Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 04.01.2024

(12.1) Exercise: Galois ramification.

Let $K \subseteq L$ be a Galois extension of algebraic number fields, let $G := \operatorname{Aut}_K(L)$, and let $\mathfrak{p} \in \mathcal{P}_K$. Show the following:

a) If \mathfrak{p} is inert in L, then G is cyclic.

b) If \mathfrak{p} is completely ramified in all intermediate fields $K \subseteq M \subset L$, but not so in L, then G is cyclic of prime order. Likewise, if in all intermediate fields $K \subseteq M \subset L$ there is only a single prime lying over \mathfrak{p} , but not so in L, then G is cyclic of prime order.

c) If \mathfrak{p} is unramified in all intermediate fields $K \subseteq M \subset L$, but not so in L, then G has a unique smallest non-trivial subgroup H. Likewise, if \mathfrak{p} splits completely in all intermediate fields $K \subseteq M \subset L$, but not so in L, then G has a unique smallest non-trivial subgroup H.

d) If \mathfrak{p} is inert in all intermediate fields $K \subseteq M \subset L$, but not so in L, then G has prime power order.

Hint for d). If a finite group G has a unique smallest non-trivial subgroup H, then G has prime power order, and H is a central subgroup of prime order.

(12.2) Exercise: Biquadratic fields.

Let $K \neq L$ be quadratic algebraic number fields, and let $p \in \mathcal{P}_{\mathbb{Z}}$.

a) Show that p might be completely ramified in K and L, but not so in KL. Likewise, show that in both K and L there might be only a single prime lying over p, but not so in KL.

b) Show that p might be unramified in K and L, but not so in KL. Likewise, show that p might split completely in K and L, but not so in KL.

c) Show that p might be inert in K and L, but not so in KL. Likewise, show that p might be pure in K and L, but not so in KL.

d) Still, if p is inert in *all* quadratic subfields of KL, what happens in KL?

e) Letting $\mathfrak{p} \in \mathcal{P}_{KL}(p)$, provide examples for $[e(\mathfrak{p}), f(\mathfrak{p})] \in \{[1, 2], [2, 1], [2, 2]\}$.

(12.3) Exercise: Cyclotomic fields (partly GAP).

a) Let $r, e, f \in \mathbb{N}$. Show that there are rational primes $p, l \in \mathcal{P}_{\mathbb{Z}}$ such that $p \equiv 1 \pmod{e}$, and p splits into r distinct prime ideals in $\mathbb{Q}(\zeta_l)$, and such that $\mathbb{Q}(\zeta_l)$ has a subfield of degree rf. How does p split in this subfield?

b) Assuming the above setting, show that $\mathbb{Q}(\zeta_{pl})$ has a subfield in which p splits into r prime ideals, each having ramification index e and inertial degree f.

c) Write a GAP program which for $r, e, f \in \mathbb{N}$ computes rational primes p, l and a subfield of $\mathbb{Q}(\zeta_{pl})$ as above. Apply this in particular for e := 2, f := 3, r := 5.

(12.4) Exercise: Non-factorial cyclotomic number rings (GAP).

Show that the ring of integers of $\mathbb{Q}(\zeta_{31})$ is not factorial.

Hint. Use an element of small norm, and a suitable quadratic field.