

Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Exercise sheet 11 (14.01.2026)

(11.1) Exercise: Gluing sheaves.

Let V be a topological space, and let $\{V_i \subseteq V; i \in \mathcal{I}\}$ be an open covering, where \mathcal{I} is an index set. For all $i \in \mathcal{I}$ let \mathcal{F}_i be a sheaf on V_i , with values in a fixed category, such that there are isomorphisms $\varphi_{ij}: (\mathcal{F}_i)|_{V_i \cap V_j} \Rightarrow (\mathcal{F}_j)|_{V_i \cap V_j}$ fulfilling $\varphi_{ij}\varphi_{jk} = \varphi_{ik}: (\mathcal{F}_i)|_{V_i \cap V_j \cap V_k} \Rightarrow (\mathcal{F}_k)|_{V_i \cap V_j \cap V_k}$, for all $i, j, k \in \mathcal{I}$.

- a) Show that we have $\varphi_{ii} = \text{id}_{\mathcal{F}_i}: \mathcal{F}_i \Rightarrow \mathcal{F}_i$, for all $i \in \mathcal{I}$.
- b) Show that there is a sheaf \mathcal{F} on V , together with isomorphisms $\psi_i: \mathcal{F}_i \Rightarrow \mathcal{F}|_{V_i}$, such that $\psi_i = \varphi_{ij}\psi_j: (\mathcal{F}_i)|_{V_i \cap V_j} \Rightarrow \mathcal{F}|_{V_i \cap V_j}$, for all $i, j \in \mathcal{I}$. Moreover, show that \mathcal{F} and the ψ_i are uniquely defined up to unique isomorphism.

(11.2) Exercise: Classification of binary quadratics.

- a) Let L be an algebraically closed field, such that $\text{char}(L) \neq 2$, let $A := L[X, Y]$, let $f \in A$ be irreducible of degree 2, and let $\mathbf{Q} := \mathbf{V}_L(f)$ be the associated **binary quadric**. Show that either $L[\mathbf{Q}] \cong L[\mathbf{V}]$ or $L[\mathbf{Q}] \cong L[\mathbf{W}]$, where $\mathbf{V} := \mathbf{V}(Y - X^2)$ and $\mathbf{W} := \mathbf{V}(XY - 1)$. Find a criterion on the coefficients of f to decide which case occurs. Conclude that \mathbf{Q} is isomorphic to L or $L \setminus \{0\}$.
- b) Let $A^\sharp := L[X, Y, Z]$. Show that the projective closures $\overline{\mathbf{V}} \subseteq \mathbf{P}^2$ and $\overline{\mathbf{W}} \subseteq \mathbf{P}^2$ are both isomorphic to $\mathbf{V}^\sharp(XZ - Y^2) \subseteq \mathbf{P}^2$.

(11.3) Exercise: Morphisms of projective varieties.

Let L be an algebraically closed field, and let $p \in \mathbf{P}^2$.

- a) Show that the set of lines in \mathbf{P}^2 through p can be identified with \mathbf{P}^1 .
- b) We consider the **conic** $\mathbf{V} := \mathbf{V}^\sharp(XZ - Y^2) \subseteq \mathbf{P}^2$, where $L[X, Y, Z]$ is the homogeneous coordinate algebra of \mathbf{P}^2 . Show that \mathbf{V} is irreducible
- c) Let $p := [0: 0: 1] \in \mathbf{V}$. Show that any line in \mathbf{P}^2 through p intersects \mathbf{V} in precisely two points, where for the ‘tangent’ at \mathbf{V} the point p is counted twice.
- d) Show that this yields an isomorphism of projective varieties $\mathbf{P}^1 \rightarrow \mathbf{V}$.

(11.4) Exercise: Veronese embeddings again.

Let $K \subseteq L$ be a field extension, where L algebraically closed, let $\varphi: \mathbf{P}^n \rightarrow \mathbf{P}^N$ be the d -fold Veronese embedding, where $N := \binom{n+d}{n} - 1$.

- a) Show that φ induces an isomorphism of varieties $\mathbf{P}^n \cong \varphi(\mathbf{P}^n)$.
- b) Let $\varphi(\mathbf{P}^1) \subseteq \mathbf{P}^2$ be the image of the 2-fold Veronese embedding of \mathbf{P}^1 . Show that for the homogeneous coordinate algebras we have $K[\mathbf{P}^1] \not\cong K[\varphi(\mathbf{P}^1)]$.

(11.5) Exercise: Quasi-affine varieties.

Show that the affine line is not isomorphic as a variety to any proper open subset of itself.