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1 Preface

The XMod package provides functions for the computation with

– crossed modules and cat1-groups;
– pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;
– morphisms of these structures;
– their derivations and sections; and
– the actor crossed square of a crossed module.

It is loaded with the command

gap> RequirePackage( "xmod" );

XMod was originally implemented in 1997 using the GAP 3 language. The first two parts have been con-
verted to GAP 4. The parts covering derivations; sections and actors will follow in due course. Many of
the function names have been changed during the conversion, for example ConjugationXMod has become
XModByNormalSubgroup.

1I InfoXMod V

In order that the user has some control of the verbosity of the XMod package’s functions, an InfoClass
InfoXMod is provided (see Chapter 7.4 in the GAP Reference Manual for a description of the Info mech-
anism). By default, the InfoLevel of InfoXMod is 0; progressively more information is supplied by raising
the InfoLevel to levels of 1, 2 and 3, e.g.

gap> SetInfoLevel( InfoXMod, 1); #sets the InfoXMod level to 1

1.1 Authors

XMod has been developed by

Murat Alp
Dumlupinar Universitesi, Fen-Edebiyat Fakultesi, Matematik Bolumu,
Merkez Kampus, Kutahya, Turkey.
e-mail: malp@mail.dumlupinar.edu.tr

Chris Wensley
School of Informatics, University of Wales Bangor,
Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.
e-mail: c.d.wensley@bangor.ac.uk

Please send bug reports, suggestions and other comments to the second of these e-mail addresses.
Additional information can be found on the Computational Discrete Algebra web site at

http://www.informatics.bangor.ac.uk/public/math/research/hdda/

Copyright c© 2002 by Murat Alp and Chris Wensley.
XMod is subject to the GAP copyright regulations as detailed in the copyright notice in the GAP manual.



2 2d-objects

2.1 Introduction

The XMod package provides functions for computation with finite crossed modules and cat1-groups and
their morphisms.

Crossed modules and cat1-groups are special types of 2-dimensional groups [B82] and are implemented
as 2dObjects having a Source and a Range.

The package divides into four parts, three of which have so far been converted from GAP 3 to GAP 4.

The first part is concerned with the standard constructions for pre-crossed modules and crossed modules;
together with direct products; normal sub-crossed modules; and quotients. Operations for constructing pre-
cat1-groups and cat1-groups, and for converting between cat1-groups and crossed modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups, together
with standard operations for morphisms, such as composition, image and kernel.

The third part deals with the equivalent notions of derivation for a crossed module and section for a
cat1-group, and the monoids which they form under the Whitehead multiplication.

The fourth part deals with actor crossed modules and actor cat1-groups. These are the automorphism
objects in the appropriate categories. For the actor crossed module Act(X ) of a crossed module X we require
representations for the Whitehead group of regular derivations of X and for the group of automorphisms of
X . The construction also provides an inner morphism from X to Act(X ) whose kernel is the centre of X .

The package may be obtained as a compressed file by ftp from one of the sites with a GAP 4 archive.

The following constructions are new in this version of the package. Firstly, sub-2d-object functions have
been included. Secondly, functions for pre-crossed modules, the Peiffer subgroup of a pre-crossed module,
and the associated crossed modules, have been added. The source and range groups in these constructions
are no longer required to be permutation groups.

Future plans include the implementation of group-graphs which will provide examples of pre-crossed
modules (their implementation will require interaction with graph-theoretic functions in GAP 4) and crossed
squares and the equivalent cat2-groups, structures which arise as 3-dimensional groups. Examples of these
are implicitly included in the fourth part, namely inclusions of normal sub-crossed modules, and the inner
morphism from a crossed module to its actor.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to GpGpd, the
subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been implemented in
Emma Moore’s crossed resolutions package XRes [M01], and further work on group groupoids is planned.
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2.2 Crossed modules

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. In [Lod82], Loday
reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87] and Gilbert [G90] have
studied derivations, automorphisms of crossed modules and the actor of a crossed module, while Ellis [E84]
has investigated higher dimensional analogues. Properties of induced crossed modules have been determined
by Brown, Higgins and Wensley in [BH78], [BW95] and [BW96]. For further references see [AW96] where
we discuss some of the data structures and algorithms used in this package, and also tabulate isomorphism
classes of cat1-groups up to size 30.

A crossed module X = (∂ : S → R) consists of a group homomorphism ∂, called the boundary of X , with
source S and range R, together with an action α : R → Aut(S ) satisfying, for all s, s1, s2 ∈ S and r ∈ R,

XMod 1 : ∂(sr ) = r−1(∂s)r ,
XMod 2 : s∂s2

1 = s−1
2 s1s2 .

The kernel of ∂ is abelian.

There are a variety of constructors for crossed modules:

1I XMod( args ) F
I XModByBoundaryAndAction( bdy, act ) O
I XModByTrivialAction( bdy ) O
I XModByNormalSubgroup( G, N ) O
I XModByCentralExtension( bdy ) O
I XModByAutomorphismGroup( grp ) O
I XModByInnerAutomorphismGroup( grp ) O
I XModByGroupOfAutomorphisms( G, A ) O
I XModByRModule( abgrp ) O

Here are the standard constructions which these implement:

• A conjugation crossed module is an inclusion of a normal subgroup S / R, where R acts on S by
conjugation.

• A central extension crossed module has as boundary a surjection ∂ : S → R with central kernel,
where r ∈ R acts on S by conjugation with ∂−1r .

• An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S )
of S which contains the inner automorphism group of S . The boundary maps s ∈ S to the inner
automorphism of S by s.

• A trivial action crossed module ∂ : S → R has sr = s for all s ∈ S , r ∈ R, the source is abelian
and the image lies in the centre of the range.

• An R-Module crossed module has an R-module as source and the zero map as boundary.

• The direct product X1 × X2 of two crossed modules has source S1 × S2, range R1 × R2 and boundary
∂1 × ∂2, with R1, R2 acting trivially on S2, S1 respectively.

In this implementation the attributes used in the construction of a crossed module X0 are:

• Source(X) and Range(X), the source S and range R of ∂ = Boundary(X);

• XModAction(X), a homomorphism from R to AutoGroup(X), a group of automorphisms of S :
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2I Source( X0 ) A
I Range( X0 ) A
I Boundary( X0 ) A
I AutoGroup( X0 ) A
I XModAction( X0 ) A

More familiar attributes are Size and Name, formed by concatenating the names of the source and range.
An Enumerator function has not yet been implemented.

3I Size( X0 ) A
I Name( X0 ) A

Here is a simple example of an automorphism crossed module, the holomorph of the cyclic group of size five.

gap> c5 := Group( (1,2,3,4,5) );;
gap> SetName( c5, "c5" );
gap> X1 := XModByAutomorphismGroup( c5 );
[c5 -> PermAut(c5)]
gap> Display( X1 );
Crossed module [c5 -> PermAut(c5)] :-
: Source group c5 has generators:
[ (1,2,3,4,5) ]

: Range group PermAut(c5) has generators:
[ (1,2,4,3) ]

: Boundary homomorphism maps source generators to:
[ () ]

: Action homomorphism maps range generators to automorphisms:
(1,2,4,3) --> { source gens --> [ (1,3,5,2,4) ] }
This automorphism generates the group of automorphisms.

gap> Size( X1 );
[ 5, 4 ]

4I SubXMod( X0, src, rng ) O
I IdentitySubXMod( X0 ) A
I NormalSubXMods( X0 ) A
I DirectProduct( X1, X2 ) O

With the standard crossed module constructors listed above as building blocks, sub-crossed modules, quo-
tients of normal sub-crossed modules, and also direct products may be constructed. A sub-crossed module
S = (δ : N → M ) is normal in X = (∂ : S → R) if

• N ,M are normal subgroups of S ,R respectively,

• δ is the restriction of ∂,

• nr ∈ N for all n ∈ N , r ∈ R,

• s−1 sm ∈ N for all m ∈ M , s ∈ S .

These conditions ensure that M nN is normal in the semidirect product R n S .
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2.3 Pre-crossed modules

1I PeifferSubgroup( X0 ) A
I PreXModByBoundaryAndAction( bdy, act ) O
I PreXModByCentralExtension( bdy ) O
I SubPreXMod( X0, src, rng ) O
I XModByPeifferQuotient( pre-xmod ) A

When axiom XMod 2 is not satisfied, the corresponding structure is known as a pre-crossed module. In
this case the Peiffer subgroup of P of S is the subgroup of ker(∂) generated by Peiffer commutators

〈s1, s2〉 = (s−1
1 )∂s2 s−1

2 s1 s2 ·

Then P = (0 : P → {1R}) is a normal sub-pre-crossed module of X and X/P = (∂ : S/P → R) is a crossed
module.

2I IsPermXMod( X0 ) P
I IsPcPreXMod( X0 ) P

When both source and range groups are of the same type, corresponding properties are assigned to the
crossed module.

In the following example the Peiffer subgroup ios cyclic of size 4.

gap> d16 := Group( (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) );;
gap> SetName( d16, "d16" );
gap> gend16 := GeneratorsOfGroup( d16 );;
gap> sk4 := Subgroup( d16, [ (1,5)(3,7)(2,6)(4,8), (2,8)(3,7)(4,6) ] );;
gap> gensk4 := GeneratorsOfGroup( sk4 );;
gap> SetName( sk4, "sk4" );
gap> f16 := GroupHomomorphismByImages( d16, sk4, gend16, gensk4 );;
gap> P16 := PreXModByCentralExtension( f16 );;
gap> Display(P16);
Pre-crossed module [d16 -> sk4] :-
: Source group d16 has generators:
[ (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) ]

: Range group has generators:
[ (1,5)(2,6)(3,7)(4,8), (2,8)(3,7)(4,6) ]

: Boundary homomorphism maps source generators to:
[ (1,5)(2,6)(3,7)(4,8), (2,8)(3,7)(4,6) ]

: Action homomorphism maps range generators to automorphisms:
(1,5)(2,6)(3,7)(4,8) --> { source gens -->

[ (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) ] }
(2,8)(3,7)(4,6) --> { source gens --> [ (1,8,7,6,5,4,3,2), (2,8)(3,7)(4,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> P := PeifferSubgroup( P16 );
Group([ (1,7,5,3)(2,8,6,4) ])
gap> X16 := XModByPeifferQuotient( P16 );;
gap> Display( X16 );
Crossed module [? -> sk4] :-
: Source group has generators:
[ f1, f2 ]

: Range group has generators:
[ (1,5)(2,6)(3,7)(4,8), (2,8)(3,7)(4,6) ]
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: Boundary homomorphism maps source generators to:
[ (2,8)(3,7)(4,6), (1,5)(2,6)(3,7)(4,8) ]
The automorphism group is trivial

gap> iso16 := IsomorphismPermGroup( Source( X16 ) );;
gap> S16 := Image( iso16 );
Group([ (1,3)(2,4), (1,2)(3,4) ])

2.4 Cat1-groups and pre-cat1-groups

In this implementation a cat1-group C has attributes:

1I Source( C ) A
I Range( C ) A
I Tail( C ) A
I Head( C ) A
I RangeEmbedding( C ) A
I KernelEmbedding( C ) A
I Boundary( C ) A
I Name( C ) A
I Size( C ) A

In [Lod82], Loday reformulated the notion of a crossed module as a cat1-group, namely a group G with a
pair of homomorphisms t , h : G → G having a common image R and satisfying certain axioms. We find it
convenient to define a cat1-group C = (e; t , h : G → R) as having source group G , range group R, and three
homomorphisms: two surjections t , h : G → R and an embedding e : R → G satisfying:

Cat 1 : te = he = idR ,
Cat 2 : [ker t , ker h] = {1G} .

It follows that teh = h, het = t , tet = t , heh = h.

The maps t , h are often referred to as the source and target, but we choose to call them the tail and head
of C, because source is the GAP term for the domain of a function. The RangeEmbedding is the embedding
of R in G , the KernelEmbedding is the inclusion of the kernel of t in G , and the Boundary is the restriction
of h to the kernel of t .

Here are some constructors for pre-cat1-groups and cat1-groups:

2I Cat1( args ) F
I PreCat1ByTailHeadEmbedding( t, h, e ) O
I PreCat1ByEndomorphisms( t, h ) O
I PreCat1ByNormalSubgroup( G, N ) O
I PreCat1OfPreXMod( P ) A

The following listing shows an example of a cat1-group of pc-groups:

gap> s3 := SymmetricGroup(IsPcGroup,3);; SetName(s3,"s3");
gap> gens3 := GeneratorsOfGroup(s3);
[ f1, f2 ]
gap> c4 := CyclicGroup(4);; SetName( c4, "c4" );
gap> s3c4 := DirectProduct( s3, c4 );; SetName( s3c4, "s3c4" );
gap> gens3c4 := GeneratorsOfGroup( s3c4 );
[ f1, f2, f3, f4 ]
gap> a := gens3[1];; b := gens3[2];; one := One(s3);;
gap> t2 := GroupHomomorphismByImages( s3c4, s3, gens3c4, [a,b,one,one] );
[ f1, f2, f3, f4 ] -> [ f1, f2, <identity> of ..., <identity> of ... ]
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gap> e2 := Embedding( s3c4, 1 );
Pcgs([ f1, f2 ]) -> [ f1, f2 ]
gap> C2 := Cat1( t2, t2, e2 );
[s3c4=>s3]
gap> Display( C2 );
Cat1-group [s3c4=>s3] :-
: source group has generators:
[ f1, f2, f3, f4 ]

: range group has generators:
[ f1, f2 ]

: tail homomorphism maps source generators to:
[ f1, f2, <identity> of ..., <identity> of ... ]

: head homomorphism maps source generators to:
[ f1, f2, <identity> of ..., <identity> of ... ]

: range embedding maps range generators to:
[ f1, f2 ]

: kernel has generators:
[ f3, f4 ]

: boundary homomorphism maps generators of kernel to:
[ <identity> of ..., <identity> of ... ]

: kernel embedding maps generators of kernel to:
[ f3, f4 ]

gap> IsPcCat1( C2 );
true
gap> Size( C2 );
[ 24, 6 ]

3I Cat1OfXMod( X0 ) A
I XModOfCat1( C ) A

The category of crossed modules is equivalent to the category of cat1-groups, and the functors between these
two categories may be described as follows.
Starting with the crossed module X = (∂ : S → R) the group G is defined as the semidirect product
G = R n S using the action from X , with multiplication rule

(r1, s1) (r2, s2) = (r1 r2, sr2
1 s2) .

The structural morphisms are given by

t(r , s) = r , h(r , s) = r(∂s), er = (r , 1) .

On the other hand, starting with a cat1-group C = (e; t , h : G → R), we define S = ker t , the range R
remains unchanged, and ∂ = h |S . The action of R on S is conjugation in S via the embedding of R in G .

gap> X2 := XModOfCat1( C2 );
[Group( [ f3, f4 ] )->s3]
gap> Display( X2 );
Crossed module [..->s3] :-
: Source group has generators:
[ f3, f4 ]

: Range group s3 has generators:
[ f1, f2 ]

: Boundary homomorphism maps source generators to:
[ <identity> of ..., <identity> of ... ]
The automorphism group is trivial
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This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

1I Source( map ) A
I Range( map ) A
I SourceHom( map ) A
I RangeHom( map ) A

Morphisms of 2dObjects are implemented as 2dMappings. These have a pair of 2d-objects as source and
range, together with two group homomorphisms mapping between corresponding source and range groups.

3.1 Morphisms of pre-crossed modules

A morphism between two pre-crossed modules X1 = (∂1 : S1 → R1) and X2 = (∂2 : S2 → R2) is a pair (σ, ρ),
where σ : S1 → S2 and ρ : R1 → R2 commute with the two boundary maps and are morphisms for the two
actions:

∂2σ = ρ∂1, σ(sr ) = (σs)ρr ·

Thus σ is the SourceHom and ρ is the RangeHom.

When X1 = X2 and σ, ρ are automorphisms then (σ, ρ) is an automorphism of X1. The group of automor-
phisms is denoted by Aut(X1)·
The usual properties of mappings may be checked:

1I IsInjective( map ) P
I IsSurjective( map ) P
I IsSingleValued( map ) P
I IsTotal( map ) P
I IsBijective( map ) P
I IsEndomorphism( map ) P
I IsAutomorphism( map ) P

Constructors for morphisms of pre-crossed modules include:

2I PreXModMorphism( args ) F
I XModMorphism( args ) F
I PreXModMorphismByHoms( P1, P2, sigma, rho ) O
I XModMorphismByHoms( X1, X2, sigma, rho ) O
I InclusionMorphism( X1, S1 ) O
I InnerAutomorphism( X1, r ) O
I IdentityMapping( X1 ) A
I IsomorphismPermGroup( obj ) A

In the following example we construct a simple automorphism of the crossed module X1 constructed in the
previous chapter.
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gap> sigma1 := GroupHomomorphismByImages( c5, c5, [ (1,2,3,4,5) ]
[ (1,5,4,3,2) ] );;

gap> rho1 := IdentityMapping( Range( X1 ) );
IdentityMapping( PermAut(c5) )
gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 );
[[c5->PermAut(c5)] => [c5->PermAut(c5)]]
gap> Display( mor1 );
Morphism of crossed modules :-
: Source = [c5->PermAut(c5)] with generating sets:
[ (1,2,3,4,5) ]
[ (1,2,4,3) ]

: Range = Source
: Source Homomorphism maps source generators to:
[ (1,5,4,3,2) ]

: Range Homomorphism maps range generators to:
[ (1,2,4,3) ]

gap> IsAutomorphism( mor1 );
true

3.2 Morphisms of pre-cat1-groups

A morphism of pre-cat1-groups from C1 = (e1; t1, h1 : G1 → R1) to C2 = (e2; t2, h2 : G2 → R2) is a pair (γ, ρ)
where γ : G1 → G2 and ρ : R1 → R2 are homomorphisms satisfying

h2γ = ρh1 , t2γ = ρt1 , e2ρ = γe1 .

1I PreCat1Morphism( args ) F
I Cat1Morphism( args ) F
I PreCat1MorphismByHoms( P1, P2, gamma, rho ) O
I Cat1MorphismByHoms( C1, C2, gamma, rho ) O
I InclusionMorphism( C1, S1 ) O
I InnerAutomorphism( C1, r ) O
I IdentityMapping( C1 ) A
I IsomorphismPermGroup( obj ) A

The function IsomorphismPermGroup constructs a morphism whose SourceHom and RangeHom are the Iso-
morphismPermGroups of the source and range.

gap> iso := IsomorphismPermGroup( C2 );
[[..] => [..]]
gap> Display( iso );
Morphism of cat1-groups :-
: Source = [s3c4=>s3] with generating sets:
[ f1, f2, f3, f4 ]
[ f1, f2 ]

: Range = [Group(
[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)

(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),

( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ] )=>Group( [ (1,4)(2,6)(3,5), (1,2,3)(4,5,6)

] )] with generating sets:
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[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),

( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ]

[ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]
: Source Homomorphism maps source generators to:
[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),

( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ]

: Range Homomorphism maps range generators to:
[ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]

3.3 Operations on morphisms

1I CompositionMapping( map2, map1 ) O
I Order( auto ) A
I Kernel( map ) O
I Kernel2dMapping( map ) A

Composition of morphisms, written (map1 * map2) for maps acting of the right, calls the Composition-
Mapping function for maps acting on the left, applied to the appropriate type of 2d-mapping.

gap> mor1;
[[c5->PermAut(c5)] => [c5->PermAut(c5)]]
gap> Order(mor1);
2
gap> mor23;
[[nq8->sl23] => [k4->a4]]
gap> k23 := Kernel( mor23 );
[Group( [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )->Group(
[ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )]
gap> Display(k23);
Crossed module [..->..] :-
: Source group has generators:

[ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ]
: Range group has generators:

[ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ]
: Boundary homomorphism maps source generators to:

[ (1,6)(2,3)(4,5)(7,8) ]
The automorphism group is trivial

gap> IsNormal( Source(mor23), k23 );
true
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Derivations
and Sections

4.1 Whitehead Multiplication

The Whitehead monoid Der(X ) of X was defined in [Whi48] to be the monoid of all derivations from R
to S , that is the set of all maps R → S , with Whitehead multiplication ◦, (on the right) satisfying:

Der 1 : χ(qr) = (χq)r (χr) ,
Der 2 : (χ1 ◦ χ2)(r) = (χ2r)(χ1r)(χ2∂χ1r) .

The zero map is the identity for this composition. Invertible elements in the monoid are called regular.
The Whitehead group of X is the group of regular derivations in Der(X ). In the next section the actor of
X is defined as a crossed module whose source and range are permutation representations of the Whitehead
group and the automorphism group of X .

The construction for cat1-groups equivalent to the derivation of a crossed module is the section. The
monoid of sections of C = (e; t , h : G → R) is the set of group homomorphisms ξ : R → G , with Whitehead
multiplication ◦, (on the right) satisfying:

Sect 1 : tξ = idR ,
Sect 2 : (ξ1 ◦ ξ2)(r) = (ξ1r)(ehξ1r)−1(ξ2hξ1r) = (ξ2hξ1r)(ehξ1r)−1(ξ1r) .

The embedding e is the identity for this composition, and h(ξ1 ◦ξ2) = (hξ1)(hξ2). A section is regular when
hξ is an automorphism and, of course, the group of regular sections is isomorphic to the Whitehead group.

1I Object2d( chi ) A
I GeneratorImages( chi ) A
I IsDerivation( chi ) P
I DerivationByImages( X0, ims ) O

Derivations are stored like group homomorphisms by specifying the images of a generating set. Images of the
remaining elements may then be obtained using axiom Der 1. The function IsDerivation is automatically
called to check that this procedure is well-defined.

In the following example a crossed module X3 is constructed, isomorphic to the inclusion of the normal
cyclic group c3 in the symmetric group s3 .

gap> g18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;
gap> SetName( g18, "g18" );
gap> gen18 := GeneratorsOfGroup( g18 );;
gap> a := gen18[1];; b := gen18[2];; c := gen18[3];;
gap> s3 := Subgroup( g18, gen18{[2..3]} );;
gap> SetName( s3, "s3" );;
gap> t := GroupHomomorphismByImages( g18, s3, gen18, [ b,b,c] );;
gap> h := GroupHomomorphismByImages( g18, s3, gen18, [(),b,c] );;
gap> e := GroupHomomorphismByImages( s3, g18, [b,c], [b,c] );;
gap> C3 := Cat1( t, h, e );
[g18=>s3]
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gap> X3 := XModOfCat1( C3 );;
gap> Display( X3 );
Crossed module [..->s3] :-
: Source group has generators:
[ ( 1, 2, 3)( 4, 6, 5) ]

: Range group has generators:
[ (4,5,6), (2,3)(5,6) ]

: Boundary homomorphism maps source generators to:
[ (4,6,5) ]

: Action homomorphism maps range generators to automorphisms:
(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(2,3)(5,6) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

: associated cat1-group is [g18=>s3]

gap> imchi := [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ];;
gap> chi := DerivationByImages( X3, imchi );
DerivationByImages( s3, Group( [ ( 1, 2, 3)( 4, 6, 5) ] ),
[ (4,5,6), (2,3)(5,6) ], [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ] )

2I SectionByImages( C, ims ) O
I SectionByDerivation( chi ) O
I DerivationBySection( xi ) O

Sections are group homomorphisms, so do not need a special representation. Operations SectionByDeriva-
tion and DerivationBySection convert derivations to sections, and vice-versa, calling Cat1OfXMod and
XModOfCat1 automatically.
Two strategies for calculating derivations and sections are implemented, see [AW96]. The default method
for AllDerivations is to search for all possible sets of images using a backtracking procedure, and when
all the derivations are found it is not known which are regular. In the GAP 3 version of this package, the
default method for AllSections( C ) was to compute all endomorphisms on the range group R of C as
possibilities for the composite hξ. A backtrack method then found possible images for such a section. In
this version the derivations of the associated crossed module are calculated, and these are all converted to
sections using SectionByDerivation.

gap> xi := SectionByDerivation( chi );
[ (4,5,6), (2,3)(5,6) ] -> [ (1,2,3), (1,2)(4,6) ]

If ε denotes the inclusion of S = kert in G then ∂ = hε : S → R and

ξr = (er)(eχr) = (r , χr)

determines a section ξ of C in terms of the corresponding derivation χ of X , and conversely.

4.2 Whitehead Groups and Monoids
1I RegularDerivations( X0 ) A
I AllDerivations( X0 ) A
I RegularSections( C0 ) A
I AllSections( C0 ) A
I ImagesList( obj ) A
I ImagesTable( obj ) A

There are two functions to determine the elements of the Whitehead group and the Whitehead monoid of
X0, namely RegularDerivations and AllDerivations. (The functions RegularSections and AllSections
perform corresponding tasks for a cat1-group.)
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Using our example X3 we find that there are just nine derivations, six of them regular, and the associated
group is isomorphic to s3 .

gap> all3 := AllDerivations( X3 );;
gap> imall3 := ImagesList( all3 );; Display( imall3 );
[ [ (), () ],
[ (), ( 1, 2, 3)( 4, 6, 5) ],
[ (), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 2, 3)( 4, 6, 5), () ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 3, 2)( 4, 5, 6), () ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 3, 2)( 4, 5, 6) ]
]

gap> KnownAttributesOfObject( all3 );
[ "Object2d", "ImagesList", "AllOrRegular", "ImagesTable" ]
gap> Display( ImagesTable( all3 ) );
[ [ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 2, 2, 2 ],
[ 1, 1, 1, 3, 3, 3 ],
[ 1, 2, 3, 1, 2, 3 ],
[ 1, 2, 3, 2, 3, 1 ],
[ 1, 2, 3, 3, 1, 2 ],
[ 1, 3, 2, 1, 3, 2 ],
[ 1, 3, 2, 2, 1, 3 ],
[ 1, 3, 2, 3, 2, 1 ] ]

2I CompositeDerivation( chi1, chi2 ) O
I ImagePositions( chi ) A

The Whitehead multiplication is implemented by the function CompositeDerivation( chi1, chi2 ); which
has the same result as chi2 * chi1 , where composition is on the left and multiplication on the right.

gap> reg3 := RegularDerivations( X3 );;
gap> imder3 := ImagesList( reg3 );;
gap> chi4 := DerivationByImages( X3, imder3[4] );
DerivationByImages( s3, Group( [ ( 1, 2, 3)( 4, 6, 5) ] ),
[ (4,5,6), (2,3)(5,6) ], [ ( 1, 3, 2)( 4, 5, 6), () ] )
gap> chi5 := DerivationByImages( X3, imder3[5] );
DerivationByImages( s3, Group( [ ( 1, 2, 3)( 4, 6, 5) ] ),
[ (4,5,6), (2,3)(5,6) ], [ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im4 := ImagePositions( chi4 );
[ 1, 3, 2, 1, 3, 2 ]
gap> im5 := ImagePositions( chi5 );
[ 1, 3, 2, 2, 1, 3 ]
gap> chi45 := chi4 * chi5;
DerivationByImages( s3, Group( [ ( 1, 2, 3)( 4, 6, 5) ] ),
[ (4,5,6), (2,3)(5,6) ], [ (), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im45 := ImagePositions( chi45 );
[ 1, 1, 1, 2, 2, 2 ]
gap> pos := Position( imder3, GeneratorImages( chi45 ) );
2
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3I WhiteheadGroupTable( X0 ) A
I WhiteheadMonoidTable( X0 ) A
I WhiteheadPermGroup( X0 ) A
I WhiteheadTransMonoid( X0 ) A

Multiplication tables for the Whitehead group or monoid enable the construction of permutation or trans-
formation representations.

gap> wgt3 := WhiteheadGroupTable( X3 );; Display( wgt3 );
[ [ 1, 2, 3, 4, 5, 6 ],
[ 2, 3, 1, 5, 6, 4 ],
[ 3, 1, 2, 6, 4, 5 ],
[ 4, 6, 5, 1, 3, 2 ],
[ 5, 4, 6, 2, 1, 3 ],
[ 6, 5, 4, 3, 2, 1 ] ]

gap> wpg3 := WhiteheadPermGroup( X3 );
Group([ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5), (1,5)(2,4)(3,6),
(1,6)(2,5)(3,4) ])

gap> wtm3 := WhiteheadTransMonoid( X3 );
<monoid with 9 generators>
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