Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 19.10.2023

(2.1) Exercise: Pythagorean triples.

Show that the primitive positive integer solutions of the equation $X^{2}+Y^{2}=Z^{2}$ are the triples $[x, y, z]$ and $[y, x, z]$ such that $x=u^{2}-v^{2}$ and $y=2 u v$ and $z=u^{2}+v^{2}$, for some $u, v \in \mathbb{Z}$ coprime such that $u>v \geq 1$ and $2 \mid u v$.
Hint. Use the ring $\mathbb{Z}[i]$.
(2.2) Exercise: Quadratic number rings.
a) For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free determine the ring of integers \mathcal{O}_{d} of the quadratic number field $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \in \mathbb{C} ; a, b \in \mathbb{Q}\}$. How does \mathcal{O}_{d} relate to $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d} \in \mathbb{C} ; a, b \in \mathbb{Z}\}$? (Recall that $\mathcal{O}_{-1}=\mathbb{Z}[\sqrt{-1}]$.)
b) Show that there is \mathbb{Q}-basis $\mathcal{B} \subseteq \mathbb{Q}(\sqrt{d})$ which is contained in \mathcal{O}_{d}. Compute $\operatorname{disc}(\mathcal{B})$. (Try to choose \mathcal{B} such that $|\operatorname{disc}(\mathcal{B})|$ is as small as possible.)

Hint. Distinguish the cases $d \equiv 1(\bmod 4)$ and $d \not \equiv 1(\bmod 4)$.
(2.3) Exercise: Units in quadratic number rings.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$.
a) For $d<0$ determine the group of units \mathcal{O}_{d}^{*}, and show that it is finite.
b) For $d>0$ show that \mathcal{O}_{d}^{*} is infinite.
c) Show that $\mathcal{O}_{2}^{*}=\langle \pm 1\rangle \times\langle 1+\sqrt{2}\rangle \cong C_{2} \times C_{\infty}$.

Hint. Recall the norm map $N: \mathbb{Q}(\sqrt{d}) \rightarrow \mathbb{Q}$.
(2.4) Exercise: Integral squares (partly GAP).
a) Show that amongst the sums $s_{n}:=1+2+\cdots+n=\frac{n(n+1)}{2} \in \mathbb{Z}$, where $n \in \mathbb{N}_{0}$, there are infinitely many squares.
b) Indeed, provide an (efficient) method to enumerate the integers n such that s_{n} is a square, together with s such that $s^{2}=s_{n}$, and implement it into GAP. How many $n \leq 10^{100}$ are there such that s_{n} is a square?
Hint. Use the ring $\mathbb{Z}[\sqrt{2}]$.

