Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 02.11.2023

(4.1) Exercise: Integral bases.

Let R be a principal ideal domain, let $K:=\mathrm{Q}(R)$ be its field of fractions, let $K \subseteq L$ be a separable finite extension of degree $n:=[L: K]$, and let $\mathcal{B}=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq L$ be a K-basis contained in the integral closure S of R in L. Show that for any $\alpha \in S$ we have $\alpha=\frac{1}{\delta} \cdot \sum_{j=1}^{n} r_{j} \alpha_{j}$, with unique $r_{j} \in R$ such that $\delta:=\operatorname{disc}(\mathcal{B}) \mid r_{j}^{2}$.

(4.2) Exercise: Stickelberger's Criterion.

Let K be an algebraic number field of degree $n:=[K: \mathbb{Q}]$, let \mathcal{O} be its ring of integers, and let $\mathcal{B}:=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq K$ be a \mathbb{Q}-basis being contained in \mathcal{O}; then $\operatorname{disc}(\mathcal{B}) \in \mathbb{Z}$. Show that $\operatorname{disc}(\mathcal{B}) \equiv\{0,1\}(\bmod 4)$. In particular, derive Stickelberger's Criterion saying that $\operatorname{disc}(\mathcal{O}) \equiv\{0,1\}(\bmod 4)$.
Hint. Use Laplace expansion to compute $\operatorname{det}\left(\Delta_{\mathcal{B}}\right)$.
(4.3) Exercise: Resultants.

Let R be an integral domain, and $f=\sum_{i=0}^{n} f_{i} X^{i} \in R[X]$ and $g=\sum_{j=0}^{m} g_{j} X^{j} \in$ $R[X]$, where $f_{n}, g_{m} \neq 0$. Then the associated Sylvester matrix is defined as

$$
S(f, g):=\left[\begin{array}{ccccccc}
f_{n} & f_{n-1} & \ldots & f_{0} & & & \\
& f_{n} & \ldots & f_{1} & f_{0} & & \\
& & \ddots & & \ddots & \ddots & \\
& & & f_{n} & \ldots & \ldots & f_{0} \\
\hline g_{m} & g_{m-1} & \ldots & g_{0} & & & \\
& g_{m} & \cdots & g_{1} & g_{0} & & \\
& & \ddots & & \ddots & \ddots & \\
& & & g_{m} & \cdots & \cdots & g_{0}
\end{array}\right] \in R^{(n+m) \times(n+m)} .
$$

where the upper and lower halves consist of m and n rows, respectively, and let $\operatorname{res}(f, g):=\operatorname{det}(S(f, g)) \in R$ be the resultant of f and g.
a) Let $K:=\mathrm{Q}(R)$, let \bar{K} be an algebraic closure of K, and let $f=f_{n}$. $\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \bar{K}[X]$ and $g=g_{m} \cdot \prod_{j=1}^{m}\left(X-\beta_{j}\right) \in \bar{K}[X]$. Show that $\operatorname{res}(f, g)=$ $f_{n}^{m} \cdot \prod_{i=1}^{n} g\left(\alpha_{i}\right)=(-1)^{n m} g_{m}^{n} \cdot \prod_{j=1}^{m} f\left(\beta_{j}\right)=f_{n}^{m} g_{m}^{n} \cdot \prod_{i=1}^{n} \prod_{j=1}^{m}\left(\alpha_{i}-\beta_{j}\right)$.
b) Let $f=\sum_{i=0}^{n} f_{i} X^{i} \in K[X]$ be irreducible and separable, such that $f_{n} \neq 0$.

Show that we have $\operatorname{disc}(f)=(-1)^{\binom{n}{2}} \cdot \frac{1}{f_{n}} \cdot \operatorname{res}(f, \partial f) \in K$.
(4.4) Exercise: Rings of integers.

Let $\alpha \in \mathbb{R}$ such that $\alpha^{3}=\alpha+4$. Show that $\left\{1, \alpha, \frac{1}{2} \alpha(1+\alpha)\right\}$ is an integral basis of $\mathbb{Q}(\alpha)$, and determine its discriminant.

