Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 16.11.2023

(6.1) Exercise: Diophantine equations.

Show the Ramanujan-Nagell Theorem, saying that $n \in \pm\{1,3,5,11,181\}$ are the only integers such that $n^{2}+7$ is a 2 -power.

Hint. Use the ring $\mathbb{Z}[\alpha]$, where $\alpha:=\frac{1}{2}(1+\sqrt{-7})$, which is known to be factorial, and recall that $N(\alpha)=2$.

(6.2) Exercise: Factorisation of ideals.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} and $\widehat{\mathcal{O}}_{d}$ be the rings of integers of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{2}, \sqrt{d})$, respectively. Determine the factorisation of the following ideals:
a) i) $(10) \unlhd \mathcal{O}_{15}, \quad$ ii) $(6) \unlhd \mathcal{O}_{30}$.
b) i) (6) $\unlhd \mathcal{O}_{-6}$,
ii) $(14) \unlhd \mathcal{O}_{-10}$,
iii) (18) $\unlhd \mathcal{O}_{-17}$,
iii) $(30) \unlhd \mathcal{O}_{-29}$.
c) i) $(6) \unlhd \widehat{\mathcal{O}}_{-3}$,
ii) $(14) \unlhd \widehat{\mathcal{O}}_{-5}$
(6.3) Exercise: Ramification in cubic fields.

Let $\alpha:=\sqrt[3]{2}$ and $K:=\mathbb{Q}(\alpha)$.
a) Determine the embeddings of K into \mathbb{C}, show that its ring of integers equals $\mathcal{O}=\mathbb{Z}[\alpha]$, and compute its discriminant.
b) Determine the factorisation of the ideal (5) $\unlhd \mathcal{O}$, and the associated ramification indices and inertial degrees.
(6.4) Exercise: Ramification in cubic fields.

Let $\alpha \in \mathbb{R}$ such that $\alpha^{3}=\alpha+1$, and let $K:=\mathbb{Q}(\alpha)$.
a) Show that $\mathcal{O}:=\mathbb{Z}[\alpha]$ is the ring of integers of K, and determine $\operatorname{disc}(\mathcal{O})$.
b) Determine the factorisation of the ideal $(23) \unlhd \mathcal{O}$, and the associated ramification indices and inertial degrees.

