Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 11.01.2024

(13.1) Exercise: Primes as sums of two squares..

Let $p \in \mathcal{P}_{\mathbb{Z}}$ such that $p \equiv 1(\bmod 4)$. Show (again), by using Minkowski's lattice point theorem, that p is a sum of two squares in \mathbb{Z}.

Hint. Consider the lattice $\left\{[a, b] \in \mathbb{Z}^{2} ; b \equiv u a(\bmod p)\right\}$, where $u \in \mathbb{Z}$ such that $u^{2} \equiv-1(\bmod p)$.
(13.2) Exercise: Full lattices.
a) Let $n \in \mathbb{N}$, let $\Lambda \subseteq \mathbb{Z}^{n} \subseteq \mathbb{R}^{n}$ be a full sublattice, and let $\mathcal{F} \subseteq \mathbb{R}^{n}$ be a fundamental domain for Λ. Show that $\operatorname{vol}(\Lambda)=\left|\mathcal{F} \cap \mathbb{Z}^{n}\right|$.
b) Let $V \neq\{0\}$ be an Euclidean \mathbb{R}-vector space, and let $\Lambda \subseteq V$ be a lattice. Show the equivalence of the following assertions:
i) Λ is a full lattice.
ii) There is a bounded subset $M \subseteq V$ such that $V=\bigcup_{v \in \Lambda}(v+M)$.
iii) The quotient group V / Λ, equipped with the quotient topology, is compact.
(13.3) Exercise: Minkowski's Lattice Point Theorem.

Let V be an Euclidean \mathbb{R}-vector space such that $n:=\operatorname{dim}_{\mathbb{R}}(V) \in \mathbb{N}$, and let $\Lambda \subseteq V$ be a full lattice. Show that the volume bound in Minkowski's theorem cannot be improved in general, by exhibiting a convex and centrally symmetric subset $X \subseteq V$ such that $\operatorname{vol}(X)=2^{n} \cdot \operatorname{vol}(\Lambda)$, but $\Lambda \cap X=\{0\}$.

(13.4) Exercise: Minkowski’s Linear Form Theorem.

Let $A=\left[a_{i j}\right] \in \mathrm{GL}_{n}(\mathbb{R})$, where $n \in \mathbb{N}$, and for $j \in\{1, \ldots, n\}$ let $L_{j}: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}:\left[x_{1}, \ldots, x_{n}\right] \mapsto \sum_{i=1}^{n} x_{i} a_{i j}$, that is the \mathbb{R}-linear form given by the j-th column of A. Moreover, let $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $c_{j}>0$ and $\prod_{j=1}^{n} c_{j}>\mid \operatorname{det}(A)$.
Show Minkowski's Linear Form Theorem, saying that there are $a_{1}, \ldots, a_{n} \in$ \mathbb{Z} such that $\left|L_{j}\left(a_{1}, \ldots, a_{n}\right)\right|<c_{j}$, for all $j \in\{1, \ldots, n\}$.

