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Introduction

Any finitely generated associative algebra can be presented as a factor of the free
associative algebra. Therefore computations in the free algebra have many appli-
cations in different areas of mathematics, like cryptography, ring theory, homo-
logical algebra, representation theory of monoids, groups and algebras, algebraic
system and control theory, quantum algebras, in mathematical and theoretical
physics.

The aim of this diploma thesis is to study factors of the free algebra with focus
on the K-dimension. In particular, we want to answer the question whether a
factor algebra, given by a two-sided ideal, is finite dimensional or not. Here the
approach to answer this question is to gather information which hopefully solves
the question by studying the Gröbner basis.
Therefore one needs to construct a Gröbner basis explicitly from a given set of
generators for an ideal. In theory this question was studied since the early years
of computer algebra: Mora ([Mor86, Mor89, Mor94]), E. Green ([Gre93, Gre00]),
Ufnarovskij ([Ufn90, Ufn98]) and Cojocaru et al. ([CPU99]) presented different
facets of what we call today non-commutative Gröbner basis theory. In particular
Mora discussed free non-commutative algebras and their quotient rings endowed
also with negative (non-well-)orderings and further extended his theory (with
Apel, [Ape00]). Other important contributions were made by Apel and Lassner
([AL88]) and especially Apel in [Ape00].

In the last years there has been more progress in theoretical, implementational
and practical directions. Notably, the interest in free associative algebras grew
stronger, as indicated by e. g. the book of D. Green ([Gre03]), where the author
considers also negative (non-well-)orderings for certain non-commutative cases
with a very different motivation and meaning, compared to the theory of Mora
([Mor89]) and Apel ([Ape00]) and with the commutative case as in Greuel et
al. ([GP02]). Evans and Wensley investigated in [EW07] involutive bases in
non-commutative algebras.

With the recent work of La Scala and Levandovskyy [LL09] a new way to compute
Gröbner bases was born, where non-commutative Gröbner bases of graded ideals
in free algebras are computed via the Letterplace correspondence. The most im-
portant point for practical computer algebra is that the computations take place
in a commutative ring, where the data structures as well as many fundamental
algorithms have been deeply studied and enhanced in the past 40 years.
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So another task is to translate the setup of computing the K-dimension for factor
algebras into the realm of Letterplace. Here we found some interesting aspects,
as well as new structures, as for example the K-shift-basis (see 2.59).

Along the way there were many interesting applications and some theoretical
development, like the mistletoes (see 2.43), which are a completely new way to
store bases for factor algebras compactly, the concept of fake dimension (see 2.13)
and the usage of the Ufnarovskij graph to determine the finiteness of the factor
algebra by a given truncated Gröbner basis (see 2.19), which found their way into
this thesis.

The mistletoes resemble the concept of border bases (cf. [KK06]). However, the
connection to border bases is still to be investigated deeper. The algorithms to
compute mistletoes and the K-dimension have been analyzed for their algorithmic
complexity(2.55,2.58).

The usage of the Ufnarovskij graph allows one to detect early the finiteness of
a K-basis, if applied in an adaptive algorithm for the computation of a Gröbner
basis, what implies the finiteness of a Gröbner basis in this situation.
Adaptive computation of a Gröbner basis -either in the classical or in the Let-
terplace setting- is examined and realistic bounds for a single adaptive step are
established (1.53,1.54,).

One of my personal goals for this thesis is to give an easy-to-understand in-
troduction to non-commutative calculus in the free algebra, especially to non-
commutative Gröbner bases, since although well studied, most work dealing with
such general structures as the free associative algebra has not an introductive
character.
Moreover, this work is a starting point for applications of non-commutative meth-
ods relying on Gröbner bases in free associative algebras and we are planing to
expand our methods to other fields, like Gröbner basis cryptosystems and com-
putations in non-commutative modules (see for example [AK05] and [BK07]).

Alongside the theoretical development we implemented the procedures in the
computer algebra system Singular.
Singular [GPS09] has been developed since more than 20 years under the di-
rection of Prof. Greuel, Prof. Pfister and Dr. Schönemann in Kaiserslautern,
Germany. Singular is a specialized computer algebra system for supporting re-
search in commutative algebra, algebraic geometry and singularity theory. Since
2005, there is a subsystem Singular:Plural [GLS06], which provides Gröbner
bases-related functionality for a class of non-commutative GR-algebras [Lev05].
Special data structures, developed and implemented for polynomials, together
with carefully designed and implemented algorithms, contribute to the wide-
spread acceptance of Singular as one of the fastest computer algebra systems
in the world.
The recently developed Letterplace paradigm allows the computation of Gröbner
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bases in the free associative algebra and the corresponding algorithms have been
implemented in the computer algebra system Singular.
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1 Non-Commutative Gröbner Bases

The goal of this section is to introduce Gröbner bases of ideals of the free algebra
K〈X〉. Most of this chapter is basic knowledge and well studied (see for exam-
ple [Ufn98], [Coh07], [GP02]). However, this knowledge is needed for a proper
understanding of most computations in non-commutative algebras, and of great
relevance for factor algebras.

1.1 Notations and Orders

Throughout this chapter let K be a field and X be the free monoid on n generators,
denoted by x1, . . . , xn.
We define the free algebra as the monoid ring

K〈X〉 := {
∑

i∈I

αimi | αi ∈ K, mi ∈ X, I an arbitrary index set,

only finitely many αi 6= 0}
and call the elements of K〈X〉 polynomials and the elements of X embedded in
K〈X〉 together with the identity 1 monomials.
A subset I ⊆ K〈X〉 is called (two-sided) ideal of K〈X〉, written I E K〈X〉, if

1. 0 ∈ I

2. r, s ∈ I ⇒ r + s ∈ I

3. r ∈ K〈X〉, s ∈ I ⇒ rs ∈ I, sr ∈ I

An ideal I is called proper, if I 6= K〈X〉 and I 6= 〈0〉.
A set G ⊂ I is called generating set, written I = 〈G〉, if ∀s ∈ I ∃gi ∈ G, ri, li ∈
K〈X〉 : s =

∑

i

∑

j

li,jgiri,j. If there exists a finite generating set, I is called

finitely generated. Since K is a field there is no loss of generality to assume that
all polynomials of a given generating set are monic.

1.1 Definition. An (strict total) ordering < is a total, transitive and asymmetric
relation on X, that is

• If a < b then ¬(a > b) (asymmetry);

• If a < b and b < c then a < c (transitivity);

• Either a < b or b < a ∀a, b ∈ X, a 6= b (totality).
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1.2 Definition. A total ordering < on X is called a

• well ordering, if every non-empty subset of X has a least element with
respect to <. In particular, 1 < x ∀x ∈ X.

• reduction ordering, if for all m1, m2, l, r ∈ X with m1 < m2 we have lm1r <
lm2r.

• monomial ordering, if it is a well ordering and a reduction ordering.

Note that for a reduction ordering we have if m, n ∈ X are such that n divides
m, that is, if there exists l, r ∈ X with m = lnr, denoted by n | m, then we have
n < m, because for 1 < l, r ∈ X we have n = 1n < ln = ln1 < lnr = m.
With a given ordering we can write each polynomial f ∈ K〈X〉 uniquely as
f =

∑k
i=1 cimi, such that ci ∈ K and mi ∈ X with m1 < · · · < mk. In this work

we will always assume that < is a monomial ordering (for existence see 1.4).

1.3 Definition. Given an ordering <, we define the leading monomial of a poly-
nomial f =

∑k
i=1 cimi 6= 0 as the maximum (with respect to <) of the set

{mi | ci 6= 0}. and denote it by lm(f). Also we call the coefficient of lm(f)
the leading coefficient, denoted by lc(f) and we define the leading term of f as
lt(f) = lc(f) · lm(f).
Finally we will denote with L(〈I〉) the leading ideal of an ideal I, which is the
ideal generated by the leading monomials of I.

1.4 Example. Without loss of generality, we can always assume that x1 < x2 <
. . . < xn. Then we have the following two examples of monomial orderings:

• Let µ, ν ∈ X, such that µ = xj1xj2 · · ·xjk
, ν = xl1xl2 · · ·xl

k̃
. Then we have:

µ <lex ν ⇐⇒ ∃1 ≤ i ≤ min{k, k̃} : xjw
= xlw ∀w < i ∧ xji

< xli

This is called the (left) lexicographical ordering.

• Take µ, ν as before. We define:

µ <gradlex ν ⇐⇒ k < k̃ or

k = k̃ and µ <lex ν.

This is called the graded or degree lexicographical ordering.

1.5 Definition. For a given ordering < we define the multidegree of a monomial

m = xk1

i1
· · ·xkj

ij
as the k-tuple (k1, . . . , kj) and the total degree as

j∑

r=1

kr.

The (total) degree of a polynomial f is defined as the (total) degree of its leading
monomial. We denote the total degree of f by degt(f) and the multidegree by
deg(f).
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1.2 Gröbner Bases and Normal Forms

1.6 Definition. Let G ⊂ K〈X〉\{0} and 〈G〉 =: I. A normal form of f ∈ K〈X〉
with respect to G is an element g ∈ K〈X〉 such that f − g ∈ I and either g = 0
or lm(gi) ∤ lm(g) ∀gi ∈ G. We denote a normal form of f with respect to G by
NF(f,G).
A subset G ⊂ I is called a Gröbner basis of I if the leading monomial of an
arbitrary element in I is a multiple of the leading monomial of an element in G.
Equivalently, G is a Gröbner basis if 〈{lm(g) | g ∈ G}〉 = L(I).

1.7 Remark. Note that a Gröbner basis always exists, since we can take G =
I \ {0}. This is due to the fact that we do not demand our Gröbner basis to be
finite. In fact there are some ideals, which do not posses a finite Gröbner basis,
cf. 1.38. One can easily see the relevance of Gröbner bases: If G is a Gröbner
basis of I then a normal form for f ∈ I is given by 0 and this is the only choice
we have. However, neither the normal form nor the Gröbner basis are unique in
general.

1.8 Example.

• If G is a Gröbner basis of an ideal I and G 6= I, then G̃ := G∪{g}, g ∈ I\G
is again a Gröbner basis.

• Take B := {x2} ⊂ 〈x2〉 E K[x1, x2] with the degree lexicographical ordering
with respect to x1 > x2 and consider f = x1. Then g1 = x1 and g2 = x1−x2

are both normal forms of f with respect to B. Note that B is already a
Gröbner basis for 〈x2〉.

Note that g2 has terms which are contained in L(I), which is the reason why we
have two different normal forms.

1.9 Definition. A normal form g =
k∑

i=0

aiti, ai ∈ K, ti ∈ X of f ∈ K〈X〉 with

respect to G is called reduced, if g is monic, that is, its leading coefficient is 1,
and if lm(gw) ∤ ti ∀i = 0, . . . , k, gw ∈ G. We often speak about the normal
form.

Before we solve our uniqueness problem, let us see the general idea on constructing
normal forms.

1.10 Definition. Let {gi | i ∈ J, J an arbitrary index set} = G ⊂ K〈X〉 and
〈G〉 =: I.

• Let τ̃i : X → K〈X〉 :

x 7→
{

A(lm(gi) − lc(gi)
−1gi)B, if x = Alm(gi)B for some A, B ∈ X

x otherwise

and let τi : K〈X〉 → K〈X〉 be the K-linear continuation of τ̃ . One calls τi

a reduction with gi.
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• Let f ∈ K〈X〉. One says that τi acts trivially on f , if the coefficient
of Alm(gi)B is zero in f for all A, B ∈ X. f is called irreducible, if all
reductions act trivially on f .
In other words τi(f) = f ∀i ∈ J.

1.11 Algorithm.

Input: An ideal I E K〈X〉 with a given generating set G = {gi | i ∈ J},
f ∈ K〈X〉

Output: g, a reduced normal form of f w.r.t. G

Set g = f .
while τi acts non-trivially on g for some i ∈ J do

g = τi(g);
end while;

return g;

1.12 Remark. By Definition 1.9, it is still not clear that the normal form is
unique and in fact it is not. This is due to the fact that G is an arbitrary
generating set and the construction of the normal form given in 1.11 depends on
the choice of the reductor.
Furthermore it is not guaranteed that Algorithm 1.11 will terminate. We have
to make further assumptions.

1.13 Definition.

• A finite sequence of reductions τi1 , . . . , τim is said to be final on f ∈ K〈X〉,
if τim ◦ · · · ◦ τi1(f) is irreducible.

• An element f ∈ K〈X〉 is called reduction-finite, if for any sequence {tij}∞j=1

of reductions there exists m ∈ N, such that τik acts trivially on τim ◦ · · · ◦
τi1(f) for every k > m.

• An element f ∈ K〈X〉 is called reduction-unique, if it is reduction-finite and
if its images under all final sequences are the same.

1.14 Example. It is a good idea to see what happens in the commutative case,
since it is a natural special case.
So assume R = K[x1, . . . , xn]. All the definitions from above can be imported to
R (in fact this is true for any sub- or factor algebra of K〈X〉, see for example
[GP02]).
Due to Hilbert’s basis theorem R is Noetherian, that is, every ascending chain of
ideals becomes stationary. Since for every f ∈ R we have deg(τ(f)) ≤ deg(f) for
any reduction τ .
So for any given sequence of reductions {τi}∞i=1 with respect to G we have an
ascending chain of ideals 〈f + G〉 E 〈τ1(f) + G〉 E 〈τ2 ◦ τ1(f) + G〉 E . . ., which
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becomes stationary, that is there exists m ∈ N, such that 〈τim̃ ◦· · ·◦τi1(f)+G〉 =
〈τim ◦ · · · ◦ τi1(f) + G〉 ∀m̃ ≥ m. So any f ∈ R is reduction-finite.
Furthermore f is reduction-unique, if and only if G is a Gröbner basis. This is
due to the fact that every remainder after division with G equals zero.

1.15 Lemma. Let f ∈ K〈X〉 be reduction-finite. Then Algorithm 1.11 returns
a reduced normal form f̃ of f after finitely many steps.
If f is even reduction-unique, then its normal form does not depend on the choices
we have to make during the computation.

Proof: The termination of the algorithm is obvious. We have to show that f̃ is
in fact a normal form of f .
Therefore we have to show that f − τ(f) ∈ I for any reduction τ , because then
f − f̃ ∈ I = 〈G〉. Because of the definition of τ it is sufficient to prove the
statement for monomials, so assume f is a monomial. If τ(f) = f there is nothing
to prove, so assume otherwise, that is f = Alm(g)B for some A, B ∈ X, g ∈ G.
Since K is a field we may assume g is monic, as stated before. Therefore we have:
f − τ(f) = Alm(g)B − τ(Alm(g)B) = Alm(g)B − A(lm(g) − g)B = A(lm(g) −
lm(g) + g)B = AgB ∈ 〈g〉 ⊂ I.
Assume f̃ is not a reduced normal form, that is there exists g ∈ G, such that
lm(g) | t for some monomial t occurring non-trivially in f̃ . But then t = Alm(g)B
for some A, B ∈ X and the reduction τg acts non-trivially on f̃ , which is a
contradiction.
The last statement is clear by definition of reduction-uniqueness. q.e.d.

Now we have the potential to compute normal forms, but it is somehow vague,
since we have to make many choices and cannot be sure about the uniqueness.
Therefore we want to find a special Gröbner basis, such that the choices we have
to make are minimal. First we note that a Gröbner basis is a special generating
set.

1.16 Lemma. Let G be a Gröbner basis of a given ideal I. Then I = 〈G〉.
Proof: Since G ⊂ I we have 〈G〉 ⊂ I, so take f ∈ I \ 〈G〉 with minimal
degree, that is f := min

deg(f̃)
{f̃ ∈ I \ 〈G〉} (the minimum exits because we assume

that < is a monomial ordering) and say without loss of generality that f is
monic. By the definition of a Gröbner basis there exists g ∈ G such that lm(g) |
lm(f), say lm(f) = Alm(g)B for some A, B ∈ X. Then f̃ = f − AgB ∈ I

and deg(f̃) < deg(f), so by minimality f̃ ∈ 〈G〉. But then f = AgB + f̃ =
AgB +

∑

p∈P⊂〈G〉

appbp ∈ 〈G〉, which is a contradiction. q.e.d.
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1.17 Definition. Let G ⊂ K〈X〉 and 〈G〉 =: I.

• G is called simplified or minimal , if lm(g) /∈ L(G \ {g}) ∀g ∈ G.

• G is called reduced Gröbner basis, if G is simplified, a Gröbner basis and
for every g ∈ G we have:

1. g is monic.

2. g − lm(g) is in reduced normal form with respect to I.

1.18 Remark. Note that we build the normal form with respect to I. This is only
a technical issue: in fact it would be absolutely equivalent, if we had demanded
a normal form with respect to G, since a Gröbner basis is a generating set and if
a monomial is divisible by some leading monomial of a polynomial contained in
I, then it is divisible by a leading monomial of an element of the Gröbner basis.
However, with this formulation the reduction of g − lm(g) does not depend on
the choice of the Gröbner basis.

1.19 Theorem. Fix an ordering ≤. For any ideal I E K〈X〉 consisting only of
reduction-finite elements there exists a unique reduced Gröbner basis.

Proof:

• Existence:

Let F be an arbitrary Gröbner basis. Without loss of generality we assume
that all elements of F are monic. If F is not simplified, there exists f ∈ F,
such that lm(f) ∈ L(F \ {f}), that is, F \ {f} is still a Gröbner basis.
By iterating this step we find a simplified Gröbner basis after a countable
number of steps.
Assume now F is a monic, simplified Gröbner basis and take f ∈ F. If
f − lm(f) is in reduced normal form we are finished. Otherwise we use
Algorithm 1.11 to get an element f̃ , which is the reduced normal form of
f − lm(f). (Note that the algorithm terminates, because I consists only of
reduction-finite elements). Replace f by g := lm(f) + f̃ and call the new
set G̃. Then G̃ is a simplified Gröbner basis, since lm(g) = lm(f). If we do
this iteratively we get a reduced Gröbner basis G after a countable number
of steps.

• Uniqueness:

Let G, G̃ be two reduced Gröbner bases. Take g̃ ∈ G̃ \ G. Since G is a
Gröbner basis of I we have lm(g̃) ∈ L(〈G〉) and g̃ =

∑

f

affbf for some

f ∈ 〈G〉. Assume lm(g̃) /∈ {lm(g) | g ∈ G}. Then there exists g ∈ G,
such that lm(g) | lm(g̃). But because G̃ is a Gröbner basis as well there
exists ˜̃g ∈ G̃, such that lm(˜̃g) | lm(f), which implies that lm(˜̃g) | lm(g̃), and
therefore, since G̃ is reduced, we have lm(˜̃g) = lm(f) = lm(g̃). Repeating

11



this step for an g ∈ G \ G̃ we get {lm(g̃) | g̃ ∈ G̃} = {lm(g) | g ∈ G}. Take
g̃ ∈ G̃, g ∈ G, such that lm(g) = lm(g̃). Because g̃ − g ∈ I there exists
f ∈ G, such that lm(f) | lm(g̃ − g). Because of deg(g̃ − g) < deg(g) we
have f 6= g and there exists g̃ 6= f̃ ∈ G̃, such that lm(f̃) = lm(f). Since
lm(f) does not divide any term of g, lm(g̃ − g) must be a term occurring
in g̃, say t̃. But then lm(f̃) = lm(f) | t̃, a contradiction to the assumption
that G̃ is reduced. q.e.d.

1.20 Corollary. Let G be a simplified Gröbner basis of I E K〈X〉 consisting
only of reduction-finite elements. Then all elements of {g − lm(g) | g ∈ G} are
already reduction-unique.

Proof: This is a immediate consequence of Theorem 1.19. q.e.d.

1.21 Remark. The question arises, whether all elements of K〈X〉 are reduction-
unique with respect to a given reduced Gröbner basis, which would imply the
existence of a unique normal form. The answer is yes, but to prove this we need
some further knowledge.

1.3 The Gröbner Basis Algorithm

For this section we will always assume that our ideal I is finitely generated, due
to the fact that we want to do some computations, which would be quite difficult
if we start with an infinite generating set. Nevertheless this assumption is not
necessary. Note that even with a finite generating set we may get a Gröbner basis
which is infinite (see 1.38).
Again we may assume that all polynomials in a generating set are monic.

1.22 Definition. Let G = {g1, . . . , gω} ⊂ K〈X〉.
We call a polynomial f weak with respect to G, if f =

ω∑

k=1

∑

j

ck,jlk,jgkrk,j, where

ck,j ∈ K and lk,j, rk,j ∈ X such that lk,jlm(gk)rk,j ≤ lm(f) ∀k = 1, . . . , ω.
Let H ⊂ K〈X〉. A polynomial f is called reducible from H with respect to G,
if weakness with respect to G of all elements of H implies weakness of f with
respect to G.

Note that weakness is a special form of generating f with elements of G. Since it
is allowed to use the same generator more than one time it should be allowed for
weakness as well. For example the polynomial p := xy + yx + xyx ∈ 〈y〉 should
be weak with respect to {y}.
If one wants to avoid the twin-sum in the definition of weakness one can consider
the enveloping algebra K〈X〉 ⊗ K〈X〉op, where K〈X〉op denotes the opposite al-
gebra, that is, K〈X〉 endowed with the multiplication a ∗ b = b · a ∀a, b ∈ K〈X〉.
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Then K〈X〉 is a K〈X〉 ⊗ K〈X〉op module and the action of K〈X〉 ⊗ K〈X〉op on
K〈X〉 is given by:

K〈X〉 ⊗ K〈X〉op × K〈X〉 → K〈X〉 : (l ⊗ r, p) 7→ l · p · r

1.23 Definition. Let G = {gi | 1 ≤ i ≤ ω} be a set of monic polynomials. An
obstruction of G is a six-tuple (l, i, r; λ, j, ρ) with 1 ≤ i, j ≤ ω and l, r, λ, ρ ∈ X

such that lm(gi) ≤ lm(gj) and llm(gi)r = λlm(gj)ρ.
For any given obstruction we define the corresponding S-polynomial as
s(l, i, r; λ, j, ρ) = lgir − λgjρ.
A set D of polynomials is called basic for G if every S-polynomial of G is reducible
from D with respect to G.

1.24 Motivation. Starting with a generating set for I the set of all non-weak
S-polynomials will be a Gröbner basis.
This seems to be an easy way to compute a Gröbner basis, since one only has
to compute all S-polynomials and check if they are weak or not. This procedure
has the disadvantage that it would take forever, literally, since the set of all
obstructions is infinite. So our medium-term issue is to discard most of these
obstructions.

1.25 Lemma. Let G = {gi | 1 ≤ i ≤ ω} be a set of monic polynomials and
(l, i, r; λ, j, ρ) a weak obstruction, that is, the corresponding S-polynomial is weak
with respect to G. Then all obstructions (l̃, i, r̃; λ̃, j, ρ̃) with l̃ = w1l, r̃ = rw2,
λ̃ = w1λ and ρ̃ = ρw2, where w1, w2 are arbitrary monomials, are also weak.

Proof: Set s := s(l, i, r; λ, j, ρ) and s̃ := s(l̃, i, r̃; λ̃, j, ρ̃). Because the obstruction

is weak we can write s = lgir−λgjρ =
ω∑

k=1

∑

l

ck,llk,lgkrk,l with ck,l ∈ K,lk,l, rk,l ∈ X,

lk,llm(gk)rk,l ≤ lm(s) ∀k = 1, . . . , ω. Now we have s̃ = l̃gir̃ − λ̃gj ρ̃ = w1(lgir −
λgjρ)w2 = w1sw2 = w1(

ω∑

k=1

∑

l

ck,llk,lgkrk,l)w2 =
ω∑

k=1

∑

l

ck,ll̃k,lgkr̃k,l with

l̃k,l = w1lk,l and r̃k,l = rk,lw2.
Furthermore we see that l̃k,llm(gk)r̃k,l ≤ w1lm(s)w2 = lm(s̃), which shows that s̃
is weak with respect to G. q.e.d.

So multiples of obstructions need not be considered. However the set we have to
consider is still infinite. But the lemma helps us to prove our claim in 1.24.

1.26 Theorem. For a set G of polynomials generating an ideal I of K〈X〉, the
following statements are equivalent:

(i) G is a Gröbner basis.

(ii) The reduced normal form of each polynomial in I is equal to 0.

(iii) Each S-polynomial of G is weak with respect to G.

13



(iv) The empty set is a basic set for G.

Proof:

(i) =⇒ (ii): Induction with respect to the monomial ordering <:
The normal form of 0 equals 0. Take 0 6= f ∈ I and assume f is monic. Since
G is a Gröbner basis there exists g ∈ G such that lm(g) | lm(f), that is,
∃l, r ∈ X : llm(g)r = lm(f). Because of f, g ∈ I we have f̃ := f − lgr ∈ I

and deg(f̃) < deg(f). By the induction hypothesis, the normal form of f̃ equals
zero and we obtain that the normal form of f equals zero as well.
(ii) =⇒ (iii): Suppose s = s(l, i, r; λ, j, ρ). By assumption the normal form of s
with respect to G equals 0, so s is weak by the definition of weakness.
(iii) ⇐⇒ (iv): Clear by definition.
(iii) =⇒ (i): Suppose f ∈ I, but lm(f) /∈ 〈{lm(g) | g ∈ G}〉 and lm(f) is
minimal with respect to <. Now there are at least two polynomials gi, gj ∈ G,
gi 6= gj , such that f =

∑

l

ci,lli,lgiri,l +
∑

l

cj,llj,lgjrj,l +
∑

gk∈G,gk 6=gi,gj

∑

l

ck,llk,lgkrk,l,

ck,l ∈ K, lk,l, rk,l ∈ X ∀k and t := lm(
∑

l

li,lgiri,l) = lm(
∑

l

lj,lgjrj,l) > lm(f).

Now by assumption s := s(lm(li,l), i, lm(ri,l); lm(lj,l), j, lm(rj,l)) is weak and s =
∑

k∈J

∑

l

ak,lgkbk,l, where J is an arbitrary set of indices and gk ∈ G, such that all

leading terms of gk are smaller than t. Then f =
∑

l

lc(li,lri,l)lc(lj,lrj,l)
−1lj,lgjrj,l +

∑

l

lc(li,lri,l)
∑

k∈J

ak,lgkbk,l +
∑

h 6=i,j

∑

l

lh,lghrh,l is an expression of f with fewer sum-

mands with leading term equal to t. If we do this iteratively until we have only
one term equal to t left, we reach a contradiction and we can conclude that G is
a Gröbner basis. q.e.d.

Note that the generating set is not taken to be finite. If we do not enumerate the
polynomials in a generating set G, we often write (l, g, r; λ, p, ρ) for the obstruc-
tion of g, p ∈ G.
Now we focus on finding a finite set of obstructions, from which we can construct
a Gröbner basis. Therefore we introduce the concept of overlap.

1.27 Definition. We say two monomials t1, t2 ∈ X have overlap b ∈ X or overlap
at b ∈ X if there are a, c ∈ X such that t1 = ab and t2 = bc or t1 = ba and t2 = cb
or t1 = b and t2 = abc. If 1 is the only overlap between t1 and t2 we say the
monomials have no overlap. Equivalently the monomials are called coprime
An obstruction (l, i, r; λ, j, ρ) is said to have no overlap if there exists w ∈ X such
that llm(gi)r = llm(gi)wlm(gj)ρ or llm(gi)r = λlm(gj)wlm(gi)r.

1.28 Example. Suppose g1, g2 ∈ K〈x1, x2, x3〉 with lm(g1) = x1x2 and lm(g2) =
x2x3. Then the only overlap between these monomials is x2. It is easy to see,
that the obstruction (1, 1, xα

2x3; x1x
α
2 , 2, 1) has no overlap (take w = xα−1

2 ).

The more important question arises: Is the converse true?
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1.29 Lemma (Product Criterion). Let g1, g2 ∈ K〈X〉 be such that l1 := lm(g1)
and l2 := lm(g2) have no overlap. Then every obstruction (l, g1, r; λ, g2, ρ) with
l, r, λ, ρ ∈ X has no overlap.

Proof: Since l1 and l2 have no overlap lm(lg1r) = lm(λg2ρ) implies that either
ll1 and λ or l1r and ρ have overlap l1.
Assume the first case is true. Then r and l2 overlap at l2, say r = l2r. Then
r = ρ and therefore ll1r = ll1l2r = ll1l2ρ which shows that (l, g1, r; λ, g2, ρ) has
no overlap.
Now if l1r and ρ overlap at l1 then l and λl2 have overlap l2 and l = ll2 = λl2.
Hence we get ll1r = λl2l1r and again we obtain that (l, g1, r; λ, g2, ρ) has no
overlap. q.e.d.

1.30 Theorem. Let G = {gi | i = 1, . . . , ω} ⊂ K〈X〉. Every obstruction without
overlap is reducible from an S-polynomial with overlap with respect to G.

Proof: Let b = (l, i, r; λ, j, ρ) be an obstruction without overlap and denote by
s its S-polynomial. Since llm(gi)r = λlm(gj)ρ we have either r = wlm(gj)ρ or
l = λlm(gi)w.
If the former is valid then we also have λ = llm(gi)w and by Lemma 1.25
b = (l, i, wlm(gj)ρ; llm(gi)w, j, ρ) is reducible from (1, i, wlm(gj); lm(gi)w, j, 1).
Therefore we assume l = ρ = 1.
Write gi =

∑

h

chth, gj =
∑

p

dpup with th, up ∈ X, ch, dp ∈ K \ {0}, such that

th > th+1 and up > up+1. Now s = gir − λgj = giwlm(gj) − lm(gi)wgj =
giw(gj −

∑

p,p 6=1

dpup)− (gi −
∑

h,h 6=1

chth)wgj =
∑

h,h 6=1

chthwgj −
∑

p,p 6=1

dpgiwup. Assume

c2t2wu1 = d2t1wu2, that is the leading terms t2wlm(gj) and lm(gi)wu2 of the
two summations cancel each other. Since t2 < t1 and u2 < u1 this only occurs
if c2 = d2 and there are v1, v2 ∈ X, such that t1 = t2v1 and u1 = v2u2 with
v1w = wv2. If w is a left divisor of v1, say v1 = wv′

1, then v2 = v′
2w, which

implies that v′
1 = v′

2 and therefore (1, i, wlm(gj); lm(gi)w, j, 1) is reducible from
(1, i, v′

1lm(gj); lm(gi)v
′
1, j, 1) by Lemma 1.25. If w is not a left divisor of v1, then

w has a selfoverlap, that is, w = v1w
′ = w′v2. and again we apply Lemma 1.25.

So we may assume w = 1 that is, b = (1, i, lm(gj); lm(gi), j, 1). We find

s = gilm(gj) − lm(gi)gj = lm(gi)lm(gj) +
∑

h,h 6=1

chthlm(gj) − lm(gi)lm(gj)

−
∑

p,p 6=1

lm(gi)dpup =
∑

h,h 6=1

chth(gj −
∑

p,p 6=1

dpup) −
∑

p,p 6=1

(gi −
∑

h,h 6=1

chth)dpup

= (
∑

h,h 6=1

chth)gj − gi(
∑

p,p 6=1

dpup) ∈ 〈gi, gj〉,

so s is weak with respect to G, which implies that it is reducible from G. q.e.d.
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The theorem states: If an S-polynomial s(l, gi, r; λ, gj, ρ) is not weak with respect
to G, then the leading monomials of the two polynomials gi and gj have an
overlap. This will help us to find a finite basic set.

1.31 Lemma. Let G = {gi | i = 1, . . . , ω} ⊂ K〈X〉. There is a finite basic set D

of S-polynomials of G, such that every S-polynomial of G in D corresponds to an
obstruction (l, i, r; λ, j, ρ) with overlap and with either one of the two parameters
{l, λ} and one of {r, ρ} equal to 1 or λ = ρ = 1.

Proof: We write s = s(l, i, r; λ, j, ρ), lm(gi) = m1 . . .mp and lm(gj) = n1 . . . nq

with mk, nk̃ ∈ X of degree 1, k = 1, . . . , p; k̃ = 1, . . . , q (this means that each mk

and nk̃ corresponds to an xi, i = 1, . . . , n). Now if s is not weak, then it must
have some overlap. In particular, lm(gi) and lm(gj) must overlap. This can occur
in three ways:

m1 · · ·mh = nq−h+1 · · ·nq, 1 ≤ h < p,

n1 · · ·nh = mp−h+1 · · ·mp, 1 ≤ h < p,

m1 · · ·mp = nh+1 · · ·nh+p, 1 ≤ h < q − p.

In particular, for every two polynomials the number of possible overlaps is finite.
We show that D needs to contain at most one S-polynomial for every overlap,
which completes the proof. Assume lm(gi) and lm(gj) have nontrivial overlap. To
satisfy the equation llm(gi)r = λlm(gj)ρ, the factors that are not in the overlap
have to be in λ or ρ respectively in l or r (cf. proof of Lemma 1.29). So for every
obstruction corresponding to some overlap the monomials llm(gi)r and λlm(gj)ρ
have to be equal to l̃wr̃ and λ̃wρ̃, respectively, with w equal to

w = n1 · · ·nq−hlm(gi) = lm(gj)mh+1 · · ·mp,

w = lm(gi)nh+1 · · ·nq = m1 · · ·mp−hlm(gj),

w = n1 · · ·nhlm(gi)nh+p+1 · · ·nq = lm(gj),

in the respective cases. Now by Lemma 1.25 these obstructions are weak except
when l̃ = r̃ = λ̃ = ρ̃ = 1. So for every possible overlap there exists a single
S-polynomial such that all other obstructions are reducible from it with respect
to {gi, gj}; in the respective cases, the corresponding obstructions are

(n1 · · ·nq−h, i, 1; 1, j, mh+1 · · ·mp),
(1, i, nh+1 · · ·nq; m1 · · ·mp−h, j, 1),
(n1 · · ·nh, i, nh+p+1 · · ·nq; 1, j, 1).

This means that s need only to be in D if at least one of the two parameters l
and λ and one of the two parameters r and ρ are equal to 1. q.e.d.

We refer to the S-polynomials of g and g̃, we have to consider, as S(g, g̃).

We distinguish between three kinds of obstructions:
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1.32 Definition. Let s = (l, i, r; λ, j, ρ) be an obstruction of the set G = {gi |
1 ≤ i ≤ ω} of monic polynomials in K〈X〉.

• If l = 1, then we call s a right obstruction.

• If l 6= 1 and r = 1, then we call s a left obstruction.

• If s is not a right nor a left obstruction and λ = ρ = 1, then we call s a
central obstruction.

1.33 Corollary. Let G be a set of polynomials in K〈X〉 and let D be the set of
all non-zero normal forms of S-polynomials with respect to G corresponding to
all left, right and central obstructions of G. Then D is a basic set for G.

Proof: This is exactly the statement of 1.31. q.e.d.

In Definition 1.32 the restriction to a finite set G is not necessary, since an
obstruction includes only two polynomials. However, as stated before, for “real-
life” computations finiteness is required and so we will assume for the rest of this
section that G = {gi | 1 ≤ i ≤ ω}.
The overlaps given in 1.32 are also called ambiguities, since Bergman used this
term in his famous work [Ber78]. Because one of the goals of this work is to
translate the Diamond Lemma into a modern language we will stick to the term
overlap. But before we come to this matter we introduce an algorithm that
computes a reduced Gröbner basis.

1.34 Definition. Let I be a two-sided ideal of K〈X〉 and let G, D be subsets
of K〈X〉. We say that (G,D) is a partial Gröbner pair for I if the following
properties are satisfied:

1. All polynomials in G ∪ D are monic.

2. G is a generating set of I.

3. Every element of D belongs to I and it is in normal form with respect to
the polynomials in G.

4. The set D is basic for G.

5. For every f ∈ G the normal form with respect to G∪D of the normal form
with respect to G \ {f} equals zero.

1.35 Remark. Let I be a two-sided ideal in K〈X〉 and let (G,D) be a partial
Gröbner pair for I. If D is the empty set, then G is a Gröbner basis.

Since K〈X〉 is not Noetherian, for example the ideal 〈x1x
n
2x1 | n ∈ N〉 can not

be finitely generated, our algorithm may not terminate in all cases. However, we
will see later that we can use this algorithm to get some important results after
finitely many steps.
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1.36 Algorithm.

Input: a (finite) generating set G for I E K〈X〉
Output: a reduced Gröbner basis for I

Compute all non-zero normal forms of S-polynomials with respect to G corre-
sponding to all left, right and central obstructions of G and call the resulting
set D. Then (G,D) is a partial Gröbner pair. Construct a new partial Gröbner
pair (G̃, D̃) as follows:

1. Take f ∈ D and set G̃ = {g1, . . . , gω, gω+1 := f}.
2. Compute the left, right and central obstructions of G̃ of the form

(l, i, r; λ, ω + 1, ρ) and (l, ω + 1, r; λ, j, ρ) for certain i, j ∈ {1, . . . , ω} and
l, r, λ, ρ ∈ X and put the non-zero normal forms of their S-polynomials
with respect to G∪D in D, such that D becomes a basic set for G̃. Call
this new basic set D̃.

3. For each i ∈ {1, . . . , ω} compute the normal form g′
i with respect to

G̃ \ {gi} of gi. If g′
i = 0 remove gi from G̃. Otherwise, if g′

i is distinct
from gi,

a) replace gi by g′
i;

b) compute the left, right and central obstructions of the new G̃ in-
volving g′

i;

c) if the normal form with respect to G̃ ∪ D̃ of an S-polynomial of
such an obstruction is non-zero then add its normal form to D̃.

4. Replace each d ∈ D̃ by its normal form with respect to (G̃ ∪ D̃) \ {d}.
1.37 Theorem. In the situation of 1.36, the ideal generated by the leading mono-
mials of G is strictly contained in the ideal generated by the leading monomials
of G̃. If D̃ = ∅ then G̃ is a Gröbner basis for I (and the routine stops).

Proof: First we have to show that (G̃, D̃) is a partial Gröbner pair, which means
we have to verify condition one to five of Definition 1.34.
Since all polynomials in G̃ and D̃ are normal forms, they are monic, we get
condition 1.
If gi ∈ G̃ adjusted as in step 4 of the algorithm, then the ideal generated by
{g′

i} ∪ (G \ {gi}) coincides with I, so we get condition 2.
Clearly all elements of D̃ belong to I and are in normal form with respect to G̃

and this is condition 3.
Because of 1.33, D̃ is a basic set for G and hence condition 4.
For every element g ∈ G̃ \ G, the normal forms of the newly computed central
obstructions of G involving g take care of condition 5.
That L(G) ⊂ L(G̃) is valid follows immediately from the construction we have
made.
The final assertion is a consequence of Remark 1.35. q.e.d.
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1.38 Example. For all examples we take the lexicographical ordering with
x1 > x2 > . . . > xn or x > y > z respectively.

• Take K〈x, y〉 and G1 = {xyx + y2}.
There is only one obstruction to consider, since the only central obstruction
are the trivial ones and every left obstruction is equal to a right obstruction,
namely (xy, 1, 1; 1, 1, yx) = xy3 − y3x. =⇒ D1 = {xy3 − y3x}.
Now G2 = {xyx + y2, xy3 − y3x}, since xy3 − y3x is in normal form with
respect to g1.
Because our new g2 only has trivial obstruction with itself, there is only
one new obstruction: (1, 1, y3; xy, 2, 1) = y5 + xy4x, which has normal form
0 with respect to G2, so G2 is a Gröbner basis for I = 〈G1〉.

• Take G = {xixj − xjxi | 1 ≤ i < j ≤ n} ⊂ K〈X〉. We claim that G is
already a Gröbner basis.
The only non-trivial overlaps are given by the polynomials xixj − xjxi and
xjxw − xwxj , where 1 ≤ i < j < w ≤ n. The S-polynomial can be
computed by (xixj − xjxi)xw − xi(xjxw − xwxj) = xixwxj − xjxixw which
reduces to zero, using the leading monomials of xixw − xwxi, xjxw − xwxj

and xixj − xjxi ∈ G.
Note that G generates the commutator ideal, so we have K[x1, . . . , n] =
K〈X〉/〈G〉.

• Let us consider the generating set B = {yzxy − xyzx, zxyz − xyzx, zxyz −
yzxy} ⊆ K〈x, y, z〉, which consists of braid relations (cf. [Gar07]). Then
the unique reduced Gröbner basis is given by G = {yzxy − zxyz, xyzx −
zxyz, xzxyz − zxyzy, yznxyz − zxyz2xn−1, xznxyz − zxyzyxn−1 | n ∈ N}.
Obviously, none of the elements of G is redundant.
To see that G is in fact a Gröbner basis one has to consider all pairs (gi, gj)
of elements of G and check if all possible obstructions of (gi, gj) vanish
to zero. We demonstrate this for w1 := yznxyz − zxyz2xn−1 and w2 :=
yzmxyz − zxyz2xm−1 for arbitrary n, m ∈ N. We only have to worry about
the right overlap, since n and m are arbitrary elements in N (so we can
exchange their places for the left overlap). Now w1 and w2 overlap at yz
and we have:
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(yznxyz − zxyz2xn−1)·zm−1xyz − yznx · (yzmxyz − zxyz2xm−1)

= − zxyz2xn−1zm−1xyz + yznxzxyz2xm−1

xzxyz−zxyzy−−−−−−−→ yzn+1xyzyzxm−1 − zxyz2xn−1zm−1xyz

yzn+1xyz−zxyz2xn

−−−−−−−−−−−→ zxyz2xnyzxm−1 − zxyz2xn−1zm−1xyz
xyzx−zxyz−−−−−−→ zxyz2xn−1zxyzxm−2 − zxyz2xn−1zm−1xyz
xyzx−zxyz−−−−−−→ zxyz2xn−1z2xyzxm−3 − zxyz2xn−1zm−1xyz

xz2xyz−zxyzyx−−−−−−−−−→ zxyz2xn−2zxyzyxm−2 − zxyz2xn−1zm−1xyz
xzxyz−zxyzy−−−−−−−→ zxyz2xn−3zxyzy2xm−2 − zxyz2xn−1zm−1xyz

xzm−1xyz−zxyzyxm−2

−−−−−−−−−−−−−→ zxyz2xn−3zxyzy2xm−2 − zxyz2xn−2zxyzyxm−2

xzxyz−zxyzy−−−−−−−→ 0.

1.4 The Diamond Lemma

We now state our version of the Diamond Lemma, which will give us a uniquely
determined normal form in certain situations. We will see that the assumptions
we have to make are mostly for ensuring the existence of a reduced Gröbner basis.

1.39 Definition. An ordering < is said to fulfill the descending chain condition
if every descending chain of monomials (with respect to <) becomes stationary.
Equivalently one says that < is Artinian or well-founded.

Note that if < fulfills the descending chain condition every element of K〈X〉 is
reduction-finite. Recall that we always assume we have a monomial ordering, in
particular, we have a well-ordering, which implies that the ordering is Artinian.

1.40 Lemma. For a given subset G ⊂ K〈X〉 we have:

(i) The set of reduction-unique elements of K〈X〉 (w.r.t. G) forms a K-subspace
of K〈X〉 and we have an K-linear map rG from this subspace into K〈X〉irr,
the set of all irreducible elements of K〈X〉.

(ii) Suppose a, b, c ∈ K〈X〉 are such that for all monomials A, B, C occur-
ring with non-zero coefficient in a, b, c, respectively, the product ABC is
reduction-unique. (In particular this implies that abc is reduction-unique.)
Let r be any finite composition of reductions. Then ar(b)c is reduction-
unique, and rG(ar(b)c) = rG(abc).
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Proof:

(i) Define rG as the linear continuation of the map, that maps any given
reduction-unique element to its uniquely determined reduced normal form.
Let a, b ∈ K〈X〉 be reduction-unique and take k ∈ K. Then ka + b is
reduction-finite, since reductions are linear maps and a and b are reduction-
finite.
Let r be a composition of reductions, such that r is finite on ka + b. Since
a is reduction-unique there exists a composition with reduction r′, such
that r′r(a) = rG(a) and similar there is r′′, such that r′′r′r(b) = rG(b).
Because r(ka + b) is irreducible, we have r(ka + b) = r′′r′r(ka + b) =
k · r′′r′r(a) + r′′r′r(b) = krG(a) + rG(b) and our claim follows.

(ii) By (i) it suffices to prove the claim for a, b, c ∈ X and a single reduction r.
But then we have ar(b)c = r(abc) and hence it is reduction-unique if and
only if abc is, with the same reduced normal form. q.e.d.

Again the only challenge we meet is given by monomials involving an overlap:
Assume we have three monomials A, B, C and consider AB and BC, such that
these monomials have overlap B. Recall that reductions were defined for mono-
mials. Therefore there might exist a reduction for AB and a different one for BC
(assume A 6= 1 6= C), say τ and σ. Then τ(ABC) 6= σ(ABC) and we have two
different ways to reduce ABC.

1.41 Definition. Assume A, B, C ∈ X. Consider AB and BC and let τ be a
reduction on AB and σ be an reduction on BC. The overlap is called resolvable
if there exist two compositions of reductions r and r′, such that r(τ(ABC)) =
r′(σ(ABC)).
This is also known as the diamond condition.

1.42 Remark. The name diamond condition is taken from the field of graph
theory, where the Diamond Lemma was stated first. It refers to the fact that
for every two different edges τ, σ starting from the same vertex v there will be
paths r and r′ such that r ◦ τ(v) = r′ ◦σ(v), thus the paths forming a diamond as
illustrated in Figure 1.1. But since graphs will be our matter in the next chapter
we stick to the formulation within terms of the free algebra.

1.43 Definition. Assume G ⊂ K〈X〉. The set of all reductions defined by G

(cf. 1.10) is called reduction system.
We refer to the overlaps occurring in the leading monomials of G as the overlap
of the reduction system G.

This is merely a renaming. The intention is rather obvious: With a given Gröbner
basis G we want to reduce all polynomials to a normal form, therefore we may
call G reduction system. The Diamond Lemma gives us now a condition for

21



ABC

p1 p2

nf

τ σ

r r′

Figure 1.1: The Diamond Graph

uniqueness of the reduced normal form, namely the diamond condition. Recall
that we have defined the normal form with respect to an arbitrary subset of
K〈X〉.
However in general the term reduction system depends on the chosen ordering:
If we have two different orderings < and ≺ on K〈X〉 the leading monomials of
G with respect to < may be different from the ones with respect to ≺ and hence
we have different reductions. Luckily, the Diamond Lemma states that if the
overlaps are resolvable with respect to one Artinian ordering they are resolvable
with respect to any Artinian ordering.

1.44 Theorem (Diamond Lemma).
Let G be a reduction system and < an Artinian ordering. Then the following

conditions are equivalent:

(i) All overlaps of G are resolvable.

(ii) All overlaps of G are resolvable with respect to <.

(iii) All elements of K〈X〉 are reduction-unique under G.

Proof: Since the implications “(iii) ⇒ (i) ⇒ (ii)” are obvious we only have to
prove “(ii) ⇒ (iii)”.
So assume (ii). Because the reduction-unique elements form an ideal of K〈X〉 we
only have to prove our claim for monomials D ∈ X. This is done by induction
over the degree of D (with respect to <).
For deg(D) = 0 there is nothing to show, so assume all monomials with degree less
than that of D are reduction-unique, that is K〈X〉<D := {f ∈ K〈X〉 | deg(f) <
deg(D)} ⊆ Im(rG). Let r, r′ be two reductions acting non-trivially on D. We
want to show rG(r(D)) = rG(r′(D)).

• Assume D = LABCM , r = rAB and r′ = rBC , which corresponds to the
case that the monomials we use to reduce D have a “right overlap”. Then
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we have r(D) − r′(D) = L(fABC − AfBC)M , where fm is the image of
the monomial m under the corresponding reduction. By condition (ii) we
have fABC − AfBC ∈ IABC , where IE, E ∈ X, denotes the ideal of K〈X〉
spanned by all elements FpH , F, H ∈ X, p ∈ K〈X〉, such that F lm(p)H <
E. Therefore we have L(fABC − AfBC)M ∈ ID. By assumption ID is
annihilated by rG, so we have rG(r(D)−r′(D)) = rG(r(D))−rG(r′(D)) = 0
as required.

• The case D = LABCM , r = rB and r′ = rABC is completely analogous.

• Finally, let D = LABCM , r = rA and r′ = rC , where A 6= C are disjoint
words, that is, the monomials have no overlap at all. By Lemma 1.40
(ii) we know that rG(LfABCM) = rG(LABfCM), which completes the
proof. q.e.d.

1.45 Corollary. Let G be a reduced Gröbner basis and < an Artinian ordering.
Then for every element of K〈X〉 there exists a unique reduced normal form with
respect to G.

Proof: Let g1, g2 ∈ G such that m1 := lm(g1) = AB, m2 := lm(g2) = BC for
some monomials A < B < C ∈ X, that is, g1 and g2 have an overlap (due to the
fact that G is reduced this is the only overlap that can occur). Then we have
Ag2 − g1C := g3 ∈ G or g3 = 0. Denote by τi the reduction with gi.

• Assume g3 = 0. Then we have τ1(ABC)− τ2(ABC) = m1C −g1C −Am2 +
Ag2 = m1C

︸︷︷︸

=ABC

− Am2
︸︷︷︸

=ABC

+ Ag2 − g1C
︸ ︷︷ ︸

=0

= 0. So the overlap is resolvable.

• Assume g3 ∈ G. Again we get τ1(ABC)− τ2(ABC) = m1C −g1C −Am2 +
Ag2 = Ag2 − g1C

︸ ︷︷ ︸

=g3

which can be reduced to zero by g3, showing that this

overlap is resolvable.

Now 1.44 is applicable and our claim is proven. q.e.d.

1.46 Remark. So we got the uniqueness of the reduced normal form. Note
that with an Artinian ordering, we will always have a reduced normal form and
may apply Algorithm 1.11 to compute it. However, even with this setup our
reduced Gröbner basis may be infinite and Algorithm 1.11 has to check infinitely
many reductions, even though only finitely many of them act non-trivially. So
termination is not guaranteed, not to mention that “after finitely many steps”
does not imply “computable in an acceptable amount of time”. Some tricks to
deal with this are presented in the next section.
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1.5 Truncated Gröbner Bases

Our goal for this section is to see how much information we can gather out of a
part of a Gröbner basis. For this we first have to define what a part of a Gröbner
basis is.

1.47 Definition. Let G be a set of polynomials such that degt(g) ≤ q ∀g ∈
G and some q ∈ N. In Algorithm 1.36 discard every obstruction with an S-
polynomial of total degree greater than q. If the algorithm returns the set Gq,
we call Gq a truncated Gröbner basis of degree q.
Let B be a Gröbner basis for G and G̃ ⊂ G. We call G̃ a partial Gröbner basis,
if it is already a Gröbner basis for the ideal Ĩ := 〈G̃〉.
Since 1.36 always computes a reduced Gröbner basis, a truncated Gröbner basis
will always be reduced. Note that a truncated Gröbner basis does not necessarily
need to be a subset of our reduced Gröbner basis. But since the algebra K〈X〉 has
only finitely many variables there are only finitely many monomials of total degree
≤ q (up to scaling), so the “truncated” version of the algorithm will terminate.
It is clear, that 〈Gq〉 = 〈G〉, since Algorithm 1.36 does not change the generated
ideal. So we may use Gq to get to know more about the Gröbner basis we want
to compute.

1.48 Lemma. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of degree
q of 〈B〉. If max{degt(g) | g ∈ Gq} ≤ q

2
then Gq is a Gröbner basis of the ideal

generated by B.

Proof: Define m := max{degt(g) | g ∈ Gq}. Since 〈B〉 = 〈Gq〉 we only need to
show: Every S-polynomial of obstructions of polynomials in Gq is of degree at
most 2m − 1, which implies the claim.
Take gm ∈ Gq such that degt(gm) = m. Take an arbitrary gi ∈ Gq, such that
(l, i, r; λ, m, ρ) is a left, right or central obstruction.
Note that degt(gi) ≤ degt(gm) ∀gi ∈ B, so all obstructions we need to consider
are of the form (l, i, r; λ, m, ρ).
Because of 1.30 we may assume that lm(gi) and lm(gm) have overlap b 6= 1.

1. Assume lm(gi) = ab and lm(gm) = bc with degt(b) ≥ 1.
Clearly (1, i, c; a, m, 1) is an obstruction and the induced S-polynomial is of
degree at most 2m − 1, since b is not a constant.
Let (1, i, r; λ, m, ρ) be a right obstruction. Since lm(gir) = lm(λgmρ) ⇔
ablm(r) = lm(λ)bclm(ρ) we get lm(λ) = a and lm(r) and clm(ρ) have overlap
c. So s(1, i, r; λ, m, ρ) = gicr̃ − agmρ̃ for some r̃, ρ̃ ∈ K〈X〉, which is weak
with respect to Gq ∪ {s(1, i, c; a, m, 1)} by the definition of weakness.
Now let (l, i, 1; λ, m, ρ) be a left obstruction.
As before we get s(l, i, 1; λ, m, ρ) = l̃gic− λ̃agm, which is weak with respect
to Gq ∪ {s(1, i, c; a, m, 1)}.
By assumption there will not be any central obstruction.
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2. The case gi = ba and gm = cb is completely analogous to part 1.

3. Because the degree of gm is maximal, the last case we have to study is
gm = agib. But this would imply that gm is weak with respect to Gq \ {gm}
which is a contradiction to the assumption that Gq is a truncated Gröbner
basis. q.e.d.

1.49 Corollary. If Gq is a truncated Gröbner basis, then H := {p ∈ Gq |
degt(p) ≤ ⌊ q

2
⌋} is a partial Gröbner basis for 〈Gq〉.

Proof: Clear by 1.48. q.e.d.

Provided there exists a finite Gröbner basis, this leads to a way to compute the
whole Gröbner basis starting with a truncated one, by iteratively increasing the
degree bound.

1.50 Algorithm.

Input: A (finite) truncated Gröbner basis Gq for I = 〈Gq〉
Output: A reduced Gröbner basis for I

(⋆) p := max{degt(g) | g ∈ Gq}
Apply the truncated version of Algorithm 1.36 to Gq with degree bound 2p−1
and call the result G2p−1

if p = max{degt(g) | g ∈ G2p−1} then

return G2p−1

else: go to (⋆)
end if

1.51 Remark. It is obvious that 1.50 terminates, if there exists a finite Gröbner
basis, and that it will return this Gröbner basis of I.
The proof of Lemma 1.48 states that if we construct an S-polynomial we will lose
at least one degree to the overlap, since it is not trivial. This illustration shows
us that our lemma includes only the worst case. In fact most of the time we will
not have to double our q for the truncated Gröbner basis, as the following lemma
states:

1.52 Lemma. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of degree q of
B. Take g1 ∈ Gq of degree m, and g2 ∈ Gq of maximal degree, say o, such that g2

has a non-trivial and non-central overlap with g1. Define l := lcm(lm(g1), lm(g2)),
where lcm denotes the least common multiple, that is lcm(lm(g1), lm(g2)) :=
max
degt(b)

{b ∈ X | lm(g1) and lm(g2) have overlap b} and set p := degt(l). Then

m + 1 ≤ p ≤ m + o − 1.

Proof: Assume lm(g1) = ab and lm(g2) = bc for some a, b, c ∈ X, which cor-
responds to a right obstruction. Since the overlap is non-trivial, none of the
monomials a, b, c equal one, so they are all of positive degree. Therefore l = abc
is of degree p = degt(abc) = degt(g1) + degt(c) ≥ m + 1 on the one hand and on
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the other p = degt(abc) = degt(ab) + degt(c) ≤ degt(ab) + degt(bc) = m + o.
By relabeling g1 and g2 we get the case of a left obstruction as above. q.e.d.

1.53 Proposition. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of
degree q of B. Take g1 ∈ Gq of degree m, and g2 ∈ Gq of maximal total degree,
say o, such that g2 has any non-trivial overlap with g1. The overlap may have
total degree p.
If we can write g1 = lm(g1) + g̃1, degt(g̃1) = m̃ ≤ m and g2 = lm(g2) +
g̃2, degt(g̃2) = õ ≤ o, then the total degree of the normal form of any S-
polynomial of Gq is at most m′, where m′ = max{m̃(o − p), õ(m − p)}.
Proof: The only two obstructions we need to consider are (1, 2, c; a, 1, 1) and
(c, 2, 1; 1, 1, a), as seen in the proof of Lemma 1.48. In the first case, we have

degt(c) = degt(g1) − degt(b) = m − p, degt(a) = degt(g2) − degt(b) = o − p.

Since the leading terms of g1 and g2 cancel each other, we have

degt((1, 2, c; a, 1, 1)) ≤ max{m̃(o − p), õ(m − p)}.

For the second case we get analogously:

degt((c, 2, 1; 1, 1, a)) ≤ max{m̃(o − p), õ(m − p)}.

q.e.d.

The bound given in Proposition 1.53 is again not strict: It determines the highest
total degree p of all S-polynomials. Therefore, we have to compute a Gröbner
basis at least up to degree p. But if all S-polynomials of total degree p reducing
to zero the degree bound needed is in fact lower.
However, 1.53 can be used to enhance Algorithm 1.50 in an obvious way:

1.54 Algorithm.

Input: A truncated Gröbner basis Gq for I = 〈Gq〉
Output: A reduced Gröbner basis for I

(⋆) Set:

p := max{degt(m) | m = lm(S(g, g̃)), (g, g̃) ∈ Gq × Gq,

g and g̃ have non trivial overlap}

for g ∈ {g̃ ∈ Gq | degt(g̃) = p} do

pg := max{p + dg̃ − pg,g̃ | dg̃ = degt(g̃),

pg,g̃ = min{o | g and g̃ have overlap of total degree o},
g̃ ∈ Gq}
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end for

Set p = max{pg | g ∈ {g̃ ∈ Gq | degt(g̃) = p}}
if p ≤ q then

return Gq

else: Apply the truncated version of Algorithm 1.36 to Gq with degree
bound p and call the result Gp

if Gp = Gq then

return Gp

else: Set Gq = Gp and go to (⋆)
end if

end if

1.55 Remark. Algorithm 1.54 will be of great use in the setup of the Letterplace
analogon. Here one always has a degree bound, at least in practice (cf. [LL09]).
So one always computes a truncated Gröbner basis. Therefore, the adaptive
algorithm is the only way to get to a complete Gröbner basis.
It is in no way clear, whether this algorithm will terminate. In fact the question
for termination is the question for finiteness of the Gröbner basis. In general, if
the Gröbner basis is infinite, we do not have any possibility to determine that,
whereas if the Gröbner basis is finite the Algorithm 1.54 will terminate.
However, there are some situations, when we can decide whether the Gröbner
basis will be finite or not, as we will see in 2.40.

1.6 The Letterplace Approach

It is a well known fact that there exists a one to one correspondence between all
ideals J E K[X] and some ideals I E K〈X〉. So the question arises, if there is
an ideal J in some commutative ring K[Y] for each I E K〈X〉, such that we can
construct a one to one correspondence between those ideals and especially their
Gröbner bases.
Roberto La Scala and Viktor Levandovskyy introduced the Letterplace ring (cf.
[LL09]), which provides a commutative analogon of the free algebra. The basic
idea, going back to Richard Feynman and Gian-Carlo Rota, is pleasingly simple:
one enumerates the variables occurring in a monomial by their position in the
monomial. Then one may commute the variables.
In this section we will mainly follow [LL09].

1.56 Definition. We call X and P ⊆ N0 respectively the set of letters
and places. We write for the elements of the product set X × P: xi(j) :=
(xi, j). Furthermore we denote by K[X|P] the polynomial ring in the commuting
variables xi(j) and by [X|P] the set of all monomials in K[X|P].
Let µ = (µk)k∈N, ν = (νk)k∈N be two sequences of non-negative integers with finite
support. We can consider (µ, ν) as a multidegree for the monomials
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m = xi1(j1) . . . xir(jr) ∈ [X|P]. Precisely, we define µk = ♯{α | xiα = xk},
νk = ♯{β | jβ = k}.
1.57 Remark. If we define K[X|P]µ,ν to be the homogeneous component of de-
gree (µ, ν) we have K[X|P] =

⊕

µ,ν

K[X|P]µ,ν , so K[X|P] is a multigraded algebra.

By putting K[X|P]∗,ν =
⊕

µ

K[X|P]µ,ν and K[X|P]µ,∗ =
⊕

ν

K[X|P]µ,ν we obtain

that K[X|P] is also multigraded with respect to letter or place multidegrees only.

1.58 Example. We just want to see a simple example to visualize the Letterplace
analogon. So take xyx ∈ K〈x, y〉. Now introducing places we see that xyx
corresponds to x(0)y(1)x(2) = x(2)x(0)y(1) = y(1)x(2)x(0) and each of the three
Letterplace monomials has only xyx as inverse image.
Unfortunately, there are some elements we have no use for, because they do not
correspond to any monomial in K〈x, y〉, for example x(3)y(6)y(9) and x(0)y(0).

So we try to get rid of those elements.

1.59 Remark. The monoid N has a natural faithful action on the graded algebra
K[X|P] given by s · xi(j) = xi(j + s) ∀s ∈ N.

1.60 Definition. For each monomial m = xi1(j1) · · ·xir(jr) ∈ [X|P] we define
by sh(m) = min{j1, . . . , jr} the shift of m.
For each s, r ∈ N we denote by s · 1r the place-multidegree ν = (νk)k∈N such that

νk =

{

1, if s ≤ k ≤ s + r − 1.

0, otherwise.

For s = 0 we write simply 1r.
Define V =

⊕

n∈N

K[X|P]∗,1r , which is a subspace of K[X|P](0), the subspace of

K[X|P] generated by all monomials with shift 0.

1.61 Lemma. ι : K〈X〉 → V : xi1 · · ·xir 7→ xi1(0) · · ·xir(r − 1) is an iso-
morphism of vector spaces, which preserves letter-multidegrees and hence total
degrees of monomials.

Proof: By the definition of ι it is obvious that ι is a K-linear map. Moreover, we
have ι−1 : V → K〈X〉 : xi1(0) · · ·xir(r−1) 7→ xi1 · · ·xir and hence ι is bijective.
Since ι is K-linear we only have to show that ι preserves letter-multidegrees of
monomials, which is clear by definition of ι. q.e.d.

So the vector space V is a good candidate for a commutative correspondence of
the free algebra. Let us see what happens to an ideal in K〈X〉.

1.62 Definition. Let J be an ideal of K[X|P]. Then J is called

• place-multigraded, if J =
∑

ν

J∗,ν , where J∗,ν = J ∩ K[X|P]∗,ν .
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• shift-decomposable, if J =
∑

s

J(s), where J(s) = J ∩ K[X|P](s).

Clearly a place-multigraded ideal is also graded and shift-decomposable.

1.63 Lemma. Let J ⊂ K[X|P] be an ideal. Then J is shift-decomposable if and
only if J is generated by

⋃

s∈N

J(s).

Proof: The necessary condition is obvious. Assume now that J = 〈{mf | m ∈
[X|P], f ∈ J(s), s ∈ N}〉. Then, for t = min{sh(m), s} we have mf ∈ J(t) and
hence J =

∑

s

J(s). q.e.d.

1.64 Definition. Let J be a shift-decomposable ideal of K[X|P]. We say that
J is shift-invariant if s · J(t) = J(s+t) for all s, t ∈ N.

Note that J is shift-invariant if and only if s · J(0) = J(s).

1.65 Lemma. Let J ⊂ K[X|P] be an ideal. Then J is shift-invariant if and only
if J =

∑

s∈N

s · J(0).

Proof: Clearly we have the necessary condition. Assume now J =
∑

s

s ·J(0). We

have s · J(0) ⊂ J and s · J(0) ⊂ s ·K[X|P](0) = K[X|P](s) and hence s · J(0) ⊂ J(s).
Let f ∈ J(s). Since J =

∑

t∈N

t · J(0) we have necessarily f ∈ s · J(0). We conclude

that s · J(0) = J(s) and therefore J =
∑

s∈N

J(s). q.e.d.

1.66 Theorem. Let J be an ideal of K[X|P] an put I = ι−1(J ∩ V ) ⊂ K〈X〉.

• If J is a shift-invariant ideal, then I is a left ideal of K〈X〉.

• If J is a place-multigraded ideal, then I is a graded right ideal.

Proof: Assume J is shift-invariant and let f ∈ I, w ∈ X. Denote g = ι(f) ∈ J∩V
and m = ι(w). If degt(w) = s, we have ι(wf) = m(s · g) ∈ J ∩ V and therefore
wf ∈ I.
Suppose now that J is place-multigraded and hence graded. Since V is a graded
subspace, it follows that J ∩ V =

∑

d

(Jd ∩ V ) and then, setting Id = ι−1(Jd ∩ V )

we obtain I =
∑

d

Id. Let f ∈ Id, that is ι(f) = g ∈ Jd ∩ V . For all w ∈ X we

have that ι(fw) = g(d · m) ∈ J ∩ V , that is fw ∈ I. q.e.d.

1.67 Theorem. Let I be a left ideal of K〈X〉 and put I′ = ι(I). Define J =
〈 ⋃

s∈N

s · I′〉 ⊂ K[X|P]. Then J is a shift-invariant ideal. Moreover, if I is graded

then J is place-multigraded.
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Proof: From s · I′ ⊂ J(s) it follows that J is generated by
⋃

s∈N

J(s), that is J is

shift-decomposable. By definition one has J = 〈{m(t · f) | m ∈ [X|P], t ∈ N, f ∈
I′}〉. Then the vector space J(s) is spanned by the elements m(t · f) such that
min{sh(m), t} = s. In particular, J(0) is spanned by the elements m(t · f) where
min{sh(m), t} = 0. By acting with s, we obtain that s·J(0) is spanned by elements
of the form s · (m(t · f)) = (s · m)((s + t) · f), where m ∈ [X|P], t ∈ N, f ∈ I′,
such that min{sh(m), t} = 0 and therefore min{sh(s · m), s + t} = s. Since
s · K[X|P](0) = K[X|P](s) we conclude that s · J(0) = J(s).
Assume now that I is a graded ideal. Any element f ∈ I can be written as
f =

∑

d

fd, where fd ∈ I∩K〈X〉d. Put g = ι(fd) and gd = ι(fd). Then gd ∈ I′∩Vd.

For any s ∈ N one has that s · g =
∑

d

s · gd, where s · gd ∈ ·(I′ ∩ Vd) ⊂ J. Note

that all polynomials s · gd are homogeneous with respect to place-multigrading.
We conclude that J is generated by homogeneous elements and hence it is a
place-multigraded ideal. q.e.d.

1.68 Definition.

• Let I ⊂ K〈X〉 be a graded two-sided ideal. We denote by ι̃(I) the shift-
invariant place-multigraded ideal J ⊂ K[X|P] generated by

⋃

s∈N

s · ι(I), and

call J the Letterplace analogon of the ideal I.

• For a shift-invariant place-multigraded ideal J ⊂ K[X|P] we denote by
ι̃−1(J) the graded two-sided ideal I = ι−1(J ∩ V ) ⊂ K〈X〉.

• A graded ideal J ⊂ K[X|P] is called a Letterplace ideal if J is generated by
⋃

s,d∈N

s · (Jd ∩ V ). In this case, J is shift-invariant and place-multigraded.

1.69 Remark. The map ι : K〈X〉 → V induces a one-to-one correspondence ι̃
between graded two-sided ideals I of the free associative algebra K〈X〉 and the
Letterplace ideals J of the polynomial ring K[X|P].

So now we have finally found the correspondence for an ideal in K〈X〉. We are
now interested in generating sets and especially Gröbner bases. If we find a cor-
respondence we may find a Gröbner basis for a given ideal as follows: Starting
with a generating set for I E K〈X〉 we switch to the corresponding “Letterplace
generating set”, compute a “Letterplace Gröbner basis” with commutative meth-
ods and use then the correspondence again to get our desired Gröbner basis. In
this work we will only see the correspondence and accept the fact, that the Let-
terplace ring is a polynomial ring, so that commutative Gröbner theory may be
applied to it.

1.70 Definition. Let J be a Letterplace ideal of K[X|P] and H ⊂ K[X|P]. We
say that H is a Letterplace basis of J if H ⊂ ⋃

d∈N

Jd∩V and
⋃

s∈N

s·H is a generating

set of the ideal J.
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1.71 Theorem. Let I be a graded two-sided ideal of K〈X〉 and put J = ι̃(I).
Moreover, let G ⊂ ⋃

d∈N

Id and define H = ι(G) ⊂ ⋃

d∈N

Jd ∩ V . Then G is a

generating set of I as a two-sided ideal if and only if H is a Letterplace basis of
J.

Proof: Assume
⋃

s∈N

s · H is a basis of J, that is, J = 〈m(s · h) | m ∈ [X|P], s ∈
N, h ∈ H〉. Since J is place-multigraded, one has that J ∩ V = 〈m(s · h) ∈ V |
m ∈ [X|P], s ∈ N, h ∈ H〉. If d = degt(h) then m(s · h) = m1(s · h)((s + d) · m2),
where m1, m2 ∈ [X|P]∩V . By applying ι−1 we obtain that I = 〈w1gw2 | w1, w2 ∈
X, g ∈ G〉, that is G is a generating set of I as a two-sided ideal.
Assume now G generates I. By reversing the above argument, one has that
J ∩ V ⊂ U := 〈m(s · h) | m ∈ [X|P], s ∈ N, h ∈ H〉 ⊂ J. From s · (m(t · h)) =
(s · m)((s + t) · h) ∀s, t ∈ N, it follows that s · (J ∩ V ) ⊂ U for any s. We
conclude that J = U , because J is generated by

⋃

s∈N

s · (J ∩ V ). This implies the

claim. q.e.d.

So the correspondence for generating sets is rather simple. For the correspondence
of Gröbner bases, we have to do a little more work.

1.72 Definition. Let J be an ideal of K[X|P] and H ⊂ J. Then H is called a
(Gröbner) shift-basis of J if

⋃

s∈N

s · H is a (Gröbner) basis of J.

1.73 Remark.

1. If J has a shift-basis, then s · J ⊂ J ∀s ∈ N.

2. If J is a Letterplace ideal, then any Letterplace basis of J is a shift-basis,
but not generally a Gröbner shift-basis.

3. Let J ⊂ K[X|P] be an ideal and H ⊂ J. Then H is a Gröbner shift-basis
of J if and only if lm(H) is a shift-basis of L(J), the ideal generated by the
leading monomials of all elements of J.

1.74 Lemma. Let J ⊂ K[X|P] be a shift-invariant ideal. Then J(0) is a Gröbner
shift-basis of the ideal J.

Proof: Clearly J(0) is a shift-basis of J. Let f ∈ J(u)/{0}, g ∈ J(v)/{0}, f 6= g
and denote the S-polynomial s(f, g, ) = cmf − dng, where c, d ∈ K and m, n ∈
[X|P], such that lcm(lm(f), lm(g)) = mlm(f) = nlm(g). We have to show that
s(f, g) ∈ ⋃

s

J(s). If u = v this is trivial. Assume u < v. The variables of m come

from the leading monomial of g which has shift v. Therefore cmf has shift u and
no variable of the leading term of g has shift u. Then also dng is shift-uniform
with shift u and the same clearly holds for s(f, g) = cmf − dng. q.e.d.
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1.75 Remark. Before we can state the main theorem, we need a little clue: We
assume our given ordering is compatible with ι, that is, if we fix the orderings <
on K〈X〉 and ≺ on K[X|P] then v < w holds if and only if ι(v) ≺ ι(w) for any
v, w ∈ X. This is no restriction, since most choices of orderings are compatible
with ι.

1.76 Theorem. Let I E K〈X〉 be a graded two-sided ideal and put J = ι̃(I).
Moreover, let H be a Gröbner Letterplace basis of J and put G = ι−1(H ∩ V ) ⊂
⋃

d∈N

Id. Then G is a Gröbner basis of I as a two-sided ideal.

Proof: Let f ∈ Id and put f ′ = ι(f). Then there is m ∈ [X|P], s ∈ N, h ∈ H
such that lm(f ′) = mlm(s · h) = m(s · lm(h)). From f ′ ∈ Jd ∩ V and

√
νh =

1n, n ∈ N, it follows that νh = 1n, that is h ∈ H ∩ V . This implies that
lm(f ′) = m(s · lm(h)) = m1(s · lm(h))((s + n) · m2), where m1, m2 ∈ [X|P] ∩ V
and s = degt(m1). Since the orderings are compatible with ι, we obtain that
lm(f) = w1lm(g)w2, where g = ι−1 = (H), wi = ι−1(mi). q.e.d.

1.77 Remark. In 1.68 we demand that I is graded and that every element of
I is homogeneous. However, this is not too restrictive. In fact, it is well-known
that a Gröbner basis of any two-sided ideal I can be obtained via a Gröbner
basis of a homogenized version of I. Nevertheless, the work on a direct non-
homogeneous version of the Letterplace Gröbner basis algorithm, that is, without
homogenization, is in progress.
Since we will see at the beginning of the next chapter that we only need to study
the lead ideal in ordering to find a K-basis of the factor algebra this theory is
all we need, because all elements of the lead ideal are monomials and therefore
homogeneous.
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2 Factor Algebras

For a given ideal I we can consider the factor algebra K〈X〉/I := {f + I | f ∈
K〈X〉}, which is again a K-algebra via [f ]·[g] = [fg] and [f ]+[g] = [f +g] f, g ∈
K〈X〉, where [f ] = f + I. We will drop the brackets, whenever it is possible.

2.1 Motivation. For a given factor algebra A = K〈X〉/〈G〉, where G is a
Gröbner basis for I = 〈G〉 one is interested in the following questions:

1. Is dimK(A) < ∞?

2. If dimK(A) < ∞, compute dimK(A).

3. If dimK(A) < ∞, compute a K-basis for A.

4. Compute the (partial) Hilbert series (see 2.28) of A.

Why is one interested in computing the K-dimension of a factor algebra? Our
main goal is to prepare the computation of the Gel’fand-Kirillov dimension:
Let A be a finitely generated K-algebra. Then there exists a K-subspace V ⊂ A
such that A is generated by V as a K-algebra. V induces a standard finite
dimensional filtration {Ai|i ∈ Z} on A by setting Ai := {0} for i < 0, A0 :=

V 0 := K and Ai :=
i∑

j=1

V j for i > 0, where V j = 〈{
j∏

k=1

vk | vk ∈ V }〉.
Then the Gel’fand-Kirillov dimension is defined as

GK dim(A) = lim sup
i→∞

logi(dimK(Ai)).

2.1 A Basis for a Factor Algebra

Since K〈X〉 is a K-algebra, we can think of it as a K-vector space which has basis
X. In this section we are interested in a K-basis of K〈X〉/I for a given ideal
I E K〈X〉. This basis will not be unique, since it depends on our choice of the
representative of [f ] ∈ K〈X〉/I. So the first goal is to define a basis with some
nice properties. The Diamond Lemma 1.44 gives us a first hint.

2.2 Theorem (Diamond Lemma). Let G be a reduction system and < an mono-
mial ordering (in particular < has the descending chain condition), such that all
overlaps of G are resolvable with respect to <. Then the set of all irreducible
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monomials with respect to G is a basis of K〈X〉/〈G〉 (we will speak of the (mono-
mial) basis).

Proof: We will show that under the assumptions of 1.44 every element of K〈X〉
is reduction-unique if and only if the set of all irreducible monomials forms a
basis of K〈X〉/〈G〉.
Note that the latter statement is equivalent to K〈X〉 = K〈X〉irr ⊕ I as vector
spaces, where K〈X〉irr is the K-subspace spanned by all irreducible monomials.
Assume all elements are reduction-unique. Then rG (as in 1.40) is a projection
onto K〈X〉irr. Obviously ker(rG) ⊆ I, since every element is altered by an element
in I. By 1.40 we have rG(AgB) = rG(Alm(g)B)− rG(A(lm(g)− g)B) = 0 ∀g ∈
G, A, B ∈ X. Therefore we have I ⊆ ker(rG). By the first isomorphism theorem,
we have K〈X〉 = K〈X〉irr ⊕ I. Conversely assume K〈X〉 = K〈X〉irr ⊕ I and let
a ∈ K〈X〉 be reducible to b and b′ in K〈X〉irr. Then b − b′ ∈ K〈X〉irr ∩ I = {0},
showing that a is reduction-unique. q.e.d.

2.3 Corollary.

1. The basis B for K〈X〉/I as constructed in 2.2 is also a basis for K〈X〉/L(I).

2. dimK(K〈X〉/L(I)) = dimK(K〈X〉/I).

Proof:

1. The irreducible monomials with respect to I are precisely the irreducible
monomials with respect to L(I).

2. This is a direct consequence of item 1 and 2.2. q.e.d.

2.4 Remark. Note that the reduction induced by a monomial either acts trivially
on a monomial or the monomial can be reduced to zero with this reduction. In
order to find a basis for K〈X〉/I we can now proceed as follows: Given a (reduced)
Gröbner basis G for I we take only the leading monomials of G, which generate
L(I). Then we compute a monomial basis for K〈X〉/L(I), which will be a basis
for K〈X〉/I as well. However, this only works for computing a basis (and similar
computations, like determination of the K-dimension). If one is interested in
computations in the factor algebra, one has to consider the whole Gröbner basis.
For an example take the multiplication of two elements a, b ∈ K〈X〉/I. We then
have a · b = rG(ab).

2.2 Graphs and Trees

For our work with the factor algebra, it is useful to consider graphs and build up
some special kind of trees. Therefore we will do a short introduction to graph
theory.
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All of the following definitions are easily understandable and we refer to [Die05]
for further information. However this is all we need to know to understand the
next sections.

2.5 Definition. A graph G is a pair (V, E) of disjoint sets, where E ⊆ {{e, e′} |
e, e′ ∈ V }. We call v ∈ V a vertex and e ∈ E an edge.

The benefit we get from dealing with graphs is that they can be illustrated very
easily, as the following example shows.

2.6 Example. Take V = {1, . . . , 7} with the edges
E = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}. Now if we draw a point for each vertex
and a line between two vertices, whenever there is a edge between these vertices,
we can illustrate the graph as in Figure 2.1.

1

2

3

4

5

6

7

Figure 2.1: The Graph of Example 2.6

2.7 Definition. Let G = (V, E) be a graph.

1. We call G̃ = (Ṽ , Ẽ) a subgraph of G, if Ṽ ⊆ V and Ẽ ⊆ E.

2. A path in G is a subgraph P = (Ṽ , Ẽ) of the form Ṽ = {x0, x1, . . . , xk},
Ẽ = {{x0, x1}, {x1, x2}, {x2, x3}, . . . , {xk−1, xk}}, where xi 6= xj ∀1 ≤
i, j ≤ k, i 6= j. x1, . . . , xk−1 are called the inner points of P , k is the
length of P . x0 is sometimes called the starting- and xk the endpoint

of P . A cycle is a path with x0 = xk.

3. A graph G = (V, E) is called directed, if E ⊆ V × V .

To distinguish a directed graph in the illustration one often draws arrows instead
of lines, as pictured in Figure 2.2.
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7

Figure 2.2: The directed Graph of Example 2.6

2.8 Definition.

• A graph is called connected if for every two vertices x, y there exists a
path from x to y.

• A forest is a graph with no cycles.

• A tree is a connected forest.

2.3 The Dimension of Factor Algebras

Starting with a (reduced) Gröbner basis for a given ideal I E K〈X〉 our first goal
is to get certain information about the dimension of the factor algebra only by
the knowledge of the Gröbner basis. However, this is not as simple as in the
commutative case, as the next example shows.

2.9 Lemma. dimK(K〈X〉/I) < ∞ =⇒ ∀i∃ni ∈ N0 : xni

i ∈ L(I)

Proof: Assume xk
i /∈ L(I) ∀k ∈ N0. Then {xj

i}∞j=0 are linearly independent over
K as elements of K〈X〉/I, which proves the claim. q.e.d.

The converse is not true in general:

2.10 Example. Take K = Q, K〈x, y〉 and I = 〈x2, y2〉. Then {(xy)n | n ∈ N0} is
an infinite set of linear independent elements in K〈x, y〉/I and therefore K〈x, y〉/I
has infinite K-dimension.

Therefore many characterizations, which are useful in the commutative case, are
useless in the non-commutative case. But we can use our concept of partial
Gröbner bases to test if the dimension of the factor algebra is finite.

2.11 Lemma. Assume we have a Gröbner basis G of the ideal I and a partial
Gröbner basis Gp. If dimK(K〈X〉/〈Gp〉) < ∞, then also dimK(K〈X〉/〈G〉) < ∞.
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Proof: Since dimK(K〈X〉/〈Gp〉) < ∞, so is dimK(K〈X〉/〈L(Gp)〉). We show that
dimK(K〈X〉/〈L(G)〉) < ∞, which implies the statement.
A K-basis of the factor algebra consists of all monomials, which are not divisible
by any of the monomials occurring as leading monomials in the corresponding
Gröbner basis. Since Gp ⊆ G we have also {lm(gp) | gp ∈ Gp} ⊆ {lm(g) | g ∈ G}.
So the basis of K〈X〉/〈L(G)〉 will be contained in the basis of K〈X〉/〈L(Gp)〉,
which proves the claim. q.e.d.

2.12 Remark. This lemma will be not very useful in general, because for any
partial Gröbner basis strictly contained in a Gröbner basis, the dimension might
be infinite, but if we take the whole Gröbner basis G, then K〈X〉/〈G〉 may be
finite anyway.
A much better way to come to a decision, whether the factor algebra is finite
dimensional or not, is to use a truncated Gröbner basis Gt, since G and Gt both
generate the same ideal. So we expect the factor algebras K〈X〉/G and K〈X〉/Gt

to have the same dimension.
Sadly our computations on a computer will not work due to the non-uniqueness
of the normal form. So if we get a K-basis for K〈X〉/〈Gt〉 then it will contain
more elements than a basis for K〈X〉/〈G〉, since it may contain two elements
with different normal form, which are actually the same in K〈X〉/〈G〉, so we
get dimK(K〈X〉/〈Gt〉) ≥ dimK(K〈X〉/〈G〉). Let us put this in mathematically
correct terms:

2.13 Definition. Let I E K〈X〉 with truncated Gröbner basis Gt. We call
dimK(K〈X〉/〈L(Gt)〉), where L(Gt) := {lm(gt) | gt ∈ Gt}, the fake dimension of
K〈X〉/〈Gt〉, and denote it by dimf (K〈X〉/〈Gt〉).

2.14 Lemma. Let I E K〈X〉 with Gröbner basis G and truncated Gröbner basis
Gt. Then we have: 〈L(Gt)〉 ⊆ 〈L(G)〉.
Proof: Clear by definition of Gröbner basis. q.e.d.

2.15 Theorem. Let I E K〈X〉 with truncated Gröbner basis Gt.
Then dimf (K〈X〉/〈Gt〉) ≥ dimK(K〈X〉/I).

Proof:

dimf(K〈X〉/〈Gt〉) = dimK(K〈X〉/〈L(Gt)〉)
2.14
≥ dimK(K〈X〉/〈L(G)〉)

= dimK(K〈X〉/I) q.e.d.

So if we achieve finite fake dimension, we can conclude that our K-dimension is
finite, too. This can be used to upgrade Algorithm 1.54 in the following way:
Before starting the Gröbner basis computation with the new degree bound, check
if we already achieved finite fake dimension. Then the factor algebra will have
finite K-dimension as well and we can return this information.
Sometimes one knows the K-dimension of the algebra, but needs to find a Gröbner
basis. In these cases, the following statement will be of great use:
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2.16 Theorem. Let I E K〈X〉 with truncated Gröbner basis Gt of degree q. If
dimf(K〈X〉/〈Gt〉) = dimK(K〈X〉/I), then Gt is a Gröbner basis for I.

Proof: Assume we have g1, g2 ∈ Gt, such that the leading monomials have an
overlap and q̃ = degt(NF(s(l, g1, r; λ, g2, ρ),Gt)) > q.
Now if s := s(l, g1, r; λ, g2, ρ) is not weak with respect to Gt, then there is no
gt ∈ Gt, such that lm(gt) | lm(s).
This implies dimf (K〈X〉/〈Gt〉) > dimf(K〈X〉/〈Gt ∪ {s}〉). Now let G̃t be
a truncated Gröbner basis of degree q̃. It certainly contains a gs, such that
lm(gs) | lm(s), so without loss of generality we may assume s ∈ G̃t. But then
we have dimK(K〈X〉/I) = dimf (K〈X〉/〈Gt〉) > dimf(K〈X〉/〈G̃t〉), which is a
contradiction to Theorem 2.15. q.e.d.

Our goal now is to state an algorithm which can decide whether a given fac-
tor algebra has finite K-dimension. Recall 2.3, which tells us that we only need
to consider the leading monomials of a given Gröbner basis, so we identify G

with L(G). We assume that our Gröbner basis is reduced, which means that no
lm(g), g ∈ G, divides any monomial in G \ {g}.
In terms of a monomial algebra one often speaks about words instead of mono-
mials, the set X is called the set of all words over an alphabet of n letters,
corresponding to the generators of X. The total degree of a monomial is called
the length of a word and will be denoted with lg. A word w is called standard

or normal with respect to G ⊂ X, if it is not divided by one of the monomials
in G, denoted by G ∤ w (recall that this means rG(w) = w) or G | w, if there is
a monomial in G that divides w (which implies rG(w) = 0).
The difference here is that we allow words of infinite length, whereas the free
monoid X consists only of monomials of finite total degree.

2.17 Remark. For a Gröbner basis G consisting of monomials the set of all
non-zero standard words equals the set of non-zero normal forms of elements in
X. So the set of all standard words is a basis for K〈X〉/〈G〉.
2.18 Lemma. A basis for K〈X〉/〈G〉 is infinite if and only if it contains a stan-
dard word of infinite length.

Proof:

“ ⇒′′: Since our alphabet X is finite there are only finitely many words up to a
given length.
“ ⇐′′: A word i of infinite length contains infinitely many subwords. Since i is a
standard word, so are all of its subwords. q.e.d.

2.19 Definition. Given an alphabet X and a set of monomials G, we can define
the Ufnarovskij graph GU . Its vertex set V consists of all standard words w ∈
XlG = {m ∈ X | m = xi1 · · ·xilG

}, where lG := −1 + max
m∈G

lg(m). For each

v, w ∈ V there is a directed edge (v, w) if and only if there exists a, b ∈ X such
that va = bw and G ∤ va.
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The graph is named after Victor Ufnarovskij, who introduced it in his work
[Ufn89] and discussed it further in [Ufn90].

2.20 Remark.

1. There is a one-to-one correspondence between paths of length l in GU and
standard words of length l + lG. This implies that each infinite standard
word corresponds to an infinite path in GU , which must contain a cycle, be-
cause GU has a finite vertex set due to the finiteness of X and G. Therefore
we have dimK(K〈X〉/〈G〉) = ∞ if and only if GU contains a cycle.

2. If there exists an infinite word that is standard with respect to G, then
either it is cyclic or it gives rise to a cyclic infinite word that is also standard
with respect to G.

2.21 Lemma. If there exists an infinite word w′ ∈ X that is standard with
respect to G, then there also exists a cyclic infinite word w ∈ X that is standard
with respect to G such that

∀r, s ≥ 1 : w[1 . . . s] ≤ w[r . . . r + s − 1], (2.1)

where w[p . . . q] is the subword of w obtained by removing the first up to the
(p − 1)-th and the (q + 1)-th up to the last letter.

Proof: We will use u E v to denote that u is a prefix of v, respectively u ⊳ v,
if it is a proper prefix. Further we denote with ut the word consisting of the
concatenation of t copies of the word u.
Let w′ ∈ X be infinite and standard with respect to G. Then w′ gives rise to a
cyclic infinite word w′′ = v′∞, where v′ ∈ Xp for some finite p > 0. Assume that
v is the lexicographically smallest shift of v′. Then there is a u E v′ such that
v′∞ = uv∞. Now define w := v∞ and the claim follows. q.e.d.

The lemma states that in order to find an infinite word, it suffices to use only
words satisfying (2.1). So we will proceed as follows: For a given Gröbner basis
G we build up the Ufnarovskij graph. If K〈X〉/〈G〉 has infinite K-dimension, the
graph will contain a cycle; if it is finite, the graph will be a tree.
Note that the Ufnarovskij graph is only defined for finite Gröbner bases, since in
an infinite one has no upper degree bound.
In the following algorithm we assume x1 < x2 < . . . < xn.

2.22 Algorithm.

Input: A Gröbner basis G of the ideal I

Output:

{

true, if the dimension of K〈X〉/I is infinite,

false, else.

Start with w = 1, V = ∅.
If w is normal w. r. t. G then:
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• If lg(w) < lG: Extend w to v = w · xi for i = 1, . . . , n and start again.
• If lg(w) ≥ lG: Set v = w[(k − lG + 1) . . . k]
· If v ∈ V return true
· If v /∈ V set V ′ = V ∪{v} and start again with v·xi and V ′ for i = 1, . . . , n.

If w is not normal w. r. t. G then return to the point of the last extension of
w.
If all normal words have been checked return false.

Proof: There are two possibilities we have to consider:

• Assume K〈X〉/I has infinite dimension. The set V contains the vertices of
the corresponding Ufnarovskij graph. Due to the one-to-one correspondence
between paths and words we are moving along the edges of the graph by
building up the word. Since the Ufnarovskij graph must contain a cycle, by
assumption we will discover the same vertex twice. Because the Ufnarovskij
graph has only finitely many edges, this will happen after finitely many steps
and the algorithm will terminate.

• Now let K〈X〉/I be of finite K-dimension. Then the Ufnarovskij graph
contains no cycle, so we can never discover the same vertex twice. Because
there are only finitely many normal words by assumption, the algorithm
will terminate after finitely many steps and return “false”. q.e.d.

Algorithm 2.22 is formulated in the most easy way to understand the concept.
However, there is the great disadvantage of this formulation: In the finite case
we check every normal word, which could be quite many. However, if one already
knows that a normal word of length lG does not lead to a cycle, one can add it
to G, avoiding to check extensions of this word and thereby reducing the total
number of words to check.

2.23 Example.

1. Take A = {x, y}, G = {xxx, xyx, yxy}. We will start with w1 = x, since
w0 = 1 is only needed for the formulation of the algorithm (since 1 is always
a basis element). Let us assume x > y, so we extend every word with x
first, then with y. Note that lG = 2, so our vertices will be all normal words
of length 2. The candidates for those are underlined.
The word w1 = x is normal, so set V = ∅. We extend it by x to w11 = xx,
which is still normal, so we set V = {xx}.
With w111 = xxx we discover the first word which is not normal, so we
do not need to extend it any further. Therefore we extend w11 now to
w112 = xxy, which is normal and we set V = {xx, xy}. Extending again
with x leads to w1121 = xxyx, which is of course not normal, so we extend
to w1122 = xxyy and add it to V , that is V = {xx, xy, yy}. Extending twice
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with x yields w11221 = xxyyx and w112211 = xxyyxx. While the first one
adds yx to V , the latter one implies xx is a new element for V . Since xx is
already contained in V we have discovered a cycle and can conclude, that
the dimension is not finite.
Of course one could conclude this outcome using Lemma 2.9.

2. Take A = {x, y}, G = {xx, xyx, yy}. Again we have lG = 2 and we get,
using the same notation as before, that w1 is normal, while w11 is not.
Extending w1 to w12 = xy , which is a normal word, leads us to V = {xy}.
Then w121 = xyx and w122 = xyy are not normal and we can add xx and
xy to the set G and starting again by resetting V .
Now w2 = y is a normal word, which can be extended to w21 = yx, which
is normal again, so we set V = {yx}. With our new added words, we
conclude that w211 = yxx and w212 = yxy are not normal or at least we
will not discover a cycle using these words.
So the last word we have to check is w22 = yy, which is not normal. Since we
have checked all normal words without discovering a cycle, we can conclude
that the dimension is finite.

Since we have not seen an Ufnarovskij graph yet, let us draw the ones for the
examples in 2.23.

xx yy

xy yx

Figure 2.3: The Ufnarovskij graph for G = {xxx, xyx, yxy}

xy yx

Figure 2.4: The Ufnarovskij graph for G = {xx, yxy, yy}

2.24 Remark. There are many application for this algorithms. We like to high-
light one special applications:
For a given finitely presented group G one is interested, if G is finite. There-
fore, one can consider the group algebra KG. So one can consider KG as an
factor of the free algebra and can apply the methods presented above. For more
information regarding this topic we refer to [KMRU05].
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2.4 K-Bases of Factor Algebras

We have now the possibility to check if a factor algebra given by a (reduced)
Gröbner basis has finite K-dimension or not. Once we know that a factor algebra
is of finite dimension, one may want to compute a K-basis. This is the goal of
this section.
For obvious reasons we will always assume I ⊳ K〈X〉.

2.25 Algorithm.

Input: A Gröbner basis G of the ideal I ⊳ K〈X〉
Output: A K-basis B of K〈X〉/I

Set B̃ := {1}, Btemp := ∅, B := {1}
while B̃ 6= ∅ do

for j = 1 to |B̃| do

for i = 1 to n do

if G ∤ B̃[j] · xi then

B = B ∪ {B̃[j] · xi}; Btemp = Btemp ∪ {B̃[j] · xi};
end if

end for

end for

B̃ = Btemp; Btemp = ∅;
end while;
return B;

2.26 Theorem. If K〈X〉/I has finite dimension, then Algorithm 2.25 terminates
and returns a K-basis of the factor algebra.

Proof: Since I 6= K〈X〉 we have 1 ∈ B. Assume we have found all basis elements
up to degree d ≥ 1. To construct all elements of degree d + 1, we just have to
consider those elements which do not contain any subwords s, such that degt(s) ≤
d and s ∈ G. Those are of the form p ·xi, i = 1, . . . , n, p ∈ {q ∈ B | degt(q) = d}.
Now if all new monomials can be reduced to zero with respect to G there will
not be any elements of degree d + r, r ∈ N and the algorithm stops. Since we
have assumed that the dimension is finite, there will be a m ∈ N, such that m =
max{degt(p) | p ∈ B}, which implies that the algorithm will terminate. q.e.d.

Before we examine our achievements further let us consider an example.

2.27 Example.

1. Take A := K〈x, y〉/〈G〉 with G := {x2, y2, xy}, which is clearly a Gröbner
basis. The algorithm does the following steps:

a) G ∤ x, y =⇒ B = {1, x, y}; B̃ = {x, y};
b) i. G | x2;G | xy;

ii. G ∤ yx;G | y2 =⇒ B = {1, x, y, yx}; B̃ = {yx};
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c) G | yx2;G | yxy; =⇒ B̃ = ∅
RETURN: B = {1, x, y, yx};

2. We already know from 2.23 that the factor algebra by G = {x2, yxy, y3}
has finite K-dimension. So let us see a basis for that one:

a) G ∤ x, y =⇒ B = {1, x, y}; B̃ = {x, y};
b) G | x2; G ∤ xy; G ∤ yx;G ∤ y2

=⇒ B = {1, x, y, yx, xy, y2}; B̃ = {xy, yx, y2};
c) G ∤ xyx; G ∤ xy2G | yx2; G | yxy; G ∤ y2x; G | y3

=⇒ B = {1, x, y, xy, yx, y2, xyx, xy2, y2x}; B̃ = {xyx, xy2, y2x};
d) G | xyx2; G | xyxy; G ∤ xy2x; G | xy3; G | y2x2; G | y2xy

=⇒ B = {1, x, y, xy, yx, y2, xyx, xy2, y2x, xy2x}; B̃ = {xy2x};
e) G | xy2x2; G | xy2xy;

=⇒ B = {1, x, y, xy, yx, y2, xyx, xy2, y2x, xy2x}; B̃ = ∅;
RETURN: B = {1, x, y, xy, yx, y2, xyx, xy2, y2x, xy2x};

2.28 Remark. Let us enlist some of the advantages of 2.25:

• It is very easy to implement a truncated version of this algorithm by just
stopping at a given degree, even if B̃ 6= ∅.

• One can easily compute finite number of terms of the Hilbert series, that
is, the formal series
∞∑

i=1

dimK(Ai) · ti, where Ai = {p ∈ K〈X〉/I | degt(p) = i} and t is a formal

variable, if one just stores the number of new elements of degree i, that is,
the elements of B̃, which form a basis of Ai. Of course the Hilbert series
is by definition not finite, so it is impossible to compute it in practice.
However, if we provide a degree bound or if the factor algebra is of finite K-
dimension one can compute at least a part of the series: One can compute
the coefficients up to a given degree or, in the finite case, up to k ∈ N, such
that dimK(Aj) = 0 ∀j > k. In that cases the Hilbert series is a polynomial.

• Note that we only add new elements by right multiplication!

The last point leads to an interesting observation: Every normal word is uniquely
determined by its path in the algorithm.

2.29 Definition. The basis tree of K〈X〉/I is the directed graph with vertex
set V = {m ∈ X | G ∤ m} and there is an edge from m to m′, if and only if
m′ = m · xi for one i ∈ {1, . . . , n}.
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2.30 Remark. We would like to mention that in computer science structures
like the basis tree are well-known and called trie. They are usually used to
work with strings and are applied for example to auto-complete words. For more
information we refer to [CR94].

2.31 Remark. We construct the basis tree by right multiplication with the
variables. If one would construct the basis tree by left multiplication, the set of
edges would be different, namely there is an edge from m to m′, if and only if
m′ = xi · m for one i ∈ {1, . . . , n}. Thus we should distinguish between right
basis trees and left basis trees. Since all the results for a right basis tree are valid
for a left basis tree as well, we will only study right basis trees.

2.32 Example. Let us consider a small example for the difference between left
and right basis trees:
Take G = {y2−y, xyx−xxy, yx2−x2y, yxy−yx, x4− 3

5
x3+ 1

5
yx− 1

5
xy+ 2

5
x2+ 1

5
x} ⊂

K〈x, y〉. Then one checks easily that G is a Gröbner basis for J = 〈G〉. We get
the following two different basis trees:

1

x
y

xx

xxx

xxxy

xxy

xy yx

Figure 2.5: The right basis tree

44



1

x
y

xx

xxx

xxxy

xxy

xyyx

Figure 2.6: The left basis tree

2.33 Example.

Let us draw the basis trees for the examples above:

0

1

2

Degree

1

x y

yx

Figure 2.7: The basis tree for G = {x2, y2, xy}, cf. Example 2.27.1
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0

1

2

3

4

Degree

1

x y

xy
yx

y2

xyx xy2
y2x

xy2x

Figure 2.8: The basis tree for G = {x2, yxy, y3}, cf. Example 2.27.2

2.34 Theorem. The basis tree for any reduced Gröbner basis is a tree, that is,
every vertex is uniquely determined by its path.

Proof: Clear by construction of the basis in Algorithm 2.25. q.e.d.

2.35 Remark. Note that 2.34 has no analog in the commutative case. There,
different ways may lead to the same basis element.
For example 1 → x → xy → xyx and 1 → y → yx → yxx are different paths,
but due to commutativity, we have xyx = yxx = x2y. So the non-commutative
case is absolutely different, comparing with the commutative one, at least in this
respect.

2.36 Example. As seen before G = {xixj − xjxi | 1 ≤ i < j ≤ n} ⊂ K〈X〉 is a
Gröbner basis. We want to see that we can construct the commutative polynomial
ring P and still get a well defined basis tree. We will do this for n = 3 and up
to degree 3. We assume that we have chosen the graded lexicographical ordering
with x1 > x2 > x3.
Then L(〈G〉) = 〈{x1x2, x1x3, x2x3}〉. Then the basis tree looks like this:
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0

1

2

3

Degree

1

x1 x2 x3

x2
1

x3
1

x2x1 x2
2

x2x
2
1 x2

2x1 x3
2

x3x1

x3x
2
1

x3x2

x3x2x1x3x
2
2

x2
3

x2
3x1 x2

3x2 x2
3

2.37 Remark. Recall that we always assume that our Gröbner basis is reduced.
This leads to the following observation:

2.38 Lemma. Let G be a reduced Gröbner basis and take g ∈ G and say
degt(g) = d. Then lm(g)[1, . . . , d − 1] is a normal word with respect to G.

Proof: Obviously lm(g) ∤ lm(g)[1, . . . , d − 1]. Since G is reduced we have
lm(g̃) ∤ lm(g) ∀g̃ ∈ G, which implies lm(g̃) ∤ lm(g)[1, . . . , d − 1] ∀g̃ ∈ G. q.e.d.

2.39 Theorem.

If G is a reduced Gröbner basis and |G| = ∞, then dimK(K〈X〉/〈G〉) = ∞.

Proof: By Lemma 2.38 the set B = {lm(g)[1, . . . , d − 1] | g ∈ G, degt(g) =
d, d ∈ N} contains only normal words with respect to G, therefore we have
dimK(K〈X〉/〈G〉) ≥ |B|.
Since the number of letters is finite only finitely many leading monomials in G

ill contain the same subword, which implies |B| = ∞. q.e.d.

2.40 Corollary. If dimK(K〈X〉/〈G〉) < ∞, then |G| < ∞ as well.

Proof: This is the negation of Theorem 2.39. q.e.d.

2.41 Remark. This is a nice way to estimate the dimension and answer Question
1 in 2.1 in some cases. However, there is no general way to decide if an ideal
will have an infinite Gröbner basis. Since the K-dimension of a factor algebra
depends not on the chosen ordering, if we find one infinite Gröbner basis we can
apply Theorem 2.39. In some cases this is possible, as one can see in Example
1.38.
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Again we want to point out the importance of an adaptive algorithm: As stated
before one can check in each step of Algorithm 1.54 if one has achieved finite fake
dimension. If so, one knows that the Gröbner basis will be finite and one can
pursue the computation until the whole Gröbner basis is determined. So there is
a great advantage in the combination of these procedures.

2.42 Remark. When we have constructed the basis tree for a given factor alge-
bra, we expect to have all the information we want. However, Figure 2.6 shows
that drawing the basis tree easily gets challenging. So we need a good way to
store our information. This is the goal of the next section.

2.5 Mistletoes

We will still assume that K〈X〉/I has finite K-dimension.

2.43 Definition. For a given basis tree a vertex with no edges starting at it is
called mistletoe.

We like to mention that in graph theory mistletoes are sometimes called leaves,
but since the definition may differ, depending on the author, we stick to the term
mistletoe, to emphasize the special value of these vertices.

2.44 Remark. In Romanian traditions, mistletoes are considered a source of
good fortune. We will see that this is true, at least for the mistletoes growing on
a basis tree.
Considering Example 2.32, we observe that for a left basis tree the mistletoes are
different from those given by a right basis tree, but again all the results for right
mistletoes are valid for the left mistletoes as well. Since mistletoes are elements
of the vertex set of the basis tree, they are uniquely determined by the path that
leads to them, as stated in 2.34.

2.45 Lemma. Every vertex v in a basis tree can be extended to a mistletoe, that
is there is a path in the basis tree that starts in v and ends up in a mistletoe.

Proof: If v is a mistletoe there is nothing to prove, so assume the contrary. Then
there is an edge starting in v and leading to v′ = v · xi for some i ∈ {1, . . . , n}.
If v′ is a mistletoe we are finished again. If not there is an edge leading to an
extension of v′. If we do this iteratively we reach a mistletoes, since we are
strictly increasing the degree and we have assumed that basis tree has only a
finite number of vertices. q.e.d.

2.46 Remark. Algorithm 2.25 can be used to compute the mistletoes, since they
are basis elements. The modifications are quite simple: Assume we have B̃ 6= ∅.
If G | B̃[j] · xi ∀i = 1, . . . , n then B̃[j] is a mistletoe and we store it. Otherwise
we proceed as in 2.25.
We make the following observation:
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2.47 Theorem. The set of all mistletoes of a K-basis for K〈X〉/I uniquely de-
termines the whole K-basis.

Proof: Since every vertex lies beneath a mistletoe and mistletoes are uniquely
determined by their paths, we get every vertex by removing the last variables of
mistletoe, that is, going backwards along the path. So out of the set of mistletoes
we can construct every basis element, that is, we know the whole basis. q.e.d.

2.48 Remark. Note that we have different choices for a K-basis, but if we have
a reduced Gröbner basis, there is only one choice for a basis consisting only of
monomials, namely the set of normal words. So when we say “uniquely deter-
mine”, we mean the monomial basis, fixed by the chosen ordering, not the choice
for a basis.
In general there will be vertices lying under more than one mistletoe. For exam-
ple, let us consider 2.27 (2) again. One can see the mistletoes directly from Figure
2.6: M = {xyx, xy2x, yx, y2x}. Now the basis element xy lies under m1 = xyx
and m2 = xy2x. In theory this is not a problem, because
{xyx, xy, x, 1, xy2x, xy2, xy, x, 1, yx, y, 1, y2x, y2, y, 1} = {xy2x, xy2, xyx, y2x,
xy, yx, y2, x, y, 1} as sets. However, if we want to compute the basis or the dimen-
sion for a factor algebra given through mistletoes, this is a problem. Therefore it
is necessary to compute the intersection of two mistletoes.

2.49 Definition. For two given mistletoes m1 6= m2 we define the intersection
of m1 and m2 as the largest common left subword, that is,

ι(m1, m2) = m1[1, . . . , k] = m2[1, . . . , k],

where k ≥ 0 is maximal and k = 0 corresponds to ι(m1, m2) = 1.

2.50 Remark. Recall that we always assume that the ideal I is given via a
Gröbner basis G. For the computation of G we have to fix an ordering. However,
we can rearrange the branches of the basis tree, that is, we order the mistletoes,
without changing anything, since the set of mistletoes is invariant under permu-
tation. This corresponds to the fact that we can draw the basis tree as we like:
even if x2 > x1 we can draw the edges corresponding with multiplication with x1

leftmost.

How can we use this to find the intersections?

2.51 Lemma. Let M = {m1, . . . , ml} be the set of mistletoes for K〈X〉/〈G〉.
Let us order them lexicographically, that is m1 ≥lex m2 ≥lex . . . ≥lex ml. Then
the set of all intersections is given by {ι(mi, mi+1) | mi ∈ M, i = 1, . . . , l − 1}.
Proof: We need to show: ∀1 ≤ k 6= j ≤ l ∃1 ≤ i ≤ l : ι(mk, mj) = ι(mi, mi+1).
We may assume without loss of generality that k < j, since
ι(mk, mj) = ι(mj , mk). If j = k+1 there is nothing to show, so assume otherwise,
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that is, there are at least 3 mistletoes atop ι(mk, mj). We use induction on the
number of mistletoes. Assume j = k + 2. If ι(mk, mk+1) ≥lex ι(mk+1, mj) then
ι(ι(mk, mk+1), mj) = ι(mk+1, mj), that is, ι(mk+1, mj) is the greatest common
left subword of ι(mk, mk+1) and mj . Since the mistletoes are uniquely deter-
mined by their paths, it is also the greatest common left subword of mk and mj

which implies ι(mk, mj) = ι(mk+1, mj). If ι(mk, mk+1) ≤lex ι(mk+1, mj) the same
argument can be applied and we get ι(mk, mj) = ι(mk, mk+1).
Now assume j = k + n and the assumption is true for all ι(mk̃, mk̃+n−1). Then

there exists ĩ, such that ι(mk, mj−1) = ι(mĩ, mĩ+1) =: I.
Then I ≥lex ι(mj−1, mj) or I ≤lex ι(mj−1, mj) and we get (arguing as above)
either ι(mk, mj) = ι(mj−1, mj) or ι(mk, mj) = I. q.e.d.

We will now state several algorithms which are working with mistletoes, starting
with recovering the basis.

2.52 Algorithm.

Input: M = {m1, . . . , ml}, the set of mistletoes for K〈X〉/I, lexicographically
ordered

Output: A monomial K-basis B of K〈X〉/I.
Set B = {1}.
for j = 1 to lg(m1) do

B = B ∪ {m1[1 . . . j]}
end for

for i = 1 to l do

Set k = lg(ι(mi−1, mi)) + 1
for j = k to lg(mj) do

B = B ∪ {mi[k . . . j]}
end for

end for

return B

Proof: Clear by construction of the mistletoes and Lemma 2.51. q.e.d.

This algorithm ensures that we are always able to get our K-basis. However, it
is not necessary to construct the basis. If one only wants to know the dimension
one can apply the following algorithm:

2.53 Algorithm.

Input: M = {m1, . . . , ml}, the set of mistletoes for K〈X〉/I, lexicographically
ordered

Output: The K-dimension of K〈X〉/I
Set k = lg(m1) + 1
for j = 1 to l − 1 do

k = k + (lg(mj+1) − lg(ι(mj , mj+1)))
end for

return k
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Proof: The mistletoe mk stores lg(mk) basis elements, from which we already
considered
lg(ι(mk−1, mk)) ones. This proves k = dimK(K〈X〉/I). If dimK(K〈X〉/I) is finite,
the termination is obvious, since we have a finite set of mistletoes of finite length.

q.e.d.

Now if we can compute the K-dimension, we are also able to compute the Hilbert
series.

2.54 Algorithm.

Input: M = {m1, . . . , ml}, the set of mistletoes for K〈X〉/I, lexicographically
ordered, dimK(K〈X〉/I) < ∞

Output: The coefficients of the Hilbert series of K〈X〉/I as a vector of integers
H
Set H [0] = 1
for j = 1 to lg(m1) do

H [j] = 1
end for

for i = 2 to l do

Set k = lg(ι(mj−1, mj))
for i = k to lg(mj) do

H [i] = H [i] + 1
end for

end for

return H

Proof: As before, mk stores lg(mk) basis elements, from which we already con-
sidered lg(ι(mk−1, mk)). Each of these elements has a different total degree,
therefore increasing different coefficient of the Hilbert series by one. By setting
H [i] = ci, where ci denotes the ith coefficient of the Hilbert series, and increasing
the corresponding entry in H we get the coefficients of the Hilbert series after
finitely many steps, assuming that the Hilbert series is finite. q.e.d.

It would be nice if we could construct the Gröbner basis G for I from the mistle-
toes. This is not possible, since we are working with the leading monomials only.
Thus two different Gröbner bases may give rise to the same set of mistletoes,
respectively to the same K-basis. So can we at least construct the leading mono-
mials of G?
The answer is again no. This is due to the fact that the greatest left subword of
an element of G does not need to be a mistletoe. So in order to do arithmetic
operations inside the factor algebra, we still need the Gröbner basis.

2.55 Remark. Although the next chapter focuses mainly at the implementation,
one might be interested in the running time of the above algorithms. We take
Algorithm 2.53 as an example. Now to use Lemma 2.51 we need to sort our
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set of mistletoes, which will take m log(m) operations for a set consisting of m
mistletoes. Then the comparison of the neighboring mistletoes will take m − 1
operations and finally we have to add all of those mistletoes, which again takes
m−1 operations. So we have an approximate runtime of O((m−1)2m log(m)) ≈
O(m3log(m)), which is rather bad.
We can try a different approach by just using combinatorial methods. However,
this will give us only an upper bound for the dimension. But since this can be
useful in certain situations we state the following algorithm.

2.56 Algorithm.

Input: {m1, . . . , mm}, a set of mistletoes, n, the number of variables
Output: dest, an integer

Set m̃ as a mistletoe of minimal total degree lmin

g :=
lmin∑

i=0

ki, where ki =

{

m, if m < ni

ni, else

dest := g +
m∑

i=1

li − lmin, where li = lg(mi).

return dest

While the termination of this algorithm is obvious due to the finiteness of m and
n, we need to see that the returned result is of any use to us.

2.57 Lemma. With the setup of Algorithm 2.56 we have:

dimK(K〈X〉/〈G〉) ≤ dest.

Moreover, equality holds, if g =
lmin∑

i=0

ni and lg(ι(mi, mj)) ≤ lmin ∀1 ≤ i, j ≤ m.

Proof:

• Let us first assume that m > ni ∀1 ≤ i ≤ lmin.
If there exists a non normal word of length lmin, then there exists a pair
of mistletoes mi, mj , such that lg(ι(mi, mj)) > lmin. So by assuming that
those mistletoes have an intersection of length smaller than lmin, we have
found a lower bound for the dimension and we can assume, that all words of

length lmin are normal. Therefore dimK(K〈X〉/〈G〉) ≤
lmin∑

i=0

ni +
m∑

i=1

(lg(mi)−

lk) − c ≤
lmin∑

i=0

ni +
m∑

i=1

(lg(mi) − lk), where c denotes the number of multiply

counted words.

• Now assume that there exists k′, such that 1 ≤ k′ ≤ lmin and m ≤ nk′

.
Then there are at most m normal words of length k′, so we may reduce
our basis tree to this m branches of the basis tree and can argue further as
above.
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This proves dimK(K〈X〉/〈G〉) ≤ dest.

Now in the special case, that g =
lmin∑

i=0

ni and lg(ι(mi, mj)) ≤ lmin ∀1 ≤ i, j ≤ m,

one finds the equality by carefully studying the first case. q.e.d.

Let us count the number of operations made in Algorithm 2.56: To find a mistle-
toe of shortest total degree we have to do m operations, to compute g we have
lmin operations and another m operations for the computation of dest However,
lmin does not depend on the number of mistletoes and is therefore a constant.
This leaves us with a total runtime of O(m2).
The question arises: How good is our estimation? We have already seen, that in
some cases we even reach equality. The next lemma states an upper bound for
our estimation.

2.58 Lemma. With the notations of Algorithm 2.56 we have:

dest ≤ 1 +
m∑

i=1

lg(mj)

Proof:

• Assume ni ≤ m ∀1 ≤ i ≤ lmin. Then we have:

dest :=
lmin∑

i=0

ki +
m∑

i=1

lg(mi) − lmin =
lmin∑

i=0

ni +
m∑

i=1

lg(mi) − lk =

nl
min∑

i=1

lmin +
m∑

i=1

lg(mi) − lk ≤
m∑

i=1

lmin +
m∑

i=1

lg(mi) − lmin =
m∑

i=1

lg(mi)

• Assume ∃1 ≤ k′ ≤ lmin : nk′ ≥ m. Then we have:

dest :=
lmin∑

i=0

ki +
m∑

i=1

lg(mi) − lmin =
k′

∑

i=0

ni +
lmin∑

i=k′+1

m +
m∑

i=1

lg(mi) − lk ≤
m∑

i=1

lmin +
m∑

i=1

lg(mi) − lk =
m∑

i=1

lg(mi) q.e.d.

Note that 1 +
m∑

i=1

lg(mj) is the “natural” bound for the K-dimension. How-

ever, in most situations it is too big and there is only one situation, in which

dimK(K〈X〉/〈G〉) = 1 +
m∑

i=1

lg(mj) holds, that is, every mistletoe is coprime with

each other mistletoe.

2.6 Factor Algebras over Letterplace Rings

Our goal is now to construct a correspondence between a K-basis of K〈X〉/I and
the Letterplace analogon K[X|P]/J, where J = ι(I), that is J is a Letterplace
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ideal, especially J is shift-invariant. It is obvious, that most of the factor al-
gebras K[X|P]/J will not have a finite K-dimension, even if K〈X〉/I has finite
K-dimension, because with every element p ∈ K[X|P]/J, p /∈ K, all shifts s·p will
be in the algebra. These elements are linearly independent and the infiniteness
of P implies the infiniteness of the K-dimension.
Let us start with some basic definitions.

2.59 Definition. Let B ⊂ K〈X〉. We call B a K-shift-basis of K[X|P]/J, if
⋃

s∈N

s · B is a K-basis of K[X|P]/J.

2.60 Lemma. A K-shift-basis of K[X|P]/J always exists.
Proof: Take a K-basis of K[X|P]/J. Since xi(r) and xj(r + t) are linearly inde-

pendent for all choices of i, j, r, t ∈ N it is already a K-shift-basis. q.e.d.

Because the K-basis will be infinite most times, the proof has only theoretical
value. So our goal is to find a basis, which is as small as possible in some sense.

2.61 Definition. Let B ⊂ K[X|P]/J. We call B a minimal K-shift-basis of
K[X|P]/J, if it is a K-shift-basis and if for any K-shift-basis B′ ⊆ B we have
B = B′.

2.62 Lemma. Every K-shift-basis B of K[X|P]/J contains a minimal K-shift-
basis B′ of K[X|P]/J.
Proof: Assume there exists an element b ∈ B, such that b = s · b′ for some

s ∈ N, b′ ∈ B. Then b ∈ ⋃

t∈N

t · (B/{b}), so B′ := B/{b} is also a K-shift-basis.

So we can assume that we already have removed all such elements and call the
set B′ again. We show that B′ is a minimal K-shift-basis. Assume not, that is,
there exists B′′ ⊂ B′, such that B′′ is again a K-shift-basis. Take b′ ∈ B′/B′′.
By assumption b′ /∈ ⋃

t∈N

t · B′′ and b′ ∈ 〈⋃

t∈N

t · B′′〉. But this would imply that
⋃

t∈N

t · B′ is not linearly independent in contradiction to the assumption that B′

is a K-shift-basis. q.e.d.

2.63 Corollary. A minimal K-shift-basis of K[X|P]/J always exists.

Proof: By Lemma 2.60, there exists a K-shift-basis, which contains a minimal
K-shift-basis. q.e.d.

2.64 Definition. • Let B be a minimal K-shift-basis of K[X|P]/J. Then
K := B ∩ V is called a K-Letterplace-basis.

• We call the number of elements in a K-Letterplace-basis the Letterplace-
dimension of K[X|P]/J, denoted by dimlp(K[X|P]/J).
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2.65 Remark. Note that the Letterplace-dimension is well defined, since any
two K-Letterplace-bases have the same number of elements. The statement is
obvious, since we can consider the vector space Ṽ = V/(V ∩ J). Then any
K-Letterplace-basis will be a K-basis of Ṽ .

2.66 Theorem. Let I ⊂ K〈X〉 be an ideal and let J = ι̃(I). Further let K
be a K-Letterplace-basis of K[X|P]/J. Then B := ι−1(K ∩ V ) is a K-basis for
K〈X〉/I.
Proof: Clearly all elements of B are linearly independent, so B ⊆ B′ for a K-
basis B′ ⊂ K〈X〉/I. Assume there exists b ∈ B′ \ B and set k := ι(b). By
assumption k /∈ K, so we have k =

∑

k̃∈K

ak̃k̃ for some ak̃ ∈ K. It follows that

b = ι−1(k) = ι−1(
∑

k̃∈K

ak̃k̃) =
∑

k̃∈K

ak̃ι
−1(k̃) =

∑

b̃∈B

ak̃ b̃, which is a contradiction

to the assumption that B′ is a K-basis. So we have B = B′, which proves the
claim. q.e.d.

2.67 Corollary. Let I ⊂ K〈X〉 be an ideal and let J = ι̃(I). Then

dimK(K〈X〉/I) = dimlp(K[X|P]/J).

Proof: This is a consequence of Theorem 2.66. q.e.d.

2.68 Remark. Note that for the correspondence we only need the vector space
V . If we have constructed a factor algebra K[X|P]/J we face a special problem:
The (commutative) multiplication in this algebra does not correspond to the
multiplication in our original algebra. Take for example the elements x(0) and
y(0). The standard multiplication in the Letterplace ring will satisfy x(0) ·y(0) =
x(0)y(0) = y(0)x(0), which is not an element of V . So it is necessary to introduce
a new multiplication: For two monomials p, q ∈ V with lg(p) = s we define
p∗q = p(s ·q) ∈ V . However, our previous example shows that this multiplication
is not commutative, y(0) ∗ x(0) = y(0)x(1) 6= x(0)y(1) = x(0) ∗ y(0), so we do
not get any benefits out of the Letterplace structure.
However, there is another approach to this matter.

2.69 Definition. Define Ṽ =
⊕

ν∈{0,1}n

K[X|P]∗,ν .

By its definition Ṽ is only a vector space, not an algebra. To see this consider
again x(0), y(0) ∈ Ṽ . Then x(0)y(0) /∈ Ṽ . But there is a very simple solution to
this problem, which Roberto La Scala suggested in a private communication:

2.70 Lemma. Define LS = 〈{xi(k)xj(k) | i, j = 1, . . . , n, k ∈ N}〉. Then
Ṽ ∼= K[X|P]/LS as K-vector spaces.

Proof: We show that for each [0] 6= [m] ∈ K[X|P]/LS, where m is a monomial,
there is one m̃ ∈ [m], such that m̃ ∈ Ṽ \ {0}. Assume [m] is a counterexample
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to this statement. Then each m̃ ∈ [m] contains a subword of the form xi(k)xj(k)
(since K[X|P] is a commutative ring, we can order the variables contained in
a monomial by their places). So each monomial is contained in LS, that is,
[m] = [0], a contradiction to the assumption.
Now we define β̃ : [X|P]/LS → Ṽ : [m] 7→ m̃, where m̃ ∈ [m] is a monomial
contained in Ṽ .
That this map is well-defined follows immediately, since there is only one mono-
mial in each residue class [m] for all m /∈ LS. Clearly each m ∈ Ṽ can be mapped
to [m] by the natural epimorphism and each two different monomials m, m′ ∈ Ṽ
are mapped to two different residue classes, so β̃ is a bijection.
Now define β as the linear continuation of β̃ and the claim follows. q.e.d.

2.71 Remark. Note that K[X|P]/LS is a commutative K-algebra and we can
identify it with the vector space Ṽ . Now we have x(0)y(0) = 0 = y(0)x(0), if
we consider the example in 2.68. However, x(0)y(1) ∈ Ṽ and since y(1) ∈ Ṽ
we find x(0) · y(1) = x(0)y(1), so we have to consider multiplication up to shift-
operation. This is a well-known phenomenon, because the reduction process in
the Letterplace Gröbner algorithm works with the same idea (and reduction in a
factor algebra needs the same process, since for example y(0)x(1)x(2) should be
reduced to zero, if the Letterplace Gröbner basis contains x(0)x(1)). So instead
of working with K[X|P]/J for some ideal J we add the generators of LS and
consider the algebra K[X|P]/〈J, LS〉, which is much smaller. In fact, we only
have to remove the monomials, which contain “holes” in the places, which are
the only elements in Ṽ \ V . So this is one way to use the Letterplace structure
for non-commutative computations.
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3 Implementation

In this chapter we will focus on the implementations of the algorithms and see
some examples.
All the algorithms are contained in the Singular library sickle.lib. As men-
tioned before, the implementation of the Letterplace structure is discussed in
[LL09], so we will not discuss this any further. However, the freegb.lib is
needed to be called (see [Lev08]).
For an introduction to Singular we refer to the online-manual [GPS09].

3.1 The Data Structure

Our main task is the following: For a given factor algebra K〈X〉/I, find a K-basis.
The Diamond Lemma 2.2 states that there is a basis consisting only of monomials,
that is, a basis for K〈X〉/L(I), so we may assume G = L(G). Therefore we
have fixed the ordering, since different orderings will give us different leading
monomials. But since we have no further need for the ordering we can change
the appearance of the monomials.

• Variables and Words:

The variables are stored as integers: x1 7→ 1, x2 7→ 2, . . . , xn 7→ n. A
word corresponds to a vector of integers. Multiplication corresponds to
concatenation.

3.1 Example. The free algebra K〈x, y, z〉 has three variables, therefore x 7→
1, y 7→ 2, z 7→ 3. Here are some examples for monomials and their integer
vector representation:

• xyzxyz 7→ (1, 2, 3, 1, 2, 3)

• xxyyzz 7→ (1, 1, 2, 2, 3, 3)

• xxyzyyx 7→ (1, 1, 2, 3, 2, 2, 1)

It is obvious that there is a one-to-one correspondence between monomials of
length d and the integer vectors of length d, if the entries are bounded by the
number of variables.

The user can choose to use the Letterplace polynomials or the integer vector
representation to enter his data. There are also procedures to switch between
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those two representations.
As a convention we write iv, whenever we refer to the integer vector presentation,
and lp, whenever we refer to the letterplace presentation.

3.2 Main Procedures

Throughout this section let L be a list of integer vectors, G an ideal of Letter-
place polynomials and the integer n the number of variables in the free algebra
(all according to the definitions in Singular, in particular the ideal is a way
to store a set of polynomials).

3.2.1 Determine Finiteness of K-Dimension

One can check the finiteness of the K-dimension of the factor algebra by calling
ivDimCheck(L, n).
The procedure returns 1, if the dimension is infinite and 0 otherwise. Optionally
one can call lpDimCheck(G), if the data is an ideal of Letterplace polynomials.
Here the number of variables is not needed, since the procedure can check the
data of the basering.
Note that if L or G respectively do not correspond to a Gröbner basis, the
algorithm will not work properly. However, if L or G correspond to a truncated
Gröbner basis and the algorithm returns 0, then the dimension for the ideal
I = 〈G〉, respectively I = 〈L〉 will also have finite K-dimension. This is due to
2.15.

3.2.2 Harvesting the Mistletoes

Instead of computing the whole basis, we are only interested in the mistletoes,
since they contain all the data we need to know about the whole K-basis.
To obtain the mistletoes one calls ivSickle(L, n) or lpSickle(G) respectively.
The procedure returns the mistletoes as a list of integer vectors or an ideal of
Letterplace polynomials, ordered lexicographically with respect to 1 > 2 > . . . >
n, respectively x1 > x2 > . . . > xn, starting with the highest degree.
If the K-dimension is not finite, one may add an optional parameter d to declare
a degree bound. The mistletoes of higher degree will be projected to the left
subword of degree d.
Internally the algorithm will stop at degree d and treat the normal words of
degree d as mistletoes.

58



3.2.3 Determine K-Dimension

To compute the K-dimension, one calls ivKDim(L, n) or lpKDim(G) respectively.
A natural number of type int corresponding to the K-dimension is returned.
Again, one may add an optional parameter d to specify a degree bound. Then
the integer indicates the K-dimension of the factor algebra up to degree d, which
is finite for any d ∈ N.

3.2.4 Computing the Coefficients of the Hilbert series

The procedures ivHilbert(L, n) and lpHilbert(G) return the coefficients of
the Hilbert series of a factor algebra as a vector of integers, starting with the 0th

coefficient.
To guarantee finiteness one may add an optional parameter d as a degree bound.
The procedure will return the first d+1 coefficients. If the factor algebra is known
to be of finite K-dimension the degree bound is not needed and the procedure
will compute all non-trivial coefficients of the Hilbert polynomial.

Note that we always have a degree bound for a Letterplace ring. If one uses the
Letterplace structure, this degree bound is used by the procedures, unless one
specifies a smaller one.

3.2.5 Combined Procedures

One may combine any of the latter procedures. The input is always as described
above.

• lp/ivDHilbert:
Returns a list with first entry the K-dimension and second entry the
integer vector containing the coefficients of the Hilbert series.

• lp/ivDHilbertSickle:
Returns a list with first entry the ideal/list of mistletoes, second the
K-dimension and third the integer vector containing the coefficients of the
Hilbert series.

• lp/ivSickleDim:
Returns a list with first entry the ideal/list of mistletoes and second
the K-dimension.

• lp/ivSickleHil:
Returns a list with first entry the ideal/list of mistletoes and second
the integer vector containing the coefficients of the Hilbert series.
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Moreover the procedure Sickle(G, m, d, h), where G is an ideal of lp-polyno-
mials, allows to access all functions: by setting the optional integers m (for
mistletoes), d (for dimension) or h (for Hilbert series) to 1. If one simply calls
Sickle(G) only the mistletoes are returned. Again a degree bound may be added.

3.3 Procedures Dealing with Mistletoes

As stated before it is much easier to work with mistletoes instead of the whole
basis. So given a set M of type list for iv-vectors and of type ideal for lp-
monomials respectively of mistletoes for some factor algebra A, again in n vari-
ables, we have the following procedures:

3.3.1 Determine K-Dimension

Calling ivMis2Dim(M) or lpMis2Dim(M) respectively, depending on the format
the mistletoes are in, returns the K-dimension of the factor algebra as an integer.
The mistletoes have to be sorted lexicographically to do so (cf. 2.51).

3.3.2 Computing the Coefficients of the Hilbert series

Again there are the procedures ivMis2Hil(M) and lpMis2Hil(M), which need
the mistletoes to be ordered lexicographically. Both variants return the coeffi-
cients of the Hilbert series as an integer vector, starting in degree 0.

Again we can combine the two procedures using lp/ivMis2DH. Each of these
procedures returns a list with first entry the K-dimension of type int and
second entry the coefficients of the Hilbert series as an integer vector.

Note, that given a set of mistletoes we always have finite K-dimension, because
if the factor algebra is of infinite K-dimension, the mistletoes are bounded by a
fixed degree. Therefore no degree bound for these procedures is needed. If one is
interested in the question of finiteness, one needs the leading monomials of the
Gröbner basis to build up the Ufnarovskij graph.
If the factor algebra is known to be of finite dimension, but it is unclear, whether
one has already all the mistletoes, the procedure ivCheckMis(M, G) respectively
lpCheckMis(M, G), can be used to determine if the set of mistletoes is already
complete. The procedure returns 1, if there are no further extensions possible
and 0 otherwise. However, these procedures need the set G of leading monomials
of the Gröbner basis.
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3.4 Other Procedures

There are more auxiliary procedures which can be called by the user to transform
Letterplace polynomials into their integer vector correspondence and vice versa:

• ivL2lpI(L):
Transforms a list of integer vectors L into an ideal of Letterplace mono-
mials.

• iv2lp(I):
Transforms an integer vector into the corresponding Letterplace monomial.

• iv2lpList(L):
Transforms a list of integer matrices, each containing iv-monomials as
rows, into an ideal of Letterplace monomials.

• iv2lpMat(M): Transforms an integer matrix, which corresponds to a set of
integer vectors, into an ideal of Letterplace monomials. Note that these
will all have the same total degree.

• lp2iv(p):
Transforms the leading monomial of a Letterplace polynomial into the cor-
responding vector of integers.

• lp2ivId(G):
Transforms an ideal G of Letterplace polynomials into the corresponding
list of integer matrices. This is done by taking the leading monomials of
G and storing all monomials of the same total degree in the one matrix.

Moreover, the procedure ivSortMis or lpSortMis respectively, can be used to
sort the mistletoes lexicographically.

3.5 An Example in Singular

We like to give a quick example of the usage of Singular. Therefore we
choose the example braid62 (see 3.6). The ideal is given by the generators
yxy−zyz, xyx−zxy, zxz−yzx, x3−2y3+3z3−4xyz+5xz2−6xy2+7x2z−8x2y.

LIB "sickle.lib"; // Loading the library

ring r = 0,(x,y,z),dp; // Define commutative ring

int d = 6; // Degree bound

def R = makeLetterplaceRing(d); // Define corresponding Lp ring

setring R; // Sets R as basering

// Defining the ideal by a set of generators:
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ideal I = y(1)*x(2)*y(3) - z(1)*y(2)*z(3),

x(1)*y(2)*x(3) - z(1)*x(2)*y(3),

z(1)*x(2)*z(3) - y(1)*z(2)*x(3),

x(1)*x(2)*x(3) - 2*y(1)*y(2)*y(3) + 3*z(1)*z(2)*z(3)

- 4*x(1)*y(2)*z(3) + 5*x(1)*z(2)*z(3) - 6*x(1)*y(2)*y(3)

+ 7*x(1)*x(2)*z(3) - 8*x(1)*x(2)*y(3);

option(redSB);option(redTail); // To get a reduced Groebner basis

ideal J = system("freegb",I,d,3); // Computes a GB for I

ideal M = Sickle(J,1,0,0,d); // Compute mistletoes up to degree d

size(M); // This is the number of mistletoes,

// which is too large to display here

==> 314

Sickle(J,0,1,0,d); // Compute the K-dimension up to degree 6

==> 541

Sickle(J,0,0,1,d); // Compute the Hilbert series up to degree 6

==> 1,3,9,23,57,135,313

3.6 Other Computer Algebra Systems

There are only a few computer algebra systems which provide a user with the
possibility of performing computations in free associative algebras, and the func-
tionality of modern computer algebra systems in such general structures is sur-
prisingly limited. Namely, a typical system can compute only a Gröbner basis up
to a given degree bound and solve the ideal membership problem via a normal
form computation.
In the following we will enlist the most important computer algebra systems along
with a short overview of their most important abilities:

• MAGMA [BCP97]
With the system Magma it is possible to construct a free algebra and com-
pute a Gröbner basis for a given two-sided ideal. There are two variants
of the Gröbner basis algorithm, namely non-commutative Buchberger’s al-
gorithm and Alan Steel’s generalization of Faugère’s F4 algorithm to the
case of free algebras. Moreover, a factor algebra can be constructed as the
image of a homomorphism, that is, one can compute the image of an ele-
ment under the natural epimorphism K〈X〉 → K〈X〉/I. Furthermore it is
possible to compute the dimension and a K-basis of the factor algebra (in
the case where the dimension is finite).
One is restricted to the use of the graded lexicographical ordering, which,
for example, does not allow to perform elimination procedures.

• GAP [Coh07, Kro03]
The Gbnp package of Gap provides the user with the possibility to compute
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Gröbner bases of non-commutative ideals and some variations of it, such as
a weighted and truncated version. A tracing facility allows one to recover
cofactors from a Gröbner presentation of a polynomial, belonging to an ideal
(two-sided lift). In addition, there are algorithms for analyzing the quotient
of a non-commutative polynomial algebra by a two-sided ideal, whose finite
Gröbner basis has been determined. This includes an algorithm to check
the finiteness of the K-dimension. In the case of an affirmative result, one
can compute a monomial K-basis, the K-dimension and the Hilbert series.
For the latter computation, it is possible to specify a degree bound, so one
can use it even in the infinite case via truncated computation.
Unfortunately, Gbnp can only work with the deglex ordering, which, as
in the case of Magma, cannot be used for elimination.

• BERGMAN [CU95]
Bergman is a flexible tool to calculate Gröbner bases, Hilbert and Poin-
caré-Betti series, Anick resolutions and Betti numbers in non-commutative
algebras and modules over them. By default, Bergman takes homogeneous
polynomials as input only. However, recently it became possible to com-
pute Gröbner bases of non-homogeneous ideals using homogenization and
the so called “rabbit strategy”, see [Ufn08] and [Nor98]. There are three
orderings available: the deglex ordering and two orderings for elimination
(cf. [BCU05]).

• OPAL [GHK97]
Opal is a stand-alone system for Gröbner bases in free and path algebras
and is able to compute degree-bounded Gröbner bases, normal forms and
a (bounded) K-basis of a factor algebra. Opal is not developed anymore.

• FELIX [AK91]
Felix provides generalizations of Buchberger’s algorithm to free
K-algebras, polynomial rings and non-commutative G-algebras. Also,
syzygy computations and basic ideal arithmetics are implemented. Also it
provides the user with the possibility to compute products and quotients
of ideals, sums and intersection of modules. Felix is able to do elimi-
nation, compute syzygies and transformation matrices. Felix is the only
system which can compute over the (non-commutative) integer ring Z〈X〉.
Unfortunately, Felix is not under development any longer.

For a comparison of our implementation Magma and Gap were available to us.
However, there are lots of drawbacks to those programs, as will be explained in
the next section.

63



3.7 Examples

Up to now, there is still no publicly available collection of standard benchmarks
for non-commutative Gröbner bases in free and path algebras. In [LL09] Viktor
Levandovskyy and Roberto La Scala stressed the importance of creating a unified
set of examples, which will serve as benchmarks for systems, computing non-
commutative Gröbner bases in free and path algebras. They created a large set
of examples for computing Gröbner bases and used it to test their implementation
of the Letterplace Gröbner basis algorithm. We intend to use these examples to
test our implementation as well and to compare the timings of the computations
with that of Magma and Gap.
However, there is a big drawback to this set of examples: While there always
exists at least a truncated Gröbner basis G of each example, the factor algebra
K〈X〉/〈G〉 is not guaranteed to be of finite K-dimension and in fact it turns out
that for these examples it is not. While our implementation in Singular can
handle infinite K-dimension by adding a degree-bound (so we compute only part
of the K-basis), Magma is not able to do so, while Gap can compute a part of
the Hilbert series (up to a given degree) and the function BaseQA can be used
to compute a finite number of elements. But since it is not clear which part of
the K-basis is returned, because there is no explanation for this behavior in the
online guide (cf. [CK09]), it is not meaningful to compare the two procedures.
Note that this “bad” behavior of Gap makes its use complicated.
On the other hand, it is not reasonable to compare those programs in the finite
case, because most of those cases are too small, meaning that the computation
time is below one second (for all three systems) and therefore they are equally
fast.

3.7.1 Explanation of the Examples

The following examples are all taken from [LL09].

3.2 Example. Consider the two-sided ideal I, such that K〈X〉/I is the univer-
sal enveloping algebra of the (relatively) free nilpotent Lie algebra L of class
c. In other words, the ideal I is generated by all (left-normed) commutators
[xi1 , . . . , xic ] of length c + 1, where the number of variables xi ∈ X is the dimen-
sion n of the algebra L.
In particular, we study the case when n = 5 and c = 3, 4, as did Levandovskyy
and La Scala (cf. [LL09] Example 5.1). We called these examples 3nil 5dim and
4nil 5dim. We compute up to degree 6 and 7 for both these cases.

3.3 Example. In the theory of associative algebras, a fundamental role is played
by the so-called T -ideals which are (multi)graded two-sided ideals I of the free
associative algebra K〈X〉 given by all polynomials which are zero when evaluated
on elements of an algebra A. Then, A is said to be a polynomial identity algebra,
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written PI-algebra, that is, I is different from zero. Usually the T -ideals are not
finitely generated as ideals of K〈X〉, and so one can give a finite set of generators
just up to some degree d.
As an example for testing their implementation, Levandovskyy and La Scala
considered the T -ideal I of the algebra of 2-by-2 upper triangular matrices. Then
the ideal I is generated by polynomials [xi, xj ]w[xk, xl] where w is an arbitrary
word (including 1) of K〈X〉. For the test, they fixed the number of variables equal
to 4 and degree bound to 7 and denoted this example as 2tri 4var (cf. [LL09]
Example 5.3) and so do we.

3.4 Example. The Cartan matrices for the algebras F4 and E6 are well-known
and can be obtained explicitly with e.g. Gap. The generalized Cartan matrices
for HA1

1 and for EHA1,2
1 (which is an instance of parametric extended HA1

1

matrix) are the following:

HA1
1 :=





2 −1 0
−1 2 −2
0 −2 2



 ; EHA1,2
1 :=





2 −2 −3
−2 2 −1
−2 −5 2



 .

These examples have been called ser f4, ser e6, ser ha and ser eha respectively
(cf. [LL09] Example 5.4).

3.5 Example. We consider also an example, communicated to Viktor Levan-
dovskyy and Roberto La Scala by Victor Ufnarovskij and denoted as ufn3. This
is a list of 125 binomials of degree 2 in 15 variables. Some of them represent
anti-commutativity, ab+ ba; the rest are of the form ab+ cd, ca+ab, de+ fd and
so on.

3.6 Example. Some examples were invented by Viktor Levandovskyy and
Roberto La Scala for the purpose of a fast comparison with other systems. The
generators can be found in Table 3.1.

Table 3.1:

Example Generators of ideal
braid3 11 yxy − zyz, xyx − zxy, zxz − yzx, x4 + y3 + z3 + xyz
braid4 11 yxy − zyz, xyz − zxy, zxz − yzx, x4 + y3 + z3 + xyz
braid62 yxy − zyz, xyz − zxy, zxz − yzx,

x3 − 2y3 + 3z3 − 4xyz + 5xz2 − 6xy2 + 7x2z − 8x2y
lp1 10 z4 + yxyx − xy2x − 3zyxz, x3 + yxy − xyx, zyx − xyz + zxz
lv2 15 xy + yz, x2 + xxy − yx − y2

All tests were performed on a PC equipped with an Intel Core i7 Quadcore
Processor (4× 2933 MHz) with 12GB RAM running Linux. However, during the
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computation it was only possible to use 4GB RAM at most and only part of the
capacity of the processor.

3.7.2 Timings

The running times in the tables below are given in the format

“hours:minutes:seconds:hundredth seconds”.

We drop the hours, whenever they are not required.

As one can see in Table 3.2, the dimensions of each factor algebra are quite high,
so we expect long computational time.
However, as one can see in Table 3.3, each computation with Singular is pretty
fast, so we have mostly timings below one minute.

Example Dimension Time GB-Computation
2tri 4var7deg 6237 00:04.00
3nil 5dim d6 8557 00:01.01
3nil 5dim d7 28272 00:03.65
4nil 5dim d6 13207 00:14.46
4nil 5dim d7 51672 00:55.39
Braid3 11 31214 00:14.73
Braid4 11 32123 00:03.65
Braid62 6 541 00:00.02
Braid62 10 14149 01:36.04
lp1 10 39737 00:00.44
lv2d10 4083 00:00.07
serre e6 d10 101803 00:00.32
serre e6 d13 919083 00:08.65
serre eha112 d10 44811 00:00.22
serre eha112 d12 323704 00:07.70
serre f4 d10 11912 00:00.10
serre f4 d15 198930 00:04.76
serre ha11 d10 4944 00:00.09
serre ha11 d15 98412 00:27.28
ufn3 d6 5863 00:21.51
ufn3 d8 12882 01:05.19

Table 3.2: List of examples, their dimension and timings for
Gröbner basis computation
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Example Time Hilb Time Dimen Time Sickle Time DCheck
2tri 4var7deg 00:39.08 00:39.28 00:45.02 00:00.33
3nil 5dim − d6 00:28.47 00:28.89 00:37.02 00:00.04
3nil 5dim − d7 01:45.44 01:44.16 02:12.38 00:00.26
4nil 5dim − d6 01:55.28 01:55.76 02:12.18 00:00.42
4nil 5dim − d7 11:05.87 11:10.12 12:04.26 00:00.39
Braid3 11 03:08.62 03:08.32 03:41.83 00:00.87
Braid4 11 02:08.74 02:08.29 02:45.12 00:00.32
Braid62 6 00:00.33 00:00.34 00:00.69 00:00.02
Braid62 10 00:00.72 00:00.68 00:11.36 00:00.03
lp1 10 00:44.29 00:44.84 01:31.69 00:00.03
lv2d10 00:05.67 00:05.78 00:09.46 00:00.05
serre e6 d10 02:51.63 02:53.38 04:34.33 00:00.02
serre e6 d13 31:49.28 31:27.90 45:12.87 00:00.99
serre eha112 d10 00:50.15 00:51.30 01:41.58 00:00.02
serre eha112 d12 10:03.88 10:20.23 17:47.82 00:00.14
serre f4 d10 00:13.54 00:13.90 00:23.69 00:00.07
serre f4 d15 05:26.05 05:35.93 09:11.80 00:00.07
serre ha11 d10 00:04.97 00:05.16 00:09.21 00:00.02
serre ha11 d15 03:19.33 03:21.02 05:15.57 00:00.95
ufn3 d6 01:28.56 01:27.57 01:31.27 00:00.98
ufn3 d8 04:52.44 04:49.52 05:02.41 00:01.03

Table 3.3: Timings for all sickle.lib procedures
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3.7.3 A Comparison to GAP

We now state the timings for the analogous procedures in Gap. The notation
and the treatment is as before.

Example Time Hilbert Time FinCheck Time GB-Computation

2tri 4var7deg 00:44.90 00:01.38 00:34.64
3nil 5dim d6 0:04.97 0:00.86 00:04.08
3nil 5dim d7 00:06.94 00:01.73 00:33.96
4nil 5dim d6 00:04.07 00:01.92 00:27.56
4nil 5dim d7 00:12.98 00:57.18 02:34.17
Braid3 11 00:06.70 00:05.19 03:34.19
Braid4 11 00:02.02 00:00.76 00:31.31
Braid62 6 00:01.12 00:00.66 00:01.10
Braid62 10 17:52.00 22:01.00 13:46:20.00

lp1 10 00:01.97 00:00.98 00:08.88
lv2d10 00:01.51 00:00.49 00:01.48

serre e6 d10 00:01.07 00:00.21 00:12.11
serre e6 d13 00:06.91 00:13.12 05:36.71

serre eha112 d10 00:03.04 00:00.10 00:03.05
serre eha112 d12 02:01.35 00:00.92 01:12.87

serre f4 d10 00:02.43 00:01.63 00:02.44
serre f4 d15 31:16.00 01:08.53 45:08.30

serre ha11 d10 00:01.82 00:01.12 00:01.73
serre ha11 d15 00:57.00 01:18.00 01:20:45.00

ufn3 d6 00:01.08 1

ufn3 d8 00:01.06 1

Table 3.4: Timings for corresponding Gap procedures

For a quick comparison between the systems, we have prepared Table 3.5.
Let us first consider the timings for the check of finiteness of the K-dimension:
As one can see, Singular is the faster system in all examples. This is due to
the fact that the fincheck-procedure of Gap constructs a so-called search-tree
(cf. [Kro03]) for all the monomials in the Gröbner basis. This seems to be very
time-consuming for these large examples.
On the other hand, the timings for the (partial) Hilbert series seem to indicate
that Gap is the faster system, even if we consider the total time, meaning the sum
of the time for the Gröbner basis computation and the time for the computation

1The computation was terminated after the stated amount of time, because it reached the

memory limit.
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Example Hilbert Time dimension check

2tri 4var7deg Singular Singular

3nil 5dim d6 Gap Singular

3nil 5dim d7 Gap Singular

4nil 5dim d6 Gap Singular

4nil 5dim d7 Gap Singular

Braid3 11 Gap Singular

Braid4 11 Gap Singular

Braid62 6 Singular Singular

Braid62 10 Singular Singular

lp1 10 Gap Singular

lv2d10 Gap Singular

serre e6 d10 Gap Singular

serre e6 d13 Gap Singular

serre eha112 d10 Gap Singular

serre eha112 d12 Gap Singular

serre f4 d10 Gap Singular

serre f4 d15 Singular Singular

serre ha11 d10 Gap Singular

serre ha11 d15 Gap Singular

ufn3 d6 Singular Singular

ufn3 d8 Singular Singular

Table 3.5: Evaluation of the Tables
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of the Hilbert series. However, if one considers the outcome of the computation
the results of Gap are somehow suspicious, take for example serre e6 d13, then
Gap returns:

[1, 6, 26, 91, 281, 782, 2003, 4741, 10358, 20571, 35693, 47705, 19076,−174732]

as coefficients for the Hilbert series (starting with the coefficient of the smallest
term). By definition of the Hilbert series, there should be only natural numbers,
so −174732 /∈ N should not be a coefficient. The algorithm implemented in Gap

is using the so-called graph of chains and another series, which can be considered
as the inverse of the Hilbert series (for more information on this procedure see
[Kro03]). Since we have a truncated Gröbner basis as input, it is not clear if
the procedure returns a meaningful result and in fact the examples serre e6 d13
shows that it does not work properly in this case, while our procedure returns
the fake dimension for each graded component, as one would wish for.
In conclusion, our procedures implemented in Singular can cope in direct com-
parison to Gap and therefore with other computer algebra systems, and more-
over, the procedures return meaningful results, even in the cases, in which the
corresponding functions in Gap fail to do so.
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truncated Gröbner basis, 24

Ufnarovskij graph, 38

weak, 12

72



Bibliography

[AK91] J. Apel and U. Klaus. FELIX - ein Computeralgebrasystem für kon-
struktive Algebra, 1991.

[AK05] P. Ackermann and M. Kreuzer. Gröbner basis cryptosystems. Journal
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Birkhäuser, 1999.

73

http://servus.math.su.se/bergman/
http://dam02.win.tue.nl/products/gbnp/
http://www.win.tue.nl/~amc/pub/grobner/gbnp.pdf


[CR94] Maxime Crochemore and Wojciech Rytter. Text algorithms. Oxford
University Press, Inc., New York, NY, USA, 1994.

[CU95] S. Cojocaru and V. Ufnarovskij. Noncommutative Gröbner basis,
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commutative Gröbner bases. J. Symbolic Computation, 44(10):1374–
1393, 2009.
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