as you release the left mouse button,
all vertices inside the rectangle are selected, all vertices outside the rectangle are deselected.

Place the pointer outside any vertex, hold down the SHIFT key and press the left mouse button. Again you
see a rubber band, however, now as soon as you release the mouse button, all vertices inside the rectangle
are selected in addition to any other selected vertices.

To select vertices from the GAP command window call the function SelectGroups with a subgroup or a list
of subgroups to select.

5.6 GraphicSubgroupLattice, Inserting Vertices

To insert new vertices into a graphic sheet one has to use the following operation:

1I InsertVertex( sheet, grp, conj, hint )
I InsertVertex( sheet, grp )

Inserts the group grp as a new vertex into the sheet. If the lattice is not the subgroup lattice of a finitely
presented group, it checks, if the group is already in the lattice or if there is already a conjugate subgroup.
Further, the new vertex is sorted into the poset. So InsertVertex checks for all vertices on higher levels,
whether the new vertex is contained, and for all vertices on lower levels, whether they are contained in the
new vertex. It then tries to add edges to the appropriate vertices. If the lattice is the lattice of a finitely
presented group, nothing is done with respect to the connections of any vertex. InsertVertex returns a list
with the new vertex as first entry and a flag as second, which says, whether this vertex was inserted right
now or has already been there.

hint is a list of x coordinates which should give some hint for the choice of the new x coordinate. It can for
example be the x coordinates of those groups which were parameter for the operation which calculated the
group. hints can be empty but must always be a list!

If conj is a vertex we put the new vertex into the class of this vertex. Otherwise conj should either be false
or fail.

You have access to the simpler form of the above functions via the Subgroups menu and the mouse. If
you select InsertVertices from GAP in the Subgroups menu, the function InsertVertex is called for the
group in the (automatic) variable last, or, if last contains a list of subgroups, for all of those subgroups.
This is an easy way to insert results of calculations with GAP into the lattice. If last is neither a subgroup
nor a list of subgroups, nothing happens.
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5.7 GraphicSubgroupLattice, Sheet Menu

The Sheet menu will be pulled down if you place the pointer inside the Sheet button and press the left
mouse button. Keep the button down and choose an entry by moving the pointer on top of this entry.
Release the mouse button to select an entry.

1I save as postscript

Selecting this entry pops up a file selector. If you enter a file name and click on OK , this will save a
description of the graphic sheet and graphic objects on the sheet as encapsulated postscript output. This
output should be imported easily into other documents.

2I close graphic sheet

This entry will close the current graphic sheet and the window containing the sheet and all “Information”
menus related to this sheet. On some window system or using some window manager the window itself
has also a close button or menu entry. However, using the window close method will not close associated
“Information” menus.

5.8 GraphicSubgroupLattice, Poset Menu

The Poset menu will be pulled down if you place the pointer inside the Poset button and press the left
mouse button. Keep the button down and choose an entry by moving the pointer on top of this entry.
Release the mouse button to select an entry.

This menu is a generic menu for any graphic poset and is not specific to subgroup lattices. So you find here
options for the handling of general posets.

1I Redraw

The whole lattice will be redrawn. Use this option if some manipulation has disturbed the window.

2I Show Levels

If this menu entry is activated (after clicking it will have a small check sign at its right, clicking again
deactivates it), there will be a little blue box under each level at the left edge of the graphic sheet. You can
use these little boxes to change the height of a level by moving it up or down like a vertex. In cases where
the order of the levels is not given by some “external source” like the index of the subgroups you can move
levels by moving the corresponding blue box with pressed SHIFT button.

3I Show Levelparameters

This menu entry controls the display of the level parameters at the right edge of the graphic sheet. Normally
these are displayed but you can switch it off with this menu entry.

4I Delete Vertices

Selecting the entry will delete all selected vertices. All edges from or to one of these are also deleted.
However, inclusion information is preserved. This means that new edges are created from all vertices which
were maximal in the deleted one to all vertices in which the deleted vertex was maximal. So you get the
Hasse diagram of the poset which is the restriction of the former one to the not selected vertices.

5I Delete Edge

This menu entry is normally not selectable because it would destroy the Hasse diagram.

6I Merge Classes

This menu entry merges all classes within each level that contain a selected vertex. Afterwards Rearrange-
Classes (see below) is performed. Use Merge Classes to unite classes within a level, but use it with care:
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No further test is performed! If you unite classes of subgroups that are not conjugate, other errors may
follow, because conjugacy tests are later on only performed by looking at the first subgroup in a given class!

7I Magnify Lattice

Selecting the entry will multiply the dimensions of the graphic sheet by the square root of 2 and enlarge the
lattice accordingly.

8I Shrink Lattice

Selecting the entry will divide the dimensions of the graphic sheet by the square root of 2 and shrink the
lattice accordingly.

9I Resize Lattice

Selecting this entry will pop up a dialog box asking for an x and y factor separated by a comma. You can
enter integers or quotients. If you enter only one number this is used for x and y. The graphic sheet is then
enlarged or shrinked and the lattice is resized accordingly.

10I Resize Sheet

This entry is similar to Resize Lattice except that only the graphic sheet is changed, the lattice remains
unchanged. The numbers you enter must be integers and mean pixel numbers.

11I Change Labels

Selecting this entry will pop up a dialog box for each selected vertex asking for a new label. Clicking on
CANCEL will cancel the relabelling of the remaining vertices but will not reset the already changed labels.

12I Average Y Positions

Selecting this entry will average the y coordinates of all vertices belonging to the same level. For graphic
subgroup lattices this means all subgroups with the same index in the whole group.

13I Average X Positions

Selecting this entry will average the x coordinates of two or more selected vertices. This will only work if
the corresponding subgroups do not have the same size and is used to align certain vertices vertically.

14I Rearrange Classes

Selecting this entry will clean up all classes which contain a selected vertex. You need this option if you
have moved a vertex without its class (holding down the SHIFT key). The vertices in a class are arranged
one next to the other horizontally without changing the order of the x coordinates. So you can permute the
vertices within a class carelessly and then again get a nice picture with the new order by selecting this menu
entry.

15I Use Black&White

Switches to black and white in case of a color screen or back to colors.



30 Chapter 5. Subgroup Lattices - Systematic Description

5.9 GraphicSubgroupLattice, Subgroups Menu

The Subgroups menu will be pulled down if you place the pointer inside the Subgroups button and press
the left mouse button. Keep the button down and choose an entry by moving the pointer on top of this
entry. Release the mouse button to select an entry.

Note that you can also get the Subgroups menu as a popup menu by clicking with the right mouse button
into the graphic sheet of the subgroup lattice, but not on a vertex.

The result of a computation from any of the following entries is colored green, if your screen supports color.
There will also be a short information message in the GAP window about the result.

In the following descriptions we use “vertices” as abbreviation for “subgroups associated with vertices”.

The following descriptions do not apply to the case of finitely presented groups. See 5.12 for this case.

1I All Subgroups

For each selected vertex All Subgroups computes and displays all its subgroups. Requires at least one
selected vertex. Use with care! This can cause huge computations! See also 37.19.1 in the GAP reference
manual.

2I Centralizers

For each selected vertex Centralizers computes and displays its centralizer with respect to the whole
group. Requires at least one selected vertex. See also 33.4.4 in the GAP reference manual.

3I Centres

For each selected vertex Centres computes and displays its centre. Requires at least one selected vertex.
See also 33.4.5 in the GAP reference manual.

4I Closure

computes and displays the common closure of the selected vertices. Requires at least one selected vertex.
See also 37.4.1 in the GAP reference manual.

5I Closures

computes and displays the closure of each pair of selected vertices. Requires at least two selected vertices.
See also 37.4.1 in the GAP reference manual.

6I Commutator Subgroups

computes and displays the commutator subgroup of each pair of selected vertices. Requires at least two
selected vertices. See also 37.11.2 in the GAP reference manual.

7I Conjugate Subgroups

computes and displays the conjugacy class (with respect to the whole group) of each selected vertex. Requires
at least one selected vertex. See also 37.9.1 in the GAP reference manual.

8I Cores

For each selected vertex Cores computes and displays its core with respect to the whole group. Requires at
least one selected vertex. See also 37.10.2 in the GAP reference manual.

9I Derived Series

For each selected vertex Derived Series computes and displays its derived series. Requires at least one
selected vertex. See also 37.16.7 in the GAP reference manual.
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10I Derived Subgroups

For each selected vertex Derived Subgroups computes and displays its derived subgroup. Requires at least
one selected vertex. See also 37.11.3 in the GAP reference manual.

11I Fitting Subgroups

For each selected vertex Fitting Subgroups computes and displays its Fitting subgroup. Requires at least
one selected vertex. See also 37.11.5 in the GAP reference manual.

12I Intermediate Subgroups

computes and displays all intermediate subgroups between two selected groups. Requires exactly two selected
vertices. See also 37.16.18 in the GAP reference manual.

13I Intersection

computes and displays the common intersection of the selected vertices. Requires at least one selected vertex.
See also 28.4.2 in the GAP reference manual.

14I Intersections

For each pair of selected vertices Intersections computes and displays the intersection of the two vertices.
Requires at least two selected vertices. See also 28.4.2 in the GAP reference manual.

15I Normalizers

For each selected vertex Normalizers computes and displays its normalizer with respect to the whole group.
Requires at least one selected vertex. See also 37.10.1 in the GAP reference manual.

16I Normal Closures

For each selected vertex Normal Closure computes and displays its normal closure with respect to the whole
group. Requires at least one selected vertex. See also 37.10.4 in the GAP reference manual.

17I Normal Subgroups

For each selected vertex Normal Subgroups computes and displays the normal subgroups of the subgroup
associated with this vertex. These new subgroups are not necessarily normal in the whole group. Requires
at least one selected vertex. See also 37.18.7 in the GAP reference manual.

18I Sylow Subgroups

pops up a dialog box asking for a prime. After entering a prime p and pressing return or clicking OK it
computes and displays a Sylow p-subgroup for each selected vertex. Requires at least one selected vertex.
See also 37.12.1 in the GAP reference manual.

19I SelectedGroups to GAP

If the user selects this menu entry, the subgroups belonging to the selected vertices are put into a list which
is stored into the variable last. This is equivalent to the statement SelectedGroups(sheet);; if sheet
contains the graphic sheet object. If XGAP logging is on, then the normal GAP logging via LogTo is also
directed to the XGAP log file.

20I InsertVertices from GAP

If the user selects this menu entry, the value of the variable last is used to insert new vertices into the
graphic sheet. If last is equal to one subgroup, it is inserted via InsertVertex. If last is a list of subgroups,
InsertVertex is called for all those subgroups. There is no error issued if one of the entries of last is no
subgroup. If XGAP logging is on, then the normal GAP logging via LogTo is switched off! The idea of
this is to switch the logging temporarily from XGAP logging to normal GAP logging between two clicks to
SelectedGroups to GAP and InsertVertices from GAP respectively.
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21I Start Logging

After clicking on this menu entry the user is prompted for a filename. From this point on all commands
issued via mouse clicks in the subgroup menu are logged into that file, such that one can afterwards see
“what happened” in the XGAP session. The information displayed is the same as in the info displays in the
GAP window.

22I Stop Logging

A click onto this menu entry stops the XGAP logging.

These menu entries represent only a small selection of the functions of GAP which the authors of XGAP
considered most frequently used. You can calculate other subgroups like for example prefrattini subgroups
from the GAP command window. See sections 4.1 and 4.2 for examples how to transfer information from
the graphical lattice of XGAP to GAP (via SelectedGroups, see 5.5) and vice versa (via SelectGroups, see
5.5, and InsertVertex, see 5.6).

5.10 GraphicSubgroupLattice, Information Menu

Note that this section does not deal with the case of a finitely presented group. See 5.13 for this case.
Placing the pointer inside a vertex (selected or not) and pressing the right mouse button pops up the
“Information” menu. Clicking on any of the text lines will compute the corresponding property of the
subgroup u associated with this vertex. Clicking on all will compute all properties, clicking on close will
close the “Information” menu.

1I Size

computes and displays the size of u. See also 28.3.6 in the GAP reference manual.

2I Index

computes and displays the index of u in the whole group. See also 37.3.3 in the GAP reference manual.

3I IsAbelian

4I IsCyclic

5I IsNilpotent

6I IsPerfect

7I IsSimple

8I IsSolvable

computes and displays the corresponding property of u. See also 33.4.9, 37.14.1, 37.14.3, 37.14.5, 37.14.10,
and 37.14.6 in the GAP reference manual.

9I IsCentral

10I IsNormal

computes and displays the corresponding property of u with respect to the whole group. See also 33.4.8 and
37.3.6 in the GAP reference manual.

11I Isomorphism

computes and displays the isomorphism type of u. This will only work if the size of u is small. See 48.7.5 in
the GAP reference manual for details.

Note that the exact result of all these information displays is stored in the global variable LastResultOfIn-
foDisplay after each operation. So you can access this easily from the GAP command prompt. It is also
returned as last value.
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5.11 Vertex Shapes

The following vertex shapes can appear in an interactive lattice:

1I circle

Subgroup is not normal in whole group.

2I diamond

Subgroup is normal in whole group.

3I rectangle

Subgroup has an index that is too big for automatic calculation of normality. So it is not yet known whether
this group is normal.

Automatic calculation is controlled by the following variable:

4I GGLLimitForIsNormalCalc V

Only for subgroups with index smaller than this number an automatic IsNormal test is performed when the
vertex is added to the sheet.

5.12 GraphicSubgroupLattice for FpGroups, Subgroups Menu

The Subgroups menu will be pulled down if you place the pointer inside the Subgroups button and press
the left mouse button. Keep the button down and choose an entry by moving the pointer on top of this
entry. Release the mouse button to select an entry.

Note that you can also get the Subgroups menu as a popup menu by clicking with the right mouse button
into the graphic sheet of the subgroup lattice, but not on a vertex.

The result of a computation from any of the following entries is colored green, if your screen supports color.
In most cases there will also be short information message in the GAP window about the result.

Note that some of the menu entries make it necessary to compute presentations of subgroups using a modified
Todd-Coxeter algorithm. This can be very time consuming and in some cases even impossible, if the index
is too high.

In the following descriptions, we use “vertices” as abbreviation for “subgroups associated with vertices”.

1I Abelian Prime Quotient

pops up a dialog box asking for a prime p. It then computes and displays the largest elementary abelian
p quotient of the selected vertex. If no presentation for the subgroup associated to the vertex is known a
presentation is first computed using a modified Todd-Coxeter algorithm. It then calls PrimeQuotient to
compute the largest elementary abelian quotient. Abelian PrimeQuotient requires exactly one selected
vertex.

2I All Overgroups

computes and displays all overgroups of the selected vertex. It first computes the permutation action of the
whole group on the cosets of the subgroup associated with the selected vertex and then searches for all block
systems. If the subgroup of the selected vertex is normal, then everything is calculated within the (finite)
factor group in a better representation. All Overgroups requires exactly one selected vertex.

3I Closure

computes and displays the common closure of the selected vertices. Requires at least one selected vertex.
See also 37.4.1 in the GAP reference manual.
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4I Compare Subgroups

A non-empty set of vertices must be selected to choose this menu entry. All subgroups belonging to these
vertices are compared pairwise, and the inclusion information is displayed in the lattice. It may happen that
two or more vertices are merged if GAP notices, that the subgroups are equal.

5I Conjugacy Class

computes and displays the conjugacy class of the selected vertex. Conjugacy Class requires exactly one
selected vertex.

6I Cores

computes and displays the cores of the selected vertices. Cores requires at least one selected vertex.

7I Derived Subgroups

computes and displays the derived subgroups of the selected vertices. If applied to a proper subgroup of the
whole group it will only display those derived subgroups whose index is finite. Derived Subgroups requires
at least one selected vertex.

8I Epimorphisms (GQuotients)

pops up another menu. Requires exactly one selected vertex.

Sym(n)
Alt(n)
PSL(d,q)
Library
User Defined

Click on any of these entries to try to find a quotient isomorphic to the symmetric group (Sym(n)), the
alternating group (Alt(n)), the projective special linear group (PSL(d,q)), a group in a library supplied
with XGAP (this will pop up a file selector), or a user defined group stored in the variable IMAGE GROUP.
After supplying additional parameters, for example, the degree of the symmetric group or the dimension
and field of PSL using dialog boxes, the corresponding entry will change, for example to something like

Sym(3) 3 found

After one or more quotients were found click display to display them.

Note that in XGAP4 in fact the kernel of the epimorphism is marked whereas in XGAP3 this was not the
case, even though the XGAP3 manual stated this.

In fact in XGAP3 a stabilizer of a permutation action on an orbit was put into the lattice.

In case that the image of the epimorphism is a permutation group you can get this functionality by clicking
on display point stabilizer instead of display .

9I Intermediate Subgroups

computes and displays all intermediate subgroups between two selected groups. Requires exactly two selected
vertices. See also 37.16.18 in the GAP reference manual.

10I Intersection

computes and displays the common intersection of the selected vertices. Requires at least one selected vertex.
See also 28.4.2 in the GAP reference manual.

11I Intersections

computes and displays the pairwise intersections of the selected vertices. Intersections requires at least
two selected vertices.
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12I Low Index Subgroups

pops up a dialog box asking for index limit k . It will then do a low index subgroup search for subgroups of
index at most k of the selected vertex using LowIndexSubgroupsFpGroup. If no presentation for the subgroup
associated to the vertex is known a presentation is first computed using a modified Todd-Coxeter algorithm.
Low Index Subgroups requires exactly one selected vertex.

13I Normalizers

computes and displays the normalizers of the selected vertices. Normalizers requires at least one selected
vertex.

14I Prime Quotient

pops up a dialog box asking for a prime p and another dialog box asking for a class c. It then computes and
displays the largest p-quotient of class c of the selected vertex. If no presentation for the subgroup associated
to the vertex is known a presentation is first computed using a modified Todd-Coxeter algorithm. It then
calls PrimeQuotient. Prime Quotient requires exactly one selected vertex.

15I Test Conjugacy

walks through all levels and tests for all pairs of classes, that contain a selected vertex, whether the groups
in the classes are conjugates. If so, the classes are merged. After these calculations Rearrange Classes is
called. Note that conjugacy calculations can take lots of time for finitely presented groups!

16I SelectedGroups to GAP

If the user selects this menu entry, the subgroups belonging to the selected vertices are put into a list which
is stored into the variable last. This is equivalent to the statement SelectedGroups(sheet);; if sheet
contains the graphic sheet object. If XGAP logging is on, then the normal GAP logging via LogTo is also
directed to the XGAP log file.

17I InsertVertices from GAP

If the user selects this menu entry, the value of the variable last is used to insert new vertices into the
graphic sheet. If last is equal to one subgroup, it is inserted via InsertVertex. If last is a list of subgroups,
InsertVertex is called for all those subgroups. There is no error issued if one of the entries of last is no
subgroup. If XGAP logging is on, then the normal GAP logging via LogTo is switched off! The idea of
this is to switch the logging temporarily from XGAP logging to normal GAP logging between two clicks to
“SelectedGroups to GAP” and “InsertVertices from GAP” respectively.

18I Start Logging

After clicking on this menu entry the user is prompted for a filename. From this point on all commands
issued via mouse clicks in the subgroup menu are logged into that file, such that one can afterwards see
“what happened” in the XGAP session. The information displayed is the same as in the info displays in the
GAP window.

19I Stop Logging

A click onto this menu entry stops the XGAP logging.

These menu entries represent only a small selection of the functions of GAP which the authors of XGAP
considered most frequently used. You can calculate other subgroups from the GAP command window. See
sections 4.1 and 4.2 for examples how to transfer information from the graphical lattice of XGAP to GAP
(via SelectedGroups, see 5.5) and vice versa (via SelectGroups, see 5.5, and InsertVertex, see 5.6).
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5.13 GraphicSubgroupLattice for FpGroups, Information Menu

Placing the pointer inside a vertex (selected or not) and pressing the right mouse button pops up the
“Information” menu. Clicking on any of the text lines will compute the corresponding property of the
subgroup u associated with this vertex. Clicking on close will close the “Information” menu.

1I Index

displays the index of u in the whole group.

2I IsNormal

checks if u is normal in the whole group.

3I IsFpGroup

checks if u is a finitely presented group. Note that a subgroup of a finitely presented group that is defined
by a coset table or as kernel of an epimorphism is not automatically known to GAP as a finitely presented
group. This means, that certain algorithms can not be applied. Use IsomorphismFpGroup (see 45.10.1 in
the GAP reference manual) to calculate a finitely presented group and an isomorphism onto it, if some
calculation does not work automatically.

4I Abelian Invariants

computes and displays the abelian invariants of u.

5I Coset Table

computes a coset table for u.

6I IsomorphismFpGroup

computes a finitely presented group that is isomorphic to u and displays the number of generators and
relators of it.

7I Factor Fp Group

computes the factor group of the whole group by u, if u is normal.

Note that the exact result of all these information displays is stored in the global variable LastResultOfIn-
foDisplay after each operation. So you can access this easily from the GAP command prompt. It is also
returned as last value.
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Graphic Sheets - Basic
graphic operations

This chapter describes how graphics are accessed in XGAP via the lowest library functions for graphic sheets.
These functions are used in all other parts of XGAP and you normally only need to know them if you want
to display other things than graphic posets and subgroup lattices.

6.1 Graphic Sheet Objects

To access any graphics in XGAP you first have to create a graphic sheet object. Such objects are linked
internally to windows on the screen. You do not have to think about redrawing, resizing and other organizing
stuff. The graphic sheet object is a GAP object in the category IsGraphicSheet and should be saved because
it is needed later on for all graphic operations.

1I GraphicSheet( title, width, height ) O

creates a graphic sheet with title title and dimension width by height . A graphic sheet is the basic tool to
draw something, it is like a piece of paper on which you can put your graphic objects, and to which you can
attach your menus. The coordinate (0, 0) is the upper left corner, (width − 1, height − 1) the lower right.

It is possible to change the default behaviour of a graphic sheet by installing methods (or sometimes called
callbacks) for the following events. In order to avoid confusion with the GAP term “method” the term
“callback” will be used in the following. For example, to install the function MyLeftPBDownCallback as
callback for the left mouse button down event of a graphic sheet sheet , you have to call InstallCallback
as follows.

gap> InstallCallback( sheet, "LeftPBDown", MyLeftPBDownCallback );

XGAP stores for each graphic sheet a list of callback keys and a list of callback functions for each key. That
means that when a certain callback key is triggered for a graphic sheet then the corresponding list of callback
functions is called one function after the other. The following keys have predefined meanings which are ex-
plained below: Close, LeftPBDown, RightPBDown, ShiftLeftPBDown, ShiftRightPBDown, CtrlLeftPBDown,
CtrlRightPBDown. All of these keys are strings. You can install your own callback functions for new keys,
however they will not be triggered automatically.

2I Close( sheet )

the function will be called as soon as the user selects “close graphic sheet”, the installed function gets the
graphic sheet sheet to close as argument.

3I LeftPBDown( sheet, x, y )

the function will be called as soon as the user presses the left mouse button inside the graphic sheet, the
installed function gets the graphic sheet sheet , the x coordinate and y coordinate of the pointer as arguments.

4I RightPBDown( sheet, x, y )

same as LeftPBDown except that the user has pressed the right mouse button.
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5I ShiftLeftPBDown( sheet, x, y )

same as LeftPBDown except that the user has pressed the left mouse button together with the SHIFT key
on the keyboard.

6I ShiftRightPBDown( sheet, x, y )

same as LeftPBDown except that the user has pressed the right mouse button together with the SHIFT key
on the keyboard.

7I CtrlLeftPBDown( sheet, x, y )

same as LeftPBDown except that the user has pressed the left mouse button together with the CTRL key
on the keyboard.

8I CtrlRightPBDown( sheet, x, y )

same as LeftPBDown except that the user has pressed the right mouse button together with the CTRL key
on the keyboard.

Here is the documentation for the operations to control the callback functions:

9I InstallCallback( sheet, key, func ) O

Installs a new callback function for the sheet sheet for the key key . Note that the old functions for this key
are not deleted.

10I RemoveCallback( sheet, func, call ) O

Removes an old callback. Note that you have to specify not only the key but also explicitly the func which
should be removed from the list!

11I Callback( sheet, key, args ) O

Executes all callback functions of the sheet sheet that are stored under the key func with the argument list
args.

Every graphic object in XGAP can be alive or not. This is controlled by the filter IsAlive. Being alive
means that the object can be used for further operations. If for example the user closes a window by a
mouse operation the corresponding graphic sheet object is no longer alive.

12I IsAlive( gobj ) F

This filter controls if a graphic object is alive, meaning that it can be used for further graphic operations.

The following operations apply to graphic sheets:

13I Close( sheet ) O

The graphic sheet sheet is closed which means that the corresponding window is closed and the sheet becomes
not alive.

14I Resize( sheet, width, height ) O

The width and height of the sheet sheet are changed. That does not automatically mean that the window
size is changed. It may also happen that only the scrollbars are changed.

15I WindowId( sheet ) A

Every graphic sheet has a unique number, its window id . This is mainly used internally.

16I SetTitle( sheet, title ) O

Every graphic sheet has a title which appears somewhere on the window. It is initially set via the call to the
constructor GraphicSheet and can be changed later with this operation.
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17I SaveAsPS( sheet, filename ) O

Saves the graphics in the sheet sheet as postscript into the file filename, which is overwritten, if it exists.

18I FastUpdate( sheet, flag ) O

Switches the UseFastUpdate filter for the sheet sheet to the boolean value of flag . If this filter is set for a
sheet, the screen is no longer updated completely if a graphic object is moved or deleted. You should call
FastUpdate( sheet, true ) before you start large rearrangements of the graphic objects and FastUpdate(
sheet, false ) at the end.

6.2 Graphic Objects in Sheets

All graphics within graphic sheets are so called graphic objects. They are GAP objects in the category
IsGraphicObject. These objects are linked internally to the actual graphics within the window. You can
modify these objects via certain operations which leads to the corresponding change of the real graphics on
the screen. The types of graphic objects supported in XGAP are: boxes, circles, discs, diamonds, rectangles,
lines, texts, vertices and connections. Vertices are compound objects consisting of a circle, rectangle oder
diamond with a short text inside. They remember their connections to other vertices. That means that if
for example the position of a vertex is changed, the line which makes the connection to some other vertex
is also changed automatically. For every graphic object there is a constructor which has the same name as
the graphic object (e.g. Box is the constructor for boxes).

1I IsGraphicObject( gobj ) C

This is the category in which all graphic objects are.

Constructors:

2I Box( sheet, x, y, w, h ) O
I Box( sheet, x, y, w, h, defaults ) O

creates a new graphic object, namely a filled black box, in the graphic sheet sheet and returns a GAP record
describing this object. The four corners of the box are (x , y), (x + w , y), (x + w , y + h), and (x , y + h).

Note that the box is w + 1 pixel wide and h + 1 pixels high.

If a record defaults is given and contains a component color of value color , the function works like the first
version of Box, except that the color of the box will be color . See 6.3 for how to select a color .

See 6.4 for a list of operations that apply to boxes.

Note that Reshape for boxes takes three parameters, namely the box object, the new width, and the new
height of the box.

3I Circle( sheet, x, y, r ) O
I Circle( sheet, x, y, r, defaults ) O

creates a new graphic object, namely a black circle, in the graphic sheet sheet and returns a GAP record
describing this object. The center of the circle is (x , y) and the radius is r .

If a record defaults is given and contains a component color of value color , the function works like the first
version of Circle, except that the color of the circle will be color . See 6.3 for how to select a color . If the
record contains a component width of value width, the line width of the circle is set accordingly.

See 6.4 for a list of operations that apply to circles.

Note that Reshape for circles takes two parameters, namely the circle object, and the new radius of the
circle.
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4I Disc( sheet, x, y, r ) O
I Disc( sheet, x, y, r, defaults ) O

creates a new graphic object, namely a disc (a black filled circle), in the graphic sheet sheet and returns a
GAP record describing this object. The center of the disc is (x , y) and the radius is r .

If a record defaults is given and contains a component color of value color , the function works like the first
version of Disc, except that the color of the disc will be color . See 6.3 for how to select a color .

See 6.4 for a list of operations that apply to discs.

Note that Reshape for discs takes two parameters, namely the disc object, and the new radius.

5I Diamond( sheet, x, y, w, h ) O
I Diamond( sheet, x, y, w, h, defaults ) O

creates a new graphic object, namely a black diamond, in the graphic sheet sheet and returns a GAP record
describing this object. The left corner of the diamond is (x , y), the others are (x + w , y − h), (x + w , y + h),
and (x + 2w , y).

If a record defaults is given and contains a component color of value color , the function works like the first
version of Diamond, except that the color of the diamond will be color . See 6.3 for how to select a color . If
the record contains a component width with integer value width, the line width is set accordingly.

See 6.4 for a list of operations that apply to diamonds.

Note that Reshape for diamonds takes three parameters, namely the diamond object, and the new width
and height values.

6I Rectangle( sheet, x, y, w, h ) O
I Rectangle( sheet, x, y, w, h, defaults ) O

creates a new graphic object, namely a black rectangle, in the graphic sheet sheet and returns a GAP record
describing this object. The four corners of the box are (x , y), (x + w , y), (x + w , y + h), and (x , y + h).

Note that the rectangle is w + 1 pixel wide and h + 1 pixels high.

If a record defaults is given and contains a component color of value color , the function works like the first
version of Rectangle, except that the color of the rectangle will be color . See 6.3 for how to select a color .
If the record contains a component width with integer value width, the line width is set accordingly.

See 6.4 for a list of operations that apply to rectangles.

Note that Reshape for rectangles takes three parameters, namely the rectangle object, and the new width
and height values.

7I Line( sheet, x, y, w, h ) O
I Line( sheet, x, y, w, h, defaults ) O

creates a new graphic object, namely a black line, in the graphic sheet sheet and returns a GAP record
describing this object. The line has the end points (x , y) and (x + w , y + h).

If a record defaults is given and contains a component color of value color , the function works like the
first version of Line, except that the color of the line will be color . See 6.3 for how to select a color . If the
record contains a component width with integer value width, the line width is set accordingly. If the record
contains a component label with a string value label , a text object is attached as a label to the line.

See 6.4 for a list of operations that apply to lines.

Note that Reshape for lines takes three parameters, namely the line object, and the new w and h value.
Change for lines in contrast takes five parameters, namely the line object and all four coordinates like in the
original call.
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8I Text( sheet, font, x, y, str ) O
I Text( sheet, font, x, y, str, defaults ) O

creates a new graphic object, namely the string str as a black text, in the graphic sheet sheet and returns
a GAP record describing this object. The text has the baseline of the first character at (x , y).

If a record defaults is given and contains a component color of value color , the function works like the first
version of Text, except that the color of the text will be color . See 6.3 for how to select a color .

See 6.4 for a list of operations that apply to texts.

Note that Reshape for texts takes two parameters, namely the text object, and the new font. Use Relabel
to change the string of the text.

Operations for graphic objects:

9I Connection( vertex, vertex ) O
I Connection( vertex, vertex, defaults ) O

Connects two vertices with a line. The second variation can get a defaults record for the actual line. The
same entries as in the defaults record for lines are allowed.

10I Disconnect( vertex, vertex ) O

Deletes connection between two vertices.

11I Draw( object ) O

This operation (re-)draws a graphic object on the screen. You normally do not need to call this yourself.
But in some rare cases of object overlaps you could find it useful.

12I Delete( sheet, object ) O
I Delete( object ) O

Deletes a graphic object. Calls Destroy first, so the graphic object is no more alive afterwards. The object is
deleted from the list of objects in its graphic sheet. There is no way to reactivate such an object afterwards.

13I Destroy( object ) O

Destroys a graphic object. It disappears from the screen and will not be alive any more after this call. Note
that object is not deleted from the list of objects in its graphic sheet sheet . This makes it possible to Revive
it again. In order to delete object from sheet , use Delete( sheet, obj ), which calls Destroy for obj .

14I Revive( object ) O

Note that object must be in the list of objects in its graphic sheet! So this is only possible for Destroyed,
not for Deleted graphic objects.

15I Move( object, x, y ) O

Changes the position of a graphic object absolutely. It must be alive and will be moved at once on the
screen.

16I MoveDelta( object, dx, dy ) O

Changes the position of a graphic object relatively. It must be alive and will be moved at once on the screen.

17I PSString( object ) O

Creates a postscript string which describes the graphic object. Normally you do not need to call this because
it is only used internally if the user exports the whole graphic sheet to encapsulated postscript.
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18I PrintInfo( object ) O

This operation prints debugging info about a graphic object.

19I Recolor( object, col ) O

Changes the color of a graphic object. See 6.3 for how to select a color .

20I Reshape( object, ... ) O

Changes the shape of a graphic object. The parameters depend on the type of the object. See the descriptions
of the constructors for the actual usage.

21I \in

This infix operation needs a vector of two integers to its left and a graphic object to its right (“vector of two
integers” means a list of two integers e.g. [15,9]). It determines, if the position given by the two integer
coordinates is inside (e.g. for boxes) or on (e.g. for lines) the graphic objects. Returns a boolean value.

22I Change( object, ... ) O

Changes the shape of a graphic object. The parameters depend on the type of the object. See the descriptions
of the constructors for the actual usage.

23I Relabel( object, str ) O

Changes the label of a graphic object. The second argument must always be a string.

24I SetWidth( object, w ) O

Changes the line width of the graphic object. The line width w must be a relatively small integer.

25I Highlight( vertex ) O
I Highlight( vertex, flag ) O

In the first form this operation switches the highlighting status of a vertex to ON. In the second form the
flag decides about ON or OFF. Highlighting normally means a thicker line width and a change in color.

6.3 Colors in XGAP

Depending on the type of display you are using, there may be more or fewer colors available. You should write
your programs always such that they work even on monochrome displays. In XGAP these differences can be
read off from the so called “color model”. The global variable COLORS contains all available information.

1I COLORS V

The variable COLORS contains a list of available colors. If an entry is false this color is not available on your
screen. Possible colors are: "black", "white", "lightGrey", "dimGrey", "red", "blue", and "green".
The following example opens a new graphic sheet (see 6.1.1), puts a black box (see 6.2.2) onto it and changes
its color. Obviously you need a color display for this example.

gap> sheet := GraphicSheet( "Nice Sheet", 300, 300 );
<graphic sheet "Nice Sheet">
gap> box := Box( sheet, 10, 10, 290, 290 );
<box>
gap> Recolor( box, COLORS.green );
gap> Recolor( box, COLORS.blue );
gap> Recolor( box, COLORS.red );
gap> Recolor( box, COLORS.lightGrey );
gap> Recolor( box, COLORS.dimGrey );
gap> Close(sheet);

The component model is always a string. It is monochrome, if the display does not support colors. It is gray
if we only have gray shades and colorX if we have colors. The “X” can be either 3 or 5, depending on how
many colors are available.
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6.4 Operations for Graphic Objects

The following table gives an overview over the supported graphic objects and the functions which are
applicable respectively:
Here are the supported graphic object types: Box, Circle, Disc, Diamond, Rectangle, Line, Text, Vertex.
These functions apply to all graphic object types: Draw, Delete, Destroy, Revive, Move, MoveDelta,
PSString, PrintInfo, ViewObj, Recolor, Reshape, \in, WindowId
In addition, the operation Relabel applies to objects of types Line, Text, and Vertex; the operation
SetWidth applies to objects of types Diamond, Rectangle, Circle, and Line. There is also Change for a
Line and Highlight for a Vertex.

6.5 Global Information

There are some global data structures which can and should be consulted if certain information is needed.
The first (about color handling) was already described in section 6.3. The second is for vertices:

1I VERTEX V

This globally bound record contains the following components:

circle
integer value for the vertex type “circle”

diamond
integer value for the vertex type “diamond”

rectangle
integer value for the vertex type “rectangle”

radius
radius in pixels of a vertex on the screen

diameter
diameter in pixels of a vertex on the screen

The third structure is about the available fonts.

2I FONTS V

This globally bound record has the following components: tiny, small, normal, large, huge and fonts.
The first 5 are itself records each for one available font. They have components name for the name of the font
and fontInfo, which is a list of 3 integers. The first is the maximal size of a character above the baseline in
pixels, the second is the maximal size of a character below the baseline in pixels, and the third is the width
in pixels of all characters, because it is always assumed, that the fonts are non-proportional.

3I FontInfo( font ) O

Returns the information about the font font . The result is a triple of integers. The first number is the
maximal size of a character above the baseline in pixels, the second is the maximal size of a character below
the baseline in pixels, and the third is the width in pixels of all characters, because it is always assumed,
that the fonts are non-proportional. Use this function rather than accessing the component fontInfo of a
font object directly!

There is another global structure:

4I BUTTONS V

This record contains the following components: left and right contain a number for the left resp. right
mouse button. shift and ctrl contain codes for the respective keys on the keyboard.

You should always use these global data instead of hardwiring any integers into your code.
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XGAP has two main means to communicate with the user. The first is the normal command processing: The
user types commands, they are transmitted to GAP, are executed, and produce output, which is displayed
in the command window. The second is the mouse and the other parts of the graphical user interface. This
latter part can be divided into menus, mouse events, dialogs, and popups.

Menus
Most of the windows of XGAP have menus. The user can select entries in them and this information
is transformed to a function call in GAP. Menu entries can be checked or not, so menus can also
display information.

Mouse Events
A mouse event is the pressing or releasing of a mouse button, together with the position where the
mouse pointer is in the exact moment this happens and the state of certain keyboard keys (mainly
shift and control). Such events also trigger GAP function calls and the corresponding functions can
react on these events and for example wait for others.

Dialogs
Dialogs are windows which display information and into which the user can enter information for
example in form of text fields.

Popups
Popups are special dialogs where the user can not type text but can only click on certain buttons.
XGAP has so called “text selectors” which are a convenient construct to display textual information
and let the user select parts of it.

Most of those graphical objects have corresponding GAP objects, which are created by constructors and can
be used later on by operations.

7.1 Menus in Graphic Sheets

1I Menu( sheet, title, ents, fncs ) O
I Menu( sheet, title, zipped ) O

Menu returns a pulldown menu. It is attached to the sheet sheet under the title title. In the first form ents is
a list of strings consisting of the names of the menu entries. fncs is a list of functions. They are called when
the corresponding menu entry is selected by the user. The parameters they get are the graphic sheet as first
parameter, the menu object as second, and the name of the selected entry as third parameter. In the second
form the entry names and functions are all in one list zipped in alternating order, meaning first a menu
entry, then the corresponding function and so on. Note that you can delete menus but it is not possible to
modify them, once they are attached to the sheet. If a name of a menu entry begins with a minus sign or the
list entry in ents is not bound, a dummy menu entry is generated, which can sort the menu entries within
a menu in blocks. The corresponding function does not matter.
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2I Check( menu, entry, flag ) O

Modifies the “checked” state of a menu entry. This is visualized by a small check mark behind the menu
entry. menu must be a menu object, entry the string exactly as in the definition of the menu, and flag a
boolean value.

3I Enable( menu, entry, flag ) O
I Enable( menu, boollist ) O

Modifies the “enabled” state of a menu entries. Only enabled menu entries can be selected by the user.
Disabled menu entries are visualized by grey or shaded letters in the menu. menu must be a menu object,
entry the string exactly as in the definition of the menu, and flag a boolean value. entry can also be a
natural number meaning the index of the corresponding menu entry. In the second form boollist must be a
list where each entry has either a boolean value or the value fail The list must be as long as the number of
menu entries in the menu menu. All menu entries where a boolean value is provided are enabled or disabled
according to this value.

See the explanation of GraphicSheet (6.1.2) for the “Close” event, which occurs when the user selects the
menu entry close graphic sheet in the Sheet menu.

7.2 Mouse Events

When a mouse event occurs, this is communicated to GAP via a function call which in turn triggers a
callback. As described in 6.1.1 to 6.1.8 the following callback keys are predefined as reactions on mouse events:
LeftPBDown, RightPBDown, ShiftLeftPBDown, ShiftRightPBDown, CtrlLeftPBDown, CtrlRightPBDown.

Note that when your function gets called, the mouse button will still be pressed. So it can react and for
example wait for the release. There is an easy way to find out about the state of the mouse buttons after
the event:

1I WcQueryPointer( id ) F

id must be a WindowId of an XGAP sheet. This function returns a vector of four integers. The first two are
the coordinates of the mouse pointer relative to the XGAP sheet. Values outside the window are represented
by −1. The third element is a number where the pressed buttons are coded. If no mouse button is pressed,
the value is zero. BUTTONS.left is added to the value, if the left mouse button is pressed and BUTTONS.right
is added, if the right mouse button is pressed. The fourth value codes the state of the shift and control. Here
the values BUTTONS.shift and BUTTONS.ctrl are used.

This function is used in

2I Drag( sheet, x, y, bt, func ) O

Call this function when a button event has occurred, so the button bt is still pressed. It waits until the
user releases the mouse button and calls func for every change of the mouse position with the new x and y
position as two integer parameters. You can implement a dragging procedure in this way as in the following
example: (we assume that a LeftPBDown event just occurred and x and y contain the current mouse pointer
position):

storex := x;
storey := y;
box := Rectangle(sheet,x,y,0,0);
if Drag(sheet,x,y,BUTTONS.left,

function(x,y)
local bx,by,bw,bh;
if x < storex then
bx := x;
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bw := storex - x;
else
bx := storex;
bw := x - storex;

fi;
if y < storey then
by := y;
bh := storey - y;

else
by := storey;
bh := y - storey;

fi;
if bx <> box!.x or by <> box!.y then
Move(box,bx,by);

fi;
if bw <> box!.w or bh <> box!.h then
Reshape(box,bw,bh);

fi;
end) then

the box had at one time at least a certain size
... work with box ...

else
the box was never big enough, we do nothing

fi;
Delete(box);

7.3 Dialogs

1I Dialog( type, text ) O

creates a dialog box and returns a GAP object describing it. There are currently two types of dialogs: A file
selector dialog (called Filename) and a dialog type called OKcancel. text is a text that appears as a title in
the dialog box.

2I Query( obj ) O
I Query( obj, default ) O

Puts a dialog on screen. Returns false if the user clicks “Cancel” and a string value or filename, if the user
clicks “OK”, depending on the type of dialog. default is an optional initialization value for the string.

7.4 Popups

1I PopupMenu( name, labels ) O

creates a new popup menu and returns a GAP object describing it. name is the title of the menu and labels
is a list of strings for the entries. Use Query to actually put the popup on the screen.

2I Query

actually puts a popup on screen. Query returns the string of the selected entry or false if the user clicks
outside the popup. See also Query for dialogs in 7.3.2.

3I TextSelector( name, list, buttons ) O

creates a new text selector and returns a GAP object describing it. name is a title. list is an alternating
list of strings and functions. The strings are displayed and can be selected by the user. If this happens the
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corresponding function is called with two parameters. The first is the text selector object itself, the second
the string that is selected. A selected string is highlighted and all other strings are reset at the same time.
Use Reset to reset all entries.

buttons is an analogous list for the buttons that are displayed at the bottom of the text selector. The text
selector is displayed immediately and stays on screen until it is closed (use the Close operation). Buttons
can be enabled and disabled by the Enable operation and the string of a text can be changed via Relabel.

4I Enable( sel,bt,flag )
I Enable( sel,btindex,flag )

Enables or disables the button bt (string value) or btindex (integer index) of the text selector sel , according
to flag .

5I Relabel( sel, list )
I Relabel( sel, index, text )

Changes the strings that are displayed in the text selector. In the first form list must be a list of strings.
The second form only changes the text at index index .

6I SetName( sel, index, string )

Every string in a text selector has a name. The names are stored in the list names component of the text
selector. So sel!.names ist a list containing the names. The names are initialized with the strings from the
creation of the text selector.

7I Reset( sel )

Resets all strings of a text selector, such that they are no longer selected.

8I Close( sel )

Closes a text selector. It vanishes from screen.

Note that you have access to the indices and names of strings and buttons:

9I IndexOfSelectedText

Whenever the user clicks on a text in a text selector, the global variable is set to the index of the text in
the text selector.

10I IndexOfSelectedButton

Whenever the user clicks on a button in a text selector, the global variable is set to the index of the button
in the text selector.
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This chapter describes the part of XGAP that allows the user to conveniently display posets graphically.

8.1 Introduction

A poset is just a partially ordered set. To display posets reasonably in a generic way we need additional
structure. So for XGAP a poset comes in so called levels. At all times in the life of a graphic poset there are
only finitely many levels and they are totally ordered, that is for two levels we can always say, which one is
“higher”. The position within the graphic sheet reflects this ordering.

The levels are parametrized by “level parameters”, which can be any GAP object but must be unique within
a graphic poset. A level is always accessed by its level parameter and not by its number!

The vertices in each level are grouped into classes. For example for graphic subgroup lattices vertices in the
same class correspond to conjugate subgroups, vertices in the same level have the same size or index in the
whole group. The classes within each level are parametrized by “class parameters”, which can be any GAP
object but must be unique within a level. A class within a level is always accessed by its class parameter
and not by its number!

The user must supply a partial order for all of his levels. The mechanism to achieve this is the operation
CompareLevels, which compares two level parameters. The current total order of the levels is always a
refinement of the partial order. The user can permute levels, if that does not contradict the partial order
defined by CompareLevels.

A vertex in the poset that is “contained in” another vertex in the poset order (we speak of “inclusion”
like in the case of subgroup lattices) must always be in a level that is lower on the screen, because there
is only a connecting line representing the inclusion. This is achieved by the fact, that inclusions of vertices
are communicated to XGAP just by creating an “edge” between them. This means, that the vertex in the
“lower” level lies in the vertex in the “higher” level. There must not be edges between vertices in the same
level!

The terminology “vertices” and “edges” comes from the fact, that a graphic poset is just a special case
of a graphic graph, where vertices can be placed anywhere in the sheet and edges have nothing to do
with inclusion. It is planned that also a graphic graph library is implemented in XGAP but it is not yet
operational. However everything which could be done not only for posets but at the same time for graphs
is implemented already within the poset package. This explains the usage of “graph” in many places where
you would otherwise expect “poset”.

What you have to do to use the graphic poset package is create a graphic poset (a special instance of a
graphic sheet), create some levels and perhaps classes within them. Then you can create vertices and edges,
to encode the ordering. Everything else is done by the library. See the next section for details about the
available operations.

Note that we chose a functional approach for certain decision procedures. This means that for example if
you create a vertex and do not specify a position, an operation (ChoosePosition) is called to determine the
actual position. You can use the generic routines or install your own methods for all of those decisions. In
this case you just set a new filter for your posets and overload the generic methods by special routines for
objects with your new filter set. You can see this approach in the example in 8.3.
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8.2 Operations

Constructors:

1I GraphicPoset( name, width, height ) O

creates a new graphic poset which is a specialization of a graphic graph mainly because per definition a
poset comes in “levels” or “layers”. This leads to some algorithms that are more efficient than the general
ones for graphs.

2I CreateLevel( poset, levelparam ) O
I CreateLevel( poset, levelparam, lptext ) O

A level in a graphic poset can be thought of as a horizontal slice of the poset. It has a y coordinate of the top
of the level relatively to the graphic sheet and a height. Every class of vertices in a graphic poset is in a level.
The levels are totally ordered by their y coordinate. No two vertices which are included in each other are
in the same level. A vertex containing another one is always “higher” on the screen, meaning in a “higher”
level. Every level has a unique level parameter, which can be any GAP object. The user is responsible for all
methods where a level parameter occurs as parameter and is not just an integer. There is NO GAP object
representing a level which is visible for the user of posets. All communication about levels goes via the level
parameter. CreateLevel creates a new level with level parameter levelparam in the graphic poset poset . It
returns fail if there is already a level with a level parameter which is considered “equal” to levelparam by
CompareLevels or levelparam if everything went well.

The second method allows to specify which text appears for the level at the right edge of the sheet.

3I CreateClass( poset, levelparam, classparam ) O

A class in a graphic poset is a collection of vertices within a level which belong together in some sense.
Every vertex in a graphic poset is in a class, which in turn belongs to a level. Every class in a level has
a unique class parameter, which can be any GAP object. The user is responsible for all methods where a
class parameter occurs as parameter and is not just an integer. There is NO GAP object representing a
class which is visible to the user of posets. All communication about classes goes via the class parameter.
CreateClass creates a new class in the level with level parameter levelparam in the graphic poset poset . It
returns fail if there is no level with level parameter levelparam or there is already a class in this level with
class parameter classparam. CreateClass returns classparam otherwise.

4I Vertex( graph, data[, inf ] ) O

Creates a new vertex. inf is a record in which additional info can be supplied for the new vertex. For general
graphic graphs only the label, color, shape, x and y components are applicable, they contain a short
label which will be attached to the vertex, the color, the shape (circle, diamond, or rectangle) and the
coordinates relative to the graphic sheet respectively. For graphic posets also the components levelparam
and classparam are evaluated. If the component hints is bound in inf it must be a list of x coordinates
which will be delivered to ChoosePosition to help placement. Those x coordinates will be the coordinates
of other vertices related to the new one. All values of record components which are not specified will be
determined by calling some methods for graphic graphs or posets. Those are: ChooseLabel for the label,
ChooseColor for the color, ChooseShape for the shape, ChoosePosition for the position, ChooseLevel for
the level parameter, ChooseClass for the class parameter, and ChooseWidth for the line width of the vertex.
Vertex returns fail if no vertex was created. This happens only, if one of the choose functions return fail
or no possible value, for example a non-existing level or class parameter. Vertex returns a vertex object if
everything went well.

5I Edge( graph, vertex1, vertex2 ) O
I Edge( graph, vertex1, vertex2, defaults ) O

Adds a new edge from vertex1 to vertex2 . For posets this puts one of the vertices into the other as a maximal
subvertex. So either vertex1 must lie in a “higher” level than vertex2 or the other way round. There must be



50 Chapter 8. Graphic Posets

no vertex “between” vertex1 and vertex2 . If the two vertices are in the same level or one is already indirectly
included in the other fail is returned, otherwise true. That means, that in the case where one of the two
vertices is already a maximal subobject of the other, then the method does nothing and returns true. The
variation with a defaults record just hands this over to the lower levels, meaning that the line width and
color are modified.

Destructors:

6I Delete( poset, vertex1, vertex2 )
I Delete( poset, vertex1)
I Delete( poset, levelparam, classparam )

These three variants of the Delete operation delete an edge, a vertex and a class respectively.

7I DeleteLevel( poset, levelparam ) O

The following method applies to a level. It returns fail if no level with level parameter levelparam is in the
poset. Otherwise the level is deleted and all classes within it are also deleted! DeleteLevel returns true if
the level is successfully deleted.

Operations to change a poset:

8I ResizeLevel( poset, levelparam, height ) O

Changes the height of a level. The y coordinate can only be changed by permuting levels, see below. Attention:
This can increase the size of the sheet! Returns fail if no level with level parameter levelparam exists and
true otherwise.

9I MoveLevel( poset, levelparam, position ) O

Moves a level to another position. position is an absolute index in the list of levels. The level with level
parameter levelparam will be at the position position after the operation. This is only allowed if the new
ordering is compatible with the partial order given by CompareLevels and if there is no connection of a
vertex in the moving level with another level with which it is interchanged. So levelparam is compared with
all level parameters between the old and the new position. If there is a contradiction, nothing happens and
the method returns fail. If everything works the operation returns true.

10I Relabel( graph, vertex, label ) O
I Relabel( graph, vertex ) O
I Relabel( poset, vertex1, vertex2, label ) O
I Relabel( poset, vertex1, vertex2 ) O

Changes the label of the vertex vertex or the edge between vertex1 and vertex2 . This must be a short string.
In the method where no label is specified the new label is chosen functionally: the operation ChooseLabel
is called. Returns fail if an error occurs and true otherwise. This operation already exists in XGAP for
graphic objects.

11I Move( graph, vertex, x, y ) O
I Move( graph, vertex ) O

Moves vertex vertex . For posets coordinates are relative to the level of the vertex. vertex must be a vertex
object in graph. If no coordinates are specified the operation ChoosePosition is called. Move returns fail
if an error occurs and true otherwise. This operation already exists in XGAP for graphic objects.

12I Reshape( graph, vertex ) O
I Reshape( graph, vertex, shape ) O

Changes the shape of the vertex vertex . vertex must be a vertex object in the graph or poset graph. For
the method where no shape is specified the new shape is chosen functionally: ChooseShape is called for the
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corresponding data. Reshape returns fail if an error occurs and true otherwise. This operation already
exists in XGAP for graphic objects.

13I Recolor( graph, vertex ) O
I Recolor( graph, vertex, color ) O
I Recolor( poset, vertex1, vertex2, color ) O
I Recolor( poset, vertex1, vertex2 ) O

Changes the color of the vertex vertex or the edge between vertex1 and vertex2 . vertex must be a vertex
object in graph. For the method where no color is specified the new color is chosen functionally: ChooseColor
is called for the corresponding data. Recolor returns fail if an error occurs and true otherwise. This
operation already exists in XGAP for graphic objects.

14I SetWidth( graph, vertex1, vertex2, width ) O
I SetWidth( graph, vertex1, vertex2 ) O

Changes the line width of an edge. vertex1 and vertex2 must be vertices in the graph graph. For the method
where no line width is specified the width is chosen functionally: ChooseWidth is called for the corresponding
data pair. Returns fail if an error occurs and true otherwise. This operation already exists in XGAP for
graphic objects.

15I Highlight( graph, vertex ) O
I Highlight( graph, vertex, flag ) O

Changes the highlighting status of the vertex vertex . vertex must be a vertex object in graph. For the
method where no flag is specified the new status is chosen functionally: ChooseHighlight is called for the
corresponding data. Returns fail if an error occurs and true otherwise. This operation already exists in
XGAP for graphic objects.

16I Select( graph, vertex, flag ) O
I Select( graph, vertex ) O

Changes the selection state of the vertex vertex . vertex must be a vertex object in graph. The flag determines
whether the vertex should be selected or deselected. This operation already exists in XGAP for graphic
objects. The method without flags assumes true.

17I DeselectAll( graph ) O

Deselects all vertices in the graph or poset graph.

18I Selected( graph ) O

Returns a (shallow-)copy of the set of all selected vertices.

Operations for decisions:

19I ChooseLabel( graph, data ) O
I ChooseLabel( graph, data, data ) O

This operation is called during vertex or edge creation, if the caller didn’t specify a label for the vertex or
edge. It has to return a short string which will be attached to the vertex. If it returns fail the new vertex
is not generated! The generic method just returns the empty string, so no label is generated. This method
is also called in the Relabel method without label parameter.

20I ChooseLevel( poset, data ) O

This operation is called during vertex creation, if the caller didn’t specify a level to which the vertex belongs.
It has to return a level parameter which exists in the poset. If it returns fail the new vertex is not generated!
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21I ChooseClass( poset, data, levelparam ) O

This operation is called during vertex creation, if the caller didn’t specify a class to which the vertex belongs.
It has to return a class parameter which exists in the poset in the level with parameter levelparam. If it
returns fail the new vertex is not generated!

22I ChooseColor( graph, data ) O
I ChooseColor( graph, data1, data2 ) O

This operation is called during vertex or edge creation. It has to return a color. If it returns fail the new
vertex is not generated! It is also called in the Recolor method without color parameter.

23I ChooseHighlight( graph, data ) O

This operation is called during vertex creation. It has to return a flag which indicates, whether the vertex
is highlighted or not. If it returns fail the new vertex is not generated! It is also called in the Highlight
method without flag parameter.

24I ChoosePosition( poset, data, levelparam, classparam, hints ) O
I ChoosePosition( graph, data ) O

This operation is called during vertex creation. It has to return a list with two integers: the coordinates. For
posets those are relative to the level the vertex resides in. If it returns fail the new vertex is not generated!
The parameters levelparam and classparam are level and class parameters respectively.

25I ChooseShape( graph, data ) O

This operation is called during vertex creation. It has to return a string out of the following list: circle,
diamond, rectangle. If it returns fail the new vertex is not generated!

26I ChooseWidth( graph, data ) O
I ChooseWidth( graph, data1, data2 ) O

This operation is called during vertex or edge creation. It has to return a line width. If it returns fail the
new vertex or edge is not generated! This is also called by the SetWidth operation without width parameter.

27I CompareLevels( poset, levelparam1, levelparam2 ) O

Compare two level parameters. -1 means that the level with parameter levelparam1 is “higher”, 1 means
that the one with parameter levelparam2 is “higher”, 0 means that they are equal. fail means that they
are not comparable.

Operations to get information:

28I WhichLevel( poset, y ) O

Determines the level in which position y is. WhichLevel returns the level parameter or fail.

29I WhichClass( poset, x, y ) O

Determines a class with a vertex which contains the position (x , y). The first class found is taken. WhichClass
returns a list with the level parameter as first and the class parameter as second element. WhichClass returns
fail if no such class is found.

30I WhichVertex( graph, x, y ) O
I WhichVertex( graph, data ) O
I WhichVertex( graph, data, func ) O

Determines a vertex which contains the position (x , y). WhichVertex returns a vertex. In the third form
the function func must take two parameters data and the data entry of a vertex in question. It must return
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true or false, according to the right vertex being found or not. The function can for example consider just
one record component of data records. WhichVertex returns fail in case no vertex is found.

31I WhichVertices( graph, x, y ) O
I WhichVertices( graph, data ) O
I WhichVertices( graph, data, func ) O

Determines the list of vertices which contain the position (x , y). WhichVertices returns a list. In the third
form the function func must take two parameters data and the data entry of a vertex in question. It must
return true or false, according to the vertex belonging into the result or not. The function can for example
consider just one record component of data records. Returns the empty list in case no vertex is found.

32I Levels( poset ) O

Returns the list of level parameters in descending order meaning highest to lowest.

33I Classes( poset, levelparam ) O

Returns the list of class parameters in the level with parameter levelparam. Classes Returns fail if no
level with parameter levelparam exists.

34I Vertices( poset, levelparam, classparam ) O

Returns the list of vertices in the class with parameter classparam in the level with parameter levelparam.
Returns fail if no level with parameter levelparam or no class with parameter classparam exists in the level.

35I Maximals( poset, vertex ) O

Returns the list of maximal subvertices in vertex .

36I MaximalIn( poset, vertex ) O

Returns the list of vertices, in which vertex is maximal.

37I PositionLevel( poset, levelparam ) O

Returns the y position of the level relative to the graphic sheet and the height. Returns fail if no level with
parameter levelparam exists.

Operations for user communication:

38I Menu( graph, title, entrylist, typelist, functionslist ) O

This operation already exists in XGAP for graphic sheets. Builds a new menu with title title but with
information about the type of the menu entry. This information describes the relation between the selection
state of the vertices and the parameters supplied to the functions. It is stored in the list typelist , which
consists of strings. The following types are supported:

forany
always enabled, generic routines don’t change anything

forone
enabled iff exactly one vertex is selected

fortwo
enabled iff exactly two vertices are selected

forthree
enabled iff exactly three vertices are selected

forsubset
enabled iff at least one vertex is selected
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foredge
enabled iff a connected pair of two vertices is selected

formin2
enabled iff at least two vertices are selected

formin3
enabled iff at least three vertices are selected

entrylist and functionslist are like in the original operation for graphic sheets. The IsMenu object is returned.
It is also stored in the sheet.

39I ModifyEnabled( graph, from, to ) O

Modifies the “Enabledness” of menu entries according to their type and number of selected vertices. This
operation works on all menu entries of some menus: from is the first menu to work on and to the last one
(indices). Only menus with the property IsAlive are considered. ModifyEnabled returns nothing.

40I InstallPopup( graph, func ) O

Installs a function that is called if the user clicks with the right button on a vertex. The function gets as
parameters: poset ,vertex ,x ,y (click position)

41I PosetLeftClick( poset, x, y ) O

This operation is called when the user does a left click in the poset poset . The current pointer position is
supplied in the parameters x and y . The generic method for PosetLeftClick lets the user move, select and
deselect vertices or edges. An edge is selected as pair of vertices.

42I PosetCtrlLeftClick( poset, x, y ) O

This operation is called when the user does a left click in a poset poset while holding down the control key. The
current pointer position is supplied in the parameters x and y . The generic method for PosetCtrlLeftClick
lets the user move, select and deselect vertices or edges. The difference to the operation without the control
key is, that while selecting the old vertices are NOT deselected. Moving does not move the whole class but
only one vertex. This allows for permuting the vertices within a class. An edge is selected as pair of vertices.

43I PosetRightClick( poset, x, y ) O

This operation is called when the user does a right click in the graph graph. The generic method just finds
the vertex under the mouse pointer and calls the rightclickfunction of the poset or graph which is a
component in the GAP object. Note that the rightclickfunction can be called with fail if no vertex is
hit.

Operations for user actions:

44I UserDeleteVerticesOp( sheet, menu, entry ) O

This operation is called when the user selects Delete vertices. The generic method actually deletes the
selected vertices including all their edges.

45I UserDeleteEdgeOp( sheet, menu, entry ) O

This operation is called when the user selects Delete edge. The generic method deletes the edge with no
further warning!

46I UserMergeClassesOp( sheet, menu, entry ) O

This operation is called when the user selects Merge Classes. The generic method walks through all levels
and merges all classes that contain a selected vertex. Afterwards UserRearrangeClasses is called.
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47I UserMagnifyLattice( sheet, menu, entry ) O

This operation is called when the user selects Magnify Lattice. The generic method scales everything by
144/100 including the sheet, all heights of levels and positions of vertices.

48I UserShrinkLattice( sheet, menu, entry ) O

This operation is called when the user selects Shrink Lattice. The generic method scales everything by
100/144 including the sheet, all heights of levels and positions of vertices.

49I UserResizeLattice( sheet, menu, entry ) O

This operation is called when the user selects Resize Lattice. The generic method asks the user for an x
and a y factor and scales everything including the sheet, all heights of levels and positions of vertices.

50I UserResizeSheet( sheet, menu, entry ) O

This operation is called when the user selects Resize Sheet. The generic method asks the user for an x
and a y pixel number and changes the width and height of the sheet. No positions of levels and vertices are
changed. If the user asks for trouble he gets it!

51I UserMoveLattice( sheet, menu, entry ) O

This operation is called when the user selects Move Lattice. The generic method asks the user for a pixel
number and changes the position of all vertices horizontally. No positions of levels are changed.

52I UserChangeLabels( sheet, menu, entry ) O

This operation is called when the user selects Change Labels. The user is prompted for every selected
vertex, which label it should have.

53I UserAverageY( sheet, menu, entry ) O

This operation is called when the user selects Average Y Positions. In all levels the average y coordinate
is calculated and all vertices are moved to this y position.

54I UserAverageX( sheet, menu, entry ) O

This operation is called when the user selects Average X Positions. The average of all x coordinates of the
selected vertices is calculated. Then all classes with a selected vertex are moved such that the first selected
vertex in this class has the calculated position as x position.

55I UserRearrangeClasses( sheet, menu, entry ) O

This operation is called when the user selects Rearrange Classes. All classes with a selected vertex are
rearranged: The vertices are lined up neatly one after the other, sorted according to their current x position.

56I UserUseBlackWhite( sheet, menu, entry ) O

This is called if the user selects Use Black and White in the menu.

57I PosetShowLevels( sheet, menu, entry ) O

This operation is called when the user selects Show Levels in the menu. Switches the display of the little
boxes for level handling on and off.

58I PosetShowLevelparams( sheet, menu, entry ) O

This operation is called when the user selects Show Level Parameters in the menu. Switches the display
of the level parameters at the right of the screen on and off.

59I DoRedraw( graph ) O

Redraws all vertices and connections.
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8.3 An Example

This section shows how to use the poset package to display posets. The code presented here is actually part
of the XGAP library and makes up the link to the C MeatAxe.

This is the declaration part:

#############################################################################
##
#W meataxe.gd XGAP library Max Neunhoeffer
##
#Y Copyright 1998, Max Neunhoeffer, Aachen, Germany
##
## This file contains declarations for MeatAxe posets
##

DeclareFilter("IsMeatAxeLattice");

#############################################################################
##
#O GraphicMeatAxeLattice(<name>, <width>, <height>) . creates graphic poset
##
## creates a new graphic MeatAxe lattice which is a specialization of a
## graphic poset. Those posets have a new filter for method selection.
##
DeclareOperation("GraphicMeatAxeLattice",[IsString, IsInt, IsInt]);

The code only declares a new filter and declares a constructor operation for posets that lie in this new filter.

The implementation:

#############################################################################
##
#W meataxe.gi XGAP library Max Neunhoeffer
##
#Y Copyright 1998, Max Neunhoeffer, Aachen, Germany
##
## This file contains code for MeatAxe posets
##

#############################################################################
##
#M GraphicMeatAxeLattice(<name>, <width>, <height>) . creates graphic poset
##
## creates a new graphic MeatAxe lattice which is a specialization of a
## graphic poset. Those posets have a new filter for method selection.
##
InstallMethod( GraphicMeatAxeLattice,

"for a string, and two integers",
true,
[ IsString,
IsInt,
IsInt ],

0,



Section 3. An Example 57

function( name, width, height )
local P;

P := GraphicPoset(name,width,height);
SetFilterObj(P,IsMeatAxeLattice);
return P;

end);

#############################################################################
##
#M CompareLevels(<poset>,<levelparam1>,<levelparam2>) . . . . . . . . . . .
## . . . . . . . . . . . . . . . . . . . . . . . . compares two levelparams
##
## Compare two level parameters. -1 means that <levelparam1> is "higher",
## 1 means that <levelparam2> is "higher", 0 means that they are equal.
## fail means that they are not comparable. This method is for the case
## if level parameters are integers and lower values mean lower levels
## like in the case of MeatAxe lattices of Michael Ringe.
##
InstallMethod( CompareLevels,

"for a graphic MeatAxe lattice, and two integers",
true,
[ IsGraphicPosetRep and IsMeatAxeLattice, IsInt, IsInt ],
0,

function( poset, l1, l2 )
if l1 < l2 then
return 1;

elif l1 > l2 then
return -1;

else
return 0;

fi;
end);

Besides the new constructor (which only adds a new filter) we only have to supply a new method for
comparison of level parameters for such posets. The levels are numbered with integer numbers such that
lower numbers are lower in the lattice.

There is a C program in the MeatAxe that exports a poset to a GAP program which generates the lattice in
a graphic poset sheet. The user can then interactively move around vertices and shrink or magnify levels. He
can then export the resulting lattice to an encapsulated postscript file. Note that you need a full installation
of the C MeatAxe apart from GAP to use this feature.

Another nice little example is in the examples subdirectory in the XGAP distribution. It was written by
Thomas Breuer (Aachen) to demonstrate the features of XGAP. The user gets a small window with a
puzzle and can solve it using the mouse. You can test this example by starting XGAP and Reading the file
pkg/xgap/examples/puzzle.g. You can do this by using

gap> ReadPkg("xgap","examples/puzzle.g");
gap> p := Puzzle(4,4);
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In this version of XGAP this is not fully implemented and not yet usable. Only those parts which are exactly
the same for graphic posets are already written. Please contact the author if you would like to have code to
display graphs in graphic sheets.
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Differences
to XGAP 3

This rather short chapter is intended for the user who knows XGAP 3 well and quickly wants to know what
has changed. So it covers mainly those parts, where existing code using XGAP has to be changed. For the
totally new features and packages there are only a few references to the other parts of the documentation.

10.1 Concept

There are two main changes in the concept. The first is the migration to GAP4 with all the bells and whistles
like object oriented design with operations, methods and method selection via filters. XGAP4 is rewritten
nearly totally with these technologies. This should make the reusage of code in the future easier. One can
now use big parts of the code of XGAP for own structures by just replacing some methods via overloading.

The second change is that there is no longer any mathematical “knowledge” or algorithm in XGAP. It is now
only a front end and a graphical user interface. All code for finitely presented groups resides now in the GAP
library. This is a much cleaner concept and should make the management of the source code easier. At the
same time XGAP has become a much more generic program. Operations for subgroups are for example no
longer hard wired into XGAP case by case but there is generic code which can be adapted just by hacking a
few tables.

These generalizations made some sacrifices necessary, because XGAP does no longer know anything about
the mathematics it is displaying. It may for example happen that XGAP does no longer adapt its behaviour
to the amount of data that is known about some finitely presented groups. The reason for this is, that the
generic poset routines cannot know that the vertices stand for groups at all. So sometimes one has to trigger
the comparison of subgroups of finitely presented groups manually (see section 5.12.4 for a description how
to do this).

In the old GAP3 version of XGAP there were three different programs for the full subgroup lattice of a
(finite) group (GraphicLattice), the interactive partial subgroup lattice of a finite group (Interactive-
Lattice) and the interactive partial subgroup lattice of a finitely presented group (InteractiveFpLattice)
respectively. Now there is only one generic program to display subgroup lattices interactively (GraphicSub-
groupLattice).

XGAP can now handle subgroups of infinite index. They are either placed in a “finite size” level or in an
“infinity” level. See 5.3 for details.

A new logging facility allows to automatically produce a protocol of the actions the user performs via mouse
clicks. This is convenient because the normal GAP command script contains no useful information about the
selected entries in the menus. See 5.2 for details.

There is a new layer to display generic posets that do not have to be subgroup lattices. It can be used to
display posets interactively very easily. This is for example used in the new link to the C-MeatAxe written
by Michael Ringe. The code for this link is also included in XGAP4.

Code for the display of graphic graphs is planned but not yet completed.

The user of XGAP should not realize much of those changes (except of course the name of the function to
display a subgroup lattice). The programmer on the other hand has to get used to the new techniques. It was
not in all places possible to achieve total compatibility for existing code. Some changes also were introduced
deliberately to make the programmers adapt their programs to the new situation!
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10.2 User Interface

Some menu entries have been moved to new places, mainly because of the division of generic poset code and
specialized code for graphic subgroup lattices. There are some new features and nearly all old features have
made it into the new version.

The handling of the mouse is unchanged. However the introduction of levels gives the user new possibilities.

10.3 Where code has to be changed

All GAP objects corresponding to graphic sheets and graphic objects are no longer records but component
objects. This means that the programmer can no longer mess around in the data structures. If you want
to add new fields, then you have to use inheritance and define new categories. This means also that the
(internal) data structures of sheets has changed massively. Programs that try to access record components
of old XGAP structures will no longer work!

The operation InstallGSMethod is no longer present. It is replaced by the “callback” mechanism with the
operations InstallCallback, RemoveCallback and Callback (see 6.1.1 for details). This means, that mouse
events are handled differently. This was changed deliberately because there is a big difference: In XGAP4
you can install more than one function for one type of mouse event. All such callback functions are called
one after the other. There was only one graphic sheet method for each event in XGAP3. So you can not just
change the name of the operation to install the callback. You have to think about this difference!

See the section 6.4 for an overview which operations exist now for which graphic objects. The main difference
is the introduction of Revive, ViewObj and WindowId together with the concept of the IsAlive filter.

There was a bug in XGAP3 in the creation of menus: If an entry starts with a minus sign, it will become a
separating line instead of a real menu entry. This disturbed the numbering of the menu entries, such that
Enable and Check did not work on the correct entry. This bug is fixed in XGAP4 so code which contained a
workaround for this bug has to be changed. Enable and Check behave now like expected and documented
in 7.1.3 and 7.1.2.
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Menus in Graphic Sheets, 44
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ModifyEnabled, 54
Mouse Events, 45
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Overview, 9
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Resize Lattice, 29
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RightPBDown, 37
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UserChangeLabels, 55
UserDeleteEdgeOp, 54
UserDeleteVerticesOp, 54
User Interface, 59
UserMagnifyLattice, 54
UserMergeClassesOp, 54
UserMoveLattice, 55
UserRearrangeClasses, 55
UserResizeLattice, 55
UserResizeSheet, 55
UserShrinkLattice, 54
UserUseBlackWhite, 55
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VERTEX, record, 43

Vertex, [poset], 49
Vertex Shapes, 32
Vertices, 53

W
WcQueryPointer, 45
What you can do with XGAP, 6
What you need to install XGAP, 9
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WhichLevel, 52
WhichVertex, 52
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