Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 30.11.2023

(8.1) Exercise: Galois ramification.

Let $K \subseteq L$ be an extension of algebraic number fields, let $\mathfrak{p} \in \mathcal{P}_{K}$ and $\mathfrak{q} \in \mathcal{P}_{L}(\mathfrak{p})$.
a) Let $K \subseteq M$ also be an extension of algebraic number fields. Show that if \mathfrak{p} splits completely (is unramified) in both L and M, then \mathfrak{p} splits completely (is unramified) in $L M$.
Conclude that \mathfrak{p} splits completely (is unramified) in L if and only if \mathfrak{p} splits completely (is unramified) in the normal closure of L.
b) Assume that $K \subseteq L$ is Galois, and that the decomposition group of \mathfrak{q} is normal in $\operatorname{Aut}_{K}(L)$. For any intermediate field $K \subseteq M \subseteq L$ show that $M \subseteq D_{\mathfrak{q}}$ if and only if \mathfrak{p} splits completely in M.

(8.2) Exercise: Primes in quadratic number rings.

Let $d \in \mathbb{Z} \backslash\{0,1\}$ be square-free, let $K:=\mathbb{Q}(\sqrt{d})$, let \mathcal{O} be its ring of integers, and let $p \in \mathbb{Z}$ be a prime. Determine the ideal factorisation of p in K. In particular, show that p is ramified in K if and only if $p \mid \operatorname{disc}(\mathcal{O})$.
Hint. Distinguish the congruence classes of d modulo 8 , the cases $p \mid d$ and $p \nmid d$, and the cases $p=2$ and p odd.
(8.3) Exercise: Decomposition fields and inertia fields. Let $K:=\mathbb{Q}(\sqrt{15})$ and $L:=\mathbb{Q}(\sqrt{3}, \sqrt{5})$, and let $p \in\{2,5\}$.
a) Compute the ideal factorisation of p in all subfields of L, show that p is non-split in K and L, and determine the decomposition and inertia fields.
b) Show that the unique prime ideal of K lying over p is non-principal, while the unique prime ideal of K lying over p is principal. Relate this to the question of unique factorisation of the element 10 in K and L.
(8.4) Exercise: Rings of integers in cubic fields.

We consider Dedekind's example $K:=\mathbb{Q}(\alpha)$, where $\alpha \in \mathbb{R}$ is such that $\alpha^{3}+\alpha^{2}-2 \alpha+8=0$. Let \mathcal{O} be the ring of integers of K.
a) Show that $\left\{1, \alpha, \frac{1}{2} \alpha(1+\alpha)\right\}$ is an integral basis of K, and determine the discriminants $\operatorname{disc}(\mathcal{O})$ and $\operatorname{disc}(\mathbb{Z}[\alpha])$.
b) Show that the prime 2 splits completely in K.
c) Show that the index $[\mathcal{O}: \mathbb{Z}[\omega]]$ is even, for any $\omega \in \mathcal{O} \backslash \mathbb{Z}$. Conclude that K does not have an integral basis consisting of powers of a single element.

