# Übungen zur Algebraischen Zahlentheorie (WS 2023) 

PD Dr. Jürgen Müller, Ausgabe: 26.10.2023

(3.1) Exercise: Discriminants.
a) Let $K \subseteq L$ be a separable finite field extension of degree $n:=[L: K]$, and let $\mathcal{S}:=\left[z_{1}, \ldots, z_{n}\right]$ be an $n$-tuple of elements of $L$. Show that $\operatorname{disc}(\mathcal{S}) \neq 0$ if and only if $\mathcal{S}$ is $K$-linearly independent.
b) Now let $L=K(z)$, and let $\mathcal{B}_{z}:=\left\{1, z, \ldots, z^{n-1}\right\} \subseteq L$. Show that $\operatorname{disc}(z):=$ $\operatorname{disc}\left(\mathcal{B}_{z}\right)=(-1)^{\binom{n}{2}} \cdot N_{L / K}\left(\left(\partial \mu_{z}\right)(z)\right)$, where $\mu_{z} \in K[X]$ is the minimum polynomial of $z$ over $K$, and $\partial=\partial_{X}$ is the derivative.
c) Assume further that there is $f \in R[X]$ monic (not necessarily irreducible) such that $f(z)=0$, where $R \subseteq K$ is integrally closed such that $K=\mathrm{Q}(R)$. (Thus $z$ is integral over $R$.) Show that $\operatorname{disc}(z) \mid N_{L / K}((\partial f)(z)) \in R$.
(3.2) Exercise: Cyclotomic fields.
a) For $m \in \mathbb{N}$ let $\zeta_{m}:=\exp \left(\frac{2 \pi i}{m}\right) \in \mathbb{C}$ be a primitive $m$-th root of unity, let $\Phi_{m} \in$ $\mathbb{Q}[X]$ be its minimum polynomial over $\mathbb{Q}$, being called the $m$-th cyclotomic polynomial, let $K_{m}:=\mathbb{Q}\left(\zeta_{m}\right) \subseteq \mathbb{C}$ be the associated cyclotomic field, and let $\mathcal{O}_{m} \subseteq K_{m}$ be its ring of integers.

Show that $\mathbb{Q} \subseteq K_{m}$ is a Galois extension of degree $\varphi(m)$, where $\varphi$ denotes Euler's totient function, and determine the Galois group Aut $\left(K_{m}\right)$. Moreover, show that $\mathbb{Z}\left[\zeta_{m}\right] \subseteq \mathcal{O}_{m}$ (where actually we have equality, but we are not able to prove this here $)$, and show that $\operatorname{disc}\left(\zeta_{m}\right)=\operatorname{disc}\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid m^{\varphi(m)}$.
b) Let $2 \neq p \in \mathcal{P}$. Determine $\Phi_{p} \in \mathbb{Q}[X]$, and for $k \in \mathbb{Z}$ compute $N_{K_{p} / \mathbb{Q}}\left(\zeta_{p}^{k}\right) \in$ $\mathbb{Z}$ and $T_{K_{p} / \mathbb{Q}}\left(\zeta_{p}^{k}\right) \in \mathbb{Z}$, as well as $N_{K_{p} / \mathbb{Q}}\left(1-\zeta_{p}^{k}\right) \in \mathbb{Z}$. Moreover, show that $\operatorname{disc}\left(\zeta_{p}\right)=\operatorname{disc}\left(\mathbb{Z}\left[\zeta_{p}\right]\right)=(-1)^{\frac{p-1}{2}} \cdot p^{p-2}$. In particular, conclude that $\mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right]$, and compare with Exercise (2.2).

Hint for b). Use Exercise (3.1).

## (3.3) Exercise: Rings of integers.

Let $\alpha:=\sqrt[3]{5} \in \mathbb{R}$ and $K:=\mathbb{Q}(\alpha)$. Determine the embeddings of $K$ into $\mathbb{C}$, an integral basis of $K$, the ring of integers $\mathcal{O} \subseteq K$, and its discriminant.
(3.4) Exercise: Rings of integers.
a) Let $\alpha:=\sqrt[3]{175} \in \mathbb{R}$ and $K:=\mathbb{Q}(\alpha)$. Determine the embeddings of $K$ into $\mathbb{C}$, an integral basis of $K$, the ring of integers $\mathcal{O} \subseteq K$, and its discriminant.
b) Show that $K$ does not have an integral basis $\mathcal{B}_{\omega}=\left\{1, \omega, \omega^{2}\right\}$ for any $\omega \in \mathcal{O}$.

Hint for a). Consider $\beta:=\sqrt[3]{245} \in \mathbb{R}$ as well.

