

Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 31 (28.01.2026)

(31.1) Theorem: Products of prevarieties. Let V and W be prevarieties.

- a) Then the product $P := V \times W$ as sets carries the structure of a prevariety.
- b) Let $K = L$. Then P is a product of V and W in the category of prevarieties.

Proof. a) We may assume that $V \neq \emptyset \neq W$. First, we let the topology on P be defined by having the basis consisting of all subsets $V' \times W' \subseteq P$ such that both $V' \subseteq V$ and $W' \subseteq W$ are affine open, where $V' \times W'$ carries the structure of an affine variety: Noting that $(V' \times W') \cap (V'' \times W'') = (V' \cap V'') \times (W' \cap W'')$, where $V' \cap V'' \subseteq V$ and $W' \cap W'' \subseteq W$ are open, and recalling that V and W have bases consisting of affine open subsets, we infer that this indeed is a basis.

Since V is irreducible, any two non-empty open subsets of V intersect non-trivially; similarly for W . Thus any two non-empty open subsets of P belonging to the above basis intersect non-trivially, entailing that P is irreducible. Since both V and W have a finite affine open covering, this holds for P as well.

Next, as is immediately seen, the following defines a sheaf \mathcal{O}_P of functions on P : For $U \subseteq P$ open let $\mathcal{O}_P(U)$ be the K -algebra of all $f: U \rightarrow L$ such that $f|_{U \cap (V' \times W')} \in \mathcal{O}_{V' \times W'}(U \cap (V' \times W'))$, for $V' \subseteq V$ and $W' \subseteq W$ affine open. Thus P together with \mathcal{O}_P becomes a prevariety, so that $V' \times W'$ together with $\mathcal{O}_P|_{V' \times W'} = \mathcal{O}_{V' \times W'}$ is an affine open subprevariety, for all $V' \times W'$ as above.

b) Any product of V and W is necessarily isomorphic to $P = V \times W$ as sets, where π_V and π_W are the natural projections. Hence we show that P indeed is a product of V and W in the category of prevarieties:

Firstly, we show that π_V and π_W are morphisms: We consider the affine open covering by subsets $V' \times W' \subseteq P$ as above. Then $\pi_V|_{V' \times W'}: V' \times W' \rightarrow V'$ and $\pi_W|_{V' \times W'}: V' \times W' \rightarrow W'$ are morphisms, hence π_V and π_W are continuous, and by the sheaf properties are morphisms.

Now let Z be a prevariety, and let $\varphi_V: Z \rightarrow V$ and $\varphi_W: Z \rightarrow W$ be morphisms. Then there is a unique map $\varphi: Z \rightarrow P$ such that $\varphi_V = \varphi \pi_V$ and $\varphi_W = \varphi \pi_W$. We show that φ is a morphism of prevarieties:

We again consider the affine open covering by subsets $V' \times W' \subseteq P$ as above. Let $U := \varphi_V^{-1}(V') \cap \varphi_W^{-1}(W') \subseteq Z$ open. Then $\varphi|_U: U \rightarrow V' \times W'$ is the product map associated with the morphisms $\varphi_V|_U: U \rightarrow V'$ and $\varphi_W|_U: U \rightarrow W'$. Since $V' \times W'$ is affine, $\varphi|_U$ is a morphism. Again we infer that φ is a morphism. \sharp

(31.2) Corollary. i) If $U \subseteq V$ is an open subprevariety, then so is $U \times W \subseteq V \times W$.

In particular, the product of two quasi-affine varieties is quasi-affine, and by the theorem below the product of two quasi-projective varieties is quasi-projective.

ii) If $Z \subseteq V$ is a closed subprevariety, then so is $Z \times W \subseteq V \times W$.

Proof. i) Picking affine open coverings of U and W , respectively, shows that $U \times W \subseteq P$ is open, and that $\mathcal{O}_P|_{U \times W} = \mathcal{O}_{U \times W}$.

ii) Since $(V \setminus Z) \times W \subseteq P$ is open, we conclude that $Z \times W \subseteq P$ is closed. Now P is covered by affine open subsets $V' \times W' \subseteq P$, where $V' \subseteq V$ and $W' \subseteq W$ are affine open. Then $Z' := Z \cap V' \subseteq V'$ is closed, where we may assume that $Z' \neq \emptyset$. Since $Z' \subseteq Z$ is open and Z is irreducible, Z' is irreducible as well.

Then $Z' \times W' \subseteq V' \times W'$ is closed, hence is affine with respect to $\mathcal{O}_{V' \times W'}|_{Z' \times W'}$, where global sections are given as $\Gamma(\mathcal{O}_{V' \times W'}|_{Z' \times W'}) = K[V' \times W']/\mathbf{I}_K(Z' \times W') \cong (K[V'] \otimes_K K[W'])/\langle \mathbf{I}_K(Z') \otimes 1, 1 \otimes \mathbf{I}_K(W') \rangle \cong (K[V']/\langle \mathbf{I}_K(Z') \rangle) \otimes_K K[W']$.

Similarly, $Z' \subseteq V'$ is closed, hence is affine with respect to $\mathcal{O}_{V'}|_{Z'} = \mathcal{O}_{Z'}$, where $\Gamma(\mathcal{O}_{Z'}) = K[Z'] = K[V']/\mathbf{I}_K(Z')$. Then $Z' \times W'$ is affine with respect to $\mathcal{O}_{Z' \times W'}$, global sections being given as $\Gamma(\mathcal{O}_{Z' \times W'}) = K[Z' \times W'] \cong K[Z'] \otimes_K K[W'] = (K[V']/\langle \mathbf{I}_K(Z') \rangle) \otimes_K K[W']$. Thus we infer that $\mathcal{O}_{V' \times W'}|_{Z' \times W'} = \mathcal{O}_{Z' \times W'}$.

Then from this we get $(\mathcal{O}_P|_{Z \times W})|_{Z' \times W'} = \mathcal{O}_P|_{Z' \times W'} = (\mathcal{O}_P|_{V' \times W'})|_{Z' \times W'} = \mathcal{O}_{V' \times W'}|_{Z' \times W'} = \mathcal{O}_{Z' \times W'} = \mathcal{O}_{Z \times W}|_{Z' \times W'}$. Since $Z \times W$ is covered by affine open subsets of the above form, we conclude that $\mathcal{O}_P|_{Z \times W} = \mathcal{O}_{Z \times W}$. \sharp

(31.3) Theorem: Products of projective varieties. Let \mathbf{V} and \mathbf{W} be projective varieties. Then $\mathbf{V} \times \mathbf{W}$ is a projective variety again.

Proof. Let $\mathbf{V} \subseteq \mathbf{P}^n$ and $\mathbf{W} \subseteq \mathbf{P}^m$ be closed subprevarieties, where $n, m \in \mathbb{N}_0$. Then $\mathbf{V} \times \mathbf{W} \subseteq \mathbf{P}^n \times \mathbf{P}^m$ is a closed subprevariety as well. Since a closed subprevariety of a projective variety is projective again, it suffices to show that $\mathbf{P}^n \times \mathbf{P}^m$ is projective. To this end, we show that the latter can be identified with a closed subprevariety of \mathbf{P}^s , where $s := (n+1)(m+1) - 1 = n + m + nm$:

Letting $\mathcal{X}^\sharp = \{X_0, \dots, X_n\}$, $\mathcal{Y}^\sharp = \{Y_0, \dots, Y_m\}$, and $\mathcal{Z}^\sharp = \{Z_{00}, Z_{01}, \dots, Z_{nm}\}$ be indeterminates associated with \mathbf{P}^n , \mathbf{P}^m , and \mathbf{P}^s , respectively, we consider the **Segre map** (which is immediately seen to be well-defined)

$$\sigma: \mathbf{P}^n \times \mathbf{P}^m \rightarrow \mathbf{P}^s: [[x_0: \dots: x_n], [y_0: \dots: y_m]] \mapsto [\dots: x_i y_j: \dots].$$

We show that σ is injective: Let $p = [x_0: \dots: x_n]$, $p' = [x'_0: \dots: x'_n]$, and $q = [y_0: \dots: y_m]$, $q' = [y'_0: \dots: y'_m]$, such that $\sigma(p, q) = \sigma(p', q')$. We may assume that $x_0 \neq 0 \neq y_0$. Then $x_0 y_0 \neq 0$ implies $x'_0 y'_0 \neq 0$, thus $x'_0 \neq 0 \neq y'_0$ as well. Hence we have $\frac{x_i y_j}{x_0 y_0} = \frac{x'_i y'_j}{x'_0 y'_0}$, entailing $\frac{x_i}{x_0} = \frac{x_i y_0}{x_0 y_0} = \frac{x'_i y'_0}{x'_0 y'_0} = \frac{x'_i}{x'_0}$ and $\frac{y_j}{y_0} = \frac{x_0 y_j}{x_0 y_0} = \frac{x'_0 y'_j}{x'_0 y'_0} = \frac{y'_j}{y'_0}$, for all i and j , thus $p = p' \in \mathbf{P}^n$ and $q = q' \in \mathbf{P}^m$. \sharp

Writing $D_i := D_{X_i} \subseteq \mathbf{P}^n$, $D_j := D_{Y_j} \subseteq \mathbf{P}^m$, and $D_{ij} := D_{Z_{ij}} \subseteq \mathbf{P}^s$, we have $\sigma^{-1}(D_{ij}) = D_i \times D_j \subseteq \mathbf{P}^n \times \mathbf{P}^m$. Thus this gives rise to maps $\sigma_{ij} = \sigma|_{D_i \times D_j}: D_i \times D_j \rightarrow D_{ij}$, where we let $V_{ij} := \sigma_{ij}(D_i \times D_j) \subseteq D_{ij} \subseteq \mathbf{P}^s$.

For convenience letting $i = 0 = j$, and identifying $L^n \cong D_0 \subseteq \mathbf{P}^n$ and $L^m \cong D_0 \subseteq \mathbf{P}^m$ and $L^s \cong D_{00} \subseteq \mathbf{P}^s$ as affine varieties, we get the regular map $\sigma_{00}: L^n \times L^m \rightarrow L^s: [[x_1, \dots, x_n], [y_1, \dots, y_m]] \mapsto [z_{ij}]_{ij}$, given by $z_{ij} = x_i y_j$ and $z_{i,0} = x_i$ and $z_{0,j} = y_j$, for $i, j \geq 1$. Moreover, the comorphism $\sigma_{00}^*: K[\mathcal{Z}] \rightarrow K[\mathcal{X}] \otimes_K K[\mathcal{Y}]$, where \mathcal{X} , \mathcal{Y} , and \mathcal{Z} are the respective dehomogenisations, is given by $Z_{ij} \mapsto X_i \otimes Y_j$ and $Z_{i,0} \mapsto X_i \otimes 1$ and $Z_{0,j} \mapsto 1 \otimes Y_j$, for $i, j \geq 1$.

Hence we conclude that the σ_{ij}^* are epimorphisms of K -algebras, implying that the σ_{ij} are closed embeddings of affine varieties, for all i and j , that is $V_{ij} \subseteq D_{ij}$ is closed such that $\sigma_{ij}: D_i \times D_j \rightarrow V_{ij}$ is an isomorphism of affine varieties.

Let $\mathbf{V} := \sigma(\mathbf{P}^n \times \mathbf{P}^m) = \bigcup_{i,j \geq 0} V_{ij} \subseteq \mathbf{P}^s$. Then we have $\mathbf{V} \cap D_{ij} = \sigma(D_i \times D_j) = V_{ij}$. Since $V_{ij} \subseteq D_{ij}$ is closed, for all i and j , we conclude that $\mathbf{V} \subseteq \mathbf{P}^s$ is closed as well, so that \mathbf{V} is a projective variety. Moreover, by the sheaf properties, $\sigma: \mathbf{P}^n \times \mathbf{P}^m \rightarrow \mathbf{V}$ is an isomorphism of prevarieties. \sharp
