Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 16.11.2023

(6.1) Exercise: Diophantine equations.

Show the **Ramanujan-Nagell Theorem**, saying that $n \in \pm\{1, 3, 5, 11, 181\}$ are the only integers such that $n^2 + 7$ is a 2-power.

Hint. Use the ring $\mathbb{Z}[\alpha]$, where $\alpha := \frac{1}{2}(1+\sqrt{-7})$, which is known to be factorial, and recall that $N(\alpha) = 2$.

(6.2) Exercise: Factorisation of ideals.

For $d \in \mathbb{Z} \setminus \{0, 1\}$ square-free let \mathcal{O}_d and $\widehat{\mathcal{O}}_d$ be the rings of integers of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{2}, \sqrt{d})$, respectively. Determine the factorisation of the following ideals:

- **a) i)** $(10) \leq \mathcal{O}_{15}$, **ii)** $(6) \leq \mathcal{O}_{30}$.
- **b)** i) (6) $\leq \mathcal{O}_{-6}$, ii) (14) $\leq \mathcal{O}_{-10}$, iii) (18) $\leq \mathcal{O}_{-17}$, iii) (30) $\leq \mathcal{O}_{-29}$.
- c) i) (6) $\trianglelefteq \widehat{\mathcal{O}}_{-3}$, ii) (14) $\trianglelefteq \widehat{\mathcal{O}}_{-5}$

(6.3) Exercise: Ramification in cubic fields.

Let $\alpha := \sqrt[3]{2}$ and $K := \mathbb{Q}(\alpha)$.

a) Determine the embeddings of K into \mathbb{C} , show that its ring of integers equals $\mathcal{O} = \mathbb{Z}[\alpha]$, and compute its discriminant.

b) Determine the factorisation of the ideal (5) $\leq O$, and the associated ramification indices and inertial degrees.

(6.4) Exercise: Ramification in cubic fields.

Let $\alpha \in \mathbb{R}$ such that $\alpha^3 = \alpha + 1$, and let $K := \mathbb{Q}(\alpha)$.

a) Show that $\mathcal{O} := \mathbb{Z}[\alpha]$ is the ring of integers of K, and determine disc(\mathcal{O}). **b)** Determine the factorisation of the ideal (23) $\leq \mathcal{O}$, and the associated ramification indices and inertial degrees.