Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 18.01.2024

(14.1) Exercise: Minkowski's Theorem.

We consider the Euclidean space $\mathbb{R}^{2 n}$, where $n \in \mathbb{N}$. Show that the limit $\lim _{r \rightarrow \infty} \frac{B_{r}(0) \cap \mathbb{Z}^{2 n}}{r}$ exists, and compute its value.

(14.2) Exercise: Four-squares theorem.

a) Show that an integer of shape $4^{a} \cdot(8 k-1)$, where $a \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$, cannot be written as a sum of three squares in \mathbb{Z}. (The converse also holds [Legendre, 1798], but we are not able to show this here.)
b) Show that if $p \in \mathcal{P}_{\mathbb{Z}}$ is odd, then $4 p$ is a sum of four odd squares in \mathbb{Z}.
(14.3) Exercise: Finiteness of class groups.

This is an alternative approach to prove the finiteness of class groups of algebraic number fields, without using Minkowski's Theorem:
a) Let K be an algebraic number field, let $\mathcal{O}:=\mathcal{O}_{K}$ be its ring of integers, let $\mathcal{B} \subseteq \mathcal{O}$ be an integral basis, and let $c_{K}:=\prod_{\sigma \in \operatorname{Inj}_{Q}(K)}\left(\sum_{\omega \in \mathcal{B}}\left\|\omega^{\sigma}\right\|\right) \in \mathbb{R}$. Show that for any ideal $\{0\} \neq \mathfrak{a} \unlhd \mathcal{O}$ there is $0 \neq \alpha \in \mathfrak{a}$ such that $\left|N_{K}(\alpha)\right| \leq c_{K} \cdot N(\mathfrak{a})$.
b) Show that any ideal class of \mathcal{O} contains an ideal \mathfrak{a} such that $N(\mathfrak{a}) \leq c_{K}$. Compare c_{K} with the Minkowski bound $b_{K}=M_{r, s} \cdot \sqrt{|\operatorname{disc}(K)|}$, where r and s are the number of real and of non-real embeddings of K, respectively.

(14.4) Exercise: Finiteness of class groups.

This is a simplified approach to prove the finiteness of class groups of algebraic number fields, using Minkowski's Theorem but yielding a weaker bound:
a) Let K be an algebraic number field, let $\mathcal{O}:=\mathcal{O}_{K}$ be its ring of integers, and let r and s be the number of real and of non-real embeddings of K, respectively. Show that any ideal $\{0\} \neq \mathfrak{a} \unlhd \mathcal{O}$ possesses an element $0 \neq \alpha \in \mathfrak{a}$ such that $\left|N_{K}(\alpha)\right| \leq\left(\frac{2}{\pi}\right)^{s} \cdot \sqrt{|\operatorname{disc}(K)|} \cdot N(\mathfrak{a})$.
b) Conclude that any ideal class of \mathcal{O} contains an ideal \mathfrak{a} such that $N(\mathfrak{a}) \leq$ $\left(\frac{2}{\pi}\right)^{s} \cdot \sqrt{|\operatorname{disc}(K)|}$. Compare this with the Minkowski bound $M_{r, s} \cdot \sqrt{|\operatorname{disc}(K)|}$.
Hint for a). Use a subset of \mathbb{R}^{n} consisting of the vectors $\left[x_{1}, \ldots, x_{n}\right]$ such that $\left|x_{i}\right| \leq c_{i}$ for $i \in\{1, \ldots, r\}$, and $x_{r+2 j-1}^{2}+x_{r+2 j}^{2} \leq c_{r+j}$ for $j \in\{1, \ldots, s\}$, where $c_{1}, \ldots, c_{r+s} \in \mathbb{R}$ such that $c_{k}>0$ and $\prod_{k=1}^{r+s} c_{k} \geq\left(\frac{2}{\pi}\right)^{s} \cdot \sqrt{|\operatorname{disc}(K)|} \cdot N(\mathfrak{a})$.

