Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 01.02.2024

(16.1) Exercise: Class numbers.

Determine the ring of integers of the biquadratic field $K:=\mathbb{Q}(\sqrt{2}, \sqrt{-3})$, and its class number. Compare with the class number of its quadratic subfields.
(16.2) Exercise: Totally real number fields.

Let K be an algebraic number field, such that all its embeddings into \mathbb{C} are real, and let $\emptyset \neq S \subset \operatorname{Inj}_{\mathbb{Q}}(K)$. Show that there is a unit $\epsilon \in \mathcal{O}_{K}^{*}$ such that $0<\epsilon^{\sigma}<1$ for all $\sigma \in S$, and $1<\epsilon^{\sigma}$ for all $\sigma \in \operatorname{Inj}_{\mathbb{Q}}(K) \backslash S$.
(16.3) Exercise: Units in cubic fields.
a) Let K be a cubic number field having a unique real embedding, and $\mathcal{O}:=\mathcal{O}_{K}$. Show that $\mathcal{O}^{*}= \pm\langle\epsilon\rangle$, where $\epsilon>1$ is a uniquely defined fundamental unit.
b) Let $\rho \cdot \exp (\pm i \varphi) \in \mathbb{C}$ be the algebraic conjugates of ϵ, where $\rho>0$ and $0<$ $\varphi<\pi$. Show that $\epsilon=\rho^{-2}$ and that $\operatorname{disc}(\epsilon)=-4 \sin (\varphi)^{2} \cdot\left(\rho^{3}+\rho^{-3}-2 \cos (\varphi)\right)$, and conclude that $|\operatorname{disc}(\epsilon)|<4\left(\epsilon^{3}+\epsilon^{-3}+6\right)$.
c) Let $d:=|\operatorname{disc}(\mathcal{O})|$. Show that $\epsilon^{3}>\frac{d-28}{4}$, where for $d \geq 33$ even $\epsilon^{3}>\frac{d-27}{4}$.
(16.4) Exercise: Units in cubic fields.
a) For $m \in\{2,3,5,6,7\}$ let $K:=\mathbb{Q}(\sqrt[3]{m})$. Determine the fundamental unit $\epsilon \in \mathcal{O}_{K}^{*}$ such that $\epsilon>1$.
b) Let $\alpha \in \mathbb{R}$ such that $\alpha^{3}+\alpha-3=0$, and let $K:=\mathbb{Q}(\alpha)$ Determine its ring of integers \mathcal{O}, show that K has only one real embedding, and determine the fundamental unit $\epsilon \in \mathcal{O}^{*}$ such that $\epsilon>1$.
c) Let $\beta \in \mathbb{R}$ such that $\beta^{3}-2 \beta-3=0$, and let $K:=\mathbb{Q}(\beta)$ Determine its ring of integers \mathcal{O}, show that K has only one real embedding, and determine the fundamental unit $\epsilon \in \mathcal{O}^{*}$ such that $\epsilon>1$.

