Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 14.12.2023

(10.1) Exercise: Units in cyclotomic fields.

Let $\zeta:=\zeta_{5} \in \mathbb{C}$, let $K:=\mathbb{Q}(\zeta)$, and let $\mathcal{O}:=\mathcal{O}_{K}=\mathbb{Z}[\zeta]$.
a) For any $\alpha \in \mathcal{O}$ show that $N(\alpha)=\frac{1}{4} \cdot\left(a^{2}-5 b^{2}\right)$ for suitable $a, b \in \mathbb{Z}$. Conclude that the group of units of \mathcal{O} is infinite.
b) Show that $N(a+b \zeta)=\sum_{i=0}^{4}(-1)^{i} a^{i} b^{4-i}$, for $a, b \in \mathbb{Z}$. Use this to calculate $N(\zeta+k)$ for $k \in\{-3,-2,2,3,4\}$, and write the latter as products of irreducible elements of \mathcal{O}. Similarly, provide factorisations of 11,31 , and 61 in \mathcal{O}.
Hint for a). Use Gaussian sums.
(10.2) Exercise: Real subfields of cyclotomic fields.

Let $\zeta:=\zeta_{m} \in \mathbb{C}$ be a primitive m-th root of unity, where $m \geq 3$, let $\omega:=\zeta+\zeta^{-1}$, let $K:=\mathbb{Q}(\omega)$ and let $\mathcal{O}:=\mathcal{O}_{K}$.
a) Show that $K=\mathbb{Q}(\zeta) \cap \mathbb{R}$ and that $\mathcal{O}=\mathbb{Z}[\omega]$.
b) Let $m:=p$ be an odd prime. Show that $\operatorname{disc}(\mathcal{O})=p^{\frac{p-3}{2}}$.

Hint. Show that both the sets $\left\{\zeta^{-(k-1)}, \ldots, \zeta^{-1}, 1, \zeta, \ldots, \zeta^{k-1}\right\} \subseteq \mathbb{Q}(\zeta)$ and $\left\{1, \omega, \zeta, \zeta \omega, \ldots, \zeta^{k-1}, \zeta^{k-1} \omega\right\} \subseteq \mathbb{Q}(\zeta)$ are integral bases, where $k:=\frac{\varphi(m)}{2}$.
(10.3) Exercise: Primes in arithmetic progressions. We consider another (easy) special case of Dirichlet's Theorem [1837] on primes in coprime residue classes:
a) Show that there are infinitely many $p \in \mathcal{P}_{\mathbb{Z}}$ such that $p \equiv-1(\bmod 3)$.
b) Show that there are infinitely many $p \in \mathcal{P}_{\mathbb{Z}}$ such that $p \equiv 1(\bmod 3)$.
(10.4) Exercise: Legendre symbols.

Let $0 \neq a \in \mathbb{Z}$. Show that
a) there are infinitely many odd primes $p \in \mathcal{P}$ such that $p \nmid a$ and $\left(\frac{a}{p}\right)=1$;
b) there are infinitely many odd primes $p \in \mathcal{P}$ such that $p \nmid a$ and $\left(\frac{a}{p}\right)=-1$.

