Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 07.12.2023

(9.1) Exercise: Conductors.

Let $K \subseteq L$ be an extension of algebraic number fields, and let $\mathfrak{a} \leq \mathcal{O}_L$. Show that there is an integral primitive element α of L over K, such that \mathfrak{a} and the conductor $\operatorname{ann}_{\mathcal{O}_L}(\mathcal{O}_L/\mathcal{O}_K[\alpha]) \leq \mathcal{O}_L$ are coprime.

(9.2) Exercise: Ramification and discriminants.

Let $K := \mathbb{Q}(\omega)$ be an algebraic number field, where $\omega \in \mathcal{O} := \mathcal{O}_K$, and let p be a rational prime neither dividing the conductor $\operatorname{ann}_{\mathbb{Z}}(\mathcal{O}/\mathbb{Z}[\omega])$ nor the degree $[K:\mathbb{Q}]$. Show that p is ramified in K if and only if $p \mid \operatorname{disc}(\mathcal{O})$.

(9.3) Exercise: Discriminants of composite fields.

Let K and L be algebraic number fields, let $n := [K: \mathbb{Q}]$ and $m := [L: \mathbb{Q}]$, let $\mathcal{O} := \mathcal{O}_K$ and $\widetilde{\mathcal{O}} := \mathcal{O}_L$, and let $\delta := \operatorname{disc}(\mathcal{O})$ and $\widetilde{\delta} := \operatorname{disc}(\widetilde{\mathcal{O}})$. Let KL be the composite field KL, and let $\widehat{\mathcal{O}} := \mathcal{O}_{KL}$ be its ring of integers.

a) Show that if $[KL: \mathbb{Q}] = nm$, then $K \cap L = \mathbb{Q}$. Conversely, if K and L are Galois, show that $K \cap L = \mathbb{Q}$ implies $[KL: \mathbb{Q}] = nm$.

Now assume that KL has degree $[KL: \mathbb{Q}] = nm$.

b) Let $d \in \operatorname{gcd}(\delta, \widetilde{\delta})$. Show that $\mathcal{O}\widetilde{\mathcal{O}} \subseteq \widehat{\mathcal{O}} \subseteq \frac{1}{d} \cdot \mathcal{O}\widetilde{\mathcal{O}}$. **c)** If δ and $\widetilde{\delta}$ are coprime, show that $\operatorname{disc}(\widehat{\mathcal{O}}) = \delta^m \cdot \widetilde{\delta}^n$.

(9.4) Exercise: Prime factorisation (partly GAP).

Let $\alpha \in \mathbb{R}$ such that $\alpha^5 = 5(\alpha + 1)$, let $K := \mathbb{Q}(\alpha)$, and let $\mathcal{O} := \mathcal{O}_K$. **a)** Show that $\operatorname{disc}(\mathbb{Z}[\alpha]) = 3^2 \cdot 5^5 \cdot 41$, and that $\operatorname{ann}_{\mathbb{Z}}(\mathcal{O}/\mathbb{Z}[\alpha]) = (3) \leq \mathbb{Z}$. **b)** Using GAP, compute the factorisation of $p\mathcal{O} \triangleleft \mathcal{O}$ for the rational primes $p \neq 3$ up to 10^4 (say). What do you observe for the inertia degrees occurring?