Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 21.12..2023

(11.1) Exercise: Quadratic and cyclotomic fields.
a) Show that any quadratic field is a subfield of a suitable cyclotomic field.
b) Let $n \geq 3$ be odd. Describe the quadratic subfields of $\mathbb{Q}\left(\zeta_{n}\right)$.
c) Let $k \geq 3$. Describe the quadratic subfields of $\mathbb{Q}\left(\zeta_{2^{k}}\right)$.
(11.2) Exercise: Legendre symbols.

Let $p \in \mathcal{P}_{\mathbb{Z}}$ be odd. Show that p can be written as $p=a^{2}+2 b^{2}$, where $a, b \in \mathbb{Z}$, if and only if $p \equiv 1(\bmod 8)$ or $p \equiv 3(\bmod 8)$.
(11.3) Exercise: Quadratic polynomials.

Let $a \in \mathbb{Z}$.
a) Show that any prime divisor p of $4 a^{2}+1 \in \mathbb{Z}$ fulfills $p \equiv 1(\bmod 4)$.
b) Show that any prime divisor p of $9 a^{2}+3 a+1 \in \mathbb{Z}$ fulfills $p \equiv 1(\bmod 3)$.
(11.4) Exercise: Values of polynomials.

Let $d \in \mathbb{Z} \backslash\{0,1\}$ be square-free, let $\mu_{d}:=X^{2}-d \in \mathbb{Z}[X]$, let $\mathcal{V}_{d} \subseteq \mathbb{Z}$ be the image of the associated polynomial function $\mu_{d}: \mathbb{Z} \rightarrow \mathbb{Z}$, and let $\mathcal{P}_{d} \subseteq \mathcal{P}_{\mathbb{Z}}$ be the set of prime divisors of the elements of \mathcal{V}_{d}.
Show that $\mathcal{P}_{d}=\mathcal{D}_{d} \cup \dot{\mathcal{R}} \mathcal{R}_{d}$, where $\mathcal{D}_{d} \subseteq \mathcal{P}_{\mathbb{Z}}$ is the set of prime divisors of $4 d$, and $\mathcal{R}_{d} \subseteq \mathcal{P}_{\mathbb{Z}}$ is the preimage of a subgroup $\overline{\mathcal{R}}_{d} \leq(\mathbb{Z} /(4 d))^{*}$ of index 2 .

