Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 19.10.2023

(2.1) Exercise: Pythagorean triples.

Show that the primitive positive integer solutions of the equation $X^2 + Y^2 = Z^2$ are the triples [x, y, z] and [y, x, z] such that $x = u^2 - v^2$ and y = 2uv and $z = u^2 + v^2$, for some $u, v \in \mathbb{Z}$ coprime such that $u > v \ge 1$ and $2 \mid uv$.

Hint. Use the ring $\mathbb{Z}[i]$.

(2.2) Exercise: Quadratic number rings.

a) For $d \in \mathbb{Z} \setminus \{0, 1\}$ square-free determine the ring of integers \mathcal{O}_d of the **quadratic number field** $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \in \mathbb{C}; a, b \in \mathbb{Q}\}$. How does \mathcal{O}_d relate to $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \in \mathbb{C}; a, b \in \mathbb{Z}\}$? (Recall that $\mathcal{O}_{-1} = \mathbb{Z}[\sqrt{-1}]$.) b) Show that there is \mathbb{Q} -basis $\mathcal{B} \subseteq \mathbb{Q}(\sqrt{d})$ which is contained in \mathcal{O}_d . Compute disc(\mathcal{B}). (Try to choose \mathcal{B} such that $|\operatorname{disc}(\mathcal{B})|$ is as small as possible.)

Hint. Distinguish the cases $d \equiv 1 \pmod{4}$ and $d \not\equiv 1 \pmod{4}$.

(2.3) Exercise: Units in quadratic number rings.

For $d \in \mathbb{Z} \setminus \{0, 1\}$ square-free let \mathcal{O}_d be the ring of integers of $\mathbb{Q}(\sqrt{d})$. **a)** For d < 0 determine the group of units \mathcal{O}_d^* , and show that it is finite. **b)** For d > 0 show that \mathcal{O}_d^* is infinite. **c)** Show that $\mathcal{O}_2^* = \langle \pm 1 \rangle \times \langle 1 + \sqrt{2} \rangle \cong C_2 \times C_\infty$. **Hint.** Recall the norm map $N : \mathbb{Q}(\sqrt{d}) \to \mathbb{Q}$.

(2.4) Exercise: Integral squares (partly GAP).

a) Show that amongst the sums $s_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \in \mathbb{Z}$, where $n \in \mathbb{N}_0$, there are infinitely many squares.

b) Indeed, provide an (efficient) method to enumerate the integers n such that s_n is a square, together with s such that $s^2 = s_n$, and implement it into GAP. How many $n \leq 10^{100}$ are there such that s_n is a square?

Hint. Use the ring $\mathbb{Z}[\sqrt{2}]$.