Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 25.01.2024

(15.1) Exercise: Factorial imaginary quadratic number fields.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$. Show that \mathcal{O}_{d} is factorial, by showing that it has trivial class group, for

$$
d \in\{-1,-2,-3,-7,-11,-19,-43,-67,-163\} .
$$

(15.2) Exercise: Imaginary quadratic number fields.

For $0>d \in \mathbb{Z}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$.
a) If \mathcal{O}_{d} has trivial class group, show the following:
i) We have $d \equiv 5(\bmod 8)$, unless $d \in\{-1,-2,-7\}$.
ii) If $2 \neq p \in \mathcal{P}_{\mathbb{Z}}$ such that $p \nmid d$ and $0<-d<4 p$, then $\left(\frac{d}{p}\right)=-1$.
iii) If $d<-19$, then $d \equiv\{-43,-67,-163,-403,-547,-667\}(\bmod 840)$.
b) Determine all $-2000<d<0$ such that \mathcal{O}_{d} has trivial class group.
(15.3) Exercise: Class numbers of quadratic number fields.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$, let Cl_{d} be its class group, and let $h_{d} \in \mathbb{N}$ be its class number. Show the following:
i) If $d \in\{2,3,5,6,7,173,293,437\}$, then $h_{d}=1$.
ii) If $d \in\{-6,-10,10\}$, then $h_{d}=2$.
iii) If $d \in\{-23,-31,-83,-139,223\}$, then $h_{d}=3$.
iv) If $d \in\{-14,-39\}$, then $h_{d}=4$, where Cl_{d} is cyclic.
v) If $d \in\{-21,-30\}$, then $h_{d}=4$, where Cl_{d} is non-cyclic.
vi) If $d=-103$, then $h_{d}=5$.
(15.4) Exercise: Class numbers of cubic number fields.
a) For $m \in\{3,5,6,17,19\}$ let $K:=\mathbb{Q}(\sqrt[3]{m})$, and let \mathcal{O}_{m} be its rings of integers. Determine \mathcal{O}_{m}, and show that \mathcal{O}_{m} has trivial class group.
b) Find the ring of integers of $\mathbb{Q}(\sqrt[3]{19})$, and show that it has class number 3 .
c) Let $\alpha \in \mathbb{R}$ such that $\alpha^{3}=\alpha+1$, and let $\beta \in \mathbb{R}$ such that $\beta^{3}=\beta+7$. Show that both $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ have trivial class group.

