

Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 28 (20.01.2026)

(28.1) Limits. Let \mathcal{I} be a set carrying a **partial order**, that is a reflexive, anti-symmetric and transitive relation \leq . Then \mathcal{I} becomes a category by letting $\text{Hom}_{\mathcal{I}}(i, j) = \{\rho_{ij}\}$ be a singleton set if $i \leq j$, and $\text{Hom}_{\mathcal{I}}(i, j) = \emptyset$ otherwise, where concatenation is given by $\rho_{ij}\rho_{jk} = \rho_{ik}$ for $i \leq j \leq k$; in particular we have $\rho_{ii} = \text{id}_i$.

Now let \mathcal{C} be a category. Then an **inverse system** or **projective system** in \mathcal{C} is a contravariant functor $\mathcal{I} \rightarrow \mathcal{C}$; that is it specifies a set of objects $\{A_i \in \mathcal{C}; i \in \mathcal{I}\}$, together with morphisms $\{\psi_{ji} \in \text{Hom}_{\mathcal{C}}(A_j, A_i); i, j \in \mathcal{I}, j \geq i\}$, such that $\psi_{kj}\psi_{ji} = \psi_{ki}$, and $\psi_{ii} = \text{id}_{A_i}$, for $k \geq j \geq i$.

Given $A \in \mathcal{C}$, let $\text{Hom}_{\mathcal{C}}(A, \{A_i\})$ consist of all sets $\{\varphi_i \in \text{Hom}_{\mathcal{C}}(A, A_i); i \in \mathcal{I}\}$ such that $\varphi_j\psi_{ji} = \varphi_i$, for $j \geq i$. Then the assignment

$$\text{Hom}_{\mathcal{C}}(?, \{A_i\}) : \mathcal{C} \rightarrow \mathbf{Sets} : A \mapsto \text{Hom}_{\mathcal{C}}(A, \{A_i\})$$

is a contravariant functor, where a morphism $\varphi \in \text{Hom}_{\mathcal{C}}(A, B)$ is mapped to the map $\varphi^* : \text{Hom}_{\mathcal{C}}(B, \{A_i\}) \rightarrow \text{Hom}_{\mathcal{C}}(A, \{A_i\})$ induced by pre-composition.

An object $P \in \mathcal{C}$, together with a **universal morphism** $\{\pi_i\} \in \text{Hom}_{\mathcal{C}}(P, \{A_i\})$, is called an **(inverse) limit** or **projective limit**, if P has the following universal property: For any $A \in \mathcal{C}$ and $\{\varphi_i\} \in \text{Hom}_{\mathcal{C}}(A, \{A_i\})$ there is a unique $\varphi \in \text{Hom}_{\mathcal{C}}(A, P)$ such that $\varphi\pi_i = \varphi_i$, for all $i \in \mathcal{I}$.

It is immediate that the limit is unique up to unique isomorphism in \mathcal{C} , if it exists at all; in this case we write $P = \varprojlim \{A_i\}$. Then we have the natural bijection, given by post-composition,

$$\text{Hom}_{\mathcal{C}}(A, P) \rightarrow \text{Hom}_{\mathcal{C}}(A, \{A_i\}) : \varphi \mapsto \{\varphi\pi_i\}.$$

Recall that $\text{Hom}_{\mathcal{C}}(?, P) : \mathcal{C} \rightarrow \mathbf{Sets} : A \mapsto \text{Hom}_{\mathcal{C}}(A, P)$ is a contravariant functor, where $\varphi \in \text{Hom}_{\mathcal{C}}(A, B)$ is mapped to $\varphi^* : \text{Hom}_{\mathcal{C}}(B, P) \rightarrow \text{Hom}_{\mathcal{C}}(A, P)$, induced by pre-composition. Then the universal property says that the universal morphism induces an equivalence of functors $\text{Hom}_{\mathcal{C}}(?, P) \cong \text{Hom}_{\mathcal{C}}(?, \{A_i\})$. In other words, $\text{Hom}_{\mathcal{C}}(?, \{A_i\})$ is a **representable functor**, being represented by P and the universal morphism $\{\pi_i\} \in \text{Hom}_{\mathcal{C}}(P, \{A_i\})$.

Example: Limits in the category of sets. **i)** Let $\mathcal{C} := \mathbf{Sets}$. Given sets A_i and maps $\psi_{ji} : A_j \rightarrow A_i$, for $j \geq i$, let $\mathcal{P} := \prod_{i \in \mathcal{I}} A_i := \{\rho : \mathcal{I} \rightarrow \bigcup_{i \in \mathcal{I}} A_i; \rho(i) \in A_i \text{ for } i \in \mathcal{I}\}$ be the **(Cartesian) product** of the A_i , whose elements may be written as \mathcal{I} -tuples, and let $\pi_i : \mathcal{P} \rightarrow A_i : x = [x_j; j \in \mathcal{I}] \mapsto x_i$ be the natural projections, for $i \in \mathcal{I}$. Then it is immediate that the subset

$$P := \{x \in \mathcal{P}; x_i = \psi_{ji}(x_j) \text{ for } j \geq i\} = \{x \in \mathcal{P}; \pi_i(x) = \psi_{ji}(\pi_j(x)) \text{ for } j \geq i\},$$

together with the induced maps $\{\pi_i\}$, is a limit in \mathcal{C} .

In particular, if \mathcal{I} carries the **trivial** partial order, that is the only relations are $i \geq i$, for $i \in \mathcal{I}$, then the product \mathcal{P} is the associated limit. If $\mathcal{I} = \emptyset$, then the (empty) product \mathcal{P} boils down to a singleton set, which is a **terminal object** in \mathcal{C} , that is to which any set has a unique map.

ii) Let $\mathcal{I} := \{0, 1, 2\}$ be partially ordered by the non-trivial relations $1 \geq 0$ and $2 \geq 0$. Given maps $\psi_1: A_1 \rightarrow A_0$ and $\psi_2: A_2 \rightarrow A_0$ between sets, the associated **fibre product**, also called the **pullback** of ψ_1 and ψ_2 , is defined as the associated limit in the category of sets

$$A_1 \times_{A_0} A_2 := \varprojlim\{A_0, A_1, A_2\} = \{[x_0, x_1, x_2] \in \mathcal{P}; \psi_1(x_1) = x_0 = \psi_2(x_2)\}.$$

Hence we have $A_1 \times_{A_0} A_2 \cong \{[x_1, x_2] \in A_1 \times A_2; \psi_1(x_1) = \psi_2(x_2)\}$. In particular, if A_0 is a singleton set, the product $A_1 \times A_2$ is the limit. Note that if both ψ_i are surjective, then so are the induced maps $\pi_i: A_1 \times_{A_0} A_2 \rightarrow A_i$.

Example: Completions of \mathbb{Z} . **i)** Let $\mathcal{I} := \mathbb{N}$, and let the partial order be given by divisibility $n \mid m$. Let $\mathbb{Z}_n := \mathbb{Z}/\langle n \rangle$, let $\psi_{mn}: \mathbb{Z}_m \rightarrow \mathbb{Z}_n$ be the natural ring epimorphism, for $n \mid m$, and let $\widehat{\mathbb{Z}} := \varprojlim\{\mathbb{Z}_n\} \subseteq \prod_{n \in \mathbb{N}} \mathbb{Z}_n$ be the associated limit in the category of sets.

Then $\prod_{n \in \mathbb{N}} \mathbb{Z}_n$ becomes a ring with componentwise addition and multiplication. Since the maps ψ_{mn} and π_n are ring homomorphisms, $\widehat{\mathbb{Z}}$ becomes a ring. Hence $\widehat{\mathbb{Z}}$ is a limit in the category of rings, called the **profinite completion** of \mathbb{Z} .

ii) Similarly, let $\mathcal{I} := \mathbb{N}_0$, and let the partial order be the natural total order. Let $p \in \mathbb{Z}$ be a prime, and considering the maps ψ_{p^m, p^n} , for $n \leq m$, let $\widehat{\mathbb{Z}}_p := \varprojlim\{\mathbb{Z}_{p^n}\} \subseteq \prod_{n \in \mathbb{N}_0} \mathbb{Z}_{p^n}$ be the associated limit in the category of sets.

Then again $\prod_{n \in \mathbb{N}_0} \mathbb{Z}_{p^n}$ becomes a ring, and hence $\widehat{\mathbb{Z}}_p$ is a limit in the category of rings, called the **p -adic completion** of \mathbb{Z} , or the ring of **p -adic integers**.