Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 23.11.2023

(7.1) Exercise: Ramification in the Galois case.

Let $K \subseteq L$ be a Galois extension of algebraic number fields, and $G:=\operatorname{Aut}_{K}(L)$. a) If G is non-cyclic, show that there are only finitely many prime ideals in K which are non-split in L.
b) Let $K \subseteq M \subseteq L$ be a field, such that L is the normal closure of M. Show that a prime ideal in K is completely split in M if and only if it is so in L.

(7.2) Exercise: Ramification in the Abelian Galois case.

Let $K \subseteq L$ be a Galois extension of algebraic number fields, let $G:=\operatorname{Aut}_{K}(L)$, and let $\mathfrak{p} \in \mathcal{P}_{K}$ and $\mathfrak{q} \in \mathcal{P}_{L}(\mathfrak{p})$, such that the decomposition group and the inertia group of \mathfrak{q} are normal in G. (In particular, this is fulfilled if G is Abelian.)
Show that \mathfrak{p} splits into $\left|\mathcal{P}_{L}(\mathfrak{p})\right|$ distinct prime ideals in the decomposition field of \mathfrak{q}, all of which remain prime ideals in the inertia field of \mathfrak{q}, but become an $e_{K}(\mathfrak{q})$-th power in L.
(7.3) Exercise: Decomposition fields and inertia fields.

Let $K:=\mathbb{Q}(i, \sqrt{2}, \sqrt{5})$ and $p:=5$.
a) Show that $\mathbb{Q} \subseteq K$ is Galois, determine $\operatorname{Aut}_{\mathbb{Q}}(K)$, an integral basis of K, its ring of integers, and its discriminant.
b) Compute the factorisation of p in K, determine the associated decomposition and inertia fields, and compute the factorisation of p in these intermediate fields.
(7.4) Exercise: Decomposition fields and inertia fields.

Let $K:=\mathbb{Q}(\sqrt[3]{19})$ and $p:=3$.
a) Compute the normal closure $K \subseteq L \subseteq \mathbb{C}$, determine $\operatorname{Aut}_{\mathbb{Q}}(L)$ and the embeddings of K into \mathbb{C}, an integral basis of L, its ring of integers, and its discriminant. b) Compute the factorisation of p in K and in L, determine the associated decomposition and inertia fields, with respect to both \mathbb{Q} and K, and compute the factorisation of p in these intermediate fields.

