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0 Introduction

Historical background. Invariant theory dates back to number theoretical
considerations, on the representability of integers by binary quadratic forms,
begun by Lagrange [1773], and later continued by Gauß [1801] in his famous
Disquisitiones arithmeticae.

The next landmark is the seminal work of Boole [1841], introducing the notion
of transformation groups. Since then, invariant theory has developed into a
centerpiece of 19th century mathematics, with work done by Hesse, Sylvester,
Cayley, Clebsch, Gordan, Lie, Klein, and many more. A basic aim was to
develop methods to construct infinitely many invariants of n-ary d-forms, coined
‘concomitants’ by Sylvester. This led Cayley to ask whether there are always
finitely many ‘basic invariants’, polynomially generating all invariants. Contrary
to the general believe, Gordan [1868] showed their existence combinatorially
for binary forms, earning him the title of ‘king of invariant theory’.

The key breakthrough, in particular for the problem of finite generation, was
achieved in two famous papers by Hilbert [1890, 1893], which laid the ground-
work of modern abstract commutative algebra, and thus of modern algebraic
geometry, in their aftermath followed by the work of Noether. Actually, while
Hilbert was mainly interested in invariants for continuous groups, Noether’s
focus was on finite groups. Still, as the new abstract methods have been non-
constructive in the first place, this led to the famous exclamation of Gordan,
at this time being a dogmatic defender of the view that mathematics must be
constructive: Das ist Theologie und nicht Mathematik! — This is theology and
not mathematics! (Actually, it is reported that Gordan [1899] has admitted:
I have convinced myself that theology also has its advantages.)

1 Application: Quadratic forms

(1.1) Action on polynomial algebras. Let K be a field, let K[X ] be the
polynomial algebra in the indeterminates X := {X1, . . . , Xn}, where n ∈ N0,
and let K[X ]1 := 〈X 〉K ≤ K[X ] be the K-subspace generated by X .

The general linear group GLn(K) acts naturally (on the right) K-linearly on the
K-vector space Kn. Viewing K[X ]1 as the K-vector space of linear forms on
Kn, where Xj is the j-th coordinate function, for j ∈ {1, . . . , n}, the group
GLn(K) acts K-linearly by pre-composition on K[X ]1, thus by the universal
property of K[X ] giving rise to K-algebra automorphisms of K[X ] as follows:

For A = [aij ]ij ∈ GLn(K) we have (AXj)(x1, . . . , xn) = Xj([x1, . . . , xn] · A) =∑n
i=1 xiaij = (

∑n
i=1 aijXi)(x1, . . . , xn), for x1, . . . , xn ∈ K. In other words we

have AXj :=
∑n
i=1Xiaij ∈ K[X ]1, that is A : X 7→ X · A. In terms of the K-

basis X ⊆ K[X ]1, the K-linear map induced by A is given by Atr ∈ Kn×n. In
order to get a (right) action of GLn(K) we let (fA)(X ) := f(X ·A−1) ∈ K[X ],
for f ∈ K[X ]; in particular the K-linear map on K[X ]1 induced by A is given
by A−tr ∈ Kn×n, with respect to the K-basis X ⊆ K[X ]1.
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(1.2) Quadratic forms. Let K be a field such that char(K) 6= 2, let n ∈ N,
and let K[X ]2 ≤ K[X ] be the K-subspace generated by the monomials of degree

2; we have dimK(K[X ]2) = n(n+1)
2 . A polynomial q :=

∑
1≤i≤j≤n qijXiXj ∈

K[X ]2 is called an n-ary quadratic form over K.

Then q gives rise to the polynomial map Kn → K : x = [x1, . . . , xn] 7→ q(x) =
q(x1, . . . , xn), which with a slight abuse is also called a quadratic form; thus
the map b : Kn ×Kn → K : [x, y] → 1

2 (q(x + y) − q(x) − q(y)) is a symmetric
K-bilinear form, and we have b(x, x) = q(x) and the name-giving property
q(λx) = λ2 · q(x), for λ ∈ K.

Let Kn×n
sym := {A ∈ Kn×n;Atr = A} ≤ Kn×n be the K-subspace of symmetric

matrices; we have dimK(Kn×n
sym ) = n(n+1)

2 . The quadratic form q is associated
with the Gram matrix Qq := [q′ij ]ij ∈ Kn×n

sym , where q′ii = qii, and q′ij =

q′ji = 1
2 · qij for i < j. This gives rise to an isomorphism of K-vector spaces

K[X ]2 → Kn×n
sym : q 7→ Qq, such that conversely q(X ) = X ·Qq · X tr.

For A ∈ GLn(K) we get (qA)(X ) = (X · A−1) ·Qq · (A−tr · X tr), thus we have
QqA = A−1 ·Qq ·A−tr; recall that applying A amounts to applying base change
of Kn. Quadratic forms q and q′ are called equivalent if there is A ∈ GLn(K)
such that q = q′A, or equivalently Qq′ = A ·Qq ·Atr.

Then rk(q) := rk(Qq) ∈ {0, . . . , n} is called the rank of q, and ∆(q) :=
det(Qq) ∈ K is called the discriminant of q [Sylvester, 1852], Thus ap-
plying A ∈ GLn(K) yields rk(qA) = rk(q) and ∆(qA) = det(A−1 ·Qq ·A−tr) =
det(A)−2 · det(Qq) = det(A)−2 · ∆(q). In particular, the rank is a GLn(K)-
invariant of quadratic forms, while the the discriminant of quadratic forms is
invariant with respect to the special linear group SLn(K).

(1.3) Complex quadratic forms. a) The classification of quadratic forms up
to equivalence is highly dependent on the field K chosen, the simplest case being
K algebraically closed. Here, we restrict ourselves to the complex numbers C.
Given an n-ary quadratic form q ∈ C[X1, . . . , Xn]2 =: V, where n ∈ N, let
[q] ⊆ V be its equivalence class with respect to the action of SLn(C).

Theorem. Any n-ary quadratic form is SLn(C)-equivalent to precisely one of:

i) qn,δ := δX2
n +

∑n−1
i=1 X

2
i , where δ 6= 0; we have rk(qn,δ) = n and ∆(qn,δ) = δ.

ii) qr :=
∑r
i=1X

2
i , where r ∈ {0, . . . , n− 1}; we have rk(qr) = r and ∆(qr) = 0.

Moreover, all the forms qn,δ for δ 6= 0 are GLn(C)-equivalent.

Proof. We show that the Gram matrix Q of any quadratic form q of rank
r := rk(q) is SLn(C)-diagonalizable (by mimicking the proof of Sylvester’s
Theorem of Inertia):

We may assume that q 6= 0. Since SLn(C) acts transitively on Cn \ {0}, we
may choose a C-basis of Cn whose first element, v say, is non-isotropic, that
is q(v) 6= 0. Since any unitriangular matrix belongs to SLn(C), by the standard
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orthogonalization procedure we may complement this by a C-basis of the or-
thogonal complement 〈v〉⊥C ≤ Cn, with respect to the C-bilinear form induced
by q. Hence by induction on n ∈ N we may assume that q =

∑r
i=1 δiX

2
i , where

δi 6= 0. (So far the argument works for any field K such that char(K) 6= 2.)

If r < n, letting A := diag[ε1, . . . , εr, 1, . . . , 1, (
∏r
i=1 εi)

−1] ∈ SLn(C), where
ε2i = δi for i ∈ {1, . . . , r}, we get qA =

∑r
i=1 δiε

−2
i X2

i = qr. (The argument
given so far, and in the sequel, only uses the fact that (K∗)2 = K∗; for K = R,
where [R∗ : (R∗)2] = 2, we recover the signature from Sylvester’s Theorem.)

If r = n, letting A := diag[ε1, . . . , εn−1, ε
−1] ∈ SLn(C), where ε2i = δi for

i ∈ {1, . . . , n − 1}, and ε :=
∏n−1
i=1 εi, we get qA = δnε

2X2
n +

∑n−1
i=1 δiε

−2
i X2

i =
qn,δnε2 . Finally, letting A := diag[1, . . . , 1, ε] ∈ GLn(C), where ε2 = δ, we get

qn,δA = δε−2X2
n +

∑n−1
i=1 X

2
i = qn,1. ]

b) Apart from the algebraic picture, we also have the complex metric topology
at our disposal. (Actually, the arguments to follow remain valid for any alge-
braically closed field K such that char(K) 6= 2, and regular maps with respect
to the Zariski topology.)

We may view the discriminant ∆: V → C as a polynomial map, in particular as a
continuous map. Its fiber associated with δ ∈ C is the hypersurface ∆−1(δ) ⊆ V,
which hence is closed. Moreover, since ∆ is SLn(C)-invariant, ∆−1(δ) consists
of a union of equivalence classes: For δ 6= 0 we have ∆−1(δ) = [qn,δ], while

∆−1(0) =
∐n−1
r=0 [qr] is a proper union of equivalence classes for n ≥ 2; note that

[q0] = {q0} is a singleton set.

Thus [qn,δ] ⊆ V is closed for δ 6= 0. But for δ = 0 this is different, where for

r ∈ {0, . . . , n− 1} the closure of [qr] ⊆ V equals [qr] =
∐r
s=0[qs] ⊆ V:

Since SLn(C) acts by homeomorphisms, [qr] is SLn(C)-invariant as well, hence is
a union of equivalence classes. Since {M ∈ Cn×n; rk(M) ≤ r} ⊆ Cn×n coincides
with the set of all matrices all of whose ((r + 1) × (r + 1))-minors vanish, we
conclude that the latter set is closed. Hence {M ∈ Cn×nsym ; rk(M) ≤ r} ⊆ Cn×nsym

is closed as well, in other words
∐r
s=0[qs] is closed, whence [qr] ⊆

∐r
s=0[qs].

Conversely, for r = 0 we have [q0] = [q0]. For r ∈ {1, . . . , n − 1} and ε ∈ C let

qr,ε := εX2
r +

∑r−1
i=1 X

2
i . Then we have qr,ε ∈ [qr] for ε 6= 0, and limε→0 qr,ε =

qr,0 = qr−1, which entails [qr−1] ⊆ [qr], hence [qr−1] ⊆ [qr]. By induction this

implies
∐r
s=0[qs] = [qr]

.
∪
∐r−1
s=0[qs] = [qr]

.
∪ [qr−1] ⊆ [qr]. ]

From ∆−1(0) = [qn−1] we infer that any SLn(C)-invariant continuous complex-
valued map on ∆−1(0) is constant, hence the equivalence classes contained in
∆−1(0) cannot be separated by these maps.

This also entails that any SLn(C)-invariant continuous complex-valued map F
on V is constant on the fibers of ∆, that is we have F = ∆ · f for some map
f : C → C. Moreover, ∆ admits the continuous section s : C → V : δ 7→ qn,δ,
where qn,0 := qn−1, that is we have s ·∆ = idC. This yields s ·F = s ·∆ · f = f ,



4

entailing that f is continuous, saying that F is a continuous function of ∆. In
particular, if F is a polynomial map, we infer that f is a polynomial map as
well, saying that F is a polynomial function of ∆.

In terms of invariant algebras, see (3.2), we have thus shown that C[V]SLn(C) =
C[∆], the univariate polynomial algebra generated by ∆. Moreover, by Exer-
cise (18.1), any GLn(C)-invariant continuous complex-valued map F on V is
constant, implying that C[V]GLn(C) = C.

(1.4) Binary quadratic forms [Lagrange, 1773; Gauß, 1801]. We con-
sider binary quadratic forms over a field K such that char(K) 6= 2, that is the
case n = 2. Letting V := K[X,Y ]2, we consider theK-bases {X2, 2XY, Y 2} ⊆ V
and {X2+Y 2, 2XY,X2−Y 2} ⊆ V. This yields two identifications of V with K3.
Letting A,B,C and U,W, V be the associated coordinate functions, respectively,
the algebra of polynomial functions on V is K[V] := K[A,B,C] = K[U,W, V ],
where the base change matrix

M :=

1 0 1
0 1 0
1 0 −1

 ∈ GL3(K)

yields [A,B,C] = [U,W, V ] ·M = [U + V,W,U − V ] and [U,W, V ] = [A,B,C] ·
M−1 = [A+C

2 , B, A−C2 ].

Let q := aX2 + 2bXY + cY 2 ∈ V, having Gram matrix Q =

[
a b
b c

]
∈ K2×2

sym ,

thus ∆(q) = det(Q) = ac − b2 ∈ K. Hence as polynomial function on V we
have ∆ = AC − B2 = (U + V )(U − V ) −W 2 = U2 − V 2 −W 2 ∈ K[V]. For
δ ∈ K the fiber ∆−1(δ) ⊆ V is, with respect to the above identifications, given as
{[a, b, c] ∈ K3; ac− b2 = δ} and {[u,w, v] ∈ K3; v2 +w2 = u2 − δ}, respectively.

In particular, geometrically for K = R, the Jacobian [∂∆
∂U ,

∂∆
∂W , ∂∆

∂V ] = 2 ·
[U,−W,−V ] shows that ∆−1(δ) ⊆ V is smooth for δ 6= 0, while for δ = 0
we get the unique singular point q0 ∈ ∆−1(0). Considering ∆−1(δ), we get a
single-shell hyperboloid for δ < 0, a double-shell hyperboloid for δ > 0,
and a cone for δ = 0; see Table 1, where these are given in the second picture,
the u-axis being the vertical one.

In view of Sylvester’s Theorem we observe the following: The single-shell hyper-
boloid for δ = −1 consists of the SL2(R)-equivalence class containing q2,−1 =
X2 − Y 2, or likewise 2XY , which have signature [1,−1]; the double-shell hy-
perboloid for δ = 1 consists of the SL2(R)-equivalence classes containing q2,1 =
X2 + Y 2 and −X2 − Y 2, which have signature [1, 1] and [−1,−1], respectively;
and in the ‘degenerate’ case δ = 0, the cone consists of the SL2(R)-equivalence
classes {q0} = {0}, and the ones containing q1 = X2 and q1 = −X2, which have
signature [0, 0], as well as [1, 0] and [−1, 0], respectively.
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Table 1: Hyperboloids for δ < 0 and δ = 0 and δ > 0.

I Invariant algebras

2 Graded algebras

(2.1) Graded algebras. a) Let K be a field. A (non-commutative) K-algebra
R is called (non-negatively) graded, if we have R =

⊕
d≥0Rd as K-vector

spaces, such that R0
∼= K, and dimK(Rd) ∈ N0, and RdRd′ ⊆ Rd+d′ for d, d′ ≥

0. (In this context the property dimK(R0) = 1 is also called connectedness.)

For r = [rd]d ∈ R, the element rd ∈ Rd is called its d-th homogeneous
component, where since R is a direct sum (rather than a direct product), we
have rd 6= 0 for only finitely many d. If r 6= 0, the maximum d ≥ 0 such that
rd 6= 0 is called the degree deg(r) ∈ N0 of r.

The K-subspace Rd ≤ R, for d ∈ Z, is called its d-th homogeneous compo-
nent, where we let Rd := {0} for d < 0. The Hilbert(-Poincaré) series of R
is the formal power series HR :=

∑
d≥0 dimK(Rd) · T d ∈ Z[[T ]] ⊆ Q((T )). For

example, the field K is a graded K-algebra with zero homogeneous components
of positive degree; thus we have HK = 1 ∈ Z[T ].

b) Let R be a graded K-algebra. An R-module M is called graded, if M =⊕
d≥dM Md as K-vector spaces, for some dM ∈ Z, such that dimK(Md) ∈ N0,

and MdRd′ ⊆ Md+d′ , for d ≥ dM and d′ ≥ 0. If dM ≥ 0 then M is called
non-negatively graded. For m = [md]d ∈ M , the element md ∈ Md is called
its d-th homogeneous component, where we have md 6= 0 for only finitely
many d. If m 6= 0, the maximum d ≥ dM such that md 6= 0 is called the degree
deg(m) ∈ Z of m.

The K-subspace Md ≤ M , for d ∈ Z, is called the d-th homogeneous com-
ponent of M , where Md := {0} for d < dM . The Hilbert(-Poincaré) series
of M is the formal Laurent series HM :=

∑
d≥dM dimK(Md) · T d ∈ Q((T )).

Moreover, let M [s] :=
⊕

d∈ZMd+s denote the graded R-module obtained from
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M by shifting s ∈ Z steps to the left; hence for the associated Hilbert series
we have HM [s] = T−s ·HM ∈ Q((T )).

An R-submodule M ′ ≤M is called homogeneous, if whenever
∑
d∈Zmd ∈M ′

we have md ∈M ′ as well, for all d ∈ Z; in other words, we have M ′ =
⊕

d∈ZM
′
d,

where M ′d := M ′ ∩Md. Note that M ′ is homogeneous if and only if M ′ is as
an R-module generated by homogeneous elements. If M ′ is homogeneous, then
both M ′ and M/M ′ are graded R-modules as well, the grading being inherited
from M ; from (M/M ′)d = Md/(Md ∩M ′) = Md/M

′
d for d ∈ Z, we infer that

the associated Hilbert series are related by HM = HM ′ +HM/M ′ ∈ Q((T )).

Let M and M ′ be graded R-modules. Considering R-module homomorphisms
we get the direct product HomR(M,M ′) =

∏
d∈Z

∏
d′∈Z HomR(Md,M

′
d′), where

HomR(M,M ′)c :=
∏
d∈Z HomR(Md,M

′
d+c) is called its c-th homogeneous

component, for c ∈ Z. In particular, HomR(M,M ′)0 consists of the homo-
morphisms of graded R-modules from M to M ′.

c) In particular, the regular R-R-bimodule R is graded both as R-module
and as left R-module, where dR = 0, and the ideals of R coincide with its
R-R-submodules. An ideal I E R is called homogeneous if it is a graded
R-submodule of R, that is we have I =

⊕
d≥0 Id where Id := I ∩Rd.

Let R+ :=
⊕

d>0Rd C RR be the irrelevant ideal; note that it is maximal
such that R/R+

∼= K. Since any proper homogeneous ideal of R has zero 0-th
component and thus is contained in R+, we conclude that R+ is the unique
maximal homogeneous ideal of R.

(2.2) Generating sets. a) Let K be a field, let R be a graded K-algebra,
and let M =

⊕
d≥dM Md be a graded R-module. Then MR+ ⊆ M+ :=⊕

d≥dM+1Md is a homogeneous R-submodule; let : M → M/MR+ be the
natural epimorphism of R-modules, where M/MR+ are called the indecom-
posable elements of M . Actually, M/MR+ becomes an R/R+-module, car-
rying the grading inherited from M , so that since R/R+

∼= R0 = K we may
consider M/MR+ as a graded K-vector space.

Proposition: Graded Nakayama Lemma. Given a set S ⊆ M of homoge-
neous elements, then S generates M as an R-module, if and only if S generates
M/MR+ as a K-vector space.

Proof. We may assume that S generates M/MR+ as a K-vector space, and
let 0 6= v ∈M be homogeneous. To show that v belongs to the R-submodule of
M generated by S, we proceed by induction on d := deg(v) ≥ dM . Since MdM

embeds into M/MR+, we are done for d = dM ; hence let d ≥ dM + 1. Then
there are si ∈ S and tj ∈ M homogeneous, as well as ai ∈ K and rj ∈ R+

homogeneous, such that v =
∑k
i=1 siai +

∑l
j=1 tjrj , where k, l ∈ N0, and we

may assume that deg(si) = deg(tjrj) = d. Hence we have deg(tj) < d, so that
by induction tj belongs to the R-submodule of M generated by S, so does v. ]
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Thus a homogeneous generating set S ⊆ M is minimal if and only if S ⊆
M/MR+ is a K-basis. Hence, if R is finitely generated, this entails that a
homogeneous generating set of R is minimal if and only if it is of minimal
cardinality. Moreover, sinceM/MR+ is a gradedK-vector space, the cardinality
of a minimal homogeneous generating set of M , and the multiset of the degrees
of its elements are uniquely defined; in particular we have M = {0} if and
only if M/MR+ = {0}. Let the embedding number of M be the above
cardinality, and if M 6= {0} let the Noether number β(M) = βR(M) ∈ N0 be
the maximum of the multiset of degrees; we let β({0}) := 0 as well, and if M is
not finitely generated then M has infinite embedding and Noether numbers.

b) We relate the above observation to K-algebra generating sets of R. (We still
do not need to assume that R is commutative, although R typically will be.)

Proposition. Given a set S ⊆ R+ of homogeneous elements, then S generates
R as a K-algebra, if and only if S generates R+ ERR as a right ideal.

Proof. Let S generate R as a K-algebra. Then since any non-empty product
of elements of S belongs to (S) ERR, we infer that any element of R+ belongs
to (S) as well. Since we have (S) ⊆ R+ anyway, this entails equality.

Let conversely S generate R+ as a right ideal, and let 0 6= f ∈ R be homoge-
neous. To show that f belongs to the K-subalgebra of R generated by S, we
proceed by induction on d := deg(f) ∈ N0; the case d = 0 being trivial, let

d ≥ 1. There are si ∈ S and ri ∈ R homogeneous, such that f =
∑k
i=1 siri, for

k ∈ N, and we may assume deg(siri) = d. Hence we have deg(ri) < d, so that
by induction ri belongs to the K-subalgebra of R generated by S, so does f . ]

Thus a homogeneous generating set S ⊆ R+ of R is minimal if and only if S ⊆
R+/(R+)2 is a K-basis, where : R+ → R+/(R+)2 is the natural epimorphism
of R-modules, and R+/(R+)2 are called the indecomposable elements of R.
Hence, if R is finitely generated, this entails that a homogeneous generating
set of R is minimal if and only if it is of minimal cardinality. Moreover, since
R+/(R+)2 is a gradedK-vector space, the cardinality of a minimal homogeneous
generating set of R, and the multiset of the degrees of its elements are uniquely
defined. Let the embedding number of R be the above cardinality, and if
R 6= K let the Noether number β(R) ∈ N be the maximum of the multiset
of degrees; let β(K) := 0, and if R is not finitely generated R has infinite
embedding and Noether numbers.

(2.3) Tensor algebras. a) Let K be a field, and let V and W be K-vector
spaces. A K-bilinear map ⊗ : V ×W → T , where T is a K-vector space, is called
a tensor product of V and W , if it has the following universal property: For
any K-bilinear map β : V ×W → U , where U is a K-vector space, there is a
unique K-linear map β : T → U such that β = ⊗ · β. Tensor products always
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exist and are unique up to isomorphism of K-vector spaces, where we write
V ⊗W = V ⊗K W := T ; see Exercise (19.1).

If V and W are finitely generated, then we have dimK(V ⊗W ) = dimK(V ) ·
dimK(W ). If V =

⊕
d∈Z Vd and W =

⊕
d∈ZWd are graded, then V ⊗W is

graded as well such that dV⊗W = dV +dW , where (V ⊗W )d =
⊕

e∈Z(Ve⊗Wd−e)
for d ∈ Z; hence we have dimK((V ⊗W )d) =

∑
e∈Z(dimK(Ve) · dimK(Wd−e)),

so that in terms of Hilbert series we have HV⊗W = HV ·HW ∈ Q((T )).

In particular, let R and S be K-algebras. Then R⊗S becomes a K-algebra, by
letting (f ⊗ g)(f ′ ⊗ g′) := ff ′ ⊗ gg′, for f, f ′ ∈ R and g, g′ ∈ S. If R and S are
commutative, then so is R⊗ S; if R and S are graded, then so is R⊗ S.

b) Let V be a K-vector space such that n := dimK(V ) ∈ N0, let V ⊗d :=
V ⊗ V ⊗ · · · ⊗ V be the d-th tensor power of V , with d ∈ N tensor fac-
tors, and let T (V ) :=

⊕
d≥0 V

⊗d, where V ⊗0 := K. Then T (V ) becomes a
(non-commutative) graded K-algebra, being called the tensor algebra over V ,
where multiplication is inherited from concatenation of tensor products, which
is associative indeed. From dimK(V ⊗d) = nd we infer that the Hilbert series of
T (V ) is HT (V ) =

∑
d≥0 n

d · T d =
∑
d≥0(nT )d = 1

1−nT ∈ Q(T ) ⊆ Q((T )).

The algebra T (V ) has the following universal property: Let B := {b1, . . . , bn} ⊆
V be a K-basis, and let α : B → R be any map, where R is a K-algebra.
Then by the universal property of tensor products, α extends to the K-linear
multiplication map αd : V ⊗d → R : bi1 ⊗ · · · ⊗ bid 7→ α(bi1) · · ·α(bid), for d ∈ N
and i1, . . . , id ∈ {1, . . . , n}. Hence additionally letting α0 : K → R : 1K 7→ 1R,
we get a K-linear map α̂ :=

∑
d≥0 αd : T (V ) → R, which by the definition of

the multiplication in T (V ) actually is a homomorphism of K-algebras. Since
T (V ) is generated by B as a K-algebra, we conclude that T (V ) is the free
(non-commutative) K-algebra with free generating set B.

c) The symmetric group Sd acts on V ⊗d, for d ∈ N0 by permuting the tensor
factors, that is for π ∈ Sd we have π : v1 ⊗ · · · ⊗ vd 7→ v1π−1 ⊗ · · · ⊗ vdπ−1 , for
v1, . . . , vd ∈ V ; recall that S0 = {1} and V ⊗0 = K.

The d-th symmetric power of V is defined as the quotient K-vector space
Sd(V ) := V ⊗d/V ⊗d,− of V ⊗d with respect to the K-subspace

V ⊗d,− := 〈(v1 ⊗ · · · ⊗ vd) · (1− π); v1, . . . , vd ∈ V, π ∈ Sd〉K ≤ V ⊗d;

note that V ⊗0,− = {0} and V ⊗1,− = {0}, so that S0(V ) ∼= K and S1(V ) ∼= V .

Letting T (V )− be the homogeneous K-subspace T (V )− :=
⊕

d≥0 V
⊗d,− ≤

T (V ), we observe that T (V )− actually is an ideal of T (V ); see Exercise (19.2).
Thus S[V ] := T (V )/T (V )− =

⊕
d≥0 S

d(V ) becomes a graded K-algebra, being
called the symmetric algebra over V , which by construction is commutative.

In particular, for n = 0 we have V ⊗d = {0} for d ∈ N, so that S[{0}] = K;
and for n = 1 we have V ⊗d ∼= K and V ⊗d,− = {0} for d ≥ 0, so that S[K] =⊕

d≥0〈1⊗ · · · ⊗ 1〉K , with d tensor factors in the d-th summand.
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The algebra S[V ] has the following universal property: Let B ⊆ V be a K-
basis, and let α : B → R be any map, where R is a commutative K-algebra.
Then by the universal property of T (V ) the map α extends to a homomorphism
α̂ : T (V ) → R of K-algebras. Since R is commutative, α̂ factors through the
quotient map with respect to the ideal T (V )−, so that we get a homomorphism
α̂ : S[V ] → R of K-algebras. Since S[V ] is generated by B as a K-algebra, we
conclude that S[V ] is the free commutative K-algebra with free generating
set B, in other words the polynomial K-algebra in the indeterminates B.

(2.4) Polynomial algebras. a) Let R 6= {0} be a commutative ring, and let
R[X] :=

⊕
d≥0X

d ·R be the free R-module with free generating set N0. Hence

any polynomial f ∈ R[X] can be uniquely written as f =
∑
d≥0 fd ·Xd, with

coefficients fd ∈ R such that fd 6= 0 for only finitely many d.

If f 6= 0, the maximum d ≥ 0 such that fd 6= 0 is called the degree deg(f) ∈ N0

of f , and lc(f) := fd ∈ R is called its leading coefficient; if lc(f) = 1 then f is
called monic. Then R[X] becomes a commutative R-algebra with respect to the
multiplication induced by addition on N0, by identifying R with 1 ·R ⊆ R[X].

Then R[X] has the following universal property: Let S be a commutative R-
algebra, with structure homomorphism α : R → S, and let x ∈ S. Then, by
the definition of the multiplication in R[X], there is a unique homomorphism of
R-algebras α̂ : R[X]→ S extending α, such that α̂(X) = x. Hence R[X] is the
univariate polynomial R-algebra in the indeterminate X.

In particular, if R is a domain, that is a commutative non-zero ring without
zero-divisors, then so is R[X]; and if R additionally is factorial, then by the
Lemma of Gauss so is R[X]; see Exercise (19.10).

b) Let K[X ] be the polynomial algebra with indeterminates X := {X1, . . . , Xn},
where n ∈ N0; in particular, for n = 0 we have K[∅] = K.

Proposition. We have K[X ] ∼= K[X1]⊗ · · · ⊗K[Xn] as K-algebras.

Proof. Let R := K[X1] ⊗ · · · ⊗ K[Xn]. Then by the universal property of
K[X ] there is a homomorphism of K-algebras α : K[X ]→ R such that α : Xi 7→
1 ⊗ · · · ⊗ Xi ⊗ · · · ⊗ 1, for i ∈ {1, . . . , n}, where Xi occurs in the i-th tensor
factor. Conversely, for i ∈ {1, . . . , n} there is a homomorphism of K-algebras
βi : K[Xi] → K[X ] such that βi : Xi 7→ Xi, by the universal property of tensor
products giving rise to a homomorphism of K-algebras β := β1⊗· · ·⊗βn : R→
K[X ] such that β : Xa1

1 ⊗ · · · ⊗Xan
n 7→

∏n
i=1X

ai
i , for a1, . . . , an ∈ N0. Finally,

we get α ·β : Xi 7→ Xi and β ·α : 1⊗· · ·⊗Xi⊗· · ·⊗1 7→ 1⊗· · ·⊗Xi⊗· · ·⊗1. ]

Hence letting X ′ := X \ {Xn}, for n ≥ 1, we have K[X ] ∼= K[X ′] ⊗K[Xn] =
K[X ′][Xn]. Thus any polynomial f ∈ K[X ] can be uniquely written as f =∑
d≥0 fd ·Xd

n, where fd ∈ K[X ′] such that fd 6= 0 for only finitely many d. Hence
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by induction on n ∈ N0 we infer that {
∏n
i=1X

ai
i ∈ K[X ]; [a1, . . . , an] ∈ Nn0} is

a K-basis of K[X ], and that K[X ] is a factorial domain.

c) Actually, K[X ] carries various gradings: To this end, let δ := [d1, . . . , dn] ∈
Nn. Then K[X ] becomes a graded K-algebra by letting degδ(

∏n
i=1X

ai
i ) :=∑n

i=1 diai ∈ N0, for [a1, . . . , an] ∈ Nn0 . Thus the homogeneous component
K[X ]δd ≤ K[X ] is the K-subspace generated by the monomials of degree d with
respect to δ, and letting deg[di](Xi) := di we have K[X ] ∼= K[X1]⊗ · · ·⊗K[Xn]
as graded algebras.

The standard grading deg = degX of K[X ] is given by the degrees [1, . . . , 1],
that is by letting deg(Xi) := 1 for i ∈ {1, . . . , n}; note that this is the grading
inherited from the symmetric algebra S[Kn].

Given degrees δ, the Hilbert series of K[Xi] with respect to deg[di] is given as

H
[di]
K[Xi]

=
∑
a≥0 T

adi = 1
1−Tdi ∈ Q(T ) ⊆ Q((T )). Thus the Hilbert series of

K[X ] with respect to degδ is given as Hδ
K[X ] =

∏n
i=1

1
1−Tdi ∈ Q(T ).

In particular, for the standard grading we get HK[X ] = 1
(1−T )n =

∑
d≥0

(
n+d−1

d

)
·

T d ∈ Q(T ) ⊆ Q((T )): Assuming that n ≥ 1, expanding the left hand side as
a power series, the coefficient of T d is given as the number of possibilities to
write d as a sum of n non-negative integers, which of course is the same as the
number of monomials of degree d in n indeterminates, and which is well-known
to be equal to

(
d+(n−1)
n−1

)
=
(
n+d−1

d

)
; see Exercise (19.19).

(2.5) Algebras of polynomial functions. Let K be a field, and let V be a K-
vector space having K-basis B = {b1, . . . , bn} ⊆ V , where n := dimK(V ) ∈ N0.
Moreover, let V ∗ := HomK(V,K) ≤ Maps(V,K) be the dual space of V , that
is the K-vector space of linear forms on V , and let X = {X1, . . . , Xn} ⊆ V ∗

be the dual K-basis with respect to B, that is Xj(bi) = δij ∈ K for i, j ∈
{1, . . . , n}, where δ is the Kronecker function. Then the symmetric algebra
K[V ] := S[V ∗] = K[X ] is called the algebra of polynomial functions on V .

Indeed, Maps(V,K) becomes a commutative K-algebra by pointwise addition
and multiplication. Hence by the universal property of K[X ] we get the eval-
uation homomorphism of K-algebras εV : K[X ]→ Maps(V,K) given by

εV :

n∏
j=1

X
aj
j 7→ (V → K :

n∑
i=1

cibi 7→
n∏
j=1

c
aj
j ), for [a1, . . . , an] ∈ Nn0 .

Proposition. The map εV is injective if and only if n = 0 or K is infinite.

Proof. Since for n = 0 we haveK[∅] = K ∼= Maps({0},K), we may assume that
n ≥ 1. Let first K = Fq be the field with q elements; we may assume that n = 1.
Then we have Xq(a) = a = X(a), for all a ∈ Fq, that is εFq (X

q) = εFq (X).

Let K be infinite. We proceed by induction on n ≥ 1. Let first n = 1: Recall
that K[X] is factorial, which follows from K[X] being Euclidean with respect
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deg(·). Thus any 0 6= f ∈ K[X] has only finitely many roots in K, so that there
is x ∈ K such that f(x) 6= 0. (Note that here we only need that deg(f) < |K|.)

Let now n ≥ 2, and let 0 6= f =
∑d
i=0 fi · Xi

n ∈ K[X ], for some d ∈ N0,
and f0, . . . , fd ∈ K[X \ {Xn}] such that fd 6= 0. Then by induction there are
elements x1, . . . , xn−1 ∈ K such that fd(x1, . . . , xn−1) 6= 0. This entails that

0 6= f(x1, . . . , xn−1, Xn) =
∑d
i=0 fi(x1, . . . , xn−1) · Xi

n ∈ K[Xn]. The latter
having only finitely many roots in K, there is xn ∈ K such that f(x1, . . . , xn) 6=
0. (Note that again we only need that degXn(f) < |K|.) ]

The above argument actually shows that for the finite field K = Fq the map εV
is injective on

⊕q−1
d=0 Fq[X ]d ≤ Fq[X ]. In particular, for K arbitrary the map εV

is always injective on K[X ]0 ⊕K[X ]1 ∼= K ⊕ V ∗, that is the K-vector space of
affine K-linear forms on V .

3 Invariant algebras

(3.1) Groups. Let K be a field, let V be a K-vector space such that n :=
dimK(V ) ∈ N0, and let G be a group. Then a group homomorphism ρ =
ρV : G→ GL(V ) ∼= GLn(K) is called a K-representation of G. The represen-
tation ρ is called faithful if ker(ρ) = {1}; in this case we may identify G with
a subgroup of GL(V ).

Hence the K-vector space V becomes a K[G]-module, for the group algebra
K[G] of G over K. The latter is defined as the K-subspace K[G] := 〈δg; g ∈
G〉K ≤ Maps(G,K), where δg : G → K : x 7→ δg,x, and becomes a K-algebra
by letting δgδh = δgh ∈ K[G] for g, h ∈ G; hence we may identify G with the
K-basis {δg; g ∈ G} ⊆ K[G].

Representations ρ : G→ GLn(K) and ρ′ : G→ GLn(K) are called equivalent,
if the associated K[G]-modules V and V ′ are isomorphic, that is if there is
matrix A ∈ GLn(K) such that ρ(g) ·A = A · ρ′(g) ∈ GLn(K), for all g ∈ G.

In particular, for n = 1 we have the trivial representation G → K∗ : g 7→ 1.
Moreover, the dual space V ∗ of V becomes a K[G]-module, being called the
contragredient module of V , by letting G act by pre-composition, that is for
g ∈ G and α ∈ V ∗ we let α · g ∈ V ∗ be given by v 7→ α(v · g−1), for v ∈ V .

(3.2) Invariant algebras. a) Let K be a field, and let G be a group. If V and
W are K[G]-modules, then by the universal property of tensor products V ⊗W
becomes a K[G]-module again, by diagonal G-action given by (v ⊗ w) · g :=
(v · g)⊗ (w · g), for v ∈ V and w ∈W , and g ∈ G.

In particular, the tensor power V ⊗d becomes a K[G]-module, for d ∈ N. More-
over, the G-action commutes with the Sd-action, that is (v1⊗· · ·⊗vd) ·g ·π−1 =
(v1g⊗· · ·⊗vdg)·π−1 = v1πg⊗· · ·⊗vdπg = (v1π⊗· · ·⊗vdπ)·g = (v1⊗· · ·⊗vd)·π·g,
for v1, . . . , vd ∈ V and g ∈ G, and π ∈ Sd. Hence V ⊗d,− ≤ V ⊗d is a K[G]-
submodule, so that Sd(V ) := V ⊗d/V ⊗d,− becomes a K[G]-module as well.



12

Letting G act trivially on V ⊗0 = K, the tensor algebra T (V ) =
⊕

d≥0 V
⊗d

and the symmetric algebra S[V ] =
⊕

d≥0 S
d(V ), being direct sums, become

K[G]-modules as well, whose grading is respected by the G-action. Moreover,
since multiplication in T (V ) and S[V ] are inherited from concatenation of tensor
products, G acts by graded K-algebra automorphisms on T (V ) and S[V ].

b) Hence we are led to the following notion: A graded K-algebra S, on which
G acts by graded K-algebra automorphisms, is called graded G-algebra. In
particular, the symmetric algebra S[V ] is a graded G-algebra, which additionally
is a finitely generated factorial K-domain; moreover, G acts faithfully on S[V ]
if and only if S acts faithfully on V .

If S is a graded G-algebra, then the set SG = FixS(G) := {f ∈ S; f · g =
f for all g ∈ G} ⊆ S of (G-)invariants is a graded K-subalgebra, being called
the associated invariant algebra, where SG =

⊕
d≥0(Sd)

G. Moreover, if S is

commutative, then so is SG; and if S is a domain, then so is SG.

For example, if N EG is a normal subgroup, then the invariant algebra SN ⊆ S
is acted on by G, where the action factors through the natural epimorphism to
G/N ; thus SN becomes a graded G/N -algebra, and we have SG = (SN )G/N .

For the symmetric algebra we get S[V ]G =
⊕

d≥0(Sd)G, where (Sd)G = S[V ]G∩
Sd; in particular we have (S0)G = S0(V ) = K and S1(V )G = FixV (G) :=⋂
g∈G kerV (g−1) ≤ V . Note that G enters the picture only through ρV , so that

we may assume that ρV is faithful, in other words G ≤ GL(V ).

Example: Quadratic forms. For the action of SLn(C) and GLn(C) on the
C-vector space V := C[X1, . . . , Xn]2 of n-ary complex quadratic forms, where
n ∈ N, we have seen in (1.3) (using a topological argument), that the invariant
algebra C[V]SLn(C) = S[V∗]SLn(C) = C[∆] is the univariate polynomial algebra
generated by the discriminant ∆, and that C[V]GLn(C) = S[V∗]GLn(C) = C
consists of the constant functions only.

(3.3) Example: Cyclic groups. Let K be a field, let k ∈ N such that
char(K) - k, and assume that K contains a primitive k-th root of unity ζk.
We consider various faithful representations of the cyclic group G := 〈z〉 ∼= Ck:

a) Let G → GL1(K) = K∗ : z 7→ ζk. Then G acts on K[X] by X · z = ζkX.
Hence for f =

∑
d≥0 adX

d ∈ K[X] we have f · z =
∑
d≥0 ζ

d
kadX

d ∈ K[X], so
that by comparing coefficients we observe that f · z = f if and only if ad =
0 whenever k - d. Thus we have K[X]G = K[Xk], which is a univariate
polynomial algebra, in degree k, and Hilbert series HK[X]G = 1

1−Tk ∈ Q(T ).

b) Similarly, let G → GL2(K) : z 7→ diag[ζk, 1]. Then G acts on S := K[X,Y ]

by X · z = ζkX and Y · z = Y . Hence for d ∈ N0 and f =
∑d
i=0 aiX

iY d−i ∈ Sd
we have f · z =

∑d
i=0 ζ

i
kaiX

iY d−i ∈ Sd, so that by comparing coefficients we
observe that f · z = f if and only if ai = 0 whenever k - i. Thus we have
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SG = K[Xk, Y ] ∼= K[Xk] ⊗ K[Y ], which is a bivariate polynomial algebra
again, but with degrees [k, 1], and Hilbert series HSG = 1

(1−T )(1−Tk)
∈ Q(T ).

c) Let G → GL2(K) : z 7→ diag[ζk, ζk]. Then we have K2 ∼= K ⊕K as K[G]-
modules, where the direct summands are both isomorphic to the representation
z 7→ ζk considered above; the associated invariants are called vector invari-
ants. Then G acts on S := K[X,Y ] by X · z = ζkX and Y · z = ζkY . Hence for

d ∈ N0 and f =
∑d
i=0 aiX

iY d−i ∈ Sd we have f ·z =
∑d
i=0 ζ

d
kaiX

iY d−i ∈ Sd, so
that by comparing coefficients we observe that f ·z = f if and only if k | d; thus
SG =

⊕
d≥0 Skd. Since dimK(Sd) = d+ 1, we have HSG =

∑
d≥0(kd+ 1)T kd =

∂
∂T (
∑
d≥0 T

kd+1) = ∂
∂T (T ·

∑
d≥0 T

kd) = ∂
∂T ( T

1−Tk ) = 1+(k−1)Tk

(1−Tk)2
∈ Q(T ).

To elucidate the structure of SG, let R := K[Xk, Y k] ∼= K[Xk] ⊗ K[Y k] be
the bivariate polynomial algebra genenerated by {Xk, Y k}, with degrees [k, k];
note that the tensor factors are the invariant algebras of the direct summands
of the representation K2 ∼= K ⊕ K under consideration. We show that SG =
R⊕

⊕k−1
i=1 (Xk−iY i ·R) as graded R-modules, the latter being the free graded

R-module generated by {1, Xk−1Y, . . . ,XY k−1}; in particular this entails that
as K-algebras we have SG = K[Xk, Xk−1Y, . . . ,XY k−1, Y k]:

Since Sk ≤ SG, we have R ⊆ SG and {Xk−1Y, . . . ,XY k−1} ⊆ SG, showing

that R +
∑k−1
i=1 (Xk−iY i · R) ⊆ SG. Conversely, let f := XiY kd−i ∈ Skd be a

monomial, where d ∈ N0 and i ∈ {0, . . . , kd}. If k | i, then f is a monomial
in {Xk, Y k}, thus f ∈ R. If k - i, then let j ∈ {1, . . . , k − 1} such that i ≡ j
(mod k); then we have XiY kd−i = XjY k−j ·Xi−jY k(d−1)−(i−j), where the latter
factor is a monomial in {Xk, Y k}, thus f ∈ Xk−jY j ·R.

Thus we have SG = R+
∑k−1
i=1 (Xk−iY i ·R). It remains to show directness: The

free R-module generated by {1, Xk−1Y, . . . ,XY k−1} has Hilbert series HR +∑k−1
i=1 HXk−iY i·R = 1+(k−1)Tk

(1−Tk)2
= HSG ∈ Q(T ). Thus the natural epimorphism

of graded R-modules from the latter free R-module to SG is injective indeed. ]

Note that Xk, Xk−1Y,XY k−1, Y k ∈ SG are pairwise non-associate irreducible
elements, for k ≥ 2, but fulfill Xk−1Y ·XY k−1 = Xk · Y k, implying that SG is
not factorial, in particular it is not a polynomial algebra.

d) Let G→ GL2(K) : z 7→ diag[ζk, ζ
−1
k ]. Then we have X · z = ζkX and Y · z =

ζ−1
k Y . Hence for f =

∑
i,j≥0 aijX

iY j ∈ S we have f ·z =
∑
i,j≥0 ζ

i−j
k aijX

iY j ∈
S, so that by comparing coefficients we observe that f ·z = f if and only if ai = 0
whenever k - (i− j). Thus for a monomial f we have f · z = f if and only if it
has the form f = (XY )iXakY bk, for i ∈ {0, . . . , k − 1} and a, b ∈ N0. Thus we
have SG = K[XY,Xk, Y k] as graded K-algebras.

Observing that the above monomials are K-linearly independent, letting R :=
K[Xk, Y k] we get SG =

⊕k−1
i=0 (XiY i · R) as graded R-modules. Since R is

polynomial with degrees [k, k], we have HR = 1
(1−Tk)2

, entailing that HSG =

(
∑k−1
i=0 T

2i) ·HR = 1−T 2k

(1−T 2)(1−Tk)2
= 1+Tk

(1−T 2)(1−Tk)
∈ Q(T ).
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Note that for k ≥ 2 the elements XY, (XY )k−1, Xk, Y k ∈ SG are pairwise
non-associate irreducible, but XY · (XY )k−1 = Xk · Y k shows that SG is not
factorial, thus it is not a polynomial algebra. We elucidate the structure of SG:

Let P := K[A,B,C] be the polynomial algebra with degrees [2, k, k], and let
I := (Ak − BC) E P , where Ak − BC ∈ P is homogeneous of degree 2k. Since
I is a free P -module generated in degree 2k, we have HP/I = HP − HI =

(1 − T 2k) ·HP = 1−T 2k

(1−T 2)(1−Tk)2
∈ Q(T ). The epimorphism P → SG of graded

K-algebras given by A 7→ XY , B 7→ Xk, C 7→ Y k factors through P/I, and
since HP/I = HSG we have an isomorphism P/I ∼= SG. ]

(3.4) Example: The cyclic group of order 2. i) Let K be an arbitrary field,
and let G := 〈z〉 ∼= C2. We consider the regular representation of G, which with

respect to the K-basis {1, z} ⊆ K[G] is given as G → GL2(K) : z 7→
[
0 1
1 0

]
.

Then G acts on S := K[X,Y ] by X · z = Y and Y · z = X. Hence for

d ∈ N0 and f =
∑d
i=0 aiX

iY d−i ∈ Sd we have f · z =
∑d
i=0 aiX

d−iY i =∑d
i=0 ad−iX

iY d−i ∈ Sd, so that by comparing coefficients we observe that f ·z =
f if and only if ai = ad−i for all i ∈ {0, . . . , d}. Thus for d odd and even,
respectively, we have

SGd =

{
〈Xd + Y d, Xd−1Y +XY d−1, . . . , X

d+1
2 Y

d−1
2 +X

d−1
2 Y

d+1
2 〉K ,

〈Xd + Y d, Xd−1Y +XY d−1, . . . , X
d
2 Y

d
2 〉K .

In particular we have dimK(SGd ) = bd2c+ 1. Thus we get HSG = 1 + T + 2T 2 +
2T 3 + · · · = (1 + T ) ·

∑
d≥0(d + 1) · T 2d ∈ Z[[T ]]. Letting T ′ := T 2 we have∑

d≥0(d + 1) · T 2d =
∑
d≥0(d + 1) · (T ′)d = ∂

∂T ′ (
∑
d≥0(T ′)d) = ∂

∂T ′ (
1

1−T ′ ) =
1

(1−T ′)2 = 1
(1−T 2)2 , hence HSG = 1+T

(1−T 2)2 = 1
(1−T )(1−T 2) ∈ Q(T ).

We show that SG = K[X + Y,XY ]: Let R denote the right hand side.

We have SG1 = 〈X + Y 〉K and SG2 = 〈X2 + Y 2, XY 〉K , so that R ⊆ SG.
Conversely, we show by induction on d ≥ 1 that SGd ⊆ R, where since SG1 ⊆ R we
may assume that d ≥ 2. Then for i ∈ {1, . . . , bd2c} we have XiY d−i+Xd−iY i =
(XY )i(Xd−2i+Y d−2i), where by induction we have Xd−2i+Y d−2i ∈ SGd−2i ⊆ R,

from which, since (XY )i ∈ R anyway, we conclude that XiY d−i+Xd−iY i ∈ R;

note that for i = d
2 the latter equals 2(XY )

d
2 , but we have (XY )

d
2 ∈ R anyway.

Finally, (X + Y )d =
∑d
i=0

(
d
i

)
XiY d−i for d odd and even, respectively, yields

(X + Y )d =

 (Xd + Y d) +
∑ d−1

2
i=1

(
d
i

)
(XiY d−i +Xd−iY i),

(Xd + Y d) +
(
d
d
2

)
(XY )

d
2 +

∑ d
2−1
i=1

(
d
i

)
(XiY d−i +Xd−iY i).

Since (X + Y )d ∈ R anyway, from what we have seen above we conclude that
Xd + Y d ∈ R as well, entailing SGd ⊆ R. ]
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From this we conclude that SG is a bivariate polynomial algebra with degrees
[1, 2]: Let R := K[A,B] be the polynomial algebra with degrees [1, 2]; hence
HR = 1

(1−T )(1−T 2) = HSG ∈ Q(T ). Thus the epimorphism of graded K-algebras

α : R→ SG given by A 7→ X + Y and B 7→ XY is injective.

ii) If char(K) 6= 2, then the above computation can be simplified considerably,
since z has eigenvalues {±1}, so that z is diagonalizable; note that if char(K) = 2
then z has eigenvalue 1 with multiplicity 1, so that z is not diagonalizable in
this case. Hence applying the base change associated with with respect to the

eigenvector K-basis A :=

[
1 −1
1 1

]
∈ GL2(K) yields a K[G]-isomorphism from

the regular representation to the representation z 7→ diag[−1, 1]; see (3.3).

Hence letting X ′, Y ′ ∈ S be the indeterminates associated with the latter K-
basis, we have [X ′, Y ′] = [X,Y ] · Atr = [X − Y,X + Y ]. Thus we have SG =
K[(X ′)2, Y ′] = K[(X−Y )2, X+Y ], so that from (X−Y )2−(X+Y )2 = −4XY
we infer that SG = K[X + Y,XY ].

4 Finite generation

(4.1) Invariant fields. a) Let K be a field, and let S be a graded K-domain;
then let L := Q(S) be its field of fractions. For example, let S = S[V ], where V
is a finitely generated K-vector space; then S(V ) := Q(S[V ]) is the associated
field of rational functions.

If S additionally is a G-algebra, where G is a group, by the universal property
of fields of fractions the G-action by K-algebra automorphisms on S extends
uniquely to a G-action by field automorphisms on L. Moreover, G acts faithfully
on L if and only if G acts faithfully on S.

Hence the associated invariant field is given as LG = FixL(G) := {f ∈ L; f ·g =
f for all g ∈ G} ⊆ L, being a subfield of L such that SG = LG ∩ S. Since
SG ⊆ S is a domain as well, we get a natural embedding of the associated
field of fractions Q(SG) into Q(S) = L, thus since Q(SG) consists of invariant
rational functions we have Q(SG) ⊆ LG.

b) The question arises whether we might have equality Q(SG) = LG. Actually,
this is not always the case, not even for S = S[V ], where V is a K[G]-module,
as we will see by way of an example below. Still, under suitable additional
hypotheses equality holds (the case of finite groups being dealt with in (4.6)):

To this end, assume that S is factorial; for example, we may have S = S[V ].
Recall that any element of L can be written as f

g ∈ L where f, g ∈ S such that

g 6= 0, which may be assumed to be coprime. Now assuming that 0 6= f
g ∈ L

G,

from f
g = ( fg )z = fz

gz , for z ∈ G, we infer that f ·gz = fz ·g. Since gcd(f, g) = S∗

from this we get f | fz, and since gcd(fz, gz) = gcd(f, g)z = S∗ we also have
fz | f , thus f ∼ fz; and similarly g ∼ gz. Hence f and g are semi-invariants
or relative invariants, but not necessarily invariants.
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Proposition. Let G have only the trivial one-dimensional K-representation;
in other words, the only group homomorphism G → K∗ is given by z 7→ 1, for
z ∈ G. Then we have Q(SG) = LG.

Proof. Letting 0 6= f
g ∈ LG, where 0 6= f, g ∈ S are coprime, we infer that

〈f〉K ≤ S and 〈g〉K ≤ S are one-dimensional K[G]-submodules, hence are
trivial K[G]-modules. Thus we have f, g ∈ SG, that is f and g are actually
invariants, hence f

g ∈ Q(SG). ]

(4.2) Example: The multiplicative group. Let K be a field, let G :=
GL1(K) = K∗ act on K2 by z 7→ diag[z, z], and let S := K[X,Y ] and L :=
S(V ) = K(X,Y ); note that K ⊆ L is pure transcendental of transcendence
degree trdegK(L) = 2. We determine SG ⊆ S and LG ⊆ L, where G acts by
X · z = zX and Y · z = zY , distinguishing the cases whether or not K is finite:

a) Let K be infinite. Then G contains an element of arbitrarily large finite order,
or of infinite order: Assume that all elements of G have order bounded by some
k ∈ N, then all of them are roots of

∏k
i=1(Xi − 1) ∈ K[X], a contradiction.

We determine SG =
⊕

d≥0 S
G
d : Let 0 6= f ∈ SGd , for some d ∈ N0. Then

letting z ∈ G be an element of infinite order, or of finite order exceeding d, from
f = fz = zdf we infer that d = 0. This implies SG = K, thus Q(SG) = K.

We proceed to consider LG: Let 0 6= f
g ∈ L

G, where 0 6= f, g ∈ S are coprime.

Writing f =
∑
d≥0 fd as sum of its homogeneous components, and letting z ∈ G

be an element of infinite order, or of finite order exceeding deg(f), then from
f ∼ fz we get

∑
d≥0 cfd = cf = fz =

∑
d≥0 z

dfd ∈ S, for some 0 6= c ∈ K. By
comparing coefficients we observe that f is homogeneous, of degree d ∈ N0 say,
so that we have f =

∑d
i=0 aiX

iY d−i = Y d ·
∑d
i=0 ai(

X
Y )i ∈ L.

Similarly, g is homogeneous, of degree e ∈ N0 say, where from f
g = ( fg )z = fz

gz =

zd−e · fg ∈ L we infer that zd−e = 1. Thus letting z ∈ G be an element of infinite

order, or of finite order exceeding max{d, e}, this entails d = e. Hence we have

g =
∑d
i=0 biX

iY d−i = Y d ·
∑d
i=0 bi(

X
Y )i ∈ L, showing that f

g =
∑d
i=0 ai(

X
Y )i∑d

i=0 bi(
X
Y )i
∈

K(XY ) ⊆ L. Conversely, since (XY )z = Xz

Y z = zX
zY = X

Y ∈ L, for all z ∈ G, we

have X
Y ∈ L

G. Thus we have LG = K(XY ); note that K ⊆ LG and LG ⊆ L are
pure transcendental such that trdegK(LG) = 1 and trdegLG(L) = 1.

b) Let K = Fq be finite. Then, by Artin’s Theorem, G is cyclic, that is
G ∼= Cq−1, so that by (3.3) we have SG = K[Xq−1, Xq−2Y, . . . ,XY q−2, Y q−1].

We show that Q(SG) = K(Xq−1, XY ): From Xq−1

Xq−2Y = X
Y we get K(Xq−1, XY ) ⊆

Q(SG); conversely, from Xq−1 · ( YX )i = Xq−1−iY i, for i ∈ {0, . . . , q− 1}, we get

Q(SG) ⊆ K(Xq−1, XY ), entailing equality.

We now consider LG (without using the fact shown in (4.6) below that it already
follows from G being finite that we necessarily have LG = Q(SG)):
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Let 0 6= f
g ∈ LG, where 0 6= f, g ∈ S are coprime. Letting ζq−1 ∈ G be a

primitive (q − 1)-st root of unity, and writing f =
∑
d≥0 fd, from f ∼ fζq−1

we get
∑
d≥0 cfd =

∑
d≥0 ζ

d
q−1fd ∈ S, for some 0 6= c ∈ K. By comparing

coefficients we observe that f =
∑
d≥0 fd(q−1)+j , for some j ∈ {0, . . . , q − 2},

thus we have f =
∑
d≥0(Y d(q−1)+j ·

∑d(q−1)+j
i=0 ad,i(

X
Y )i) ∈ L.

Similarly, we have g =
∑
d≥0 gd(q−1)+i, for some i ∈ {0, . . . , q − 2}, where from

f
g = ζj−iq−1 ·

f
g ∈ L we infer that zj−i = 1, entailing that i = j. Hence we have

g =
∑
d≥0(Y d(q−1)+j ·

∑d(q−1)+j
i=0 bd,i(

X
Y )i) ∈ L, so that canceling Y j yields

f

g
=

∑
d≥0(Y d(q−1) ·

∑d(q−1)+j
i=0 ad,i(

X
Y )i)∑

d≥0(Y d(q−1) ·
∑d(q−1)+j
i=0 bd,i(

X
Y )i)

∈ K(Y q−1,
X

Y
) = K(Xq−1,

X

Y
).

Since Q(SG) ⊆ LG anyway, we conclude that LG = Q(SG) = K(Xq−1, XY ). ]

Note that K ⊆ LG is pure transcendental such that trdegK(LG) = 2, while
LG ⊆ L is finite. Indeed, since G acts faithfully on L, the field extension LG ⊆ L
is finite Galois with respect to G, hence having degree [L : LG] = q−1. Actually,
L is the splitting field of the irreducible polynomial T q−1 − (Xq−1) ∈ (LG)[T ],

which splits as
∏q−2
i=0 (T − ζiq−1X) ∈ L[T ], where {X, ζq−1X, . . . , ζ

q−2
q−1X} ⊆ L is

the G-orbit of X.

(4.3) Noetherian algebras. Let R be a commutative ring. An R-module M
is called Noetherian, if any ascending chain M0 ≤M1 ≤ · · · ≤Mi ≤ · · · ≤M
of R-submodules stabilizes, that is there is k ∈ N0 such that Mi = Mk for
all i ≥ k. The ring R is called Noetherian, if the regular R-module R is
Noetherian; recall that the R-submodules of R coincide with its ideals. For
example, any field K is Noetherian.

We collect a few basic properties; see Exercise (19.4): Letting N ≤ M be R-
modules, if M is Noetherian then so are N and M/N , and if conversely both N
and M/N are Noetherian then so is M . In particular, any finite direct sum of
Noetherian R-modules is Noetherian again. Moreover, M is Noetherian if and
only if each submodule of M is finitely generated; and if R is Noetherian, then
M is Noetherian if and only if M is a finitely generated R-module.

Example. Let K be a field, let R := K[X1, X2, . . .] :=
⋃
n∈N0

K[X1, . . . , Xn]
be the polynomial algebra in countably infinitely many indeterminates, and for
n ∈ N0 let In := (X1, . . . , Xn) ER. Then {0} = I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · ·ER is
an infinite strictly ascending chain of ideals, hence R is not Noetherian; indeed
the ideal

⋃
n∈N0

In = (X1, X2, . . .) E R is not finitely generated, although the
regular R-module R = (1) is finitely generated.

(4.4) Theorem: Hilbert’s Basis Theorem [Hilbert, 1890]. Let R be a
Noetherian ring. Then the polynomial R-algebra R[X] is Noetherian as well.



18

Proof. We show that any ideal I E R[X] is finitely generated. To this end
let Jd := {lc(f) ∈ R; 0 6= f ∈ I, deg(f) = d}

.
∪ {0}, for d ∈ N0. Hence we

have Jd E R and Jd ⊆ Jd+1. Since R is Noetherian, let k ∈ N0 such that
Jd = Jk for d ≥ k. Moreover, since all ideals of R are finitely generated, for
d ∈ {0, . . . , k} let Jd = (rd,1, . . . , rd,nd) E R, where nd ∈ N0. Letting fd,i ∈ I
such that deg(fd,i) = d and lc(fd,i) = rd,i ∈ R, for i ∈ {1, . . . , nd}, we show that
I = (fd,i; d ∈ {0, . . . , k}, i ∈ {1, . . . , nd}) ER[X]:

Let J denote the right hand side, and let 0 6= f ∈ I such that deg(f) = d ≥ 0.
We proceed by induction on d ∈ N0: If d = 0 then f ∈ J0 ⊆ J , hence let
d ≥ 1. If d > k then let c := k, if d ≤ k let c := d. Since Jd = Jc, there are
c1, . . . , cnc ∈ R such that f ′ := f−

∑nc
i=1 ciX

d−kfk,i ∈ I has degree deg(f ′) < d,
or we have f ′ = 0. By induction we have f ′ ∈ J , hence f ∈ J as well. ]

In particular, if K is a field, then by induction on n ∈ N0 the finitely gener-
ated polynomial K-algebra K[X1, . . . , Xn] is Noetherian. Moreover, since any
finitely generated commutative K-algebra R is a quotient of a finitely generated
polynomial K-algebra, we conclude that R is Noetherian.

(4.5) Integral extensions. a) Let R be a commutative ring, and let R ⊆ S
be an extension of commutative rings, that is S is a commutative ring and we
have 1R = 1S . Hence S is an R-algebra, with structure homomorphism being
the identity on R. In particular, if K is a field and R is a K-algebra, then S is
a K-algebra as well.

An element s ∈ S is called integral over R, if there is 0 6= f ∈ R[X] monic,
such that f(s) = 0; note that evaluating f at s refers to the universal property
of R[X]. The extension R ⊆ S is called integral, and S is called integral over
R, if each element of S is integral over R.

Proposition. An element s ∈ S is integral over R, if and only if there is an
R-subalgebra of S containing s which is finitely generated as an R-module.

Proof. For s ∈ S let R ⊆ R[s] :=
∑
i≥0 s

iR ⊆ S be the smallest R-subalgebra

of S containing s. Let now s be integral, and let f = Xd +
∑d−1
i=0 fiX

i ∈ R[X],

where d ≥ 1, such that f(s) = 0. Then we have sd = −
∑d−1
i=0 fis

i, so that

R[s] =
∑d−1
i=0 s

iR is generated by {1, s, s2 . . . sd−1} as an R-module.

Let conversely R ⊆ R[s] ⊆ T ⊆ S, where T is an R-subalgebra which is finitely
generated by {t1, . . . , tk} as an R-module, where k ∈ N. Then for j ∈ {1, . . . , k}
we have tjs =

∑k
i=1 tirij , for some rij ∈ R. Let A := XEk − [rij ]ij ∈ R[X]k×k

be the characteristic matrix associated with [rij ]ij ∈ Rk×k, thus det(A) ∈ R[X]
is monic of degree k ≥ 1. We show that det(A)(s) = det(A(s)) = 0, entailing
that s is integral over R:

We have [t1, . . . , tk] · A(s) = [0, . . . , 0] ∈ T k. Now Cramer’s Rule says that
replacing the i-th row of A(s) by [t1, . . . , tk] · A(s) yields a matrix having de-
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terminant ti · det(A(s)), and since the matrix thus obtained has a zero row we
conclude that ti · det(A(s)) = 0, for all i ∈ {1, . . . , k}. Thus since 1 ∈ T is an
R-linear combination of {t1, . . . , tk}, we infer that det(A(s)) = 0. ]

Hence R ⊆ S is integral if and only if it is generated as an R-algebra by integral

elements. Moreover, the subset R ⊆ R
S

:= {s ∈ S; s is integral over R} ⊆ S is
a subring of S, being called the integral closure or normalization of R in S;

in particular, if R
S

= R then R is called integrally closed or normal in S.

Moreover, if R is a K-algebra then R
S

is a K-algebra as well.

If R is a domain and R is integrally closed in its own field of fractions, then R
is called integrally closed or normal; in particular, if R is factorial then it is
integrally closed; see Exercise (19.11).

b) The extension R ⊆ S is called finite, if S is a finitely generated integral
R-algebra, or equivalently if S is a finitely generated R-module.

Proposition. Let R ⊆ S be an integral extension, such that S is a finitely
generated K-algebra. Then R is a finitely generated K-algebra as well, and the
extension R ⊆ S is finite.

Proof. Let {f1, . . . , fk} ⊆ S be a K-algebra generating set, for some k ∈ N0.
(Note that for S = S[V ] we might choose k = dimK(V ).) Moreover, let Fi ∈
R[X] be monic such that Fi(fi) = 0 ∈ S, for i ∈ {1, . . . , k}, and let T ⊆ R ⊆ S
be the K-algebra generated by the coefficients of the polynomials F1, . . . , Fk.

Since all f1, . . . , fk ∈ S are integral over T , we conclude that S is integral over T .
Since S is a finitely generated K-algebra, it is a finitely generated T -algebra as
well, saying that the extension T ⊆ S is finite, that is S is a finitely generated T -
module. Thus from T ⊆ R ⊆ S we infer that S is a finitely generated R-module,
that is the extension R ⊆ S is finite as well.

Since T is a finitely generated K-algebra, it is Noetherian. Since S is a finitely
generated T -module, it is a Noetherian T -module. Thus the T -submodule R ≤
S is a Noetherian T -module as well. Hence R is a finitely generated T -module.
Since T is a finitely generated K-algebra, R is a finitely generated K-algebra. ]

(4.6) Theorem: Noether’s Finiteness Theorem [Noether, 1916, 1926].
Let K be a field, let G be a finite group, and let S be a finitely generated graded
G-algebra with faithful G-action.
a) Let S be a domain and let L := Q(S). Then the field extension LG ⊆ L is
finite Galois with respect to G, and we have Q(SG) = LG.
b) The invariant algebra SG is finitely generated, and the extension SG ⊆ S is
finite. Moreover, if S is an integrally closed domain, then so is SG.

Proof. a) Let 0 6= f
g ∈ L

G, where 0 6= f, g ∈ S. Letting g′ :=
∏

16=z∈G g
z ∈ S,

the norm of g is given as NG(g) := gg′ ∈ SG \ {0}, and fg′

gg′ = f
g ∈ L

G implies
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fg′ ∈ LG ∩ S = SG, entailing f
g = fg′

gg′ ∈ Q(SG), showing that Q(SG) = LG.

Moreover, G acts faithfully on L, hence the field extension LG ⊆ L is finite
Galois with respect to G.

b) For f ∈ S let Ff :=
∏
g∈G(X − fg) ∈ S[X]; hence Ff is monic such that

Ff (f) = 0. The G-action by K-algebra automorphisms on S can be extended
(coefficientwise) to a G-action by K-algebra automorphisms on S[X]. Hence we
have (Ff )h =

∏
g∈G(X−fg)h =

∏
g∈G(X−fgh) =

∏
g∈G(X−fg) = Ff , for all

h ∈ G, thus Ff ∈ SG[X], being monic. This shows that the extension SG ⊆ S is
integral. Hence, since S is a finitely generated K-algebra, it follows from (4.5)
that the extension SG ⊆ S is finite and that SG is finitely generated.

Finally, assume that S is an integrally closed domain, and let f ∈ Q(SG) =
LG ⊆ L = Q(S) be integral over SG. Then f is a root of a monic polynomial in
SG[X] ⊆ S[X], thus f is integral over S as well. This implies that f ∈ S∩LG =
SG, showing that SG is integrally closed. ]

(4.7) Remark: Finite generation. Letting K be a field, note first that there
are K-subalgebras of polynomial algebras which are not finitely generated in-
deed: For example, since XY i 6∈ K[X,XY, . . . ,XY i−1] ⊆ K[X,Y ], for i ∈ N,
the K-subalgebra of K[X,Y ] generated by {XY i; i ∈ N0} is not finitely gener-
ated. Actually, this leads to a counterexample to finite generation of invariant
algebras in a more general framework, namely for a finitely generated non-
reduced algebra, that is an algebra having nilpotent elements, which works for
certain finite groups; see Exercise (18.20). Moreover, the above proof of finite
generation of invariant algebras is purely non-constructive, and does not give
the slightest clue how to actually find a finite generating set.

If G is a group, and V is a K[G]-module, the invariant algebra S[V ]G is not
finitely generated in general: There is a famous counterexample for an infinite
group G in dimension 32 over C by Nagata [1959]; see Exercise (18.20). This
is closely related to Hilbert’s 14-th problem: If L ⊆ S(V ) is a subfield, is
L ∩ S[V ] a finitely generated K-algebra? Since S(V )G ∩ S[V ] = S[V ]G for any
group G, this counterexample answers this question to the negative as well.

But invariant algebras are finitely generated whenever G is linearly reductive;
see (5.3). Actually, Hilbert worked on linearly reductive groups, although this
notion has only been coined later, whereas Noether developed the machinery
for finite groups. For example, SLn(C) is linearly reductive, for n ∈ N, so that
in particular the invariant algebras Rn,d := S[Vn,d]SLn(C) for the natural action
of SLn(C) on the C-vector space Vn,d := C[Cn]d = S[(Cn)∗]d of n-ary d-forms,
for d ∈ N, are finitely generated C-algebras.

For binary d-forms, that is n = 2, finite generation of the invariant algebra
R2,d := S[V2,d]

SL2(C) has already been shown combinatorially by Gordan
[1868]. Still, there is only poor knowledge as far as explicit finite generat-
ing sets are concerned: We have seen in (1.3) that for quadratic forms the
invariant algebra R2,2 is a univariate polynomial algebra in the discriminant,
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which is homogeneous of degree 2. For cubic forms the invariant algebra R2,3

also is a univariate polynomial algebra in the discriminant, which is homoge-
neous of degree 4. For quaternary forms the invariant algebra R2,4 is a bivariate
polynomial algebra, generated by homogeneous elements of degree [2, 3], while
the discriminant has degree 6. Moreover, explicit generators for the invariant
algebra R2,d are only known for d ∈ {5, 6, 8}, in which cases R2,d no longer is a
polynomial algebra [Shioda, 1967].

5 Degree bounds

(5.1) Trace maps. Let G be a group, let H ≤ G be a subgroup of index
k := [G : H] ∈ N, and let T := {t1, . . . , tk} ⊆ G be a (right) transversal of H
in G, that is a set of representatives of the right cosets H\G of H in G.

Let K be a field, and let S be a graded G-algebra. Then we have an extension
SG ⊆ SH of graded K-algebras. The relative trace map or relative trans-
fer map TrGH with respect to H is defined as the K-linear map TrGH : SH →
SG : f 7→

∑k
i=1 f · ti. If G is finite, then TrG := TrG{1} : S → SG : f 7→

∑
g∈G f ·g

is called the trace map or transfer map.

The relative trace map is well-defined indeed, and independent of the choice of
the transversal: For f ∈ SH we have TrGH(f) · g =

∑k
i=1(f · tig) =

∑k
i=1(f ·

hiti·π(g)) =
∑k
i=1(f · ti·π(g)) =

∑k
i=1(f · ti) = TrGH(f), for g ∈ G, where π : G→

SH\G ∼= Sk is the permutation action of G on H\G, so that tig = hiti·π(g)

for some hi ∈ H; thus we have TrGH(f) ∈ SG indeed, where TrGH(SH) ⊆ SG.
Moreover, if T ′ := {t′1, . . . , t′k} ⊆ G also is a transversal of H in G, then we
may assume that t′i = hiti, for i ∈ {1, . . . , k} and some hi ∈ H, so that we get∑k
i=1(f · t′i) =

∑k
i=1(f · hiti) =

∑k
i=1(f · ti) = TrGH(f), showing that TrGH is

independent of the choice of T .

For any subgroup H ≤ U ≤ G we have transitivity of trace maps, that is
TrUH · TrGU = TrGH : Letting T ′ ⊆ U be a transversal for H in U , and T ′′ ⊆ G be
a transversal for U in G, we get the transversal T := {t′t′′ ∈ G; t′ ∈ T , t′′ ∈ T ′′}
for H in G. Then for f ∈ SH we have TrGU (TrUH(f)) =

∑
t′′∈T ′′(TrUH(f) · t′′) =∑

t′′∈T ′′(
∑
t′∈T ′(f · t′t′′)) =

∑
t∈T (f · t) = TrGH(f).

Moreover, TrGH : SH → SG is a homomorphism of graded SG-modules: For
d ∈ N0 we have TrGH(SHd ) ≤ SGd , and for f ∈ SG and g ∈ SH we have TrGH(gf) =∑k
i=1(gf)ti =

∑k
i=1 g

tif ti =
∑k
i=1 g

tif = (
∑k
i=1 g

ti) · f = TrGH(g) · f . Thus

SGH := TrGH(SH) E SG is a homogeneous ideal, where SGH ⊆ SGU ⊆ SGG = SG.

Proposition. Assume that S is a domain, and that G acts faithfully on S.
Then we have SGH 6= {0}.

Proof. We may assume that H = {1}. Since G acts faithfully on L := Q(S),
the elements of G induce pairwise different field automorphisms of L, which
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by Dedekind’s Independence Theorem are L-linearly independent in the
L-vector space EndK(L). Hence the latter are K-linearly independent in the
K-vector space EndK(S); in particular we have

∑
g∈G g 6= 0 ∈ EndK(S). ]

If G does not act faithfully on S, then we might have SGH = {0}: For example,
let K be such that char(K) = 2, let G := 〈z〉 ∼= C2 act trivially on V := K,
and let H := {1}; then we have S[V ]G = S[V ] = K[X], and from TrG(Xd) =
Xd +Xd · z = 2Xd = 0, for d ∈ N0, we infer that S[V ]G{1} = {0}.

(5.2) Reynolds operators. Let K be a field, let G be group, let H ≤ G be
a subgroup of finite index [G : H] ∈ N, and let S be a commutative graded G-
algebra. We address the question when we have SGH = SG: To this end, letting
T ⊆ G be a transversal for H in G, for f ∈ SG we observe that TrGH(f) =
TrGH(1 · f) = TrGH(1) · f = (

∑
t∈T (1 · t)) · f = ([G : H] · 1) · f = [G : H] · f , saying

that TrGH |SG = [G : H] · idSG .

a) If char(K) - [G : H], then the relative Reynolds operator with respect
to H is defined as RGH := 1

[G : H] · TrGH : SH → SG. Hence RGH restricts to

the identity map on SG, so that SGH = SG. Moreover, RGH(f − RGH(f)) = 0,
for f ∈ SH , implies that SH = SGH ⊕ ker(RGH) = SG ⊕ ker(TrGH) as graded
SG-modules, where RGH is the associated projection.

In particular, if G is finite such that char(K) - |G|, called the non-modular
case, we have the Reynolds operator RG := RG{1} = 1

|G| ·TrG : S → SG; hence

S = SG ⊕ ker(RG) as graded SG-modules, RG being the associated projection.

b) If char(K) | [G : H], then TrGH restricts to the zero map on SG, so that
(TrGH)2 is the zero map. Hence we have SGH ⊆ SG ⊆ ker(TrGH) ⊆ SH as graded
SG-modules, and since SG0 = S0 = K we have SGH ⊆ SG+ CSG and 1 ∈ ker(TrGH).
Apart from that, only little is known about the trace ideal SGH C SG, even for
the symmetric algebra S[V ] where V is a K[G]-module.

Moreover, if S is finitely generated, and G is finite acting faithfully on S, then
by Noether’s Finiteness Theorem SG is finitely generated, hence Noetherian,
and S is a finitely generated SG-module, so that ker(TrGH) < SH are finitely
generated SG-modules as well; thus Carlson’s Lemma, see Exercise (19.18),
implies that ker(TrGH) is not a direct summand of SH as graded SG-modules.

In particular, if G is finite such that char(K) | |G|, being called the modular
case, inasmuch TrG restricts to the zero map on S[V ]G, we get a fundamentally
different behavior of the trace map TrG compared to the non-modular case.
Again, only little is known about SG{1}, even for the symmetric algebra S[V ]

where V is a K[G]-module. (Most notably there is Feshbach’s Theorem
[1981] on S[V ]G{1} C S[V ]G, whose details we are not able to give here.)

(5.3) Hilbert ideals. a) Let K be a field, let G be group, and let S be a
commutative graded G-algebra. The Hilbert ideal IG = IG(S) E S is the
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ideal generated by the homogeneous invariants of positive degree, that is IG :=
SG+ · S = (S+ ∩ SG) · S E S; hence IG ⊆ S+ is a proper homogeneous ideal.

The quotient K-algebra SG := S/IG is called the associated coinvariant alge-
bra. Then SG is a graded G-algebra again, as well as an (SG/SG+)-module, that
is a K-vector space. If additionally S is a finitely generated K-algebra, then by
Noether’s Finiteness Theorem S is a finitely generated SG-module, so that SG
is a finitely generated K-vector space, and thus is a K[G]-module.

If char(K) - |G|, then applying the Reynolds operator RG, which projects
S onto SG, and SG onto (SG)G, we get (SG)G = RG(SG) = RG(S/IG) =
(RG(S) + IG)/IG = (R+ IG)/IG = (R0 + IG)/IG = (SG)0

∼= K.

b) Any set of homogeneous invariants of positive degree generating SG as a
K-algebra also generates IGES as an ideal. Actually, in the non-modular case
the converse of this statement holds as well; note that if S is a finitely generated
K-algebra, and thus Noetherian, then IG indeed is generated by finitely many
homogeneous invariants of positive degree:

Theorem: Hilbert’s Finiteness Theorem [Hilbert, 1890]. Let G be finite
such that char(K) - |G|, and let F ⊆ SG+ be a set of homogeneous invariants
such that IG = (F) E S. Then F generates SG as a K-algebra.

Proof. Let R ⊆ SG be the K-algebra generated by F , and let h ∈ SG be
homogeneous such that deg(h) = d ∈ N0. We proceed by induction on d ≥ 0;
the case d = 0 being trivial, let d ≥ 1. Since h ∈ IG, there are fi ∈ F and
gi ∈ Sd−deg(fi) such that h =

∑k
i=1 figi ∈ S, for some k ∈ N0. Thus we have

h = RG(h) =
∑k
i=1 fi · RG(gi). Since RG(gi) ∈ SG such that deg(RG(gi)) =

d− deg(fi) < d, by induction we have RG(gi) ∈ R, so that h ∈ R as well. ]

Note that in the above proof only the property of RG : S → SG being a projec-
tion of graded SG-modules is used. In view of this, linear algebraic groups G
over an algebraically closed field K, which for any algebraic G-module V possess
a generalized Reynolds operator RG : K[V ] = S[V ∗] → S[V ∗]G = K[V ]G

sharing the above properties, are called linearly reductive, see (4.7); thus for
these groups the assertion of Hilbert’s Finiteness Theorem holds.

(5.4) Noether’s degree bound. We proceed to prove a degree bound for
generating sets of invariant K-algebras of finite groups G, which holds in the
non-modular case. Actually, Noether stated the result in the case char(K) = 0
only, but the proof is valid whenever (|G|)! is invertible in K, thus if char(K) >
|G| as well. We present a recent general proof, thus closing the Noether gap.

To this end, let K be a field, let G be a finite group such that char(K) - |G|,
and let S be a commutative graded G-algebra.
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Proposition: Benson’s Lemma [2000]. Let I ES be a G-stable ideal, that
is I · g ⊆ I for all g ∈ G. Then we have I |G| ⊆ IG · S E S.

Proof. Let {fg ∈ I; g ∈ G}. Since
∏
g∈G(gh − 1) = 0 ∈ K[G], for h ∈ G, we

get
∏
g∈G(fg · gh − fg) = fg ·

∏
g∈G(gh − 1) = 0 ∈ S. Expanding the product,

using the principle of inclusion-exclusion, and summing over h ∈ G yields∑
M⊆G

(
(−1)|G\M | · TrG(

∏
g∈M

(fg · g)) ·
∏

g∈G\M

fg

)
= 0.

If M 6= ∅, then we have TrG(
∏
g∈M (fg · g)) ∈ I ∩ SG = IG, thus the associated

summand belongs to IG ·SES. Hence for M = ∅ we obtain TrG(1) ·
∏
g∈G fg ∈

IG · S as well, which since TrG(1) = |G| entails
∏
g∈G fg ∈ IG · S. ]

Theorem: Noether’s degree bound [Noether, 1916; Fleischmann,
2000; Fogarty, 2001]. Let S be generated by homogeneous elements of de-
gree at most b ∈ N. Then the Hilbert ideal IGES is generated by homogeneous
invariants of positive degree at most b · |G|.

Proof. Letting I := (f ∈ SGd ; d ∈ {1, . . . , b · |G|}) E S, we have I ⊆ IG, and we
have to show equality:

Firstly, Benson’s Lemma, applied to the G-stable ideal S+ E S, yields S
|G|
+ ⊆

IG E S. Since any homogeneous generating set of S contains a generating set
of the ideal S+, we conclude that S+ is generated by homogeneous elements of

degree at most b, so that S
|G|
+ is generated by homogeneous elements of degree

at most b · |G|. Hence we infer that actually S
|G|
+ ⊆ I ⊆ IG.

Now let f ∈ (IG)d, for some d ≥ 1. If d ≤ b · |G| then we may assume that f
is of the form f = gh ∈ S, where g ∈ SG and h ∈ S are homogeneous; thus we
have deg(g) ≤ d, so that f ∈ I. Hence let d ≥ b · |G|.

Then we may assume hat f is of the form f =
∏k
i=1 fi ∈ S, for some k ∈ N,

where the fi ∈ Sdi are homogeneous of degree di ∈ {1, . . . , b}, so that we have

b · |G| ≤ d =
∑k
i=1 di ≤ kb; hence k ≥ |G|, thus f ∈ S|G|+ ⊆ I. (Note that the

last part only uses the fact that f ∈ Sd, so that we actually have Sd ⊆ IG.) ]

We derive a couple of consequences:

a) If N EG is normal, then we have the extension SG = (SN )G/N ⊆ SN ⊆ S,
giving rise to the following relative version of Noether’s degree bound:

Let G be arbitrary, let N E G be of finite index such that char(K) - [G : N ],
and let SN be generated by homogeneous N -invariants of degree at most b ∈
N. Then the relative Hilbert ideal ING := SG+ · SN E SN is generated by
homogeneousG-invariants of positive degree at most b·[G : N ]. Consequently, by
Hilbert’s Finiteness Theorem applied to G/N , we conclude that SG is generated
by homogeneous invariants of degree at most b · [G : N ].
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b) Let G be finite such that char(K) - |G| again, and let S be generated
by the finite set F consisting of homogeneous elements of degree at most b.
(If S = S[V ], where V is a K[G]-module, then we may of course take the
indeterminates of degree b = 1 as homogeneous generators.) Then there is
a finite generating set of SG consisting of homogeneous invariants of degree at

most b·|G|, thus being contained in the K-subspace
⊕b·|G|

d=1 SGd =
⊕b·|G|

d=1 RG(Sd).

Hence we may algorithmically find a minimal homogeneous generating set of SG

by evaluating RG successively at all monomials in the generators F of degree
{1, 2, . . . , b · |G|}, and for a given degree pick suitable indecomposable homoge-
neous invariants, that is which are not contained in the K-subalgebra generated
by the homogeneous invariants of strictly smaller degree.

(5.5) Remark: Degree bounds. Let K be a field, let G be a finite group,
and let V be a faithful K[G]-module such that n := dimK(V ) ∈ N0.

a) In the non-modular case char(K) - |G|, Noether’s bound β(S[V ]G) ≤ |G| is
best possible inasmuch no improvement is possible in terms of the group order
alone: For the case of cyclic groups we have equality, see (3.3) and (3.4).

But if char(K) = 0 and G is not cyclic, then Schmid’s Theorem [1991] says
that β(S[V ]G) ≤ |G| − 1, and the Domokos–Hegedűs Theorem [2000] says
that β(S[V ]G) ≤ 3

4 · |G| if |G| is even, and β(S[V ]G) ≤ 5
8 · |G| if |G| is odd. In

practice, Noether’s bound and its improvements typically are not at all sharp.

In view of Schmid’s Theorem, the relative version of Noether’s degree bound
can be improved to β(S[V ]G) ≤ β(S[V ]N ) · ([G : N ]− 1) whenever G/N is non-
cyclic; note that this in particular holds for if G is a non-cyclic nilpotent group,
with respect to the last but one step of its upper central series.

Still, the relative version of Noether’s degree bound needs the assumption of
N EG being normal. Actually, as was already mentioned, Noether’s original
proof works more generally for subgroups H ≤ G, but needs the assumption
that ([G : H])! is invertible in K. Alone, the new elegant technique does not
seem to yield this result as well. Hence there still is a baby Noether gap left.

b) In the modular case char(K) | |G|, Noether’s bound does not hold in general,
as we will see by an example in (5.7). Similarly, neither Benson’s Lemma nor
Hilbert’s Finiteness Theorem hold in general, as the example in (5.7) also shows.
The counterexample mentioned actually is smallest with respect to group order,
while one smallest with respect to dimension is given by the regular represen-
tation of C4 in characteristic 2 [Bertin, 1965]; see (9.8).

Even worse, there cannot be a global bound for β(S[V ]G) in terms of |G| alone,
as is indicated by the example given in (5.7). Indeed, for any field K, it follows
from Richman’s lower degree bound [1996] that if there is a common bound
for β(S[V ]G), for all K[G]-modules V , then we necessarily have char(K) - |G|.
Moreover, Bryant, Kemper [2005] have shown, that if G is a linear algebraic
group having such a common bound for all algebraic G-modules V , then G is
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necessarily finite (such that char(K) - |G|).
The best, but astronomical general degree bound in terms of |G| and n is
given by Hermann’s Theorem [1926], saying that β(S[V ]G) ≤ n(|G| − 1) +

|G|n·2n−1+1 · n2n−1+1. Much better results are known under additional assump-
tions, where supported by substantial computational evidence, the even stronger
subsequent conjecture should actually be true:

i) Göbel’s degree bound [1995], see (9.6), says that whenever V is a permu-
tation K[G]-module, then we have β(S[V ]G) ≤ max{n,

(
n
2

)
}.

ii) Broer’s degree bound [1997], see (16.4), says that whenever K is infinite
and S[V ]G is Cohen-Macaulay, then β(S[V ]G) ≤ max{|G|, n(|G| − 1)}.
iii) Symonds’s degree bound [2009] says that whenever K is finite, then
again we have β(S[V ]G) ≤ max{|G|, n(|G| − 1)}.

Conjecture [Kemper].
a) The Broer-Symonds bound β(S[V ]G) ≤ max{|G|, n(|G| − 1)} always holds.
b) If S[V ]G is Cohen-Macaulay, then Noether’s bound β(S[V ]G) ≤ |G| holds.
c) For the Hilbert ideal, Noether’s bound β(IG(S[V ])) ≤ |G| always holds.

We remark that Fleischmann [2000] has shown that Noether’s bound holds
for Hilbert ideals, if V is a trivial-source K[G]-module, see (6.5), thus in
particular if V is a permutation K[G]-module.

(5.6) Example: The cyclic group of order 2. Let K be a field, and let

G := 〈z〉 ∼= C2 act on K2 by z 7→
[
0 1
1 0

]
. By (3.4), letting S := K[X,Y ] we

have SG = K[X + Y,XY ], being a polynomial algebra.

Hence the Hilbert ideal is given as IG := (X + Y,XY ) = (X + Y,X2) E S.
Thus for the coinvariant algebra we have SG = S/IG ∼= K[X]/(X2) as K-
algebras, the isomorphism being inherited from the K-algebra homomorphism
S → K[X] : X 7→ X,Y 7→ −X; note that dimK(SG) = 2, and actually SG ∼=
K[G] as K[G]-modules, the isomorphism being inherited from the K-algebra
homomorphism K[X]→ K[G] : X 7→ z + 1.

In particular, Hilbert’s Finiteness Theorem holds in any characteristic. From
S2

+ = (X2, XY, Y 2) E S we conclude that S2
+ ⊆ IG ⊆ S+, that is Benson’s

Lemma holds for I = S+ in any characteristic. Similarly, Noether’s degree
bound holds in any characteristic, and is sharp.

i) If char(K) 6= 2 then we recover the generating set given above as follows: For
d = 1 we have TrG(X) = TrG(Y ) = X + Y , so that SG1 = 〈X + Y 〉K . For d = 2
we have (X+Y )2 ∈ SG2 ; moreover, we have TrG(X2) = TrG(Y 2) = X2 +Y 2 and
RG(XY ) = XY , where from (X +Y )2 = (X2 +Y 2) + 2XY we infer that SG2 =
〈X2 + Y 2, XY 〉K = 〈(X + Y )2, XY 〉K . Hence we have SG = K[X + Y,XY ].

ii) If char(K) = 2, we determine the trace ideal SG{1} ⊆ SG+ : For d ∈ N0 odd
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and even, respectively, we have

SGd =

{
〈Xd + Y d, Xd−1Y +XY d−1, . . . , X

d+1
2 Y

d−1
2 +X

d−1
2 Y

d+1
2 〉K ,

〈Xd + Y d, Xd−1Y +XY d−1, . . . , X
d
2 Y

d
2 〉K .

For i ∈ {0, . . . , bd2c} we get TrG(XiY d−i) = XiY d−i +Xd−iY i, so that we infer

TrG(Sd) = SGd if d is odd, while SGd /TrG(Sd) is one-dimensional if d is even;

note that TrG((XY )
d
2 ) = 2(XY )

d
2 = 0. Thus from

∑
d≥0 T

2d = 1
1−T 2 ∈ Q(T )

we get HSG{1}
= HSG − 1

1−T 2 = 1
(1−T )(1−T 2) −

1
1−T 2 = T

(1−T )(1−T 2) ∈ Q(T ).

Since X + Y = TrG(X) we have (X + Y ) · SG ⊆ SG{1}, where the principal ideal

(X + Y ) E SG is the free SG-module generated by X + Y , so that H(X+Y ) =

T ·HSG = T
(1−T )(1−T 2) = HSG{1}

∈ Q(T ). Thus we infer SG{1} = (X + Y ) E SG.

Finally, letting R := K[XY ] ⊆ SG be the polynomial algebra generated by
XY , we have R ∩ SG{1} = {0} and HR = 1

1−T 2 ∈ Q(T ), from which we infer

that SG = R ⊕ SG{1} as graded K-vector spaces, so that SG/SG{1}
∼= R is the

univariate polynomial algebra generated in degree 2.

(5.7) Example: Vector invariants. a) Let K be a field, let G := 〈z〉 ∼=

C2, and let V := K2 be the permutation K[G]-module given by z 7→
[
0 1
1 0

]
.

We consider the faithful K[G]-module V ⊕n := V ⊕ · · · ⊕ V for n ≥ 2; hence
dimK(V ⊕n) = 2n. (We have considered the case n = 1 in (5.6).)

Letting S := K[X ], where X := {X1, Y1, . . . , Xn, Yn}, the group G acts on S
by Xi · z = Yi and Yi · z = Xi, for i ∈ {1, . . . , n}. Hence G permutes the
K-basis Xd ⊆ Sd consisting of the monomials of degree d ∈ N0, so that writing
Xd =

∐kd
j=1 Xd,j as a disjoint union of G-orbits, where kd = |Xd/G| ∈ N, we

conclude that {
∑
f∈Xd,j f ∈ Sd; j ∈ {1, . . . , kd}} ⊆ S

G
d is a K-basis; see (9.1).

Since z exchanges Xi and Yi, for all i, we conclude that a monomial f is fixed
by z, if and only if Xi and Yi occur with the same multiplicity in f , for all i,
that is f is a monomial in the invariants qi := XiYi ∈ SG2 . Otherwise, f belongs
to an orbit of length 2, yielding an invariant f · (1 + z) = q · (g · (1 + z)), where
q is a monomial in the qi, and g is a monomial which is not divisible by any qi.

Hence, for d ∈ N odd, we conclude that z has no fixed points in Xd, so that we
have dimK(SGd ) = 1

2 · dimK(Sd) = 1
2 ·
(
d+2n−1

2n−1

)
. For d ∈ N0 even, we conclude

that z has
( d

2 +n−1
n−1

)
fixed points in Xd, hence there are 1

2 · (
(
d+2n−1

2n−1

)
−
( d

2 +n−1
n−1

)
)

orbits of length 2, so that dimK(SGd ) = 1
2 · (

(
d+2n−1

2n−1

)
+
( d

2 +n−1
n−1

)
). From this,

since
∑
d≥0

(
d+2n−1

2n−1

)
·T d = 1

(1−T )2n and
∑
d≥0

(
d+n−1
n−1

)
·T 2d = 1

(1−T 2)n , we infer

that HSG = 1
2 · (

1
(1−T )2n + 1

(1−T 2)n ) = 1
2 ·

(1+T )n+(1−T )n

(1−T )n(1−T 2)n ∈ Q(T ).

More specifically: For d = 1 we have dimK(SG1 ) = 1
2 · dimK(S1) = n, where

letting li := Xi +Yi be the orbit sums, we get SG1 = 〈l1, . . . , ln〉K . For d = 3 we
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have dimK(SG3 ) = 1
2 · dimK(S3) = 1

3n(n+ 1)(2n+ 1).

For d = 2 we have dimK(S2) = n(2n + 1) and dimK(SG2 ) = n(n + 1). Since z
fixes precisely the monomials qi of degree 2, and letting pi := X2

i +Y 2
i , for all i,

as well as rij := XiXj + YiYj and sij := XiYj +XjYi, for 1 ≤ i < j ≤ n, be the
orbit sums for the orbits of length 2, we get SG2 = 〈qi, pi, rij , sij ; for all i, j〉K .
Moreover, for the products of two of the li we get l2i = pi+2qi and lilj = rij+sij ,
so that the latter products span a K-subspace of SG2 of dimension 1

2n(n + 1),
and we get SG2 = 〈l2i , lilj , qi, rij ; for all i, j〉K .

b) From now on let char(K) = 2.

i) We determine the Hilbert ideal IG: From li = Xi + Yi ∈ IG and qi = XiYi ∈
IG, letting I := (li, qi; i ∈ {1, . . . , n}) E S, we have I ⊆ IG. If a monomial
f ∈ Xd, where d ≥ 2, is fixed by z, then we have qi | f for some i, thus
f ∈ I. Otherwise, f belongs to an orbit of length 2, where f · z is obtained
from f by exchanging Xi and Yi, for all i, so that since Xi ≡ Yi (mod I) we get
f · (1 + z) ∈ I. Thus we conclude that IG = I; in particular saying that IG is
generated by homogeneous invariants of positive degree at most 2.

Letting Ri := K[li, qi], which is polynomial with degrees [1, 2], we have R :=
K[li, qi; i ∈ {1, . . . , n}] =

⊗n
i=1Ri, so that HR = 1

(1−T )n(1−T 2)n ∈ Q(T ). Hence

we have R ⊂ SG, so that Hilbert’s Finiteness Theorem does not hold for any
n ≥ 2. Moreover, from X1X2 ∈ S2

+, but X1X2 6∈ IG we conclude that Benson’s
Lemma does not hold either for any n ≥ 2.

Using the homomorphism of K-algebras S → K[X1, . . . , Xn] given by Xi 7→
Xi and Yi 7→ Xi, for the coinvariant algebra we get SG = S/IG = S/I ∼=
K[X1, . . . , Xn]/(X2

1 , . . . , X
2
n) ∼=

⊗n
i=1K[Xi]/(X

2
i ) ∼= (K[X]/(X2))⊗n as graded

K-algebras; in particular we get dimK(SG) = 2n, where actually we have SG ∼=
K[G]⊗n ∼= K[Cn2 ] as K[G]-modules.

ii) We determine the trace ideal SG{1}ES
G: An orbit sum of a monomial belongs

to SG{1} if and only if it corresponds to an orbit of length 2. Thus for d odd

we have (SG{1})d = SGd , while for d even we get dimK(SGd ) − dimK((SG{1})d) =( d
2 +n−1
n−1

)
, so that dimK((SG{1})d) = 1

2 ·(
(
d+2n−1

2n−1

)
−
( d

2 +n−1
n−1

)
); in particular, for d =

2 we have (SG{1})2 = 〈pi, rij , sij ; for all i, j〉K = 〈l2i , lilj , rij ; for all i, j〉K . From

this we get HSG/SG{1}
= 1

(1−T 2)n ∈ Q(T ), and thus HSG{1}
= HSG −HSG/SG{1}

=

1
2 · (

1
(1−T )2n −

1
(1−T 2)n ) = 1

2 ·
(1+T )n−(1−T )n

(1−T )n(1−T 2)n ∈ Q(T ).

Letting J := (l1, . . . , ln) E SG, we have J ⊆ SG{1}. If a monomial f belongs

to an orbit of length 2, then the associated orbit sum is given as f · (1 + z) =
q · (g · (1 + z)), where q is a monomial in the qi, and g is a monomial which is
not divisible by any qi. Since qi ∈ SG and Xi ≡ Yi (mod J), for all i, from this
we conclude that f · (1 + z) ∈ J , so that we infer SG{1} = J .

Letting P := K[q1, . . . , qn] ⊆ SG we observe that P ∩ SG{1} = P ∩ J = {0},
and since HP = 1

(1−T 2)n ∈ Q(T ) we conclude that SG = P ⊕ SG{1} as graded
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K-vector spaces, so that SG/SG{1}
∼= P is polynomial with degrees [2, . . . , 2].

iii) We finally turn to algebra generation of SG: Letting Si := K[Xi, Yi], we
have S =

⊗n
i=1 Si. Let H := H1× · · · ×Hn = 〈z1〉 × · · · × 〈zn〉 ∼= Cn2 , where Hi

acts on Si by Xi · zi = Yi and Yi · zi = Xi, and fixes the other tensor factors.
Then we have SHii = K[li, qi] = Ri, so that SH =

⊗n
i=1 S

Hi
i =

⊗n
i=1Ri = R,

where HR = 1
(1−T )n(1−T 2)n ∈ Q(T ). Moreover, we have GEH, so that H acts

on SG, and we have R = SH = (SG)G/H ⊆ SG,

Let first n := 2. Then from r12 = X1X2 + Y1Y2 ∈ SG and r12 · zi = X1Y2 +
Y1X2 = s12, saying that r12 is not fixed by H, we conclude that R∩r12R = {0},
which entails R⊕r12R ⊆ SG. From HR⊕r12R = (1+T 2) ·HR = 1+T 2

(1−T )2(1−T 2)2 =

HSG we infer that SG = R ⊕ r12R as graded R-modules; in particular we have
SG = K[l1, l2, q1, q2, r12], so that Noether’s degree bound holds in this case.

Now let n := 3. Then we have dimK(SG1 ) = 3, and dimK(SG2 ) = 12, where the
decomposable elements form a K-subspace of dimension 6, and dimK(SG3 ) = 28.
There are

(
5
2

)
= 10 products of three of the li ∈ SG1 , and 3 · 6 = 18 products of

one of the li ∈ SG1 and one of the qi, rij ∈ SG2 , giving rise to 28 elements of SG3 .
But the identity l1r23 + l2r13 + l3r12 = l1l2l3 + 2 · (X1X2X3 + Y1Y2Y3) ∈ SG3
entails that these are K-linearly dependent, so that SG3 is not generated by them
as a K-vector space. Hence there is an indecomposable homogeneous invariant
of degree 3, so that Noether’s degree bound does not hold in this case. (Recall
that if char(K) 6= 2 then Noether’s degree bound holds, implying that SG3 is
generated as a K-vector space by the above products, in turn saying that the
latter are K-linearly independent in this case indeed.)

For n ≥ 3, Campbell, Hughes, Shank, Wehlau [1997–2010] have shown
that TrG(

∏n
i=1Xi) ∈ SGn belongs to a minimal generating set of SG, in other

words is an indecomposable invariant. (Unfortunately, we are not able to present
a proof here.) Indeed, for n = 3 it turns out that {li, qi, rij ; for all i 6= j} ∪
{TrG(X1X2X3)} is a minimal homogeneous generating set of SG, see (17.6).

Note that this implies that Noether’s bound does not hold in any of these cases,
that there cannot be a bound in terms of |G| alone, and that the Broer-Symonds
bound in Kemper’s conjecture actually is sharp.

6 Hilbert series

(6.1) Theorem: [Hilbert; Serre]. Let K be a field, let R := K[f1, . . . , fk]
be a finitely generated commutative graded K-algebra, where k ∈ N0 and the
fi ∈ Rdi are homogeneous, and let M be a finitely generated graded R-module.
Then we have HM = f∏k

i=1(1−Tdi ) ∈ Q(T ), where f ∈ Z[T±1].

Proof. We proceed by induction on k ∈ N0. If k = 0, then we have R = K,
and thus M is a finitely generated K-vector space, entailing HM ∈ Z[T±1].
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Hence let k ≥ 1, and for the R-module endomorphism of M given by multiplica-
tion with fk let M ′ :=

⊕
d∈Z kerMd

(·fk) and M ′′ :=
⊕

d∈Z cokMd
(·fk). Then M ′

and M ′′, being an R-submodule and a quotient R-module of M , respectively,
where R is Noetherian, are finitely finitely generated graded R-modules. More-
over, since M ′fk = {0} and M ′′fk = {0}, these are actually finitely generated

K[f1, . . . , fk−1]-modules, so that by induction we have HM ′ = f ′∏k−1
i=1 (1−Tdi )

∈

Q(T ) and HM ′′ = f ′′∏k−1
i=1 (1−Tdi )

∈ Q(T ), where f ′, f ′′ ∈ Z[T±1].

We have an exact sequence of graded R-modules {0} →M ′ →M
·fk−→M [dk]→

M ′′[dk] → {0}, that is for any d ∈ Z we have an exact sequence of K-vector

spaces {0} → M ′d → Md
·fk−→ Md+dk → M ′′d+dk

→ {0}, entailing T−dkHM ′′ −
T−dkHM +HM −HM ′ = 0, thus HM = HM′′−T

dkHM′
1−Tdk ∈ Q(T ) is as asserted. ]

(6.2) Complexity and degree. a) For z ∈ C let νz : C(T )∗ → Z be the
discrete valuation of C(T ) at T = z, that is writing 0 6= f ∈ C(T ) as f = (z−
T )a · gh , where a ∈ Z and 0 6= g, h ∈ C[T ] are coprime such that (z−T ) - gh, we

let νz(f) = a; we let νz(0) = ∞. Then Rz := {f ∈ C(T )∗; νz(f) ≥ 0}
.
∪ {0} =

{f ∈ C(T ); f(z) well-defined} ⊆ C(T ) is the associated valuation ring, being
a local ring with maximal ideal ℘z := {f ∈ C(T )∗; νz(f) ≥ 1}

.
∪ {0} = {f ∈

C(T ); f(z) ∈ C∗}ERz. For f ∈ C(T )∗ we have f̃z := f
(z−T )νz(f)

∈ Rz \℘z = R∗z,
hence we let δz(f) := f̃z(z) ∈ C∗; we let δz(0) := 0.

Alternatively, from an analytical viewpoint, if a Laurent series 0 6= f ∈ C((T ))
converges in the pointed open unit disc {z ∈ C; 0 < |z| < 1} ⊆ C, say, then it
gives rise to a meromorphic function f(z) on its closure, so that for |z| ≤ 1 we
let νz(f) ∈ Z denote the order of z as a root of f ; again we may let νz(0) :=∞.

Moreover, f̃z := f
(z−T )νz(f)

is holomorphic at z, having neither a root nor a pole

at z, so that we let δz(f) := f̃z(z) = limx→z f̃z(x) ∈ C∗; again we let δz(0) := 0.

b) Now let K be a field, let R be a finitely generated commutative graded
K-algebra, and let M 6= {0} be a finitely generated graded R-module with
Hilbert series HM ∈ Q(T ) ⊆ Q((T )). Then the complexity of M is defined as
γ(M) := −ν1(HM ) ∈ Z, that is the order of the pole of HM at T − 1; and the
degree of M is defined as δ(M) := δ1(HM ) = ((1−T )γ(M) ·HM )(1) ∈ Q∗. For
completeness we let γ({0}) := −∞ and δ({0}) := 0; note that H{0} = 0. The
complexity γ(R) := γ(RR) ∈ Z and the degree δ(R) := δ(RR) ∈ Q∗ of R are
defined as the order and the degree of the regular R-module, respectively.

We show that we actually have γ(M) ≥ 0, where γ(M) = 0 if and only if
M is a finitely generated K-vector space: Assume that γ(M) ≤ 0, that is
ν1(HM ) ≥ 0. Writing HM =

∑
d∈Z dimK(Md) · T d ∈ Q((T )) we get HM (1) =∑

d∈Z dimK(Md) ∈ N, showing that ν1(HM ) = 0 and that M is a finitely
generated K-vector space. Conversely, if M is a finitely generated K-vector
space, then HM (1) =

∑
d∈Z dimK(Md) ∈ N says that ν1(HM ) = 0. ]
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Note that, viewing Hilbert series as Laurent series, which due to the Hilbert-
Serre Theorem converge on the pointed open unit disc, the above definitions
coincide with those in the analytical sense. (The terminology of complexity is
reminiscent of a similar notion used in representation theory, which is based on
the idea of considering the growth behavior of the coefficients of formal power
series; for Hilbert series this viewpoint is elucidated in Exercise (19.20).)

Example. For the polynomial algebra S := K[X1, . . . , Xn] having degrees
[d1, . . . , dn], where n ∈ N0, we have HS =

∏n
i=1

1
1−Tdi ∈ Q(T ), hence we

get γ(S) = −
∑n
i=1 ν1( 1

1−Tdi ) =
∑n
i=1 ν1(1 − T di) = n, and subsequently

δ(S) = δ1(
∏n
i=1

1−T
1−Tdi ) = (

∏n
i=1

1∑di−1

j=0 T j
)(1) =

∏n
i=1

1
di

; in particular for the

standard grading we get δ(S) = 1.

(6.3) Degree theorem. Let K be a field, let R be a finitely generated commu-
tative graded K-algebra, and let M be a finitely generated graded R-module.

Proposition. If M ′ ≤ M is a graded R-submodule, or if M ′ is a graded quo-
tient R-module of M , then we have γ(M ′) ≤ γ(M). Moreover, if γ(M ′) = γ(M)
then we have 0 ≤ δ(M ′) ≤ δ(M).

Proof. We may assume that M ′ 6= {0}; hence we have M 6= {0} as well.
For d ∈ Z we have dimK(M ′d) ≤ dimK(Md), hence for 0 < z < 1 we have
0 ≤ HM ′(z) ≤ HM (z) ∈ R, entailing 0 ≤ limz→1−((1 − z)γ(M) · HM ′(z)) ≤
limz→1−((1−z)γ(M) ·HM (z)) = δ(M) ∈ Q∗, where the latter limit indeed exists.
Hence (1− z)γ(M) ·HM ′(z) does not have a pole at z = 1, thus γ(M ′) ≤ γ(M).

If γ(M ′) = γ(M) then from the above inequalities we get 0 ≤ δ(M ′) =
limz→1−((1− z)γ(M ′) ·HM ′(z)) = limz→1−((1− z)γ(M) ·HM ′(z)) ≤ δ(M). ]

Theorem. Let R ⊆ S be finite, where S is a commutative graded K-algebra.
a) Then we have γ(R) = γ(S).
b) If S is a domain, then we have δ(S) = [Q(S) : Q(R)] · δ(R).

Proof. a) Since S is a finitely generated R-module, where R is a finitely gen-
erated K-algebra, S is a finitely generated K-algebra; thus γ(S) = γ(SS)
is well-defined. Moreover, γ(SR) is well-defined as well, and thus we have
γ(S) = γ(SR). Since R ≤ S as R-modules, we infer that γ(R) ≤ γ(S). (Thus
this holds more generally, as soon as S is finitely generated as a K-algebra.)

The R-module S is a quotient of a free graded R-module F ∼=
⊕k

i=1 fiR, for
some k ∈ N, where the fi are homogeneous such that di := deg(fi) ∈ N0.

Hence we have γ(S) ≤ γ(F ). Moreover, from HF = (
∑k
i=1 T

di) · HR, since

(
∑k
i=1 T

di)(1) = k 6= 0, we conclude that γ(F ) = γ(R), entailing γ(S) ≤ γ(R).
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b) We consider the field extension L := Q(R) ⊆ Q(S) =: M . The mini-
mum polynomial f ∈ L[X] of any s ∈ S being irreducible, the L-subalgebra
L[X]/(f) ∼= L[s] ⊆ M already is a field. Hence we conclude that M = S · L.
Thus we infer that any homogeneous generating set of S as an R-module gen-
erates M as an L-vector space. Hence there is an L-basis {f1, . . . , fm} ⊆ M
consisting of homogeneous elements of S, where m := [M : L] ∈ N. The fi be-
ing L-linearly independent, we have U :=

⊕m
i=1 fiR ⊆ S as graded R-modules.

Letting di := deg(fi) ∈ N, we get HU = (
∑m
i=1 T

di) · HR ∈ Q(T ), where∑m
i=1 T

di(1) = m, so that γ(U) = γ(R) and δ(U) = m · δ(R).

Since any element of a homogeneous generating set of S as an R-module is an L-
linear combination of the fi, choosing a common denominator shows that there is
0 6= f ∈ S homogeneous such that S ⊆ U · 1f =

⊕m
i=1

fi
f ·R as graded R-modules.

Letting d := deg(f) ∈ N0, we get HU · 1f
= T−d·HU = (

∑m
i=1 T

di−d)·HR ∈ Q(T ),

where (
∑m
i=1 T

di−d)(1) = m, so that γ(U · 1
f ) = γ(R) and δ(U · 1

f ) = m · δ(R).

Hence in conclusion from U ≤ S ≤ U · 1
f we get γ(R) = γ(U) ≤ γ(S) ≤

γ(U · 1
f ) = γ(R), which entails γ(R) = γ(S) again, and m · δ(R) = δ(U) ≤

δ(S) ≤ δ(U · 1
f ) = m · δ(R), so that δ(S) = m · δ(R). ]

Example. If G is a finite group, and V is a K[G]-module such that n :=
dimK(V ) ∈ N0, then the extension S[V ]G ⊆ S[V ] is finite, where S[V ] ∼=
K[X1, . . . , Xn] as graded K-algebras, with respect to the standard grading on
the latter, so that γ(S[V ]G) = γ(S[V ]) = γ(K[X1, . . . , Xn]) = n.

Moreover, if G acts faithfully on V , then S(V )G = Q(S[V ]G) ⊆ Q(S[V ]) = S(V )
is Galois with respect to G, thus [S(V ) : S(V )G] = |G|, so that δ(S[V ]) = 1
implies that δ(S[V ]G) = 1

|G| .

(6.4) Molien’s formula. a) Let G be a finite group, let K be a field such that
char(K) - |G|, and let V be a K[G]-module such that n := dimK(V ) ∈ N0.

Theorem: [Molien, 1897]. For the graded character of g ∈ G we have

χS[V ](g) :=
∑
d≥0

χS[V ]d(g) · T d =
1

det(En − ρV (g) · T )
∈ K(T ),

where χS[V ]d(g) ∈ K denotes the trace of the K-linear map ρS[V ]d(g).

Proof. We may assume that K contains a primitive |G|-th root of unity ζ|G|.

Then the polynomial T |G| − 1 ∈ K[T ] splits into pairwise non-associate linear

factors as T |G|− 1 =
∏|G|−1
i=0 (T − ζi|G|) ∈ K[T ]. Since we have g|G| = 1 ∈ G, the

matrix ρS[V ]d(g) of the action of g with respect to any K-basis of S[V ]d is a root

of T |G| − 1. Hence ρS[V ]d(g) is diagonalizable, for any d ∈ N0. In particular,
we may assume the isomorphism S[V ] → K[X1, . . . , Xn] chosen such that the
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indeterminates correspond to an eigenvector K-basis with respect to ρV (g).
Letting λ1, . . . , λn ∈ K be the associated eigenvalues, we have det(En − ρV (g) ·
T ) =

∏n
i=1(1− λiT ) ∈ K[T ] \ {0}. We relate this to the graded character:

Considering the K-basis of S[V ]d consisting of the monomials of degree d,
which are eigenvectors of ρS[V ]d(g), we observe that the eigenvalues of ρS[V ]d(g)
are given as

∏n
i=1 λ

ai
i ∈ K, where a1, . . . , an ∈ N0 such that

∑n
i=1 ai = d,

thus χS[V ](g) =
∑
d≥0 χS[V ]d(g) ·T d =

∑
d≥0(

∑
a1,...,an∈N0,

∑n
i=1 ai=d

(
∏n
i=1 λ

ai
i ) ·

T d) =
∑
d≥0

∑
a1,...,an∈N0,

∑n
i=1 ai=d

∏n
i=1(λiT )ai =

∑
a1,...,an∈N0

∏n
i=1(λiT )ai =∏n

i=1(
∑
j≥0(λiT )j) =

∏n
i=1

1
1−λiT ∈ K(T ). ]

Corollary. If char(K) = 0 then HS[V ]G = 1
|G| ·

∑
g∈G

1
det(En−ρV (g)·T ) ∈ Q(T ).

Proof. The Reynolds operator RG = 1
|G| ·

∑
g∈G g ∈ K[G] induces a K-linear

projection from S[V ]d onto S[V ]Gd , for d ≥ 0. Hence since char(K) = 0 we
have dimK(S[V ]Gd ) = χS[V ]d(RG) = 1

|G| ·
∑
g∈G χS[V ]d(g). Using this we obtain

we get HS[V ]G =
∑
d≥0 dimK(S[V ]Gd ) · T d = 1

|G| ·
∑
d≥0

∑
g∈G χS[V ]d(g) · T d =

1
|G| ·

∑
g∈G χS[V ](g) = 1

|G| ·
∑
g∈G

1
det(En−ρV (g)·T ) ∈ K(T ) ∩Q((T )) = Q(T ). ]

b) We describe a method to evaluate Molien’s formula, in terms of ordinary
characters of G, letting still char(K) = 0:

For g ∈ G we have det(En−ρV (g) ·T ) = det(−T · (ρV (g)−T−1 ·En)) = (−T )n ·
χρV (g)(T

−1) ∈ K(T ), where χρV (g) ∈ K[T ] is the characteristic polynomial of
ρV (g); note that Tn ·χρV (g)(T

−1) is the reversed polynomial of χρV (g). Hence

we have χS[V ](g) = 1
(−T )n·χρV (g)(T−1) ∈ K(T ).

Assuming that K is large enough, and letting λ1, . . . , λn ∈ K be the eigenvalues
of ρV (g), we have χρV (g) =

∏n
i=1(T −λi), so that using the elementary symmet-

ric polynomials en,i ∈ K[X ], where X := {X1, . . . , Xn}, and deg(en,i) = i for
i ∈ {0, . . . , n}, we obtain χρV (g) =

∑n
i=0(−1)ien,i(λ1, . . . , λn)Tn−i; see (9.3).

By the Newton identities, see Exercise (18.36), the en,i, for i ∈ {1, . . . , n}, can
be determined recursively from the power sums pn,k :=

∑n
i=1X

k
i ∈ K[X ], for

k ∈ {1, . . . , n}. Thus χρV (g) can be computed from pn,k(λ1, . . . , λn) ∈ K, for

k ∈ {1, . . . , n}. Since ρV (gk) has eigenvalues λk1 , . . . , λ
k
n ∈ K, we conclude that

pn,k(λ1, . . . , λn) =
∑n
i=1 λ

k
i = χV (gk) ∈ K equals the trace of the K-linear map

ρV (gk), where χV denotes the character of G afforded by V .

Recalling that any character of G is constant on each conjugacy class of G,
we conclude that Molien’s formula can be evaluated once the character χV is
known, together with the power maps pk : Cl(G) → Cl(G) : gG 7→ (gk)G on the
set Cl(G) of conjugacy classes of G, for k ∈ {1, . . . , n}.

(6.5) Lifting modules. Molien’s formula, interpreted appropriately, remains
valid in the following more general situation, where we use freely some facts
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from modular representation theory of finite groups:

a) Let G be a finite group, and let F be a finite field such that p := char(F ) 6= 0.
We may assume that F is a splitting field of F [G], and that if moreover p - |G|
then any p-modular representation of G is equivalent to a representation over F .
Let Q ⊆ K ⊆ Q ⊆ C be an algebraic number field, having a discrete valuation
ring R ⊆ K with maximal ideal ℘ER such that R/℘ ∼= F , and let : R → R/℘
be the natural epimorphism. We may assume that K is a splitting field of K[G]
as well, in which case (K,R, F ) is called a splitting p-modular system.

Let V be a trivial-source or p-permutation F [G]-module such that n :=
dimF (V ) ∈ N0, that is V is a direct summand of a permutation F [G]-module.
In particular, this holds true if V is projective, that is a direct summand of
a free F [G]-module, and even more specifically if p - |G| in which case any
F [G]-module is projective. Then V has a unique lift to an R-free trivial-source

R[G]-module V̂ , that is V̂ := V ⊗RF ∼= V as F [G]-modules; let V̂K := V̂ ⊗RK,

which is a semisimple K[G]-module. Then we have dimK(V̂K) = rkR(V̂ ) = n.

Note that for the trivial F [G]-module we have F̂ ∼= R, the trivial R[G]-module.

We now generalize the definitions in (2.1), (2.3), and (3.2) as follows: For d ∈ N
let V̂ ⊗d be the d-fold tensor power of V̂ over R, which is an R-free trivial-

source R[G]-module, such that V̂ ⊗d = (V̂ )⊗d = V ⊗d; let V̂ ⊗0 := R be the
trivial R[G]-module. Using the action of Sd by permuting the tensor factors,

we get the R[G]-submodule V̂ ⊗d,− ≤ V̂ ⊗d, and the symmetric power Sd(V̂ ) :=

V̂ ⊗d/V̂ ⊗d,−, giving rise to the symmetric algebra S[V̂ ] :=
⊕

d≥0 S[V̂ ]d, which
is a commutative graded R-algebra.

By the right exactness of tensor products, for d ∈ N0 we have (S[V̂ ]d)K ∼=
(V̂ ⊗d)K/(V̂

⊗d,−)K ∼= S[V̂K ]d as K[G]-modules, and S[V̂ ]d ∼= V̂ ⊗d/V̂ ⊗d,− ∼=
S[V̂ ]d ∼= S[V ]d as F [G]-modules. Moreover, since dimK(S[V̂K ]d) =

(
n+d−1

d

)
=

dimF (S[V ]d), we conclude that V̂ ⊗d,− ≤ V̂ ⊗d is R-pure, hence S[V̂ ]d is R-free

such that dimF (S[V ]d) = rkR(S[V̂ ]d) = dimK(S[V̂K ]d).

Since S[V̂ ] =
⊕

d≥0 S[V̂ ]d as R[G]-modules, we conclude that G acts on S[V̂ ]

by automorphisms of graded R-algebras, so that S[V̂ ] becomes a graded G-

algebra. This gives rise to the invariant algebra S[V̂ ]G :=
⊕

d≥0 FixS[V̂ ]d
(G) ⊆

S[V̂ ], being a graded R-algebra again, so that S[V̂ ] becomes a graded S[V̂ ]G-

module. Moreover, S[V̂ ]Gd = FixS[V̂ ]d
(G) ≤ S[V̂ ]d is R-torsion free, hence is

R-free such that rkR(S[V̂ ]Gd ) ≤ rkR(S[V̂ ]). In particular, the Hilbert series

HS[V̂ ]G :=
∑
d≥0 rkR(S[V̂ ]Gd ) · T d ∈ Q((T )) is well-defined.

b) We show that HS[V ]G = HS[V̂ ]G = HS[V̂K ]G ∈ Q(T ):

Let W be a permutation F [G]-module such that W = V ⊕U as F [G]-modules,

and let Ŵ be the permutation R[G]-module lifting W . Hence we have Ŵ =

V̂ ⊕Û as R[G]-modules, and ŴK = V̂K⊕ÛK as K[G]-modules. Then S[W ]d is a
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permutation F [G]-module, for d ∈ N0, where G acts by permuting monomials.

Since S[W ]d =
⊕d

i=0(S[V ]i ⊗F S[U ]d−i) as F [G]-modules, we conclude that

S[V ]d is a trivial-source F [G]-module, where S[Ŵ ]d =
⊕d

i=0(S[V̂ ]i⊗R S[Û ]d−i)

as R[G]-modules entails that S[V̂ ]d is the trivial-source lift of S[V ]d.

Hence by liftability of homomorphisms between trivial-source modules we
get dimF (S[V ]Gd ) = dimF (HomF [G](F, S[V ]d)) = rkR(HomR[G](R, S[V̂ ]d)) =

rkR(S[V̂ ]Gd ), which equals dimK(HomK[G](K,S[V̂K ]d)) = dimK(S[V̂K ]Gd ). ]

c) In the non-modular case p - |G| we may alternatively argue as follows:

Since |G| ∈ R \ ℘ = R∗, there is a Reynolds operator RG := 1
|G| ·

∑
g∈G g ∈

R[G], which induces a projection of graded S[V̂ ]G-modules S[V̂ ] → S[V̂ ]G.

Interpreting RG as Reynolds operator in K[G] and in F [G], we get (S[V̂ ]Gd )K ∼=
S[V̂K ]Gd as K[G]-modules, and S[V̂ ]Gd

∼= (S[V̂ ]d)
G ∼= S[V ]Gd as F [G]-modules,

thus dimK(S[V̂K ]Gd ) = rkR(S[V̂ ]Gd ) = dimF (S[V ]Gd ), for d ∈ N0.

To evaluate Molien’s formula we may assume that K contains a primitive |G|-th
root of unity ζ|G|. Then we have ζ|G| ∈ R \ ℘, and thus ζ |G| ∈ F is a primitive
|G|-th root of unity as well. Thus the map : R → F induces an isomorphism
〈ζ|G|〉 → 〈ζ |G|〉 between the cyclic groups of |G|-th roots of unity in K and F ,
respectively; the inverse of the latter map is called the associated Brauer lift.

For g ∈ G we have det(En − ρV̂K (g) · T ) =
∏n
i=1(1 − λiT ) ∈ K(T ), where

λ1, . . . , λn ∈ K are the eigenvalues of ρV̂K (g), being |G|-th roots of unity. Since
F contains a primitive |G|-th root of unity, we may assume that the F -basis of
V is chosen (depending on g) such that g acts diagonally, so that by uniqueness

of lifts we may assume that g acts diagonally on V̂ and thus on V̂K as well.
Hence to determine the eigenvalues of ρV̂K (g) in K, it suffices to determine the
eigenvalues of ρV (g) in F , and subsequently applying the Brauer lift to them.

(6.6) Example: Dihedral groups. Let K be a field such that char(K) - k,
for some k ∈ N, containing a primitive k-th root of unity ζk, let G = 〈z, s〉 ∼= D2k

be the dihedral group of order 2k, where zk = s2 = 1 and zs = z−1, acting on

V := K2 by z 7→ diag[ζk, ζ
−1
k ] and s 7→

[
0 1
1 0

]
, and let S := K[X,Y ]; note that

V is a simple projective K[G]-module (in particular if char(K) = 2 - k).

i) Hence in order to determine HSG ∈ Q(T ) we may assume that char(K) = 0,
and even that K ⊆ C. Then the given representation is equivalent to the com-
plexification of the faithful orthogonal real representation of G coming from the
embedding of the regular k-gon into the Euclidean plane, centered at the origin;
in this sense the elements of G can be divided into rotations and reflections.

We consider the normal subgroup H := 〈z〉 ∼= Ck of rotations first: In order
to apply Molien’s formula, we observe that det(E2 − diag[ζk, ζ

−1
k ]i · T ) = (1 −

ζikT )(1 − ζ−ik T ) ∈ K[T ], for i ∈ {0, . . . , k − 1}. From this we get HSH = 1
k ·∑k−1

i=0
1

(1−ζikT )(1−ζ−ik T )
= 1

k ·
∑k−1
i=0

1
1−(ζik+ζ−ik )T+T 2

= 1
k ·
∑k−1
i=0

1
1−2 cos( i·2πk )T+T 2 .
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Unfortunately, number theoretical sums of this type are notoriously hard to

evaluate, but fortunately by (3.3) we have HSH = 1+Tk

(1−T 2)(1−Tk)
. This actually

shows the identity 1
k ·
∑k−1
i=0

1
1−(ζik+ζ−ik )T+T 2

= 1+Tk

(1−T 2)(1−Tk)
∈ Q(T ).

Now we consider G = H
.
∪ Hs, where the coset Hs consists of reflections: From

(zis)2 = 1 and det(ρV (zis)) = −1, we infer that ρV (zis) has eigenvalues ±1
indeed, so that we get det(E2−ρV (zis) ·T ) = det(diag[1−T, 1+T ]) = (1−T 2),
for i ∈ {0, . . . , k− 1}. Thus by Molien’s formula we obtain HSG = 1

2k · (
k

1−T 2 +∑k=1
i=0

1
(1−ζikT )(1−ζ−ik T )

) = 1
2 · (

1
1−T 2 + 1+Tk

(1−T 2)(1−Tk)
) = 1

(1−T 2)(1−Tk)
∈ Q(T ).

ii) Letting K be arbitrary again such that char(K) - k, in view of HSG =
1

(1−T 2)(1−Tk)
we show that SG is polynomial, with degrees [2, k]: Recalling that

SG = (SH)G/H = (SH)〈s〉 = TrGH(SH) = Tr〈s〉(SH), from (3.3) we get f :=

XY = 1
2 · Tr〈s〉(XY ) ∈ SG and g := Xk + Y k = Tr〈s〉(Xk) = Tr〈s〉(Y k) ∈ SG.

Moreover, the Jacobian matrix of {f, g} is given as

J(f, g) =

[
∂f
∂X

∂f
∂Y

∂g
∂X

∂g
∂Y

]
=

[
Y X

kXk−1 kY k−1

]
∈ S2×2,

so that det(J(f, g)) = k · (Y k − Xk) 6= 0 ∈ S. Hence by the Jacobian cri-
terion, which will be proven in (7.1) below, we conclude that {f, g} is alge-
braically independent indeed. Thus the Hilbert series of K[f, g] ⊆ SG is given
as HK[f,g] = 1

(1−T 2)(1−Tk)
= HSG , so that we infer SG = K[f, g]. ]

7 Polynomial algebras

(7.1) Jacobian criterion. We first collect a few general observations con-
cerning polynomial algebras: Let K be a field, let S := K[X ] be the poly-
nomial algebra in the indeterminates X := {X1, . . . , Xn}, where n ∈ N0,
and let {f1, . . . , fn} ⊆ S. The associated Jacobian matrix is defined as
J(f1, . . . , fn) = JX (f1, . . . , fn) := [ ∂fi∂Xj

]ij ∈ Sn×n, and det(J(f1, . . . , fn)) ∈ S
is called the associated Jacobian determinant.

Proposition: Jacobian criterion. a) If det(J(f1, . . . , fn)) 6= 0, then the set
{f1, . . . , fn} is algebraically independent.
b) If {f1, . . . , fn} is algebraically independent, where char(K) = 0, then we
have det(J(f1, . . . , fn)) 6= 0.

Proof. a) If char(K) 6= 0 we may assume additionally that K is perfect, which
holds anyway if K is finite, or otherwise by going over to an algebraic closure of
K. Now assume to the contrary that there is 0 6= h ∈ K[Y1, . . . , Yn] such that
h(f1, . . . , fn) = 0, where we assume h to be chosen of minimal degree.
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Then differentiation ∂
∂Xj

with respect to Xj , for j ∈ {1, . . . , n}, using the chain

rule yields
∑n
i=1

∂h
∂Yi

(f1, . . . , fn) · ∂fi∂Xj
= 0, that is we get the system of linear

equations [ ∂h∂Yi (f1, . . . , fn)]i · J(f1, . . . , fn) = 0 ∈ Q(S)n.

Assume that we have ∂h
∂Yi

= 0 ∈ K[X ], for all i ∈ {1, . . . , n}. Since deg(h) > 0
this implies char(K) = p 6= 0, and since K is perfect we have h = (h′)p for some
0 6= h′ ∈ K[X ]. Thus we have deg(h′) < deg(h), and since h(f1, . . . , fn) = 0 we
have h′(f1, . . . , fn) = 0 as well, contradicting the minimality of h.

Hence there is i ∈ {1, . . . , n} such that ∂h
∂Yi
6= 0. Since deg( ∂h∂Yi ) < deg(h),

we have ∂h
∂Yi

(f1, . . . , fn) 6= 0. Thus the above system of linear equations has a
non-trivial solution, hence we have det(J(f1, . . . , fn)) = 0, a contradiction.

b) Let {f1, . . . , fn} be algebraically independent. Since trdegK(Q(S)) = n, the
sets {f1, . . . , fn, Xk} are algebraically dependent, for all k ∈ {1, . . . , n}. Let 0 6=
hk ∈ K[Y1, . . . , Yn, Y0] be of minimal degree such that hk(f1, . . . , fn, Xk) = 0.
Differentiation ∂

∂Xj
with respect to Xj , where ∂Xk

∂Xj
= δkj , using the chain rule

yields [∂hk∂Yi
(f1, . . . , fn, Xk)]ki · J(f1, . . . , fn) = −diag[∂hk∂Y0

(f1, . . . , fn, Xk)]k.

Since {f1, . . . , fn} is algebraically independent, the indeterminate Y0 occurs in
hk, from which since char(K) = 0 we get ∂hk

∂Y0
6= 0. Since deg(∂hk∂Y0

) < deg(hk),

we have ∂hk
∂Y0

(f1, . . . , fn, Xk) 6= 0, so that det(diag[∂hk∂Y0
(f1, . . . , fn, Xk)]k) 6= 0 as

well, entailing that det(J(f1, . . . , fn)) 6= 0. ]

Note that the condition char(K) = 0 in (b) is necessary: If char(K) = p 6= 0,
then {Xp} ⊆ K[X] is algebraically independent, but we have det(J(Xp)) =
det([p ·Xp−1]) = 0 ∈ K[X].

(7.2) Theorem: [Chevalley, 1967]. Let K be a field, let n ∈ N0, let S :=
K[X1, . . . , Xn], and let R ⊆ S be a graded K-subalgebra, having a minimal
homogeneous generating set F := {f1, . . . , fk}, where k ∈ N0, and such that the
degrees di := deg(fi) ∈ N fulfill char(K) - di, for all i ∈ {1, . . . , n}. If S is a
finitely generated free graded R-module, that is S has a homogeneous R-basis,
then F is algebraically independent, that is R is polynomial.

Proof. Since S is a finitely generated R-module, the extension R ⊆ S is finite,
and hence R necessarily is a finitely generated K-algebra. Moreover, the as-
sumption on F is equivalent to F being a minimal generating set of the ideal
R+ ER, and likewise to F ⊆ R+/(R+)2 being a K-basis; since the latter prop-
erty is retained under field extensions we may assume that K is perfect.

Assume to the contrary that there is 0 6= g ∈ K[Y1, . . . , Yk] such that we have
g(F) = 0, where we may assume that g is homogeneous of degree d := degδ(g) ∈
N with respect to the degree vector δ := [d1, . . . , dk], and g is chosen with d
minimal. Let gi := ∂g

∂Yi
(F) ∈ Rd−di , for i ∈ {1, . . . , k}. Since K is perfect and

g is minimal, we infer that there is i such that gi 6= 0. (Recall that we have
already used this kind of argument in the proof of (7.1).) Up to reordering we
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may assume that (g1, . . . , gk) = (g1, . . . , gl)ER, where l ∈ {1, . . . , k} is minimal;

for t ∈ {l + 1, . . . , k} let gti ∈ Rdi−dt such that gt =
∑l
i=1 gtigi ∈ R.

Let S =
⊕r

s=1 hsR, where r ∈ N and the hs are homogeneous such that es :=
deg(hs) ∈ N0, and where we may assume that h1 := 1, thus e1 = 0 while
es ≥ 1 for s ≥ 2. Let R : S → h1R = R be the projection of graded R-
modules associated with the above direct sum decomposition; note that R may
be considered as the associated (generalized) Reynolds operator.

Let I := R+S = (F)ES be the (generalized) Hilbert ideal of the extension
R ⊆ S. We show that F ⊆ R+ is a minimal generating set of I (mimicking
part of the proof of Hilbert’s Finiteness Theorem): Let F ′ ⊆ F such that I =
(F ′)ES; then we have R+ = I ∩R = R(I) = R(

∑
f∈F ′ fS) =

∑
f∈F ′ fR(S) =∑

f∈F ′ fR = (F ′) ER, hence by minimality we get F ′ = F .

Let fij := ∂fi
∂Xj

∈ Sdi−1, for i ∈ {1, . . . , k} and j ∈ {1, . . . , n}, and let f ′ij :=

fij +
∑k
t=l+1 gtiftj ∈ Sdi−1, for i ∈ {1, . . . , l}. Hence there are f ′ijs ∈ Rdi−1−es

such that f ′ij =
∑r
s=1 f

′
ijshs ∈ Sdi−1. We show that f ′ijs ∈ R+, so that f ′ij ∈ I:

Differentiation yields ∂
∂Xj

(g(F)) = 0, so that by the chain rule we get 0 =∑k
i=1

∂g
∂Yi

(F) · ∂fi∂Xj
=
∑k
i=1 gifij =

∑l
i=1 gifij +

∑k
t=l+1(

∑l
i=1 gtigi)ftj , hence

0 =
∑l
i=1 gifij +

∑l
i=1(

∑k
t=l+1 gtiftj)gi =

∑l
i=1(fij +

∑k
t=l+1 gtiftj)gi, thus

0 =
∑l
i=1 f

′
ijgi =

∑l
i=1(

∑r
s=1 f

′
ijshs)gi =

∑r
s=1(

∑l
i=1 gif

′
ijs)hs. Since the hs

are R-linearly independent, we conclude that
∑l
i=1 gif

′
ijs = 0, for s ∈ {1, . . . , r}.

Since the f ′ijs ∈ R are homogeneous, by the minimality of l none of the latter
can possibly be a non-zero constant, so that they all belong to R+. ]

Since the fi ∈ R are homogeneous, the Euler identity says difi =
∑n
j=1 fijXj ∈

Sdi , so that
∑l
i=1 difi+

∑k
t=l+1(

∑l
i=1 gti)dtft =

∑l
i=1(difi+

∑k
t=l+1 gtidtft) =∑l

i=1(
∑n
j=1(fij +

∑k
t=l+1 gtiftj)Xj) =

∑l
i=1

∑n
j=1 f

′
ijXj =

∑n
j=1

∑l
i=1 f

′
ijXj .

Since f ′ij ∈ I = (F) E S there are sji ∈ S (not necessarily homogeneous) such

that
∑l
i=1 f

′
ij =

∑k
i=1 sjifi, thus

∑n
j=1(

∑l
i=1 f

′
ij)Xj =

∑n
j=1(

∑k
i=1 sjifi)Xj =∑k

i=1(
∑n
j=1 sjiXj)fi ∈ I E S.

Thus letting Ii := (F \ {fi}) E S, we conclude that S/Ii is a graded alge-
bra. Hence for i ∈ {1, . . . , l} we get difi ≡ (

∑n
j=1 sjiXj)fi (mod Ii), where

the left hand side belongs to (S/Ii)di , while the right hand side belongs to⊕
e>di

(S/Ii)e, from which we infer that difi ∈ Ii, which since di ∈ K∗ contra-
dicts the minimality of F as an ideal generating set of I. ]

Actually, Chevalley’s Theorem holds in general, without any assumption on the
degree of the generators [Serre, 1967]. (Unfortunately, we are not able to
present a proof here.)

Note that from R = K[f1, . . . , fk] being polynomial, and R ⊆ S being finite, we
conclude that k = γ(R) = γ(S) = n anyway. Then the converse of Chevalley’s
Theorem holds as well: If R = K[f1, . . . , fn] is a polynomial subalgebra of
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S = K[X1, . . . , Xn] such that R ⊆ S is finite, then S being Cohen-Macaulay,
see (15.4), implies that S is a free graded R-module.

From S =
⊕r

s=1 hsR we get HS = 1
(1−T )n = (

∑r
s=1 T

es) · HR = (
∑r
s=1 T

es) ·∏n
i=1

1
1−Tdi ∈ Q(T ), where es := deg(hs) ∈ N0. Hence 1 = δ(S) = r · δ(R) =

r ·
∏n
i=1

1
di

says that S is a free graded R-module of rank r =
∏n
i=1 di. Since

{h1, . . . , hr} ⊆ S is a minimal homogeneous generating set of S as a graded
R-module, we conclude that the (generalized) Hilbert algebra S/R+S is a
finitely generated graded K-vector space of K-dimension r, having a homoge-
neous K-basis with degrees [e1, . . . , er].

(7.3) Polynomial invariant algebras. We now turn to the question of when
invariant algebras are polynomial: Let K be a field, let G be a finite group, let
V be a faithful K[G]-module such that n := dimK(V ) ∈ N0, and let S[V ]G =
K[f1, . . . , fk], where k ∈ N0 is chosen minimal, and the fi are homogeneous
such that deg(fi) = di ∈ N. Then the Hilbert-Serre Theorem implies that
γ(S[V ]G) ≤ k, thus since γ(S[V ]G) = n we infer that k ≥ n.

Proposition. We have k = n if and only if {f1, . . . , fk} is algebraically inde-
pendent, in other words S[V ]G = K[f1, . . . , fk] is a polynomial algebra.

Proof. If S[V ]G = K[f1, . . . , fk] is a polynomial algebra, then we have k =
γ(K[f1, . . . , fk]) = γ(S[V ]G) = n. Hence let conversely k = n, and assume to
the contrary that {f1, . . . , fn} is algebraically dependent: Then, by Noether’s
Finiteness Theorem, for the invariant field we have S(V )G = Q(S[V ]G) =
K(f1, . . . , fn), so that it has transcendence degree trdegK(S(V )G) < n, while
S(V ) is a field of rational functions in n indeterminates, so that trdegK(S(V )) =
n, which since [S(V ) : S(V )G] = |G| being finite is a contradiction. ]

Hence S[V ]G is as a K-algebra generated by a homogeneous set {f1, . . . , fn} of
cardinality n, if and only if it is a polynomial algebra. In this case, {f1, . . . , fn}
is a minimal generating set, so that the multiset of degrees d1, . . . , dn is uniquely
defined. Moreover, since G acts faithfully, from

∏n
i=1

1
di

= δ(K[f1, . . . , fn]) =

δ(S[V ]G) = 1
|G| we infer that

∏n
i=1 di = |G|.

The fi are called basic invariants or fundamental invariants, the di are
called the associated (polynomial) degrees, and the numbers mi := di − 1 ∈
N0 are called the associated exponents; note that, contrary to the degrees and
the exponents, basic invariants are in general not uniquely defined, even not up
to reordering and multiplication by scalars.

The degrees can be determined algorithmically from the Hilbert series: From
h := 1

HR
=
∏n
i=1(1− T di) ∈ Q[T ], where di | |G|, we infer that h is a product

of cyclotomic polynomials Φd, where d | |G|. Hence letting k ∈ N run through

the divisors of |G|, for d := |G|
k we check whether Φd divides h, and if so, as

long as 1− T d divides h, we repeat to record d and to replace h by h
1−Td .
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Finally, we remark that the converse of the above observation holds as well: If
{f1, . . . , fn} ⊆ S[V ]G are homogeneous and algebraically independent, such that∏n
i=1 di = |G|, then it is a (minimal) generating set, so that S[V ]G is polynomial:

If char(K) = 0 or char(K) > |G|, then this follows from the Shephard-Todd
Theorem, see (8.3); for arbitrary fields K, see (16.2).

Example. i) Let G := 〈z〉 ∼= Ck, where k ∈ N such that char(K) - k, and let
ζk ∈ K be a primitive k-th root of unity; see (3.3). Letting G → K∗ : z 7→ ζk,
we have S[V ]G = K[X]G = K[Xk] ⊆ K[X] = S[V ]. Similarly, letting G →
GL2(K) : z 7→ diag[ζk, 1], we have S[V ]G = K[Xk, Y ] ⊆ K[X,Y ] = S[V ].

ii) Let K be arbitrary, let G := 〈z〉 ∼= C2, and let G → GL2(K) : z 7→
[
0 1
1 0

]
.

Then we have S[V ]G = K[X + Y,XY ] ⊆ K[X,Y ] = S[V ]; see (3.4).

iii) Let G = 〈z, s〉 ∼= D2k, where k ∈ N such that char(K) - 2k, let ζk ∈ K be a
primitive k-th root of unity. Letting G→ GL2(K) be given by z 7→ diag[ζk, ζ

−1
k ]

and s 7→
[
. 1
1 .

]
, we get S[V ]G = K[XY,Xk+Y k] ⊆ K[X,Y ] = S[V ]; see (6.6).

8 Pseudoreflection groups

(8.1) Pseudoreflections. a) Let K be a field, let G be a finite group, and let V
be a faithful K[G]-module such that n := dimK(V ) ∈ N0. An element s ∈ G ≤
GLn(K) is called a pseudoreflection, if for its fixed point space FixV (s), that is
its eigenspace with respect to the eigenvalue 1, we have dimK(FixV (s)) = n−1;
in this case FixV (s) is called its reflecting hyperplane. Let S(G) ⊆ G be the
set of pseudoreflections in G, and let σ(G) := |S(G)| ∈ N0 be their number.

A pseudoreflection s which is diagonalizable is called a homology or gener-
alized reflection; in other words s has an exceptional eigenvalue λ 6= 1 of
multiplicity 1, or equivalently char(K) - |s|. A homology s such that s2 = 1, or
equivalently having exceptional eigenvalue −1, is called a reflection. A pseu-
doreflection s which is not diagonalizable is called a transvection; in other
words s has 1 as its only characteristic root such that its Jordan normal form has
a unique block of dimension 2, or equivalently sp = 1 where char(K) = p 6= 0.

b) Given a pseudoreflection s, let (s − En)(V ) = 〈ts〉K ≤ V ; hence if s is a
homology then ts is an eigenvector of s with respect to its exceptional eigenvalue,
while if s is a transvection then ts is a distinguished eigenvector of s with respect
to its unique eigenvalue 1. Then, in both cases, there is δs ∈ HomK(V,K) such
that v · s = v + δs(v)ts, for all v ∈ V ; in particular we have ker(δs) = FixV (s).

Letting S := S[V ], in order to describe the action of s on S, we show that there
is a unique Demazure operator δs ∈ EndK(S) homogeneous of degree −1,
extending the map defined above, such that f ·s = f+δs(f)ts ∈ S, for all f ∈ S:

To this end, it suffices to show that ts ∈ V = S1 divides f · (s − 1) ∈ S for
all monomials f :=

∏n
i=1X

ai
i ∈ S = K[X1, . . . , Xn], where ai ∈ N0; unique-
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ness then follows from S being a domain: We may assume that FixV (s) =
〈X2, . . . , Xn〉K and a1 ≥ 1. If s is a homology with exceptional eigenvalue λ,
then we may assume that ts = X1; thus we have f ·(s−1) = (λa1−1)·

∏n
i=1X

ai
i ,

which is a multiple of X1. If s is a transvection, then we may assume that ts =
X2 and X1·s = X1+X2; thus we have f ·(s−1) = ((X1+X2)a1−Xa1

1 )·
∏n
i=2X

ai
i ,

which is a multiple of X2. ]

In particular, we have ker(δs) = S〈s〉 ⊆ S. Moreover, δs is a twisted deriva-
tion: For f, g ∈ S, from (fg)s = fs · gs we get fg + δs(fg)ts = (f + δs(f)ts) ·
(g + δs(g)ts). Hence since S is a domain we get δs(fg) = fδs(g) + δs(f)g +
δs(f)δs(g)ts = fδs(g) + δs(f)(g + δs(g)ts) = f · δs(g) + δs(f) · gs ∈ S.

Thus δs is a homomorphism of SG-modules: For f ∈ S and g ∈ SG we have
gs = g and thus δs(g) = 0, so that δs(fg) = f · δs(g) + δs(f) · gs = δs(f) · g ∈ S.
In particular, letting IG E S be the Hilbert ideal, which is a homogeneous SG-
submodule, we conclude that δs induces a K-endomorphism of the coinvariant
algebra SG = S/IG, which again is homogeneous of degree −1.

(8.2) Non-modular pseudoreflections. Let G be a finite group, let K be
a field such that char(K) - |G|, let V be a faithful K[G]-module such that
n := dimK(V ) ∈ N0, and let S := S[V ].

Theorem. There is f ∈ Q(T ) such that ν1(f) ≥ 0, and such that we have

HSG = 1
|G| ·

1
(1−T )n ·

(
1 + σ(G)

2 · (1− T ) + (1− T )2 · f
)
∈ Q(T ).

Proof. In view of Molien’s formula we may assume that K contains a primitive
|G|-th root of unity, so that in order to consider the elements g ∈ G in turn we
may further assume that g is a diagonal matrix. Hence g is a pseudoreflection
if and only if it has eigenvalue 1 with multiplicity n − 1, and an exceptional
eigenvalue λ 6= 1 with multiplicity 1. Note that 1 ∈ G is the unique element
having eigenvalue 1 with multiplicity n.

Thus we have det(En − g · T ) = (1 − T )n if and only if g = 1, as well as
det(En − g · T ) = (1 − T )n−1(1 − λT ) if and only if g is a pseudoreflection
with exceptional eigenvalue λ, while otherwise ν1(det(En − g · T )) ≤ n − 2.
Hence by Molien’s formula there are f ∈ Q(T ) such that ν1(f) ≥ 0, and ε ∈ Q
such that the Hilbert series of SG is given as HSG = 1

|G| ·
∑
g∈G

1
det(En−g·T ) =

1
|G| ·

1
(1−T )n · (1 + ε · (1− T ) + (1− T )2 · f) ∈ Q(T ). It remains to find ε ∈ Q:

Precisely the summands associated with a pseudoreflection g contribute to ε,

in which case we have (1−T )n−1

det(En−g·T ) = 1
1−λT , where λ is the exceptional eigen-

value, yielding ( (1−T )n−1

det(En−g·T ) )(1) = 1
1−λ . Since 1

1−λ + 1
1− 1

λ

= 1, pairing off mu-

tually inverse pseudoreflections, where for a (self-inverse) reflection we have
1

1−λ = 1
2 , and summing over all the pseudoreflections S = S(G), we get

ε = (
∑
g∈S

(1−T )n−1

det(En−g·T ) )(1) = |{g∈S;g2 6=1}|
2 · 1 + |{g ∈ S; g2 = 1}| · 1

2 = 1
2 · |S|. ]
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Note that the above argument also provides an alternative proof of the facts
that γ(SG) = n and δ(SG) = 1

|G| , in the case char(K) - |G|.

Theorem. Let {f1, . . . , fn} ⊆ SG be algebraically independent and homoge-
neous, such that the degrees di := deg(fi) ∈ N fulfill

∏n
i=1 di = |G|. Then we

have
∑n
i=1(di − 1) ≤ σ(G), where if SG = K[f1, . . . , fn] then equality holds.

Proof. Let R := K[f1, . . . , fn] ⊆ SG. Then R is polynomial with degrees
[d1, . . . , dn], hence we have (1 − T )n · HR =

∏n
i=1

1−T
1−Tdi =

∏n
i=1

1∑di−1

j=0 T j
∈

Q(T ). Differentiation ∂
∂T with respect to T , and evaluation at T = 1, yields

∂
∂T ((1−T )n ·HR)(1) = (−

∏n
i=1

1∑di−1

j=0 T j
· (
∑n
i=1

∑di−1

j=1 jT j−1∑di−1

j=0 T j
))(1) = −

∏n
i=1

1
di
·

(
∑n
i=1

(di2 )
di

) = − 1
2 ·
∏n
i=1

1
di
·
∑n
i=1(di − 1). Thus we have (1 − T )n · HR =

1
|G| · (1 + 1

2 ·
∑n
i=1(di − 1) · (1− T ) + (1− T )2 · g) ∈ Q(T ), where ν1(g) ≥ 0.

From (1−T )n·HSG = 1
|G| ·(1+σ(G)

2 ·(1−T )+(1−T )2·f) ∈ Q(T ), where ν1(f) ≥ 0,

we get 2·|G|·(1−T )n−1 ·(HSG−HR) = σ(G)−
∑n
i=1(di−1)+(1−T )·h ∈ Q(T ),

where ν1(h) ≥ 0. Since for d ∈ N0 we have dimK(Rd) ≤ dimK(SGd ), we get
HR(z) ≤ HSG(z) ∈ R for 0 < z < 1, thus we conclude that limz→1−((1−z)n−1 ·
(HSG −HR)(z)) ≥ 0, and evaluation at T = 1 yields σ(G) ≥

∑n
i=1(di − 1).

If R = SG, then HR = HSG entails limz→1−((1− z)n−1 · (HSG −HR)(z)) = 0,
thus σ(G) =

∑n
i=1(di − 1). ]

(8.3) Non-modular pseudoreflection groups. Let G be a finite group, let
K be a field such that char(K) 6 | |G|, let V be a faithful K[G]-module such that
n := dimK(V ) ∈ N0, let S := S[V ], and let R := SG.

Theorem: [Shephard, Todd, 1954; Chevalley, 1955; Serre, 1967].
Assume that char(K) = 0 or char(K) > |G|. Then the following are equivalent:
i) G is a pseudoreflection group, that is G = 〈S(G)〉.
ii) S is a (finitely generated) free graded R-module.
iii) R is a polynomial algebra.

Proof. (i)⇒(ii). Let G = 〈S(G)〉, where we only assume that char(K) - |G|.
We first consider the coinvariant algebra SG := S/(R+S), being a graded G-
algebra again, and being acted on by all Demazure operators. For s ∈ S(G),
we infer that δs ∈ EndK(SG) is homogeneous of degree −1, and for v ∈ SG
we have δs(v) = 0 if and only if v · s = v. Since G = 〈S(G)〉, we infer that⋂
s∈S(G) kerSG(δs) = (SG)G. Since (SG)G = (SG)0

∼= K, we infer that for any

0 6= h ∈ (SG)+ there is s ∈ S(G) such that δs(h) 6= 0.

Now assume to the contrary that S is not a free graded R-module; recall that
by Noether’s Finiteness Theorem S is a finitely generated R-module. Thus
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any minimal homogeneous generating set {h1, . . . , hr} of S as an R-module,
where r ∈ N, contains a minimal R-linearly dependent subset of cardinality
l ∈ {2, . . . , r}, where we may assume the hi to be chosen such that l is as
small as possible amongst all admissible generating sets. Then we may assume
that {h1, . . . , hl} is such a smallest R-linearly dependent subset, where for ei :=
deg(hi) ∈ N0 we have e1 ≤ · · · ≤ el, and necessarily e2 ≥ 1.

Hence let g1, . . . , gl ∈ R be homogeneous such that
∑l
i=1 higi = 0 ∈ S. Then

there are pseudoreflections s1, . . . , se ∈ S(G), where e := el ≥ 1, such that
for the R-module endomorphism δ := δs1 · · · δse of S, which is homogeneous of
degree −e, we have δ(hi) = 0 whenever ei < e, while δ(hi) ∈ S0 = K whenever

ei = e, and δ(hl) ∈ K∗. Hence we get 0 = δ(
∑l
i=1 higi) =

∑l
i=1 δ(hi)gi ∈ S,

thus gl = −
∑l−1
i=1

δ(hi)
δ(hl)

· gi, so that letting h′i := hi − δ(hi)
δ(hl)

· hl ∈ Sei , for

i ∈ {1, . . . , l − 1}, we get
∑l−1
i=1 h

′
igi =

∑l−1
i=1(hi − δ(hi)

δ(hl)
· hl)gi =

∑l−1
i=1 higi −

(
∑l−1
i=1

δ(hi)
δ(hl)

· gi)hl =
∑l
i=1 higi = 0. Since {h′1, . . . , h′l−1, hl, hl+1, . . . , hr} also is

an admissible generating set, this contradicts the minimality of l. ]

(ii)⇒(iii). Let S be a free graded R-module, and let {f1, . . . , fk} be a minimal
homogeneous generating set of R, where k ∈ N0 and di := deg(fi) ∈ N. To
proceed, we only need the fact that di ∈ K∗ for all i ∈ {1, . . . , k}; then by
Chevalley’s Theorem we conclude that {f1, . . . , fk} is algebraically independent:

Indeed, by Noether’s degree bound (which holds whenever char(K) - |G|) we
have di ≤ |G|, so that by the assumption on char(K) (as made in the statement
of the theorem) we have di ∈ K∗. ]

(iii)⇒(i). Let R = K[f1, . . . , fn] be polynomial, where the fi are homogeneous,
and we may assume that the degrees di := deg(fi) ∈ N fulfill d1 ≤ · · · ≤ dn.
Moreover, we infer that

∏n
i=1 di = |G|.

Let H := 〈S(G)〉 ≤ G be the subgroup generated by the pseudoreflections in
G. Noting that |H| ≤ |G|, by the implication ‘(i)⇒(iii)’ already shown, we have
R ⊆ SH = K[g1, . . . , gn] ⊆ S, where the gi are algebraically independent and
homogeneous, and we may assume that the degrees ei := deg(gi) ∈ N fulfill
e1 ≤ · · · ≤ en. Then we actually have di ≥ ei for all i ∈ {1, . . . , n}:
Letting the polynomial algebra K[Y1, . . . , Yn] be equipped with the grading with
degrees δ := [e1, . . . , en], there are hi ∈ K[Y1, . . . , Yn] homogeneous such that
degδ(hi) = di and fi = hi(g1, . . . , gn). Now assume to the contrary that dj < ej
for some j ∈ {1, . . . , n}. Then we have {h1, . . . , hj} ⊆ K[Y1, . . . , Yj−1], so that
{f1, . . . , fj} ⊆ K[g1, . . . , gj−1], thus {f1, . . . , fj} cannot possibly be algebraically
independent, a contradiction. ]

Finally, we show that |H| = |G|, entailing G = H = 〈S(G)〉: By (8.2) we have∑n
i=1(di − 1) ≤ σ(G) = σ(H) =

∑n
i=1(ei − 1), so that we conclude that di = ei

for all i. Thus we have HR = HSH ∈ Q(T ), in particular implying |G| = |H|. ]
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Corollary. Let still char(K) = 0 or char(K) > |G|, and let {f1, . . . , fn} ⊆ R
be algebraically independent and homogeneous, such that

∏n
i=1 deg(fi) = |G|.

Then we have R = K[f1, . . . , fn].

Proof. Proceeding as for the implication ‘(iii)⇒(i)’ above, but for the polyno-
mial K-algebra P := K[f1, . . . , fn] ⊆ R ⊆ SH ⊆ S, where H := 〈S(G)〉 ≤ G,
we still infer HP = HSH ∈ Q(T ), so that we have equality P = R = SH . ]

Originally, Shephard, Todd proved the above theorem in characteristic 0,
by first classifying the finite irreducible complex pseudoreflection groups, and
subsequently verifying the polynomiality of their invariant algebras in a case-
by-case analysis. Later, Chevalley gave a conceptual proof for real reflection
groups, which was generalized by Serre to the complex case.

(8.4) Complex pseudoreflection groups. We present the classification of
the finite pseudoreflection groups over the field C [Shephard, Todd, 1954],
which extends their classification over the field R [Coxeter, 1928], and has
been generalized to the non-modular case [Clark, Ewing, 1974]:

Let G be a finite group, and let V 6= {0} be a faithful C[G]-module such that
G = 〈S(G)〉 is generated by pseudoreflections. We first reduce ourselves to the
(absolutely) irreducible case:

By Maschke’s Theorem we have V =
⊕r

i=1 Vi as C[G]-modules, where the Vi are
(absolutely) irreducible. By considering the eigenvalues of the pseudoreflections
s ∈ S(G) it follows that ρVi(s) 6= idVi for a unique i ∈ {1, . . . , r}, where ρVi(s) is
a pseudoreflection again. Hence letting Si := {s ∈ S(G); ρVi(s) 6= idVi} we get
S(G) =

∐r
i=1 Si, and letting Gi := 〈ρVi(s); s ∈ Si〉 ≤ G, we have G ∼=

∏r
i=1Gi,

where Gi acts trivially on
⊕

j 6=i Vj , while Vi is a faithful (absolutely) irreducible
C[Gi]-module such that Gi is generated by pseudoreflections. In particular, for
the associated invariant algebras we have S[V ]G ∼=

⊗r
i=1 S[Vi]

Gi , so that S[V ]G

is described in terms of the S[Vi]
Gi ; see Exercise (18.5). ]

Hence we may further assume that V is (absolutely) irreducible, and let χV be
the associated character of G. We show that χV is realizable over its character
field K := Q(χV ), that is the algebraic number field generated by the values of
χV , so that K is the unique minimal realization field:

For s ∈ S(G) let 1 6= λ ∈ K be its exceptional eigenvalue, let H := 〈s〉 ≤
G, and let ρλ : H → K∗ : s 7→ λ be the associated one-dimensional repre-
sentation. Then by Frobenius reciprocity we have dimC(HomC[G](ρ

G
λ , V )) =

dimC(HomC[H](ρλ, VH)) = 1. Since ρGλ is a K[G]-module, we conclude that V is
realizable as a quotient K[G]-module of the latter. (In other words, the Schur
index of V over K, which divides dimC(HomC[G](ρ

G
λ , V )), equals 1.) ]

Now the classification of the finite (absolutely) irreducible complex pseudore-
flection groups is given in Table 2, where the classes 1, 2a, 2b, and 3 consist
of infinite series, while the 34 groups G4, . . . , G37 are called the exceptional
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Table 2: Irreducible complex pseudoreflection groups.

Gi n |Gi| d1, . . . , dn Q(χ) Gi type

1 n (n+ 1)! 2, . . . , n+ 1 Q Sn+1 An

2a n mn

k
· n! m, . . . , (n− 1)m, mn

k
Q(ζm) Gm,k,n Bn, Dn (m = 2)

2b 2 2m 2,m Q(ζm + ζ−1
m ) D2m I2(m)

3 1 m m Q(ζm) Cm

Gi n |Gi| d1, . . . , dn Q(χ) Gi/Z(Gi) type

4 2 24 4, 6 Q(ζ3) A4

5 2 72 6, 12 Q(ζ3) A4

6 2 48 4, 12 Q(ζ12) A4

7 2 144 12, 12 Q(ζ12) A4

8 2 96 8, 12 Q(ζ4) S4
9 2 192 8, 24 Q(ζ8) S4

10 2 288 12, 24 Q(ζ12) S4
11 2 576 24, 24 Q(ζ24) S4
12 2 48 6, 8 Q(

√
−2) S4

13 2 96 8, 12 Q(ζ8) S4
14 2 144 6, 24 Q(ζ3,

√
−2) S4

15 2 288 12, 24 Q(ζ24) S4
16 2 600 20, 30 Q(ζ5) A5

17 2 1200 20, 60 Q(ζ20) A5

18 2 1800 30, 60 Q(ζ15) A5

19 2 3600 60, 60 Q(ζ60) A5

20 2 360 12, 30 Q(ζ3,
√
5) A5

21 2 720 12, 60 Q(ζ12,
√
5) A5

22 2 240 12, 20 Q(ζ4,
√
5) A5

23 3 120 2, 6, 10 Q(
√
5) A5 H3

24 3 336 4, 6, 14 Q(
√
−7) GL3(2)

25 3 648 6, 9, 12 Q(ζ3) 32 : SL2(3)
26 3 1296 6, 12, 18 Q(ζ3) 32 : SL2(3)

27 3 2160 6, 12, 30 Q(ζ3,
√
5) A6

28 4 1152 2, 6, 8, 12 Q 24 : (S3 × S3) F4

29 4 7680 4, 8, 12, 20 Q(ζ4) 24 : S5
30 4 14400 2, 12, 20, 30 Q(

√
5) (A5 ×A5) : 2 H4

31 4 46080 8, 12, 20, 24 Q(ζ4) 24 : S6
32 4 155520 12, 18, 24, 30 Q(ζ3) PSp4(3)

33 5 51840 4, 6, 10, 12, 18 Q(ζ3) SO5(3)
′

34 6 39191040 6, 12, 18, 24, 30, 42 Q(ζ3) PSO−6 (3)
′.2

35 6 51840 2, 5, 6, 8, 9, 12 Q SO−6 (2)
′ E6

36 7 2903040 2, 6, 8, 10, 12, 14, 18 Q SO7(2) E7

37 8 696729600 2, 8, 12, 14, 18, 20, 24, 30 Q SO+
8 (2) E8
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complex pseudoreflection groups. We give the dimension n of the associated
pseudoreflection representation, the group order, the polynomial degrees, and

the character fields, where ζk := exp( 2π
√
−1
k ) ∈ C is a k-th primitive root of

unity for k ∈ N, and we collect some structure information.

The finite real reflection groups, also called Coxeter groups, are those
whose character field is a subfield of R; the real reflection groups having char-
acter field Q are called crystallographic. In Table 2 we indicate the Dynkin
type of the real reflection groups as well. Note that a real reflection group is
indeed generated by reflections, but this property does not imply to be a real
reflection group, as the example of the group G24 shows; see Exercise (18.31).

i) The groups in class 1, being real of Dynkin type An for n ≥ 1, are the
symmetric groups Sn+1 acting by the deleted permutation representation:
The group Sn+1 = 〈(1, 2), . . . , (n, n+1)〉 is generated by adjacent transpositions,
which act by reflections with respect to the natural permutation representation
on W := Qn+1; see also (9.2). As Sn+1 acts doubly transitively, we have
dimQ(EndSn+1

(W )) = 2. Thus we have W ∼= K⊕V , where FixW (Sn+1) ∼= K is
the trivial representation, and V is an absolutely irreducible faithful Q[Sn+1]-
module, with respect to which Sn+1 is generated by reflections. Hence we have
V ∼= W/FixW (Sn+1) as Q[Sn+1]-modules. For basic invariants, being derived
from the elementary symmetric polynomials in Q[W ]Sn+1 , see Exercise (18.29).

ii) The groups in class 2a encompass the imprimitive cases, and are given as
follows: For m ≥ 2, and k ≥ 1 such that k | m, and n ≥ 2, let Tm,k,n :=
{diag[ζaim ]i ∈ GLn(C); ai ∈ Z, k |

∑n
i=1 ai} ≤ GLn(C); note that the condition

k |
∑n
i=1 ai is equivalent to saying that (

∏n
i=1 ζ

ai
m )

m
k = 1. Letting Sn ≤ GLn(C)

be the natural permutation representation, we let Gm,k,n := Tm,k,n : Sn, that
is the group of all monomial matrices, whose non-zero entries are m-th roots of
unity, and whose product is an (mk )-th root of unity. (We have to exclude the
case G2,2,2 which is reducible.)

We show that Gm,k,n is a pseudoreflection group indeed: The group Sn is gener-
ated by reflections; the diagonal group Tm,k,n is generated by the pseudoreflec-
tion diag[ζkm, 1, . . . , 1], together with the Sn-conjugates of diag[ζm, ζ

−1
m , 1, . . . , 1],

where diag[ζm, ζ
−1
m ] =

[
0 1
1 0

]
·
[

0 ζ−1
m

ζm 0

]
is the product of two reflections.

The group Gm,k,n is real if and only if m = 2. In this case, k = 1 yields Dynkin
type Bn, where G2,1,n

∼= 2n : Sn is the group of signed permutations; and
k = 2 yields Dynkin type Dn, where 2n−1 : Sn ∼= G2,2,nEG2,1,n is the subgroup
of index 2 consisting of the elements having an even number of entries −1.

iii) The groups in class 2b are real, and isomorphic to the dihedral groups
D2m for m ≥ 3; see (6.6). The group D2m is crystallographic if and only if
m ∈ {3, 4, 6}; in these cases we get Dynkin types A2 again, B2 again, and
finally G2, being equal to I2(3), I2(4), and I2(6), respectively.

The groups in class 3 are the cyclic groups Cm for m ≥ 1; see (3.3). The group
Cm is real if and only if m ≤ 2; in these cases we get the trivial group and
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Dynkin type A1 again, respectively.

iv) The exceptional groups in dimension n = 2, that is the groups Gi ≤ U2(C)
for i ∈ {4, . . . , 22}, are centrally amalgamated products of the binary polyhe-
dral subgroups 2.A4, 2.S4, and 2.A5 of SU2(C) with certain cyclic groups of
scalar matrices. Note that counting the pseudoreflections in G = Gi yields the
degrees d1 ≤ d2 from the conditions d1d1 = |G| and d1 + d2 = |σ(G)|+ 2.

The binary polyhedral subgroups arise from the polyhedral subgroups A4,
S4, and A5 of SO3(R), as preimage with respect to the group homomorphism
ρ : SU2(C)→ SO3(R) which is given as follows:

Let H := {B ∈ C2×2;B
tr

= B,Tr(B) = 0} be the R-vector space of traceless
Hermitian matrices, where : C→ C denotes complex conjugation. Then H

can be identified with R3 by writing B =

[
a b+ ic

b− ic −a

]
∈ H, where a, b, c ∈ R;

note that det(B) = −(a2 + b2 + c2). Moreover, SU2(C) := {A ∈ SL2(C);A
−tr

=

A} acts continuously on H by ρA : H → H : B 7→ A
tr
BA = A−1BA.

Hence identifying H with R3, and noting that det(ρA(B)) = det(B), yields a
continuous group homomorphism ρ : SU2(C) → O3(R). Since SU2(C) is con-
nected we infer that ρ(SU2(C)) ≤ O3(R)◦ = SO3(R). Since ker(ρ) = {±E2},
and both SU2(C) and SO3(R) are 3-dimensional R-manifolds, we conclude that
ρ : SU2(C) → SO3(R) is surjective, so that actually PSU2(C) ∼= SO3(R), also
being called the Cayley parametrisation of SO3(R). ]

The polyhedral subgroups are the rotational symmetry groups of the five Pla-
tonic solids, that is the regular 3-dimensional polyhedra; these are given in
Table 3, where n is the number of edges a face is incident with, k is the number
of edges a vertex is incident with, v is the number of vertices, e is the number
of edges, and f is the number of faces. Note that there is a duality between the
octahedron and the hexahedron, and between the icosahedron and the dodec-
ahedron, while the tetrahedron is self-dual: Connecting the barycenters of the
faces one of the mutually dual polyhedra yields the other one; hence polyhedra
in duality have the same symmetry group. The polyhedral groups are consid-
ered in more detail in Exercise (18.30) as far as the tetrahedron and octahedron
are concerned, and in (12.1) as far as the icosahedron is concerned.

(8.5) Remark: Pseudoreflection groups in prime characteristic. Ac-
tually, (8.3) remains valid completely in the non-modular case, as does the
implication ‘(iii)⇒(i)’ in the modular case [Serre, 1967]; recall that we have
already indicated that the equivalence ‘(ii)⇔(iii)’, which essentially is Cheval-
ley’s Theorem, holds in general, without any assumption on the characteristic.
(Unfortunately, we are not able to present proofs here, which require more
machinery from commutative and homological algebra; in particular they are
related to the proof of the ‘purity of the branch locus’ [Auslander, 1962].)

Unfortunately, in the modular case the implication ‘(i)⇒(ii)’ does not hold in
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Table 3: Platonic solids.

n k v e f

3 3 4 6 4 tetrahedron A4

4 3 8 12 6 hexahedron S4

3 4 6 12 8 octahedron S4

5 3 20 30 12 dodecahedron A5

3 5 12 30 20 icosahedron A5

general; we present the counterexample given by Nakajima [1979] in Exer-
cise (18.28). Still, the invariant algebra of a pseudoreflection group is factorial
[Dress, 1969]. Using the classification of the finite irreducible pseudoreflec-
tion groups in prime characteristic [Kantor, 1979; Wagner, 1978, 1980;
Zalesskii, Serezkin, 1976, 1981], the classification of polynomial invariant
algebras in the irreducible modular case is known [Kemper, Malle, 1997].

9 Permutation groups

(9.1) Permutation groups. Let K be a field, for n ∈ N0 let Sn denote the
symmetric group on n letters, let V := Kn be its (faithful) natural permutation
module, and let S := S[V ] = K[X ], where X := {X1, . . . , Xn}. Then Sn
permutes X , and thus acts on K[X ]d, for d ∈ N0, by permuting its K-basis Xd
consisting of the monomials of degree d.

Let G ≤ Sn be a permutation group. Writing Xd =
∐kd
j=1 Xd,j as a disjoint

union of G-orbits, where kd = |Xd/G| ∈ N0, let X+
d,j :=

∑
f∈Xd,j f ∈ Sd be the

associated orbit sum; note that X+
d,j = TrGStabG(f)(f) for any f ∈ Xd,j .

Then we have Sd =
⊕kd

j=1 Sd,j as K[G]-modules, where Sd,j := 〈Xd,j〉K , and

since G acts transitively on Xd,j we infer that FixSd,j (G) = 〈X+
d,j〉K . Hence

we conclude that dimK(SGd ) = kd = |Xd/G|; recall that the Cauchy-Frobenius-
Burnside Lemma says that |Xd/G| = 1

|G| ·
∑
g∈G |FixXd(g)|.

Thus we have HSG =
∑
d≥0 |Xd/G| · T d = 1

|G| ·
∑
d≥0(

∑
g∈G |FixXd(g)|) · T d =

1
|G| ·

∑
g∈G(

∑
d≥0 |FixXd(g)| · T d) = 1

|G| ·
∑
g∈G χS(g) ∈ Q(T ), where χS(g) =∑

d≥0 |FixXd(g)| · T d ∈ Q(T ) is the associated graded permutation character.

This only depends on the permutation action considered, but is independent
of the field K chosen, so that in particular HSG can be computed by applying
Molien’s formula to the associated ordinary permutation representation. Indeed,
assuming that char(K) = 0 we have χS(g) = 1

(−T )n·χρV (g)(T−1) ; and letting

λ = [λ1, . . . , λl] be the cycle type of g, we have χρV (g) =
∏l
i=1(Tλi − 1), so that

we get χS(g) =
∏l
i=1

1
(1−Tλi ) .



49

Example: The cyclic group of order p. Let K be a field, let G := 〈z〉 ∼= Cp,
where p is a prime, and let V be the regular K[G]-module, which with respect
to the K-basis {1, z, . . . , zp−1} ⊆ K[G] is given by G → Sp : z 7→ (1, . . . , p).
Hence zi ∈ G has cycle type [p], for i ∈ {1, . . . , p− 1}, and 1 ∈ G has cycle type
[1p]; this yields HSG = 1

p · (
p−1

1−Tp + 1
(1−T )p ) ∈ Q(T ).

Alternatively, more explicitly, for f ∈ Xd, where d ∈ N0, we have fz = f if and
only if all the indeterminates occur with the same multiplicity in f . Hence we
have FixXd(z) = ∅ whenever p - d; thus in this case Xd consists of G-orbits
of length p only, so that dimK(SGd ) = 1

p · dimK(Sd) =
(
p+d−1
d

)
. If p | d, then

fz = f if and only if f = (
∏p
i=1Xi)

d
p ; thus in this case we have |FixXd(z)| = 1,

the other G-orbits having length p, so that dimK(SGd ) = 1+ 1
p ·(dimK(Sd)−1) =

1+ 1
p ·(
(
p+d−1
d

)
−1); thus HSG = p−1

p ·
∑
d≥0 |FixXd(z)| ·T d+ 1

p ·
∑
d≥0 |Xd| ·T d =

p−1
p ·

∑
d≥0 T

pd + 1
p ·
∑
d≥0

(
p+d−1
d

)
· T d = 1

p · (
p−1

1−Tp + 1
(1−T )p ).

(9.2) Symmetric groups. Let K be a field, and let V := Kn be the natural
permutation K[Sn]-module, where n ∈ N0.

We determine the pseudoreflections in Sn: For g ∈ Sn the K-dimension of its
K-space of fixed points coincides with the number of cycles of g. Hence g is
a pseudoreflection if and only if it has precisely n − 1 cycles, in other words if
and only if it is a transposition; note that the latter are reflections if and only
if char(K) 6= 2. In particular, there are

(
n
2

)
pseudoreflections in Sn, all of which

do not belong to An.

We have Sn = 〈s1, . . . , sn−1〉, where si := (i, i+ 1) ∈ Sn, for i ∈ {1, . . . , n− 1},
are the adjacent transpositions. Hence Sn is generated by pseudoreflections,
thus the invariant algebra S[V ]Sn is polynomial, whenever char(K) - n!, that
is whenever char(K) = 0 or char(K) > n. (Recall that we have only shown this
explicitly for char(K) = 0 or char(K) > n!.) Actually, it will turn out below
that K[X ]Sn is polynomial for any field K.

(9.3) Symmetric polynomials. a) Let K be a field, let X := {X1, . . . , Xn}
where n ∈ N0, and let Sn act naturally on K[X ]. The elements of K[X ]Sn are
called symmetric polynomials. A distinguished set of symmetric polynomials
is given as follows:

We consider the algebra K[X , Y ], for an additional indeterminate Y . Then
we have

∏n
i=1(Y − Xi) =

∑n
i=0(−1)ien,i(X )Y n−i ∈ K[X , Y ], with the ele-

mentary symmetric polynomials or Vieta polynomials en,i = en,i(X ) :=∑
J⊆{1,...,n},|J|=i(

∏
j∈J Xj) ∈ K[X ], for i ∈ {0, . . . , n}. The en,i are homo-

geneous such that deg(en,i) = i, where in particular we have en,0 = 1, and
en,1 =

∑n
i=1Xi, and en,n =

∏n
i=1Xi. Since Sn permutes (transitively) the sub-

sets of {1, . . . , n} of a fixed cardinality, we conclude that actually en,i ∈ K[X ]Sn .

b) We show that K[X ]Sn = K[en,1, . . . , en,n], implying that it is a polynomial
algebra independently of char(K); for completeness we present an explicit proof
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of algebraic independence. Hence {en,1, . . . , en,n} are basic invariants, and the
associated degrees are [1, . . . , n], entailing HK[X ]Sn =

∏n
i=1

1
1−T i ∈ Q(T ):

To this end, we consider the auxiliary polynomial algebra K[Y]δ, where Y :=
{Y1, . . . , Yn}, being equipped with the grading with degrees δ := [1, . . . , n]; hence
we have degδ(Yi) = i = deg(en,i). Using this we have:

Theorem. Let f ∈ K[X ]Snd be homogeneous, where d ∈ N0. Then there is a
unique g ∈ K[Y]δd homogeneous such that f = g(en,1, . . . , en,n) ∈ K[X ].

Proof. i) In order to show existence, we proceed by induction on n ∈ N0;
the cases n ≤ 1 being trivial, let n ≥ 2. We in turn proceed by induction on
d ∈ N0; the case d = 0 being trivial, let d ≥ 1. Let αn : K[X , Y ] → K[X ′, Y ],
where X ′ := X \ {Xn}, be the K-algebra homomorphism given by Y 7→ Y , and
Xi 7→ Xi for i ∈ {1, . . . , n− 1}, and Xn 7→ 0.

This yields
∑n
i=0(−1)iαn(en,i)Y

n−i = αn(
∑n
i=0(−1)ien,iY

n−i) = αn(
∏n
i=1(Y −

Xi)) = Y ·
∏n−1
i=1 (Y − Xi) =

∑n−1
i=0 (−1)ien−1,i(X ′)Y n−i ∈ K[X ′, Y ], hence

αn(en,i) = en−1,i, for i ∈ {0, . . . , n− 1}, and αn(en,n) = 0 ·
∏n−1
i=1 Xi = 0.

We have αn(f) = f(X1, . . . , Xn−1, 0) ∈ K[X ′]Sn−1

d . By induction there is g′ ∈
K[Y ′]δ′d , where Y ′ := Y \ {Yn} and δ′ := [1, . . . , n − 1], such that αn(f) =
g′(en−1,1, . . . , en−1,n−1) ∈ K[X ′]. Letting g := g′(en,1, . . . , en,n−1) ∈ K[X ], we
recover αn(g) = αn(g′(en,1, . . . , en,n−1)) = g′(en−1,1, . . . , en−1,n−1), and since
the en,i are homogeneous and deg(en,i) = i, we conclude that g ∈ K[X ]d.

Letting f ′ := f − g ∈ K[X ]d, from αn(f ′) = 0 we conclude that Xn | f ′. Since
f ′ is Sn-invariant, and Sn acts transitively on X , where the Xi ∈ K[X ] are
pairwise non-associate primes, we infer that en,n =

∏n
i=1Xi | f ′, so that f ′ =

en,n · f ′′ ∈ K[X ], for some f ′′ ∈ K[X ]d−n. Since K[X ] is a domain we conclude
that f ′′ is Sn-invariant as well, so that by induction there is g′′ ∈ K[Y]δd−n such
that f ′′ = g′′(en,1, . . . , en,n).

Hence in conclusion we have f = g + en,n · f ′′ = g′(en,1, . . . , en,n−1) + en,n ·
g′′(en,1, . . . , en,n) = (g′ + Yn · g′′)(en,1, . . . , en,n), where g′ + Yn · g′′ ∈ K[Y]δd.

ii) Uniqueness amounts to showing that {en,1, . . . , en,n} ⊆ K[X ] is algebraically
independent: We proceed by induction on n ∈ N0, the cases n ≤ 1 being trivial,
let n ≥ 2. Assume to the contrary that there is 0 6= f =

∑
i≥0 fi(Y ′)Y in ∈ K[Y]δ

homogeneous such that d := degδ(f) ≥ 1 is minimal, and f(en,1, . . . , en,n) = 0.
Assume that f0 = 0, then we have f = Yn · f ′ ∈ K[Y], where 0 6= f ′ ∈ K[Y]δd−n
and f ′(en,1, . . . , en,n) = 0, a contradiction. Thus we have 0 6= f0 ∈ F [Y ′].
From f(en,1, . . . , en,n) =

∑
i≥0 fi(en,1, . . . , en,n−1)ein,n = 0, using αn again,

we get 0 = αn(f(en,1, . . . , en,n)) =
∑
i≥0 αn(fi(en,1, . . . , en,n−1)) · αn(en,n)i =

f0(en−1,1, . . . , en−1,n−1), which by induction contradicts the algebraic indepen-
dence of {en−1,1, . . . , en−1,n−1}. ]
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Note that the above proof is constructive, so that given f ∈ K[X ]Sn the polyno-
mial g ∈ K[Y] such that f = g(en,1, . . . , en,n) can be computed algorithmically.

(9.4) Alternating polynomials. a) Let K be a field, let X := {X1, . . . , Xn}
where n ∈ N0, and let Sn act naturally on K[X ]. Let Vn := [Xi−1

j ]ij ∈ K[X ]n×n

be the Vandermonde matrix associated with X , and using the Vandermonde
formula let ∆n := det(Vn) =

∏
1≤i<j≤n(Xj −Xi) ∈ K[X ] be the discriminant

polynomial. Hence ∆n is homogeneous such that deg(∆n) =
(
n
2

)
, where ∆0 =

∆1 = 1; and for n ≥ 1 we have ∆n(X1, . . . , Xn−1, 0) = (−1)n−1en−1,n−1∆n−1.

Letting Sn act entrywise on Vn, we observe that sj = (j, j + 1) ∈ Sn, for
j ∈ {1, . . . , n− 1}, interchanges columns j and j + 1 of Vn. Hence we conclude
that ∆n ·sj = −∆n, so that ∆n ·g = sgn(g) ·∆n for g ∈ Sn. Thus if char(K) 6= 2
and n ≥ 2, then we have ∆n ∈ K[X ]An \K[X ]Sn ; if char(K) = 2 then we have
∆n ∈ K[X ]Sn . Moreover, we have ∆2

n ∈ K[X ]Sn , so that ∆2
n can be expressed

(uniquely) as a polynomial in {en,1, . . . , en,n}.

Example. We have ∆2 = X2 − X1; thus ∆2
2 = (X2 − X1)2 and ∆2

2(X1, 0) =
X2

1 = e2
1,1, hence letting g := e2

2,1 = (X1 +X2)2 we get ∆2
2 − g = (X2 −X1)2 −

(X1 +X2)2 = −4X1X2 = −4e2,2, entailing ∆2
2 = e2

2,1 − 4e2,2.

Moreover, ∆3 = (X2 −X1)(X3 −X1)(X3 −X2) = (X2
3X2 +X2

2X1 +X2
1X3)−

(X2
3X1 +X2

2X3 +X2
1X2) yields ∆2

3 = (X2−X1)2(X3−X1)2(X3−X2)2, where
∆2

3 = −4e3
3,1e3,3 + e2

3,1e
2
3,2 + 18e3,1e3,2e3,3 − 4e3

3,2 − 27e2
3,3.

Finally, ∆4 = (X2−X1)(X3−X1)(X4−X1)(X3−X2)(X4−X2)(X4−X3) yields
∆2

4 = −27e4
4,1e

2
4,4 + 18e3

4,1e4,2e4,2e4,4 − 4e3
4,1e

3
4,2 − 4e2

4,1e
3
4,2e4,4 + e2

4,1e
2
4,2e

2
4,2 +

144e2
4,1e4,2e

2
4,4 − 6e2

4,1e
2
4,2e4,4 − 80e4,1e

2
4,2e4,2e4,4 + 18e4,1e4,2e

3
4,2 + 16e4

4,2e4,4 −
4e3

4,2e
2
4,2 − 192e4,1e4,2e

2
4,4 − 128e2

4,2e
2
4,4 + 144e4,2e

2
4,2e4,4 − 27e4

4,2 + 256e3
4,4.

b) We consider the alternating group AnESn, where we may assume n ≥ 2: We
have K[en,1, . . . , en,n] = K[X ]Sn = (K[X ]An)Sn/An = (K[X ]An)〈s〉 ⊆ K[X ]An ,
where s ∈ Sn is any transposition; for example s = sn−1 = (n− 1, n).

i) Let char(K) 6= 2. Since s2 = 1 ∈ G, considering the eigenspaces of the action
of s on K[X ]An , with respect to the eigenvalues 1 and −1, respectively, we get
K[X ]An = (K[X ]An)+ ⊕ (K[X ]An)− = K[X ]Sn ⊕K[X ]Snsgn as K[X ]Sn -modules,
where the latter summand consists of the semi-invariant alternating elements
f ∈ K[X ], that is fulfilling fg = sgn(g) · f for all g ∈ Sn; recall that the trivial
and sign representations are the only one-dimensional representations of Sn.

In particular, we have ∆n ∈ K[X ]Snsgn, so that ∆n · K[X ]Sn ⊆ K[X ]Snsgn. Con-

versely, we show that K[X ]Snsgn ⊆ ∆n ·K[X ]Sn :

For f ∈ K[X ]Snsgn we obtain f(X1, . . . , Xn) = −f(X1, . . . , Xn−1, Xn)sn−1 =
−f(X1, . . . , Xn−2, Xn, Xn−1), so that the K-algebra homomorphism K[X ] →
K[X1, . . . , Xn−1] given by Xi 7→ Xi for i ∈ {1, . . . , n − 1}, and Xn 7→ Xn−1,
yields f(X1, . . . , Xn−1, Xn−1) = −f(X1, . . . , Xn−1, Xn−1) = 0. Hence we infer
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that (Xn − Xn−1) | f ∈ K[X ]. Since f is semi-invariant, and Sn acts transi-
tively on the subsets of {1, . . . , n} of cardinality 2, where the (Xj −Xi) ∈ K[X ]
are pairwise non-associate primes, we conclude that ∆n =

∏
1≤i<j≤n(Xj−Xi) |

f ∈ K[X ]. Writing f = ∆n · g, for some g ∈ K[X ], since K[X ] is a domain we
get g ∈ K[X ]Sn , showing that f ∈ ∆n ·K[X ]Sn . ]

Hence we have K[X ]An = K[X ]Sn⊕∆n ·K[X ]Sn , with Hilbert series HK[X ]An =

HK[X ]Sn +HK[X ]Snsgn
= (1 + T (n2)) ·HK[X ]Sn = (1 + T (n2)) ·

∏n
i=1

1
1−T i ∈ Q(T ).

ii) Let char(K) = 2. We already know that HK[X ]An = (1 + T (n2)) ·HK[X ]Sn ∈
Q(T ), where K[en,1, . . . , en,n] = K[X ]Sn ⊆ K[X ]An and HK[X ]Sn =

∏n
i=1

1
1−T i .

Thus we are looking for an additional homogeneous An-invariant of degree
(
n
2

)
:

Let Γn :=
∏

1≤i<j≤n(Xj +Xi) ∈ Q[X ]Sn , and let ∆′n := 1
2 ·(∆n+Γn) ∈ Q[X ]An

[Bertin, 1970]; then we have ∆′n ·s = 1
2 · (−∆n+Γn) = ∆′n−∆n ∈ Q[X ]. Now

∆n + Γn has integral coefficients, where reduction modulo 2 shows that these
are even, so that ∆′n has integral coefficients as well.

Reduction modulo 2 yields a polynomial ∆′n ∈ K[X ]An (with a slight abuse of
notation), so that we have ∆′n · (s + 1) = ∆n ∈ K[X ], while ∆n ∈ K[X ]Sn .
Hence we have (∆′n · f)s+1 = ∆n · f , for f ∈ K[X ]Sn , implying (∆′n ·K[X ]Sn)∩
K[X ]Sn = {0}. This entails that K[X ]Sn ⊕ ∆′n · K[X ]Sn ⊆ K[X ]An , where
the Hilbert series of the left and right hand sides coincide, so that we have
K[X ]An = K[X ]Sn ⊕∆′n ·K[X ]Sn as K[X ]Sn -modules. ]

For example, for n = 2 we get ∆′2 = 1
2 · ((X2 − X1) + (X2 + X1)) = X2, so

that K[X1, X2]A2 = K[e2,1, e2,2,∆
′
2] = K[X1 + X2, X1X2, X2] = K[X1, X2].

Moreover, for n = 3 we get ∆′3 = (X2X
2
3 )+ + e3,3, so that we have K[X ]A3 =

K[e3,1, e3,2, e3,3, (X2X
2
3 )+] = K[X ]S3 ⊕ (X2X

2
3 )+ ·K[X ]S3 .

For n = 4 we get ∆′4 = (X2X
2
3X

3
4 )+ + (X1X2X3X

3
4 )+ + (X2

2X
2
3X

2
4 )+ + 2 ·

(X1X2X
2
3X

2
4 )+, where the associated orbit lengths are [12, 4, 4, 6], respectively;

since the lengths of the associated S4-orbits are [24, 4, 4, 6], respectively, we
conclude that the latter three summands belong to K[X ]S4 , so that we have
K[X ]A4 = K[e4,1, . . . , e4,4, (X2X

2
3X

3
4 )+] = K[X ]S4 ⊕ (X2X

2
3X

3
4 )+ ·K[X ]S4 .

iii) Note that if char(K) 6= 2 then we have ∆′n · (s− 1) = −∆n ∈ K[X ], hence
(∆′n ·f)s−1 = −∆n ·f , for f ∈ K[X ]Sn , implying that (∆′n ·K[X ]Sn)∩K[X ]Sn =
{0} in this case as well. Thus, letting K be arbitrary again, in any case we have
K[X ]An = K[X ]Sn ⊕∆′n ·K[X ]Sn as K[X ]Sn-modules.

We conclude that K[X ]An is not a polynomial algebra, for n ≥ 3: Assume
to the contrary it is. We have

(
n
2

)
> n for n ≥ 4, and

(
3
2

)
= 3, so that

K[X ]And = K[X ]Snd for d < n, and for d = n ≥ 4, while K[X ]A3
3 = K[X ]S33 ⊕

〈∆′3〉K . This entails that minimal generating set of K[X ]An can be chosen to
contain {en,1, . . . , en.n}, where polynomiality implies that the latter already is
a generating set, a contradiction. (Alternatively, since An is not generated by
pseudoreflections, in fact does not contain any, by Serre’s Theorem K[X ]An

cannot possibly be a polynomial algebra, but we have not proven this.)
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(9.5) Special partitions. We now turn to arbitrary permutation groups, for
which we need a few preparations from the combinatorics of partitions first:

a) Let Pd be the set of partitions of d ∈ N0, that is the set of non-increasing
sequences λ = [λ1, λ2, . . .], where λi ∈ N0 such that

∑
i≥1 λi = d; then l = lλ :=

max{i ∈ N;λi ≥ 1} is called the length of λ,

A partition λ ∈ Pd, where d ≥ 1, is called special or column 2-regular, if
λi − λi+1 ≤ 1 for all i ≥ 1; equivalently we have λl = 1 and λi − λl ≤ l − i, for
i ∈ {1, . . . , l}. A special partition λ of length l = lλ ≤ k is called k-special, for

k ∈ N0. Then we have d =
∑l
i=1 λi ≤

∑l
i=1(l − i+ 1) =

∑l
i=1 i =

(
l+1
2

)
. Note

that we have l ≤ d anyway, where for d = l the partition [1l] is l-special, and
for d =

(
l+1
2

)
the staircase partition [l, l − 1, . . . , 1] is l-special as well.

If λ ∈ Pd, where d ≥ 1, is not special, then s = sλ := min{i ∈ N;λi− λi+1 ≥ 2}
is well-defined, and we have s ∈ {1, . . . , l}. Using this, the partition λ :=
[λ1 − 1, . . . , λs − 1, λs+1, . . . , λl] ∈ Pd−s, obtained from λ by decreasing each of
its first s parts by 1, is called the (s-)reduction of λ; we write λ → λ. Note
that λ and λ have the same length, and that λ can be recovered from λ together
with s. Since 1 ≤ λs−λs+1 < λs−λs+1, iterating reduction after finitely many
steps ends up with a special partition; see also Table 4.

Let λ ∈ Pd and µ ∈ Pe. Then we have λEµ in the dominance partial order,
if
∑i
j=1 λj ≤

∑i
j=1 µj for all i ≥ 1; in particular we have d ≤ e. Note that

λEµEλ implies λ = µ, so that this indeed defines an anti-symmetric, reflexive,
and transitive relation on the set P :=

∐
d∈N0

Pd of all partitions, which is
well-founded, that is it does not have infinite strictly descending chains.

b) We now consider combinations rather than partitions: Let α = [α1, . . . , αn] ∈
Nn0 , and let σ = σα ∈ Sn such that ασ := [α1σ−1 , . . . , αnσ−1 ] ∈ Nn0 is non-
increasing, that is we have α1σ−1 ≥ · · · ≥ αnσ−1 ≥ 0; note that ασ is independent
of the ordering of the parts of α, but σ is uniquely defined if and only if α has
pairwise distinct parts. We may consider ασ as a partition of d = dα :=

∑n
i=1 αi.

Then α ∈ Nn0 is called (k-)special if ασ ∈ Pd is (k-)special; note that being
(k-)special is independent of the ordering of the parts of α. If ασ is not special,

and has s-reduction ασ ∈ Pd−s, where s = sα := sασ , then α := (ασ)σ
−1 ∈ Nn0 ,

is called the (s-)reduction of α. Note that, since s-reduction affects precisely
the s largest entries of α, so that α has its s largest entries at the same positions,
the reduction of α is well-defined independently of the choice of σ, and α can
be recovered from α together with s; moreover we have αg = αg for all g ∈ Sn.

Let α, β ∈ Nn0 . Then we have αEβ in the dominance relation, if for the asso-
ciated partitions we have ασα E βσβ . The dominance relation again is reflexive
and transitive, but neither anti-symmetric nor symmetric. Letting α ≡ β if
αEβEα, that is ασα = βσβ , or equivalently β is obtained from α by reordering
its parts, we get an equivalence relation; hence the induced dominance partial
order on the set of equivalence classes is well-founded as well. Note that the
property of being (k-)special only depends on equivalence classes.
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Table 4: Special partitions for d ≤ 7.

d l special non-special

1 1 [1] ← [n] (n ≥ 2)
2 2 [12] ← [n2] (n ≥ 2)
3 2 [2, 1] ← [n, 1] (n ≥ 3)

← [n, n− 1]← [n+m,n− 1] (m ≥ 1)
3 3 [13] ← [n3] (n ≥ 2)
4 3 [2, 12] ← [n, 12] (n ≥ 3)

← [n, (n− 1)2]← [n+m, (n− 1)2] (m ≥ 1)
5 3 [22, 1] ← [n2, 1] (n ≥ 3)

← [n2, n− 1]← [(n+m)2, n− 1] (m ≥ 1)
6 3 [3, 2, 1] ← [n, 2, 1] (n ≥ 4)

← [n, n− 1, 1]
← [n, n− 1, n− 2]

4 4 [14]
5 4 [2, 13] ← [3, 13]← [4, 13]
6 4 [22, 12]
7 4 [23, 1]
7 4 [3, 2, 12]
5 5 [15]
6 5 [2, 14] ← [3, 14]
7 5 [2, 15]
7 5 [22, 13]
6 6 [16]
7 7 [17]

(9.6) Permutation groups. Let K be a field, let X := {X1, . . . , Xn} where
n ∈ N, let Sn act naturally on K[X ], and let G ≤ Sn be a permutation group,
with respect to which orbits sums on monomials are formed in the sequel. For
α = [α1, . . . , αn] ∈ Nn0 let Xα :=

∏n
i=1X

αi
i ∈ Xdα be the associated monomial,

where dα :=
∑n
i=1 αi ∈ N0.

Lemma. Let α, β ∈ Nn0 , where α 6= 0 is non-special, let s = sα ∈ {1, . . . , n}.
a) Then the monomial X β occurs in (Xα)+ · en,s ∈ K[X ] only if β E α.
b) The monomial X β belongs to theG-orbit of Xα, that is X β occurs in (Xα)+ ∈
K[X ], if and only if β ≡ α and X β occurs in (Xα)+ · en,s ∈ K[X ]; in this case
X β occurs precisely once in either sum.

Proof. a) Since X β occurs in (Xα)+ ·
∑
J⊆{1,...,n},|J|=s(

∏
j∈J Xj), there is J =

{j1, . . . , js} ⊆ {1, . . . , n} of cardinality s, and g ∈ G such that β = αg+δJ ∈ Nn0 ,
where δJ ∈ Nn0 is the associated indicator function. Letting σ = σα ∈ Sn we get
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βg
−1σ = ασ + δJ σ−1g . Since the the truth of the assertion β E α only depends

on the equivalence classes α and β belong to, we may assume that both σ = 1
and g = 1, so that the parts of α are already sorted non-increasingly, and
β = [β1, . . . , βn] is obtained from α by first decreasing the entries {1, . . . , s}
by 1, and subsequently increasing the entries J by 1 again. Thus we have
βi = αi − 1 + δi,J if i ≤ s, and βj = αj + δj,J if j ≥ s+ 1.

We derive a suitable sorting permutation τ = σβ ∈ Sn: We have α1 ≥ · · · ≥
αs ≥ αs+1 ≥ · · · ≥ αn, where αs ≥ αs+1 + 2. For i ≤ s and j ≥ s + 1 we have
αi ≥ βi ≥ αi − 1 ≥ αs − 1 ≥ αs+1 + 1 ≥ αj + 1 ≥ βj ≥ αj . Thus, whenever
k < l such that αk > αl, distinguishing the cases l ≤ s, and s + 1 ≤ k, and
k ≤ s < s+ 1 ≤ l, we conclude that βk ≥ βl. Hence τ can be chosen such that
α has constant entries on each τ -orbit, that is ατ = α, so that we may assume
τ = 1, in other words the parts of β are already sorted non-increasingly.

Hence for i ≤ s we have
∑i
k=1 βk ≤

∑i
k=1 αk, where moreover

∑s
k=1 βk =∑s

k=1 βk =
∑s
k=1(αk−1)+ |{1, . . . , s}∩J |. For j ≥ s+1 we have

∑j
k=s+1 βk =∑j

k=s+1 αk+|{s+1, . . . , j}∩J |, thus
∑j
k=1 βk =

∑s
k=1(αk−1)+|{1, . . . , s}∩J |+∑j

k=s+1 αk+ |{s+1, . . . , j}∩J | = (
∑j
k=1 αk)−s+ |{1, . . . , j}∩J | ≤

∑j
k=1 αk.

b) If X β belongs to the G-orbit of Xα, that is β = αg for some g ∈ G, then β
is obtained from α by reordering its parts, that is β ≡ α. Moreover, we have
β + δJ = β = αg = (α + δI)g = αg + δgI = αg + δIg−1 , where I ⊆ {1, . . . , n}
consists of the positions of the s largest entries of α, such that α still has its s
largest entries at the positions I, and J ⊆ {1, . . . , n} consists of the s largest
entries of β, so that β still has its s largest entries at the positions J . Hence we
conclude that αg = β and I = J g, so that the monomial X β occurs precisely
once, and thus without any cancellation, in the expansion of (Xα)+ · en,s.
Conversely, if X β occurs in (Xα)+ · en,s, then β is obtained from α by first
decreasing the s largest entries I of α by 1, so that α still has its s largest
entries at the positions I, subsequently permuting the entries by some g ∈ G,
and finally increasing some s entries J by 1 again. If β ≡ α, that is β is
a reordering of α, and thus β is a reordering of α, then we conclude that J
consists of the s largest entries of β, so that β still has its s largest entries at
the positions J . Thus we infer J g = I, so that β = αg. ]

Theorem: Göbel’s degree bound [Göbel, 1995]. Then the set {en,n}
.
∪

{(Xα)+;α ∈ Nn0 (n− 1)-special} is a homogeneous K-algebra generating set of
K[X ]G, consisting of elements of degree at most max{n,

(
n
2

)
}.

Proof. Let R ⊆ K[X ] be the K-algebra generated by {en,n}
.
∪ {(Xα)+;α ∈

Nn0 (n− 1)-special}; then we have R ⊆ K[X ]G. To show the converse inclusion,
let 0 6= α = [α1, . . . , αn] ∈ Nn0 be not (n− 1)-special; we show that (Xα)+ ∈ R
by induction on d = dα =

∑n
i=1 αi, and for fixed d on the dominance partial

order on the set of equivalence classes on Nn0 :
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Let first αi ≥ 1 for all i ∈ {1, . . . , n}. This implies that en,n =
∏n
i=1Xi | Xα,

thus we have (Xα)+ = en,n · (X β)+ ∈ K[X ]G, where β = [α1 − 1, . . . , αn − 1].
Since dβ = d− n we by induction have (X β)+ ∈ R, and since en,n ∈ R anyway
we infer that (Xα)+ ∈ R as well.

Hence let now α have at most n − 1 non-zero parts. Since α is not (n − 1)-
special, it cannot be special at all. Thus let s = sα ∈ {1, . . . , n − 1}, and let
f := (Xα)+− (Xα)+ ·en,s ∈ K[X ]G. Since G permutes the subsets of {1, . . . , n}
of cardinality s, the summands of en,s =

∑
J⊆{1,...,n},|J |=s X δJ consist of a

union of G-orbits, where since s ≤ n − 1 the indicator functions δJ occurring
are (n − 1)-special, thus we have en,s ∈ R. Since dα = d − s we by induction
have (Xα)+ ∈ R, so that (Xα)+ · en,s ∈ R as well.

Finally, for all monomials X β occurring in f , where β ∈ Nn0 (such that dβ = dα),
by the above lemma we have βEα and β 6≡ α, that is the equivalence class of β
is strictly smaller than the equivalence class of α, with respect to the dominance
partial order. Thus by induction we have f ∈ R. ]

Corollary. {(Xα)+;α ∈ Nn0 (n− 1)-special} is a homogeneous generating set of
K[X ]G as K[X ]Sn -module, consisting of elements of degree at most max{n,

(
n
2

)
}.

Proof. Letting R ⊆ K[X ]G be the K[X ]Sn -module generated by {(Xα)+;α ∈
Nn0 (n− 1)-special}, recalling that K[X ]Sn = K[en,1, . . . , en,n], and noting that
the reduction steps essentially consist of dividing off elementary symmetric poly-
nomials, we may proceed entirely similarly to the above proof, ]

(9.7) Example: Symmetric and alternating polynomials. Let K be a
field, let X := {X1, . . . , Xn} where n ≥ 2, and let Sn act naturally on K[X ]. We
apply Göbel’s Theorem to the symmetric and alternating groups: The column
partition [1k] and the staircase partition λk := [k, k−1, . . . , 1] are (n−1)-special,
for k ∈ {1, . . . , n− 1}.
a) Let G = Sn. Since Sn acts n-transitively, we only have to consider partitions

rather than combinations. We get (X [1k])+ = (
∏k
i=1Xi)

+ = en,k, thus Göbel’s
generating set encompasses the generating set {en,1, . . . , en,n} of K[X ]Sn ; in
particular, for n ≥ 4 Göbel’s degree bound is not sharp.

But we get additional (actually unnecessary) generators: For example, the stair-

case partition λk yields X λk =
∏k
i=1X

k−i+1
i , having degree

(
k+1

2

)
. Since λk has

pairwise distinct non-zero parts, we have StabSn(X λk) = S{k+1,...,n} ∼= Sn−k,

and hence (X λk)+ = TrSnS{k+1,...,n}
(X λk) is the sum over an orbit of length

[Sn : Sn−k] = n!
(n−k)! =

∏k−1
i=0 (n−i); for example we recover (X λ1)+ = (X [1])+ =

en,1, while X λn−1 gives rise to an Sn-regular orbit.

b) Let G = An. Then for any combination µ having multiple parts (in-
cluding its zero parts) we infer that StabSn(X µ) is not contained in An, so



57

that [StabSn(X µ) : StabAn(X µ)] = 2, and hence (X µ)+ = TrAnStabAn (Xµ)(X
µ) =

TrSnStabSn (Xµ)(X
µ), saying that actually (X µ)+ ∈ K[X ]Sn .

The only special partition with n pairwise distinct parts equals λ := λn−1 =
[n− 1, n− 2, . . . , 2, 1, 0], giving rise to monomials of degree

(
n
2

)
. Since An acts

(n − 2)-transitively, it suffices to consider the combinations λ and λ′ := [n −
1, n− 2, . . . , 2, 0, 1]; note that this also holds for n = 2. We have StabSn(X λ) =
StabSn(X λ′) = {1}, so that X λ and X λ′ give rise to An-regular orbits, which
are joined under Sn-action, implying that (X λ)+ + (X λ′)+ ∈ K[X ]Sn .

Hence, using K[X ]Sn = K[en,1, . . . , en,n], we get the K-algebra generating set

{en,1, . . . , en,n}
.
∪ {(X λ)+} of K[X ]An ; in particular, Göbel’s degree bound is

sharp. Since StabSn((X λ)+) = An we infer that K[X ]Sn∩(X λ)+·K[X ]Sn = {0},
so that K[X ]An = K[X ]Sn ⊕ (X λ)+ ·K[X ]Sn as K[X ]Sn -modules; see (9.4).

For example, for n = 2 we get (X [1])+ = X+
1 = X1, and for n = 3 we get

(X [2,1])+ = (X2
1X2)+ = X2

1X2 +X2
2X3 +X2

3X1.

(9.8) Example: Transitive groups of degree 4. Let K be a field, let X :=
{X1, . . . , X4}, and let S4 act naturally on K[X ]. The transitive subgroups of
G ≤ S4 are (up to conjugation) given as {C4, V4, D8,A4,S4}, with inclusions
C4 ≤ D8 and V4 ≤ D8 ∩ A4. The 3-special partitions λ, which hence fulfill
dλ ≤ 6, are given as {[1], [12], [13], [2, 1], [2, 12], [22, 1], [3, 2, 1]}; see Table 4. The
orbit lengths of the various groups G on monomials associated with the various
3-special combinations are given in Table 5, where since S4 acts 4-transitively, it
suffices to consider partitions λ, rather than combinations, to provide the orbits
of S4, and to describe how the latter split into G-orbits.

Molien’s formula yields the associated Hilbert series, and explicit checking up
to degree 6 (computing over Z, and omitting the details) yields the follow-
ing algebra generating sets, consisting of orbit sums associated with suitable
3-special combinations, as well as the R-module structure of the invariant alge-
bras in question, where R := K[X ]S4 = K[e4,1, . . . , e4,4] and H := HK[X ]S4 =∏4
i=1

1
1−T i ∈ Q(T ); note that Göbel’s degree bound in general is not sharp:

i) We have HK[X ]A4 = (1 + T 6) · H ∈ Q(T ), and by (9.7) we have K[X ]A4 =

R[(X3
1X

2
2X3)+] = R⊕ (X3

1X
2
2X3)+ ·R.

ii) Let D8 := 〈(1, 2)(3, 4), (1, 3)〉. We have HK[X ]D8 = (1 + T 2 + T 4) · H, and

K[X ]D8 = R ⊕ f · R ⊕ f2 · R, where f := (X1X3)+ = X1X3 + X2X4, and
{e4,1, . . . , e4,4, f} ⊆ SD8 is a minimal homogeneous K-algebra generating set.

iii) Let V4 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉. We have HK[X ]V4 = (1 + 2T 2 + 2T 4 +

T 6) · H, and K[X ]V4 =
⊕

p∈G pR, where G = {1, g, f, g2, f2, g2f}, and g :=

(X1X2)+ = X1X2 + X3X4, and f := (X1X3)+ = X1X3 + X2X4. Moreover,
if char(K) 6= 2 then {e4,1, e4,2, e4,3, f, g} is a minimal homogeneous K-algebra
generating set, while if char(K) = 2 then we have to take {e4,1, . . . , e4,4, f, g}.
iv) Let C4 := 〈(1, 2, 3, 4)〉. We have HK[X ]C4 = (1 + T 2 + T 3 + 2T 4 + T 5) ·H.
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Table 5: Transitive groups of degree 4.

λ dλ StabS4(λ) S4 A4 D8 V4 C4

[1] 1 S3 4 4 4 4 4
[12] 2 C2

2 6 6 4, 2 2, 2, 2 4, 2
[13] 3 S3 4 4 4 4 4
[2, 1] 3 C2 12 12 8, 4 4, 4, 4 4, 4, 4
[2, 12] 4 C2 12 12 8, 4 4, 4, 4 4, 4, 4
[22, 1] 5 C2 12 12 8, 4 4, 4, 4 4, 4, 4
[3, 2, 1] 6 {1} 24 12, 12 8, 8, 8 4, 4, 4, 4, 4, 4 4, 4, 4, 4, 4, 4

orbits 7 8 13 20 19

Then for char(K) 6= 2 we get K[X ]C4 =
⊕

p∈G pR, for G = {1, f, g, f2, h, fg},
and f := (X1X3)+ = X1X3 + X2X4, and g := (X2

1X2)+ = X2
1X2 + X2

2X3 +
X2

3X4 + X2
4X1, and h := (X2

1X2X3)+ = X2
1X2X3 + X2

2X3X4 + X2
3X4X1 +

X2
4X1X2. Finally, {e4,1, . . . , e4,4, f, g, h} is a minimal homogeneous K-algebra

generating set; hence Noether’s degree bound is sharp in this case.

If char(K) = 2, we observe that z := (X2
1X

2
2X3)+ = X2

1X
2
2X3 + X2

2X
2
3X4 +

X2
3X

2
4X1 +X2

4X
2
1X2 is an indecomposable homogeneous invariant of degree 5,

hence Noether’s degree bound does not hold in this case. We get K[X ]C4 =∑
p∈G p · R, where G = {1, f, g, f2, h, z, fh}; actually, K[X ]C4 is not Cohen-

Macaulay, see (17.5), so that K[X ]C4 is not a free graded R-module. Moreover,
{e4,1, . . . , e4,4, f, g, h, z} is a minimal homogeneous K-algebra generating set.

10 Application: Galois groups

We indicate how invariant theory helps in the determination of Galois groups.

(10.1) Discriminants. LetK be a field, let f := Xn+
∑n
i=1 an−iX

n−i ∈ K[X]
be a monic polynomial of degree n ∈ N, let f =

∏n
i=1(X − xi) ∈ L[X], where

K ⊆ K(x1, . . . , xn) = L is a splitting field of f , let X := {X1, . . . , Xn}, and let
Sn act naturally on L[X ]; hence Sn also acts on L[X , X] by fixing X.

Using the L-algebra homomorphism εf : L[X , X]→ L[X] given by X 7→ X, and
Xi 7→ xi for i ∈ {1, . . . , n}, for the elementary symmetric polynomials en,i ∈
K[X ] we get εf (en,i) = en,i(x1, . . . , xn) = (−1)ian−i ∈ K, for i ∈ {1, . . . , n}.
Thus the elementary symmetric polynomials in the roots {x1, . . . , xn} of f can
be expressed in the coefficients {a0, . . . , an−1} of f alone, without knowing the
roots, and actually are elements of K, which typically is considerably smaller
than the splitting field L. In particular, since ∆2

n ∈ K[X ]Sn , the discriminant
of f given as ∆(f) := εf (∆2

n) = ∆2
n(x1, . . . , xn) =

∏
1≤i<j≤n(xj − xi)2 ∈ K can
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be expressed in the coefficients of f alone; indeed we have ∆(f) = 0 if and only
if f has a multiple root.

Example. For n = 2 and writing f = X2 +pX+q = (X−x1)(X−x2) ∈ L[X],
we get e2,1(x1, x2) = −p and e2,2(x1, x2) = q, so that we recover the well-known
discriminant ∆(f) = ∆2

2(x1, x2) = (e2
2,1 − 4e2,2)(x1, x2) = p2 − 4q.

For n = 3, if char(K) 6= 3, writing f = X3 + cX2 + aX + b ∈ K[X] and
applying the K-algebra automorphism of K[X] given by X 7→ X − c

3 , we get

f 7→ (X− c
3 )3 + c(X− c

3 )2 +a(X− c
3 ) + b = X3 + (− c

2

3 +a) ·X+ (2c3

27 −
ac
3 + b).

Thus we may assume that f = X3 +aX+b = (X−x1)(X−x2)(X−x3) ∈ L[X]
is in Weierstraß form; in other words we may assume that x1 + x2 + x3 =
e3,1(x1, x2, x3) = 0. Hence we get e3,2(x1, x2, x3) = a and e3,3(x1, x2, x3) =
−b, so that we recover the well-known discriminant ∆(f) = ∆2

3(x1, x2, x3) =
(−4e3

3,2 − 27e2
3,3)(x1, x2, x3) = −4a3 − 27b2.

(10.2) Galois groups. Let K be a field, let f ∈ K[X] be monic and separable
of degree n ∈ N, that is f has n pairwise distinct roots {x1, . . . , xn} in a splitting
field K ⊆ L, or equivalently ∆(f) ∈ K∗, or equivalently gcd(f, ∂f∂X ) ∈ K∗. Then
letting A := AutK(L), by Artin’s Theorem the field extension K ⊆ L is finite
Galois, that is LA = K.

Moreover, let X := {X1, . . . , Xn}, and let Sn act naturally on L[X ]. Since A
acts faithfully on the roots of f , the group A can be identified with a subgroup
of Sn, such that εf : X → {x1, . . . , xn} is an A-isomorphism; note that A ≤ Sn
is transitive if and only if f is irreducible, and that A ≤ Sn is only unique
up to Sn-conjugation. In particular, if F ∈ K[X ]A, then we have (εf (F ))a =
εf (F a) = εf (F ) ∈ L, for all a ∈ A, so that actually εf (F ) ∈ LA = K.

Let H ≤ G ≤ Sn, then for F ∈ K[X ]H let the associated (relative) resol-
vent polynomial be given as the relative norm ρGH(F ) := NG

H (X − F ) =∏
g∈H\G(X − F )g =

∏
g∈H\G(X − F g) ∈ K[X , X]G = K[X ]G[X], where g

runs through a set of representatives for the right cosets of H in G; hence as a
polynomial in X the resolvent ρGH(F ) is monic of degree [G : H].

Proposition: [Stauduhar, 1973]. Assume that A ≤ G, and that the re-
solvent ρ := εf (ρGH(F )) =

∏
g∈H\G(X − F g(x1, . . . , xn)) ∈ K[X] is separable.

Then we have F g(x1, . . . , xn) ∈ K if and only if A ≤ Hg. In particular, A is
G-conjugate to a subgroup of H if and only if ρ has a root in K.

Proof. Since ρ is separable, its roots F g(x1, . . . , xn) ∈ L, where g ∈ H\G, are
pairwise distinct. Moreover, comparing the action of a ∈ A on {x1, . . . , xn} and
on X we get F (x1, . . . , xn)a = F (xa1 , . . . , x

a
n) = F (x1a, . . . , xna), which equals

F (X1a−1 , . . . , Xna−1)(x1, . . . , xn) = F a(X1, . . . , Xn)(x1, . . . , xn), which in turn
equals F a(x1, . . . , xn); hence we have F (x1, . . . , xn)a = F a(x1, . . . , xn) ∈ L.
Thus for g ∈ G we get F g(x1, . . . , xn)a = F ga(x1, . . . , xn) = F

ga·g(x1, . . . , xn).
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Hence, if gA ≤ H, then we have F g(x1, . . . , xn)a = F g(x1, . . . , xn) for all a ∈ A,
thus F g(x1, . . . , xn) ∈ LA = K. Conversely, if F g(x1, . . . , xn) ∈ K, then for all
a ∈ A we have F g(x1, . . . , xn) = F

ga·g(x1, . . . , xn), thus ga ∈ H. ]

Corollary. Let char(K) 6= 2 and n ≥ 2. Then we have A ≤ An if and only if
the discriminant ∆(f) ∈ K∗ has a square root in K.

Proof. Since ∆n · g = sgn(g) · ∆n for all g ∈ Sn, we have ∆n ∈ K[X ]An ,
and we get ρSnAn(∆n) = (X −∆n)(X + ∆n) = X2 −∆2

n ∈ K[X ]Sn [X], so that

εf (ρGH(∆n)) = X2 − ∆(f) ∈ K[X], which is separable. Hence the assertion
follows. Note that since An E Sn is normal we have or have not A ≤ An
independently of the chosen identification. ]

A few comments are in order: If F g(x1, . . . , xn) ∈ K, where g ∈ G, then gA ≤ H
says that reordering the roots along [x1, . . . , xn]g

−1

yields an identification of
AutK(L) with a subgroup of H, instead of a G-conjugate of H.

Note that for g ∈ StabG(F ) we have εf (F g) = εf (F ) anyway, so that the separa-
bility condition implies that necessarily StabG(F ) = H. Homogeneous polyno-

mials F having the latter property always exist: Letting f :=
∏n−1
i=1 X

n−i
i ∈

Xd of degree d =
(
n
2

)
, which is associated with the (n − 1)-special parti-

tion [n − 1, n − 2, . . . , 1], then we have StabSn(f) = {1}, entailing that F :=
f+ = TrH(f) =

∑
g∈H f

g ∈ K[X ], belonging to a regular H-orbit, fulfills
StabSn(F ) = H (although this choice might not be computationally efficient).

Still, this property does not imply that the separability condition is fulfilled, but
this can always be remedied by applying Tschirnhausen transformations to
the roots of f ; recall that the Galois group looked for depends only on L, but
not on a specific choice of a polynomial having L as a splitting field.

(10.3) Example: Galois groups in degree 3. Let f ∈ Q[X] be monic,
separable, and have integral coefficients. Then the roots of f are algebraic
integers, and if the check polynomial F has integral coefficients as well, then
the roots of the associated resolvent are algebraic integers, too. Thus in this
case, since Z is integrally closed, Stauduhar’s criterion amounts to looking for
integral roots. If additionally f is irreducible, then A = Aut(L), where L is a
splitting field of f , acts transitively on the roots of f .

Let now f have degree 3. Then f is irreducible if and only if it has no root in Q,
or equivalently if it has no root in Z, where any root in Z divides f(0). In this
case A can be identified with a transitive subgroup of S3, which are {A3,S3}.
Hence A is determined by a consideration of ∆(f) alone.

i) Let f := X3 +X2− 2X − 1: since f(±1) = ∓1 we infer that f is irreducible.
From e3,1 = −1, and e3,2 = −2, and e3,3 = 1 we get ∆(f) = 72, thus G = A3.

ii) Let f := X3 + 2; since f has no root in Q, we conclude that f is irreducible.
From e3,1 = 0, and e3,2 = 0, and e3,3 = −2 we get ∆(f) = −22 ·33, thus G = S3.
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Actually, we may also argue as follows: The polynomial f has a unique root in
R, so that it additionally has a pair of complex conjugate roots; thus complex
conjugation induces an involutory automorphism of L, so that we have G = S3.

(10.4) Example: Galois groups in degree 4. Let f ∈ Q[X] be monic,
irreducible, have integral coefficients, and have degree 4. Hence A = Aut(L),
where L is a splitting field of f , can be identified with a transitive subgroup of
S4, which are {C4, V4, D8,A4,S4}, with inclusions C4 ≤ D8 and V4 ≤ D8 ∩A4.
We have the following check polynomials; see (9.8):

i) For G = D8 let FD := (X1X3)+ = X1X3+X2X4; then we have StabS4(FD) =

D8, and its S4-orbit is {FD, F ′D, F ′′D}, where F ′D = F
(1,4)
D = X1X2 + X3X4

and F ′′D = F
(1,2)
D = X1X4 + X2X3. Hence we have ρS4G (FD) ∈ K[X ]S4 [X],

where e3,1(FD, F
′
D, F

′′
D) = e4,1, and e3,2(FD, F

′
D, F

′′
D) = e4,1e4,3 − 4e4,4, and

e3,3(FD, F
′
D, F

′′
D) = e2

4,1e4,4 − 4e4,2e4,4 + e2
4,3.

ii) For G = V4 let FV := (X1X2)+ = X1X2 + X3X4 = F ′D; then we have
StabA4

(FV ) = StabD8
(FV ) = V4, and its A4-orbit is {FV , F ′V , F ′′V }, where F ′V =

F
(1,2,3)
V = F ′′D and F ′′V = F

(1,3,2)
V = FD. Hence we have ρA4

G (FV ) = ρS4D8
(FD),

and e3,i(FV , F
′
V , F

′′
V ) = e3,i(FD, F

′
D, F

′′
D), for i ∈ {1, . . . , 3}.

iii) For G = C4 let FC = (X2
1X2)+ = X2

1X2 + X2
2X3 + X2

3X4 + X2
4X1; then

we have StabD8(FC) = C4, and its D8-orbit is {FC , F ′C}, where F ′C = F
(1,3)
C =

X2
1X4 +X2

2X1 +X2
3X2 +X2

4X3.

Moreover, let F̃C := (X2
1X2X3)+ = X2

1X2X3 +X2
2X3X4 +X2

3X4X1 +X2
4X1X2;

then we have StabD8
(F̃C) = C4, and its D8-orbit is {F̃C , F̃ ′C}, where F̃ ′C =

F̃
(1,3)
C = X2

3X2X1 +X2
2X1X4 +X2

1X4X3 +X2
4X3X2. ]

Here are a few examples, see Table 6: For the various polynomials f we record
the discriminant ∆(f) = εf (∆2

4) ∈ Z, and the factorization of the resolvent

ρ(f) := εf (ρS4D8
(FD)) = εf (ρA4

V4
(FV )) ∈ Q[X].

i) Let f := X4 + X + 1; then reduction modulo 2 shows that f is irreducible.
From ∆(f) and ρ(f) we conclude that A 6≤ A4 and A 6≤ D8, hence A = S4.

ii) Let f := X4 + 8X+ 12; then reduction modulo 5 shows that f does not split
into quadratic factors, since f has no root in Q implying that f is irreducible.
From ∆(f) and ρ(f) we conclude that A ≤ A4, but A 6≤ V4, hence A = A4.

iii) Let f := X4 + 1; then we have f(X−1) = X4−4X3 + 6X2−4X+ 2, hence
by the Eisenstein criterion f is irreducible. From ∆(f) and ρ(f) we conclude
that A ≤ A4 and A ≤ V4, hence A = V4. Note that since V4 EA4 is normal the
resultant it necessarily splits.

Actually, f is the 8-th cyclotomic polynomial, which is well-known to be irre-
ducible, having splitting field L = Q(ζ8) of degree 4, where A ∼= Z∗8 ∼= V4, being
generated by ζ8 7→ −ζ8 and ζ8 7→ ζ−1

8 .

iv) Let f := X4 − 2; then by the Eisenstein criterion f is irreducible. From
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Table 6: Galois groups in degree 4.

f ∆(f) ρ(f) A

X4 +X + 1 229 X3 − 4X − 1 S4

X4 + 8X + 12 212 · 34 X3 − 48X − 64 A4

X4 + 1 28 X(X + 2)(X − 2) V4

X4 − 2 −211 X(X2 + 8) D8, C4

X4 +X3 +X2 +X + 1 53 (X − 1)(X2 +X − 1) D8, C4

∆(f) and ρ(f) we conclude that A 6≤ A4, but A is a subgroup of precisely one

of {D8, D
(1,4)
8 , D

(1,2)
8 }; we have to determine which one, and whether A ∼ C4:

The roots of f are xi := ζi4 ·
4
√

2 ∈ C, for i ∈ {1, . . . , 4}. This yields εf (FD) = 0,
while εf (F ′D) = −2ζ4 ·

√
2, and εf (F ′′D) = 2ζ4 ·

√
2, entailing A ≤ D8. Moreover,

we get εf (F̃C) = −8ζ4 and εf (F̃ ′C) = 8ζ4, thus the resultant (X+8ζ4)(X−8ζ4) =
X2 + 64 is irreducible over Q. Hence we have A 6≤ C4, entailing A = D8. (We
get εf (FC) = 0 and εf (F ′C) = 0, which does not help.)

v) Let f := X4 + X3 + X2 + X + 1; then reduction modulo 2 shows that f is
irreducible. From ∆(f) and ρ(f) we conclude that A 6≤ A4, but A is a subgroup

of precisely one of {D8, D
(1,4)
8 , D

(1,2)
8 }; we have to determine which one, and

whether A ∼ C4:

The roots of f are xi := ζi5 ∈ C, for i ∈ {1, . . . , 4}. This yields εf (FD) = ζ5 +ζ4
5 ,

while εf (F ′D) = ζ2
5 +ζ3

5 , and εf (F ′′D) = 2. Hence we have A ≤ D(1,2)
8 , and letting

[x1, . . . , x4] = [ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 ](1,2)·(1,2)(3,4) = [ζ5, ζ

2
5 , ζ

4
5 , ζ

3
5 ] we get A ≤ D8.

Moreover, we get εf (FC) = −1 and εf (F ′C) = 4, thus the resultant (X+1)(X−4)
is separable, and has a root in Q; since C4 ED8 is normal it necessarily splits.
Thus we have A ≤ C4, entailing A = C4. (We get εf (F̃C) = −1 and εf (F̃ ′C) =
−1, which does not help.)

Actually, f is the 5-th cyclotomic polynomial, which is well-known to be irre-
ducible, having splitting field L = Q(ζ5) of degree 4, where A ∼= Z∗5 ∼= C4, being
generated by ζ5 7→ ζ2

5 , which is reflected by the adjusted ordering of the roots.

11 Application: Self-dual codes

We indicate how invariant theory helps in coding theory.

(11.1) Weight enumerators. a) Let Fq be the finite field with q elements,
and let n ∈ N. Letting v = [x1, . . . , xn] ∈ Fnq and w = [y1, . . . , yn] ∈ Fnq , then
d(v, w) := |{i ∈ {1, . . . , n};xi 6= yi}| ∈ {0, . . . , n} is called their Hamming
distance. This defines a discrete metric on Fnq , that is we have positive
definiteness and symmetry, and the triangle inequality holds.
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Let 0n := [0, . . . , 0] ∈ Fnq , for v = [x1, . . . , xn] ∈ Fnq let wt(v) := d(v, 0n) ∈
{0, . . . , n} be the Hamming weight of v, let supp(v) := {i ∈ {1, . . . , n};xi 6=
0} be the support of v; hence we have wt(v) = |supp(v)|. Moreover, we have
translation invariance d(v+ u,w+ u) = d(v, w), for all u, v, w ∈ Fnq , thus we
have d(v, w) = d(v − w, 0n) = wt(v − w).

b) An Fq-subspace C ≤ Fnq is called a linear code of length n over Fq; if
q = 2 or q = 3 then C is called binary and ternary, respectively. Let k :=
dimFq (C) ∈ {0, . . . , n} be the dimension of C; if k = 0 then C is called trivial.

If C is non-trivial then d(C) := min{d(v, w) ∈ N; v 6= w ∈ C} ∈ {1, . . . , n}
is called the minimum distance of C, and wt(C) := min{wt(v) ∈ N; 0n 6=
v ∈ C} ∈ {1, . . . , n} is called the minimum weight of C; if C is trivial we
let d(C) := ∞ and wt(C) := ∞. Then due to translation invariance we have
d := d(C) = wt(C), and C is called an [n, k, d]-code over Fq.

c) For i ∈ N0 let wi = wi(C) := |{v ∈ C; wt(v) = i}| ∈ N0. Hence we have
w0 ≤ 1, and wi = 0 for i ∈ {1, . . . ,wt(C) − 1}, and wwt(C) ≥ 1, and wi = 0 for

i ≥ n+ 1, and
∑n
i=0 wi = |C| = qd. We consider the sequence [w0, w1, . . . , wn]:

Let {X,Y } be indeterminates. Then the associated homogeneous generat-
ing function is given as WC :=

∑n
i=0 wiX

iY n−i =
∑
v∈C X

wt(v)Y n−wt(v) ∈
Z[X,Y ], being called the (Hamming) weight enumerator of C. Hence WC
is homogeneous of degree n and has non-negative coefficients. By dehomog-
enizing, that is specializing X 7→ X and Y 7→ 1, we obtain the (ordinary)
generating function WC(X, 1) =

∑n
i=0 wiX

i =
∑
v∈C X

wt(v) ∈ Z[X].

For example, for the trivial code C := {0n} ≤ Fnq we get WC = Y n; and for

the code C := Fnq by elementary counting we get wi =
(
n
i

)
(q − 1)i ∈ N0, thus

WC =
∑n
i=0

(
n
i

)
(q − 1)iXiY n−i = (Y + (q − 1)X)n.

(11.2) Duality. Let Fq be the finite field with q elements, and let n ∈ N. Let
〈·, ·〉 : Fnq × Fnq → Fq : [[x1, . . . , xn], [y1, . . . , yn]] 7→ x · ytr =

∑n
i=1 xiyi be the

standard Fq-bilinear form on Fnq ; it is symmetric and non-degenerate.

For a code C ≤ Fnq , the orthogonal space C⊥ := {v ∈ Fnq ; 〈v, w〉 = 0 ∈
Fq for all w ∈ C} ≤ Fnq with respect to the standard Fq-bilinear form is called
the associated dual code. Letting k := dimFq (C) ∈ {0, . . . , n}, we have
dimFq (C⊥) = n − k, and we have (C⊥)⊥ = C. If C ≤ C⊥ then C is called
weakly self-dual, and if C = C⊥ then C is called self-dual; in the latter case
we have n− k = dimFq (C⊥) = dimFq (C) = k, thus n = 2k is even.

The weight enumerators WC and WC⊥ are related by MacWilliams’s Theo-
rem [1963], saying that qk ·WC⊥ = WC(Y −X,Y +(q−1)X) ∈ Z[X,Y ]. In par-
ticular, if C = C⊥ is self-dual, then q

n
2 ·WC = WC(Y −X,Y +(q−1)X) ∈ Z[X,Y ].

For example, for C := {0n} ≤ Fnq we have C⊥ = Fnq , and indeed from WC = Y n

we recover WFnq = WC⊥ = WC(Y −X,Y + (q − 1)X) = (Y + (q − 1)X)n.
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(11.3) Invariants for weight enumerators. Let Fq be the finite field with
q elements, and let n ∈ N. By MacWilliams’s Theorem, phrased in terms of
invariant theory, the weight enumerator WC of a self-dual code C = C⊥ ≤ Fnq
is a non-zero homogeneous invariant of degree n in S := K[X,Y ], where K :=

Q(
√
q), with respect to the involutory map s := 1√

q ·
[
−1 1
q − 1 1

]
∈ GL2(K).

Moreover, WC has degree n = 2k, which is even. To exclude precisely the
homogeneous components of S of odd degree, we only allow for invariants with
respect to z := −E2 ∈ GL2(K). Thus we consider the group G := 〈s, z〉 ∼= V4:

Since both s and sz have eigenvalues {±1}, the group G is a reflection group.
Hence the invariant algebra SG is polynomial generated in degrees [d1, d2], where
from d1d2 = |G| = 4 and d1 + d2− 2 = σ(G) = |{s, sz}| = 2 we get d1 = d2 = 2.
Thus we have HSG = 1

(1−T 2)2 ∈ Q(T ); in particular, dimK(SG2 ) = 2 shows that

we may choose any pair of K-linearly independent homogeneous invariants of
degree 2 as basic invariants.

We have f := TrG〈z〉(qX
2) = Tr〈s〉(qX2) = (q + 1)X2 − 2XY + Y 2 ∈ SG, and

g := TrG〈z〉(qY
2) = Tr〈s〉(qY 2) = (q−1)2X2 +2(q−1)XY +(q+1)Y 2 ∈ SG, and

h := TrG〈z〉(−qXY ) = Tr〈s〉(−qXY ) = (q−1)X2−2(q−1)XY −Y 2 ∈ SG. Hence

letting f1 := 1
2q · (f +h) = X2−XY , and f2 := 1

q · (g+h) = (q−1)X2 +Y 2, we

infer that {f1, f2} is a set of basic invariants. Thus WC ∈ SG = K[f1, f2] can be
written uniquely as a polynomial in {X2−XY, (q−1)X2 +Y 2}, with coefficients
in K = Q(

√
q); note that, if q ∈ Z is not a square, then since Q ⊆ Q(

√
q) is

Galois we conclude that actually WC ∈ Q[f1, f2].

Since WC ∈ SGn we have WC =
∑k
j=0 ajf

j
1f

k−j
2 , where aj ∈ Q. Since 0n ∈ C is

the only element of weight 0, that is Y n occurs with coefficient w0 = 1 in WC ,
we infer that a0 = 1. Hence WC = Y n +

∑n
i=1 wiX

iY n−i, which is defined by
the n = 2k numbers [w1, . . . , wn], only depends on the k numbers [a1, . . . , ak].

In the sequel, we look more closely at the binary and ternary cases, where we
refer to computational checks (whose details we spare):

(11.4) Invariants for binary weight enumerators [Gleason, 1970]. We
consider the case q = 2. Let C = C⊥ ≤ Fn2 , where n ∈ N, be a self-dual code;

then C is an even-weight code. Let again s := 1√
2
·
[
−1 1
1 1

]
∈ GL2(K) and

z := −E2, where K := Q(
√

2); recall that s and sz are reflections.

a) Since C is an even-weight code, WC ∈ Q[X2−XY,X2 +Y 2] is invariant with
respect to d := diag[−1, 1]. We consider the group H := 〈s, z, d〉 ≤ GL2(K):

Since d is a pseudoreflection, H is a real reflection group. It can be checked
that H ∼= D16, and that σ(H) = 8. Since H does not possess any common
eigenvectors, we conclude thatH acts (absolutely) irreducibly. ThusH is of type
2b in the Shephard-Todd classification, having (non-crystallographic) Dynkin
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type I2(8). The invariant algebra SH is polynomial generated in degrees [d1, d2],
where from d1d2 = |H| = 16, and d1 + d2 − 2 = σ(H) = 8, we conclude that
d1 = 2 and d2 = 8. Thus we have HSH = 1

(1−T 2)(1−T 8) ∈ Q(T ).

We proceed to find basic invariants: We observe that f1 := X2 + Y 2 actually is
H-invariant. Observing that StabH(Y ) = 〈d〉 ∼= C2, we get f2 := 4 ·NH

〈d〉(Y ) =

X2Y 2(X2 − Y 2)2. Since {f4
1 , f2} is K-linearly independent, we conclude that

{f1, f2} is a set of basic invariants. Thus WC ∈ SH = K[f1, f2] can be written
uniquely as a polynomial in {X2 + Y 2, X2Y 2(X2 − Y 2)2}, with coefficients in
K = Q(

√
2); note that since Q ⊆ Q(

√
2) is Galois we infer that WC ∈ Q[f1, f2].

b) We now assume further that C is 4-divisible, that is we have 4 | wt(v) for
all v ∈ C; then C is also called a (doubly-)even self-dual code. Note that C
is 4-divisible if and only if C has a 4-divisible F2-basis; and if C is cyclic then
the latter is the case if and only if the number of monomials occurring in the
generating polynomial of C is divisible by 4.

Hence the weight enumerator WC ∈ Q[X2 + Y 2, X2Y 2(X2 − Y 2)2] is even in-
variant with respect to d := diag[ζ4, 1], where ζ4 ∈ C is primitive 4-th root
of unity. Thus we now consider the group H := 〈s, z, d〉 ≤ GL2(K), where
K := Q(

√
2, ζ4) = Q(ζ8), and ζ8 ∈ C is primitive 8-th root of unity:

Since d is a pseudoreflection, H is a (non-real) complex pseudoreflection group.
It can be checked that H has order 192. Since H does not possess any com-
mon eigenvectors, we conclude that H acts (absolutely) irreducibly. Moreover,
it turns out that Z(H) = 〈ζ8 · E2〉 ∼= C8; hence the degree of any non-zero
homogeneous H-invariant is divisible by 8.

Hence the invariant algebra SH is polynomial generated in degrees [d1, d2], where
from d1d2 = |H| = 192 = 82 · 3, and 8 | di, we conclude that d1 = 8 and
d2 = 24. (Alternatively, we could check that σ(H) = 30.) Thus we have
HSH = 1

(1−T 8)(1−T 24) ∈ Q(T ). Moreover, we infer that H is the group G9 in

the Shephard-Todd classification, being of shape H ∼= 2.(4× S4).

We proceed to find basic invariants, observing that StabH(Y ) = 〈d〉 ∼= C4: This
yields f1 := 1

10 ·TrH〈d〉(Y
8) = X8+14X4Y 4+Y 8. Moreover, we get 216·NH

〈d〉(Y ) =

X8Y 8(X4 − Y 4)8, thus taking square roots we let f2 := X4Y 4(X4 − Y 4)4,
which turns out to be H-invariant. Since {f3

1 , f2} is K-linearly independent, we
conclude that {f1, f2} is a set of basic invariants. ThusWC ∈ SH = K[f1, f2] can
be written uniquely as a polynomial in {X8 +14X4Y 4 +Y 8, X4Y 4(X4−Y 4)4},
with coefficients in K = Q(ζ8); note that since Q ⊆ Q(ζ8) is Galois we conclude
that WC ∈ Q[f1, f2].
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Example. Let Ĥ ≤ F8
2 be the extended Hamming [8, 4, 4]-code, whose

generator matrix we may assume to be equal to
. . . 1 1 1 1 .
. 1 1 . . 1 1 .
1 . 1 . 1 . 1 .
1 1 1 1 1 1 1 1

 ∈ F4×8
2 .

Then Ĥ is self-dual and 4-divisible. Hence we necessarily have WĤ = f1. (The
weight enumerator already follows straightforwardly from 4-divisibility, provid-
ing an alternative way to find the basic invariant f1 in the first place.)

Example. Let G24 := Ĝ23 ≤ F24
2 be the extended binary Golay [24, 12, 8]-

code, where the binary Golay [23, 12, 7]-code G23 ≤ F23
2 is the cyclic code

with generator polynomial X11 +X9 +X7 +X6 +X5 +X + 1 ∈ F2[X]. Then
G24 is self-dual and 4-divisible.

Hence we have WG24 = a · f3
1 + b · f2, where a, b ∈ Q. Since 0n ∈ G24 is the only

element of weight 0, that is w0(G24) = 1, and G24 does not possess any elements
of weight 4, that is w4(G24) = 0, we conclude that a = 1 and b = −42. Hence
we have WG24 = X24 + 759X16Y 8 + 2576X12Y 12 + 759X8Y 16 + Y 24. (This is
an efficient way to compute the weight enumerator, compared to combinatorial
methods. Or, if the latter is already known, this provides an alternative way to
find the basic invariant f2 in the first place.)

(11.5) Invariants for ternary weight enumerators [Gleason, 1970]. We
consider the case q = 3. Let C = C⊥ ≤ Fn3 , where n ∈ N, be a self-dual code;
then C necessarily is 3-divisible, that is we have 3 | wt(v) for all v ∈ C. Let

again s := 1√
3
·
[
−1 1
2 1

]
∈ GL2(K) and z := −E2, where K := Q(

√
3); recall

that s and sz are reflections.

Hence the weight enumerator WC ∈ Q[X2−XY, 2X2 +Y 2] is also invariant with
respect to d := diag[ζ3, 1], where ζ3 ∈ C is primitive 3-rd root of unity. Thus we
consider the group H := 〈s, z, d〉 ≤ GL2(K), where K := Q(

√
3, ζ3) = Q(ζ12),

and ζ12 ∈ C is primitive 12-th root of unity:

Then H is a (non-real) complex pseudoreflection group. It can be checked
(computationally) that H has order 48. Since H does not possess any com-
mon eigenvectors, we conclude that H acts (absolutely) irreducibly. Moreover,
it turns out that Z(H) = 〈ζ4 · E2〉 ∼= C4; hence the degree of any non-zero
homogeneous H-invariant is divisible by 4.

Hence the invariant algebra SH is polynomial generated in degrees [d1, d2], where
from d1d2 = |H| = 48 = 42 · 3, and 4 | di, we conclude that d1 = 4 and
d2 = 12. (Alternatively, we could check that σ(H) = 14.) Thus we have HSH =

1
(1−T 4)(1−T 12) ∈ Q(T ). Moreover, since H is not metabelian (thus excluding the



67

case G12,6,2 in the Shephard-Todd classification), we infer that H is the group
G6 in the Shephard-Todd classification, being of shape H ∼= 2.(2×A4).

We proceed to find basic invariants, observing that StabH(Y ) = 〈d〉 ∼= C3

and StabH(X) = {1}. This yields f1 := 3
16 · TrH〈d〉(Y

4) = 8X3Y + Y 4 ∈ SH .

Moreover, we get 318 · NH(X) = X12(X3 − Y 3)12, thus taking 4-th roots we
let f2 := X3(X3 − Y 3)3, which turns out to be H-invariant. Since {f3

1 , f2} is
K-linearly independent, we conclude that {f1, f2} is a set of basic invariants.
Thus WC ∈ SH = K[f1, f2] can be written uniquely as a polynomial in {8X3Y +
Y 4, X3(X3−Y 3)3}, with coefficients in K = Q(ζ12); note that since Q ⊆ Q(ζ12)
is Galois we conclude that WC ∈ Q[f1, f2].

Example. Let H ≤ F4
3 be the Hamming [4, 2, 3]-code with generator matrix[

. 1 1 1
1 . 1 −1

]
∈ F2×4

3 .

Then H is self-dual. Hence we necessarily have WH = f1. (The weight enumera-
tor already follows straightforwardly from 3-divisibility, providing an alternative
way to find the basic invariant f1 in the first place.)

Example. Let G12 := Ĝ11 ≤ F12
3 be the extended ternary Golay [12, 6, 6]-

code, where the ternary Golay [11, 6, 5]-code G11 ≤ F11
3 is the cyclic code

with generator polynomial X5−X3 +X2−X−1 ∈ F3[X]. Then G12 is self-dual.

Hence we have WG12 = a · f3
1 + b · f2, where a, b ∈ Q. Since 0n ∈ G12 is the only

element of weight 0, that is w0(G12) = 1, and G12 does not possess any elements
of weight 3, that is w3(G12) = 0, we conclude that a = 1 and b = 24. Hence we
have WG12 = 24X12 + 440X9Y 3 + 264X6Y 6 + Y 12. (This again is an efficient
way to compute the weight enumerator, compared to combinatorial methods.
Or, if the latter is already known, this provides an alternative way to find the
basic invariant f2 in the first place.)

12 Example: The icosahedral group

We present an elaborated classical example, the invariants of the icosahedral
group, due to Klein [1884] and Molien [1897]. This in particular shows how
geometric features are related to invariant theory. (The other polyhedral groups
are considered in Exercise (18.30).)

(12.1) Symmetries of the icosahedron. Let I ⊆ R3 be the regular icosahe-
dron, one of the platonic solids, see Table 3. The faces of I consist of regular
triangles, that is n = 3, where at each vertex k = 5 faces meet. Let f be
the number of faces, let e be the number of edges, and let v be the number of
vertices. By Euler’s Polyhedron Theorem we have f − e + v = 2, hence since
2e = nf and kv = nf , we conclude that f = 20, and e = 30, and v = 12.
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Let G := {g ∈ O3(R); I ·g = I} ≤ O3(R) be the the symmetry group of I, being
called the icosahedral group, where we assume I to be centered at the origin,
and the orthogonal group O3(R) is the isometry group of Euclidean 3-space.
Let H = G ∩ SO3(R) E G be the group of rotational symmetries of I, where
SO3(R) := {g ∈ O3(R); det(g) = 1}EO3(R).

By regularity of I, the group H acts transitively on its vertices, where the
associated point stabilizers have order 5, hence |H| = 60. Recalling Euler’s
Theorem, saying that any rotation of Euclidean 3-space has an axis, the axes of
the elements of H are given by the lines joining opposite vertices, and midpoints
of opposite edges, and midpoints of opposite faces, respectively. This yields
v
2 · (k − 1) = 24 elements of order k = 5, and e

2 = 15 elements of order 2, and
f
2 · (n− 1) = 20 elements of order n = 3, accounting for all elements of H \ {1}.
We show that H ∼= A5: By regularity we infer that H has a unique conjugacy
class of elements of order 2; since the Sylow 2-subgroups are abelian, NH(V4)
controls 2-fusion, implying that NH(V4) ∼= A4. Moreover, H has 10 Sylow 3-
subgroups, hence NH(C3) ∼= S3, so that there is a unique conjugacy class of
elements of order 3; and H has 6 Sylow 5-subgroups, hence NH(C5) ∼= D10, so
that there are two conjugacy classes of elements of order 5, of length 12 each.
From the lengths of the conjugacy classes we conclude that H is simple, so that
the permutation action of H on the cosets of A4 induces an isomorphism to A5.

For s := −E3 ∈ O3(R), that is the inversion with respect to the origin, we have
s ∈ G \H. Since s ∈ Z(O3(R)), we have G = H × 〈s〉 ∼= A5 × C2, in particular
|G| = 120; note that s is not a reflection. Since the elements of H are rotations,
its elements of order 2 have eigenvalues {1,−1,−1}, hence are not reflections
either. Since H, being simple, is generated by its elements of order 2, we con-
clude that the set of reflections S(G) = {gs ∈ G; 1 6= g ∈ H, g2 = 1} ⊆ G \H
generates a subgroup of G having A5 as an epimorphic image, which hence coin-
cides with G. Thus G is a real reflection group. Since the elements of H do not
possess any common (real) eigenvector, H acts (absolutely) irreducibly. From
this we infer that G is the group G23 in the Shephard-Todd classification, having
(non-crystallographic) Dynkin type H3, and having character field Q(

√
5).

(12.2) Invariants of the icosahedral group. Let H := A5 ≤ GL3(K) and
G := H × 〈s〉 ≤ GL3(K), where s := −E3 and K := Q(

√
5), let V := K3, and

let S := K[X ] be the associated polynomial algebra, where X := {X,Y, Z}.
Since G is a reflection group, its invariant algebra SG = K[f1, f2, f3] is polyno-
mial generated in degrees [d1, d2, d3], where d1d2d3 = 120 and d1 +d2 +d3−3 =
σ(G) = 15. Hence we have d1 = 2, and d2 = 6, and d3 = 10, so that
HSG = 1

(1−T 2)(1−T 6)(1−T 10) ∈ Q(T ). Since H does not contain any reflections,

its invariant algebra SH is not polynomial; we determine the Hilbert series HSH :

The 15 involutions in H have eigenvalues {1,−1,−1}; the 20 elements of order
3 have eigenvalues {1, ζ3, ζ2

3}, where ζ3 ∈ C is a primitive 3-rd root of unity; the
12 + 12 elements of order 5 have eigenvalues {1, ζ5, ζ4

5} and {1, ζ2
5 , ζ

3
5}, respec-
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tively, where ζ5 ∈ C is a primitive 5-th root of unity. Thus Molien’s formula

entails HSH = 1+T 15

(1−T 2)(1−T 6)(1−T 10) ∈ Q(T ). Hence we are tempted to look for a

homogeneous H-invariant g of degree 15 such that SH = K[f1, f2, f3, g].

i) Let α := ζ5 + ζ4
5 = 1

2 · (
√

5 − 1) ∈ R and β := ζ2
5 + ζ3

5 = − 1
2 · (
√

5 + 1) ∈ R;
hence K = Q(α) = Q(β). Being a real reflection group of Dynkin type H3,
choosing the K-basis of V consisting of the fundamental roots associated with
the Cartan matrix

Φ :=

2 β 0
β 2 −1
0 −1 2

 ∈ GL3(K),

we may assume that G = 〈a, b, c〉 ≤ GL3(K) is generated by the reflections

a :=

−1 0 0
−β 1 0
0 0 1

 , b :=

1 −β 0
0 −1 0
0 1 1

 , c :=

1 0 0
0 1 1
0 0 −1

 ,
where (ab)5 = (ac)2 = (bc)3 = 1. Since G acts transitively on the associated
root system, entailing that all roots have the same length, Φ is the Gram matrix
of a G-invariant scalar product on V , that is we have g ·Φ ·gtr = Φ for all g ∈ G.
Note that det(Φ) = 2 · (1− α), and that since G acts absolutely irreducibly, Φ
is as an G-invariant scalar product uniquely defined up to scalar multiples.

From g · Φ · gtr = Φ we get g−tr · Φ−1 · g−1 = Φ−1, thus gtr · Φ−1 · g = Φ−1, for
all g ∈ G. Let f := X · Φ−1 · X tr ∈ S. Then we have fg = (X · Φ−1 · X tr)g =
X g·Φ−1·(X g)tr = (X ·gtr)·Φ−1·(X ·gtr)tr = X ·(gtr·Φ−1·g)·X tr = X ·Φ−1·X tr = f ,
so that as first basic invariant we may take

f1 := det(Φ) · f = 3X2 − 4βXY − 2βXZ + 4Y 2 + 4Y Z + (3 + β)Z2.

Note that since H acts irreducibly, f1 cannot possibly be the product of two
linear factors, thus f1 is irreducible in S.

ii) Next, G permutes the v
2 = 6 lines joining opposite vertices of I transitively,

which are given as the axes of the rotations of order 5 in H. Hence a vector
spanning one of these lines is found as an eigenvector of ab ∈ H, with respect
to the eigenvalue 1; then the associated G-orbit has length 12. Therefrom we
pick the following vectors, up to taking scalar multiples:

[α, 0, 1], [−α, 0, 1], [α, 2, 1], [2 + α, 2, 1], [−β, 2, α], [−β, 2, 3 + β].

Let f2 ∈ S the product of the latter elements, being homogeneous of degree
6. Hence 〈f2〉K is a one-dimensional K[G]-submodule. Since H is perfect,
and s ∈ G fixes all elements of degree 6 anyway, we conclude that f2 is G-
invariant. Since {f3

1 , f2} is K-linearly independent, we may take f2 as second
basic invariant, where f2 up to scalar multiples equals

X6 − 4βX5Y − 2βX5Z + (−12− 16β)X4Y 2
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+(−12−16β)X4Y Z+(−17−11β)X4Z2 +(64+32β)X3Y 3 +(96+48β)X3Y 2Z

−8X3Y Z2 + (−20− 8β)X3Z3 + (−48− 32β)X2Y 4 + (−96− 64β)X2Y 3Z

+(8 + 24β)X2Y 2Z2 + (56 + 56β)X2Y Z3 + (22 + 19β)X2Z4 − 32XY 3Z2

−48XY 2Z3 + (−4 + 12β)XY Z4 + (6 + 6β)XZ5 + (16 + 16β)Y 4Z2

+(32 + 32β)Y 3Z3 + (−8 + 4β)Y 2Z4 + (−24− 12β)Y Z5 + (−7− 4β)Z6.

iii) Similarly, G permutes the f
2 = 10 lines joining the midpoints of opposite

faces of I transitively, which are given as the axes of the rotations of order 3
in H. Hence a vector spanning one of these lines is found as an eigenvector of
bc ∈ H, with respect to the eigenvalue 1; then the associated G-orbit has length
20. Therefrom we pick the following vectors, up to taking scalar multiples:

[1, 0, 1− α], [1, 0, α− 1], [1, 2,−β], [1, 2, 1− α], [β,−2, α],
[β,−2, β − 1], [3α, 2, 1], [3 + β, 2, 1], [1+2α, 2,−β], [1+2α, 2, 1− α].

Let f3 ∈ S the product of the latter elements, being homogeneous of degree
10. Hence 〈f3〉K is a one-dimensional K[G]-submodule. Since H is perfect, and
s ∈ G fixes all elements of degree 10 anyway, we conclude that f3 is G-invariant.
Since {f5

1 , f
2
1 f2, f3} is K-linearly independent, we may take f3 as third basic

invariant, where f3 up to scalar multiples equals

(105− 165β)X10 + (1100− 1800β)X9Y + (550− 900β)X9Z

+(5148− 8364β)X8Y 2 + (5148− 8364β)X8Y Z + (1098− 1839β)X8Z2

+(13632− 21888β)X7Y 3 + (20448− 32832β)X7Y 2Z + (8976− 14160β)X7Y Z2

+(1080− 1608β)X7Z3 + (21984− 35520β)X6Y 4 + (43968− 71040β)X6Y 3Z

+(28320− 45744β)X6Y 2Z2 + (6336− 10224β)X6Y Z3 + (354− 408β)X6Z4

+(22336− 36480β)X5Y 5 + (55840− 91200β)X5Y 4Z + (46720− 77376β)X5Y 3Z2

+(14240− 24864β)X5Y 2Z3 + (224− 1896β)X5Y Z4 + (−400 + 156β)X5Z5

+(14272− 22976β)X4Y 6 + (42816− 68928β)X4Y 5Z + (43680− 70720β)X4Y 4Z2

+(16000− 26560β)X4Y 3Z3 + (360 + 480β)X4Y 2Z4 + (−504 + 2272β)X4Y Z5

+(−38 + 294β)X4Z6 + (5120− 8192β)X3Y 7 + (17920− 28672β)X3Y 6Z

+(21376− 31872β)X3Y 5Z2 + (8640− 8000β)X3Y 4Z3 + (−1920 + 7360β)X3Y 3Z4

+(−2560 + 4704β)X3Y 2Z5 + (−560 + 832β)X3Y Z6 + (8 + 48β)X3Z7

+(768− 1280β)X2Y 8 + (3072− 5120β)X2Y 7Z + (2304− 4736β)X2Y 6Z2

+(−3840 + 3712β)X2Y 5Z3 + (−6720 + 8800β)X2Y 4Z4 + (−3456 + 5440β)X2Y 3Z5

+(−688 + 1200β)X2Y 2Z6 + (−112− 48β)X2Y Z7 + (−10− 27β)X2Z8

+(−1024 + 1024β)XY 7Z2 + (−3584 + 3584β)XY 6Z3 + (−4608 + 4800β)XY 5Z4

+(−2560 + 3040β)XY 4Z5 + (−448 + 832β)XY 3Z6 + 96XY 2Z7

+(36− 44β)XY Z8 + (2− 6β)XZ9 + 256βY 8Z2 + 1024βY 7Z3

+(−64 + 1536β)Y 6Z4 + (−192 + 1024β)Y 5Z5 + (−192 + 224β)Y 4Z6
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+(−64− 64β)Y 3Z7 + (8− 36β)Y 2Z8 + (8− 4β)Y Z9 + Z10.

iv) Finally, G permutes the e
2 = 15 lines joining the midpoints of opposite edges

of I transitively, which are given as the axes of the rotations of order 2 in H.
In other words, these are spanned by eigenvectors of the reflections in G, with
respect to the eigenvalue −1, where the latter can be chosen to coincide with
the positive roots of G. Picking the root [1, 0, 0], the associated G-orbit has
length 30. Therefrom we pick the following roots, up to scalar multiples:

[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 1, 0],
[1, 1, 1], [α, 1, 0], [−β, 1, 0], [α, 1, 1], [−β, 1, 1],
[1, 1, α], [1, 1, 1− α], [1,−β, 1], [1,−β, α], [−β, 2, 1].

Let g ∈ S the product of the latter elements, being homogeneous of degree 15.
Hence 〈g〉K ∈ S15 is a one-dimensional K[G]-submodule. Since H is perfect,
but s negates all elements of degree 15, we conclude that g is G-invariant such
that g · s = −g, where g up to scalar multiples equals

XY Z ·
(
X11Y +X11Z − 8βX10Y 2 − 12βX10Y Z − 4βX10Z2 + (22− 33β)X9Y 3

+(44− 66β)X9Y 2Z + (22− 44β)X9Y Z2 − 11βX9Z3 + (86− 108β)X8Y 4

+(215− 270β)X8Y 3Z +(220− 220β)X8Y 2Z2 +(115− 60β)X8Y Z3 +(24− 2β)X8Z4

+(153− 273β)X7Y 5 + (459− 819β)X7Y 4Z + (480− 960β)X7Y 3Z2

+(195− 555β)X7Y 2Z3 + (27− 153β)X7Y Z4 + (6− 12β)X7Z5

+(240− 432β)X6Y 6 + (840− 1512β)X6Y 5Z + (1152− 2112β)X6Y 4Z2

+(780− 1500β)X6Y 3Z3 + (216− 600β)X6Y 2Z4 + (−36− 156β)X6Y Z5

+(−24− 24β)X6Z6 + (309− 456β)X5Y 7 + (1236− 1824β)X5Y 6Z

+(2100− 2940β)X5Y 5Z2 + (1974− 2436β)X5Y 4Z3 + (1176− 1050β)X5Y 3Z4

+(504− 168β)X5Y 2Z5 + (144 + 24β)X5Y Z6 + (15 + 6β)X5Z7

+(238− 362β)X4Y 8 + (1071− 1629β)X4Y 7Z + (1968− 3096β)X4Y 6Z2

+(1890− 3234β)X4Y 5Z3 + (1008− 2016β)X4Y 4Z4 + (294− 756β)X4Y 3Z5

+(72− 144β)X4Y 2Z6 + (45 + 9β)X4Y Z7 + (14 + 8β)X4Z8

+(110− 209β)X3Y 9 + (550− 1045β)X3Y 8Z + (1170− 2220β)X3Y 7Z2

+(1380− 2610β)X3Y 6Z3 + (924− 1890β)X3Y 5Z4 + (252− 924β)X3Y 4Z5

+(−120− 360β)X3Y 3Z6 + (−150− 135β)X3Y 2Z7 + (−60− 40β)X3Y Z8

+(−8− 5β)X3Z9 + (44− 72β)X2Y 10 + (242− 396β)X2Y 9Z

+(600− 920β)X2Y 8Z2 + (885− 1170β)X2Y 7Z3 + (840− 888β)X2Y 6Z4

+(504− 420β)X2Y 5Z5 + (192− 120β)X2Y 4Z6 + 75X2Y 3Z7

+(40 + 20β)X2Y 2Z8 + (10 + 6β)X2Y Z9 + (13− 13β)XY 11

+(78− 78β)XY 10Z + (176− 220β)XY 9Z2 + (165− 385β)XY 8Z3

+(45− 423β)XY 7Z4 + (48− 240β)XY 6Z5 + 168XY 5Z6
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+(171 + 81β)XY 4Z7 + (70 + 40β)XY 3Z8 + (10 + 6β)XY 2Z9

−2βY 12 − 13βY 11Z + (8− 32β)Y 10Z2 + (44− 33β)Y 9Z3

+(84− 10β)Y 8Z4 + (48− 12β)Y 7Z5 + (−48− 48β)Y 6Z6

+(−84− 57β)Y 5Z7 + (−44− 28β)Y 4Z8 + (−8− 5β)Y 3Z9
)
.

Since SH is the graded direct sum of the eigenspaces of s with respect to the
eigenvalues {±1}, we conclude that R := SG ⊕ gSG ⊆ SH . Hence from HR =
(1 + T 15) ·HSG = HSH ∈ Q(T ) we conclude that SH = SG ⊕ gSG, being is a
free graded SG-module of rank 2, generated in degrees [0, 15].

Alternatively, since {f1, f2, f3} is algebraically independent, by the Jacobian
criterion for the Jacobian determinant we have h := det(J(f1, . . . , f3)) 6= 0.
Moreover, since H is perfect we have detV (g) = 1 for all g ∈ H, but detV (s) =
−1, so that from Exercise (18.8) we infer that h ∈ SH , being homogeneous of
degree d1 + d2 + d3 − 3 = 15, but h · s = −h. Since dimK(SH15) = 1 we conclude
that h is associate to g; using the elements given above we find h = −218 · g.

(12.3) Modular invariants of the icosahedral group. Let K be a field,
such that T 2 + T − 1 = (T − α)(T − β) ∈ K[T ] splits. Hence we have {α, β} =
{ 1

2 · (−1±
√

5)} if Q(
√

5) ⊆ K ⊆ C, which we may assume if char(K) = 0; and
modular reduction of the latter algebraic integers yields {α, β} if char(K) 6= 0.

Keeping the notation of (12.2), let G = 〈a, b, c〉 ≤ GL3(K); then G is a reflection
group if char(K) 6= 2, while G is generated by transvections if char(K) = 2.
Thus G is an epimorphic image of A5 × C2. Since A5 is simple, we have G =
H × 〈s〉, where H ∼= A5 and s = −E3, if char(K) 6= 2; while G = A5, if
char(K) = 2. (Recall that by Serre’s Theorem, which we have not proven, G
possibly but not necessarily has a polynomial invariant algebra.)

a) Let char(K) 6= 2. Then G acts irreducibly on V , where V is unique up to
outer automorphisms of G. Let f1 be as in (12.2)(i), where Φ still is the Gram
matrix of a non-degenerate symmetric G-invariant K-bilinear form on V ; let f2

be as in (12.2)(ii), where the G-orbit of a fixed vector of ab ∈ H still has length
12; let f3 be as in (12.2)(iii), where the G-orbit of a fixed vector of bc ∈ H still
has length 20; and let g be as in (12.2)(iv), where the G-orbit of the root [1, 0, 0]
still has length 30.

i) For the Jacobian determinant of {f1, f2, f3} we have det(J(f1, f2, f3)) = −218·
g 6= 0. Hence by the Jacobian criterion {f1, f2, f3} is algebraically independent,
and since the fi have degree product 2·6·10 = 120 = |G|, by Kemper’s Theorem,
see (16.2) below, we conclude that SG = K[f1, f2, f3] is polynomial with basic
invariants {f1, f2, f3}; hence we have HSG = 1

(1−T 2)(1−T 6)(1−T 10) ∈ Q(T ).

ii) Taking the determinant representation into account, where detV (H) = {1}
and detV (s) = −1, we have SH = SG ⊕ SGdet as graded SG-modules. We show
that for the set of semi-invariants we have SGdet = g · SG:
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We have g ∈ SGdet, so that g · SG ⊆ SGdet. Conversely, let f ∈ SGdet. Then
for the reflection a ∈ G with respect to the root [1, 0, 0] we have f(X,Y, Z) =
−f(X,Y, Z)·a = −f(−X,Y−βX,Z) ∈ S, so that theK-algebra homomorphism
S → K[Y,Z] given by X 7→ 0, and Y 7→ Y , and Z 7→ Z, yields f(0, Y, Z) =
−f(0, Y, Z) = 0. Hence we infer that X | f ∈ S. Since f is semi-invariant,
we conclude that g, being the product of a set of representatives of the roots
up to scalar multiples, divides f . Writing f = gf ′, for some f ′ ∈ S, since S is
a domain we get f ′ ∈ SG, showing that f ∈ g · SG. (Note that the preceding
argument is strongly reminiscent of the reasoning in (9.4).) ]

Hence SH = SG ⊕ g · SG is a free graded SG-module generated in degrees
[1, 15], so that HSH = (1 + T 15) · HSG . Moreover, {f1, f2, f3, g} is a minimal
homogeneous K-algebra generating set of SH .

b) Let char(K) = 2. Then V ∼= [W/K] is uniserial as a K[G]-module, where G
acts trivially on K, and W is irreducible of K-dimension 2; then V is uniquely
defined by these properties up to outer automorphisms of G. Moreover, the
contragredient K[G]-module V ∗ ∼= [K/W ] is obtained by 2-modular reduction
of the G-action on the weight lattice, instead of the root lattice.

i) We consider the K[G]-module V first. Hence we have dimK(SG1 ) = 1, and we
let f1 := X + βZ ∈ SG. (Actually, the rotation axes of the elements of order 5
and of those of order 3 all coincide with 〈f1〉K . Moreover, Φ is degenerate, and
V is not self-contragredient as a K[G]-module.)

Searching explicitly, degree by degree, for indecomposable homogeneous invari-
ants we get f2 ∈ SG of degree 5, which we may choose as

X3Y 2 +X3Y Z +X3Z2 + βX2Y 2Z + βX2Y Z2 + βX2Z3

+βXY 4 +XY 2Z2 + αXY Z3 +XZ4 + βY 4Z + βY 2Z3 + βZ5.

Subsequently we get f3 ∈ SG of degree 12, which we may choose as

X9Y 2Z +X9Y Z2 + βX8Y 2Z2 + βX8Y Z3 + βX7Y 4Z + βX7Y Z4 +X6Y 6

+X6Y 5Z + βX6Y 4Z2 +X6Y 3Z3 +X6Y 2Z4 + βX6Y Z5 +X6Z6

+αX5Y 6Z + αX5Y 5Z2 + βX5Y 4Z3 + αX5Y 3Z4 + β2X5Y 2Z5 + βX5Y Z6

+βX4Y 8 + βX4Y 6Z2 + βX4Y 5Z3 + βX4Y 4Z4 + βX4Y 3Z5 + βX4Y 2Z6

+X4Z8 +X3Y 6Z3 +X3Y 5Z4 + βX3Y 4Z5 +X3Y 3Z6 + αX3Y Z8

+αX2Y 10 + αX2Y 9Z + αX2Y 6Z4 + αX2Y 5Z5 + βX2Y 4Z6 + βX2Y 2Z8

+X2Z10 + βXY 10Z + βXY 9Z2 + βXY 8Z3 + βXY 6Z5 + βXY 5Z6

+βXY Z10 + Y 12 + Y 10Z2 + Y 6Z6 + Y 2Z10 + Z12.

For the Jacobian determinant of {f1, f2, f3} we get det(J(f1, f2, f3)) 6= 0. Hence
by the Jacobian criterion {f1, f2, f3} is algebraically independent, and since the
fi have degree product 1 · 5 · 12 = 60 = |G|, by Kemper’s Theorem, see (16.2)
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below, we conclude that SG = K[f1, f2, f3] is polynomial with basic invariants
{f1, f2, f3}; hence we have HSG = 1

(1−T )(1−T 5)(1−T 12) ∈ Q(T ).

(Picking the root [1, 0, 0], the associated G-orbit has length 15, so that by taking
the product of the latter elements we still get a homogeneous invariant g of
degree 15; it turns out that det(J(f1, f2, f3)) = g.)

ii) We consider the K[G]-module V ∗. Hence we have dimK(SG1 ) = 0, but it
turns out that dimK(SG2 ) = 1, and we let f1 := X2+βXY +Y 2+Y Z+Z2 ∈ SG.
(Note that f1 is a degenerate quadratic form associated with Φ.) Proceeding
degree by degree as above, we find an indecomposable homogeneous invariant
of degree 5, which we may choose as

f2 := X4Y +XY 4 + αY 4Z + αY Z4 = XY (X3 + Y 3) + αY Z(Y 3 + Z3) ∈ SG.

We observe that there is an indecomposable homogeneous invariant of degree 6,
which turns out to be accessible as follows: The rotation axes of the elements of
order 5 are all G-conjugate, thus choosing an eigenvector of ab ∈ G with respect
to the eigenvalue 1, we obtain a G-orbit of length 6. We pick the following
vectors, up to taking scalar multiples:

[0, 0, 1], [0, 1, 1], [1, 1, 0], [1, β, 0], [β, 0, 1], [β, 1, 1].

Let f3 ∈ S the product of the latter elements, being homogeneous of degree
6. Hence 〈f3〉K is a one-dimensional K[G]-submodule. Since G is perfect we
conclude that f3 is G-invariant, and up to scalar multiples equals

Z · (X4Y +X4Z + αX2Y 2Z + αX2Z3 +XY 4 +XY Z3 + βY 4Z + βY 2Z3).

For the Jacobian determinant of {f1, f2, f3} we get det(J(f1, f2, f3)) = β·f2
2 6= 0.

Hence by the Jacobian criterion {f1, f2, f3} is algebraically independent, and
since the fi have degree product 2 · 5 · 6 = 60 = |G|, by Kemper’s Theorem,
see (16.2) below, we conclude that SG = K[f1, f2, f3] is polynomial with basic
invariants {f1, f2, f3}; hence we have HSG = 1

(1−T 2)(1−T 5)(1−T 6) ∈ Q(T ).

(The rotation axes of the elements of order 3 give rise to a homogeneous invariant
of degree 10, being equal to f2

1 f3 + f2
2 ; the transvection a ∈ G associated with

[0, 1, 0] gives rise to a homogeneous invariant of degree 15, being equal to f3
2 .)

II More commutative algebra

13 Dimension theory

(13.1) Krull dimension. Let R be a commutative ring. Then the height
ht(P ) ∈ N0

.
∪ {∞} of a prime ideal P E R is defined as the maximum length

r ∈ N0 of a strictly ascending chain P0 ⊂ P1 ⊂ · · · ⊂ Pr = P of prime ideals
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Pi E R. The (Krull) dimension dim(R) ∈ N0

.
∪ {∞} of R is defined as the

maximum height of a prime ideal of R, where dim({0}) := −∞.

The height ht(I) ∈ N0

.
∪ {∞} of an ideal I C R is defined as the minimum

height of a prime divisor of I, that is the prime ideals of R containing I. for
completeness we let ht(R) =∞. The (Krull) dimension of an ideal I E R is
defined as dim(I) := dim(R/I).

Example. If R is not Noetherian, there are straightforward examples hav-
ing infinite dimension: Let K be a field, and let R := K[X1, X2, . . .] be the
polynomial algebra in countably infinitely many indeterminates. Then letting
Pi := (X1, . . . , Xi) E R, for i ∈ N0, yields an infinite strictly ascending chain
{0} = P0 ⊂ P1 ⊂ · · · E R of ideals, which since R/Pi ∼= K[Xi+1, X2+1, . . .] are
all prime ideals. Hence we have dim(R) =∞.

Similarly, letting R := K[X1, . . . , Xn] where n ∈ N0, and Pi := (X1, . . . , Xi)ER,
for i ∈ {0, . . . , n}, yields a strictly ascending chain {0} = P0 ⊂ P1 ⊂ · · · ⊂
Pn E R, which since R/Pi ∼= K[Xi+1, . . . , Xn] are all prime ideals. Hence we
have ht(Pi) ≥ i, so that ht(Pn) ≥ n implies that dim(R) ≥ n; actually it is
surprisingly difficult to prove that dim(R) = n, see Theorem (14.2).

Actually, even a Noetherian K-algebra may have infinite dimension; an example
given by Nagata [1962] is given in Exercise (19.16). Despite this, by Krull’s
Principal Ideal Theorem shown in (13.7) below, whenever R is Noetherian and
I C R is a proper ideal we have ht(I) < ∞; and for the above examples we
indeed have ht(Pi) ≤ i, so that equality holds.

(13.2) Lemma: Prime avoidance. Let R be a commutative ring, and let
P1, . . . , Pn E R be prime ideals, for n ∈ N, and let I E R be an ideal such that
I ⊆

⋃n
i=1 Pi. Then there is i ∈ {1, . . . , n} such that I ⊆ Pi.

Proof. We proceed by induction on n ∈ N; the case n = 1 being trivial, let
n ≥ 2, and assume that there does not exist an i such that I ⊆ Pi. Thus by
induction we may assume that for all j ∈ {1, . . . , n} there is fj ∈ I \

⋃
i 6=j Pi.

Hence we have fj ∈ Pj , thus since Pn E R is prime we infer that
∏n−1
j=1 fj ∈

(
⋂n−1
i=1 Pi) \Pn and fn ∈ Pn \

⋃n−1
i=1 Pi. Thus for f := fn +

∏n−1
j=1 fj ∈ I we have

f 6∈ Pn. Moreover, assume that f ∈
⋃n−1
i=1 Pi, then there is i ∈ {1, . . . , n − 1}

such that f ∈ Pi, since
∏n−1
j=1 fj ∈ Pi entailing fn ∈ Pi, a contradiction. Hence

we have f 6∈
⋃n−1
i=1 Pi as well, so that f ∈ I \

⋃n
i=1 Pi, a contradiction. ]

(13.3) Localization. a) Let R be a commutative ring. A subset U ⊆ R is
called multiplicatively closed, if 1 ∈ U and fg ∈ U whenever f, g ∈ U .

Letting M be an R-module, let ∼ denote the equivalence relation on M × U
given by [m,u] ∼ [m′, u′], for m,m′ ∈ M and u, u′ ∈ U , if there is v ∈ U such
that (mu′ − m′u)v = 0 ∈ M . Then the localization of M at U is defined
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as the set of equivalence classes MU := (M × U)/∼; the equivalence class of
[m,u] ∈M × U being denoted by m

u ∈MU .

b) We collect a few basic properties of localizations of ideals of R, in particular
of prime ideals; see Exercise (19.7): The localization RU becomes a commutative
ring, such that the natural map ν = νU : R → RU : f 7→ f

1 is a homomorphism
of rings. For an ideal J E RU we have (ν−1(J))U = J , hence the contraction
map ν−1 : {J E RU} → {I E R} is an inclusion-preserving and intersection-
preserving injection, mapping prime ideals to prime ideals. In particular, if R
is Noetherian, then RU is Noetherian as well.

For an ideal IER we have I ⊆ ν−1(IU ) = {f ∈ R; fu ∈ I for some u ∈ U}ER.
Hence for the extended ideal IU we have IU 6= RU if and only if I ∩U = ∅. For
a prime ideal P ER we have P = ν−1(PU ) if and only if P ∩U = ∅; in this case
PU ERU is a prime ideal as well. Hence extension and contraction are mutually
inverse bijections between {P ER prime;P ∩ U = ∅} and {QERU prime}.
In particular, if P ER is a prime ideal, then the set R\P ⊆ R is multiplicatively
closed, and RR\P is a local ring, that is RR\P has a unique maximal ideal,
namely PR\P E RR\P . Moreover, the prime ideals of RR\P are given as the
extensions QR\PERR\P of the prime ideals QER such that Q ⊆ P ; in particular
we have ht(P ) = dim(RR\P ).

(13.4) Radicals. a) Let R be a commutative ring, and let I ER be an ideal.
Then

√
I := {f ∈ R; fn ∈ I for some n ∈ N} E R is called the radical of I;

note that I ⊆
√
I. In particular, the nilradical nil(R) :=

√
{0}E R is the set

of nilpotent elements of R; if nil(R) = {0} then R is called reduced.

Proposition. We have
√
I =

⋂
{I ⊆ P ER;P prime}; where we let the empty

intersection being R. In particular, we have nil(R) =
⋂
{P ER;P prime}.

Proof. We may assume that I 6= R, let f ∈
√
I, and let P ∈ P := {I ⊆

P ER;P prime}; then fn ∈ I ⊆ P for some n ∈ N, thus f ∈ P , hence f ∈
⋂
P.

Conversely, let f 6∈
√
I. Then consider the multiplicatively closed set U :=

{fn;n ∈ N0} ⊆ R, and let J := {I ⊆ J E R; J ∩ U = ∅}. Since I ∩ U = ∅ we
have I ∈ J 6= ∅, and since any chain in J has a least upper bound in J by
Zorn’s Lemma there is a maximal element J ∈ J .

Since J ∩ U = ∅ we have JU 6= RU . Since for any proper ideal J̃ C RU we
have ν−1(J̃) ∩ U = ∅, and the contraction map is injective, by maximality
we conclude that JU E RU is a maximal ideal, thus is a prime ideal. Hence
ν−1(JU ) ER is a prime ideal as well, and since J ⊆ ν−1(JU ) by maximality we
get J = ν−1(JU ) ∈ P. Thus f 6∈ J implies f 6∈

⋂
P. ]

b) The Jacobson radical of R is defined as rad(R) :=
⋂
{J ER; J maximal};

where we let the empty intersection being R. Recall that for R 6= {0} by Zorn’s
Lemma there is a maximal ideal of R.
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In particular, if f ∈ R such that f ≡ 1 (mod rad(R)), then f ≡ 1 (mod J) for
any maximal ideal J ER, hence we infer (f) = R, that is f ∈ R∗.

Proposition: Nakayama Lemma [Nakayama, Azumaya, Krull]. Let IE
R such that I ⊆ rad(R), let M be a finitely generated R-module, and let N ≤M
be an R-submodule. Then we have M = N if and only if M = N +MI.

Proof. We may assume that M = N + MI, and hence M = N + MJ , where
J := rad(R) E R. Then we have (M/N) · J = (MJ +N)/N = M/N . Hence it
suffices to show that MJ = M implies M = {0}; then we have M/N = {0}:
Hence assume that MJ = M . Let {m1, . . . ,mr} ⊆M , for some r ∈ N, be an R-
module generating set. Then there are aij ∈ J such that mj =

∑r
i=1miaij ∈M .

Letting A := Er − [aij ]ij ∈ Rr×r we have [m1, . . . ,mr] · A = 0 ∈ Mr, implying
[m1, . . . ,mr] · det(A) = [m1, . . . ,mr] · A · adj(A) = 0 ∈ Mr. From det(A) ≡ 1
(mod J) we infer that det(A) ∈ R∗, so that [m1, . . . ,mr] = 0 ∈ Rr. ]

In other words (comparing with the wording of the graded Nakayama Lemma),
letting : M →M/MI =: M be the natural epimorphism of R-modules, then a
subset S ⊆M generates M , if and only if S ⊆M generates M , as R-modules.

(13.5) Theorem: [Krull, 1937; Cohen, Seidenberg, 1946]. Let R ⊆ S
be an integral extension of commutative rings.
a) Let P ER be a prime ideal, and let J E S is an ideal such that J ∩R ⊆ P .
Then there is a prime ideal QE S going up from J , that is J ⊆ Q, and lying
over P , that is Q ∩R = P .
b) Let Q 6= Q′ES be prime ideals such that Q∩R = Q′ ∩R, that is both lying
over the same prime ideal of R. Then we have incomparability Q 6⊆ Q′ 6⊆ Q.

Proof. a) By going over to the integral extension R/(J ∩ R) ⊆ S/J we may
assume that J = {0}, hence we have to show the existence of a prime ideal QES
such that Q∩R = P . By going over to the integral extension RR\P ⊆ SR\P , and
noting that the ideal QES we are looking for fulfills Q∩(R\P ) = (Q∩R)\P = ∅,
we may assume that R is local with maximal ideal P .

Assume that PS = S. Then let 1 =
∑r
i=1 pisi ∈ S, for some r ∈ N, where

pi ∈ P and si ∈ S, and let {0} 6= T ⊆ S be the R-subalgebra generated by
{s1, . . . , sr}. Hence T is a finitely generated R-algebra, and integral over R,
thus it is a finitely generated R-module. We have PT = T , where P = rad(R),
hence the Nakayama Lemma implies T = {0}, a contradiction.

Thus PSCS is a proper ideal. Hence by Zorn’s Lemma there is a maximal ideal
PS ⊆ QCS. Since P ⊆ Q∩RCR, and P ER is maximal, we have P = Q∩R.

b) Assume to the contrary that Q ⊆ Q′. By going over to the integral extension
R/(Q ∩R) ⊆ S/Q, we may assume that Q ∩R = Q′ ∩R = {0}. By going over
to the integral extension R ∼= (R+Q)/Q ⊆ S/Q, we may assume that Q = {0},
so that R ⊆ S is an integral extension of domains and {0} 6= Q′ E S is prime.
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Let 0 6= s ∈ Q′, and let f =
∑d
i=0 fiX

i ∈ R[X] be monic such that d ≥ 1 and
f(s) = 0 ∈ S. Since S is a domain, we may assume that f0 6= 0 ∈ R. Hence we
have f0 ∈ (s) ∩R ⊆ Q′ ∩R = {0}, a contradiction. ]

Actually, the above theorem has been proven by Krull for the case of domains,
while Cohen, Seidenberg generalized it by allowing for zero-divisors.

Corollary. Let J E S be an ideal, and let I := J ∩ R E R. Then we have
dim(R/I) = dim(S/J). In particular, we have dim(R) = dim(S).

Proof. Let I ⊆ P0 ⊂ · · · ⊂ Pr E R be a strictly ascending chain of prime
ideals Pi E R, where r ∈ N0. By going up and lying over, there is a chain
J ⊆ Q0 ⊆ · · · ⊆ Qr E S of prime ideals Qi E S, such that Qi ∩ R = Pi
for i ∈ {0, . . . , r}. Hence the latter chain is strictly ascending, and we have
dim(R/I) ≤ dim(S/J).

Conversely, let J ⊆ Q0 ⊂ · · · ⊂ Qr E S be a strictly ascending chain of prime
ideals Qi E S, where r ∈ N0. Then by incomparability the chain I = J ∩ R ⊆
(Q0 ∩R) ⊆ · · · ⊆ (Qr ∩R)ER of prime ideals Qi ∩RER, for i ∈ {0, . . . , r}, is
strictly ascending. Hence we have dim(R/I) ≥ dim(S/J). ]

(13.6) Ideals associated with a module. We set out to study the relation-
ship between the prime ideals of a (Noetherian) commutative ring, and its action
on modules. Actually this is merely the beginning of a long story, related to the
notion of primary decomposition, which has first been examined by Lasker
[1905], but whose modern description is original work by Noether [1921].

a) Let R be a commutative ring, and let M be an R-module. Given m ∈ M ,
we have a natural homomorphism R→M : f 7→ mf of R-modules, with image
mR ≤ M , and kernel annR(m) := {f ∈ R;mf = 0} E R, being called the
associated annihilator.

For S ⊆ M we let annR(S) :=
⋂
m∈S annR(m) E R, where annR(∅) := R. In

particular, the dimension of M is defined as dim(M) := dim(R/annR(M)).

b) An element 0 6= f ∈ R is called a zero-divisor on M , if there is 0 6= m ∈M
such that f ∈ annR(m). A prime ideal P E R is called associated with M , if
there is 0 6= m ∈M such that annR(m) = P ; in particular we have annR(M) ⊆
P . Let assR(M) be the set of prime ideals associated with M , whose minimal
elements are also called isolated; in particular we have assR({0}) = ∅.
We have P ∈ assR(M) if and only if R/P ∼= mR ≤ M , for some 0 6= m ∈ M ,
which holds if and only if R/P is isomorphic to an R-submodule of M . In this
case, for any 0 6= u ∈ mR, letting f ∈ R \P such that u = mf , since P is prime
we have annR(u) = annR(mf) = {g ∈ R;mfg = 0} = {g ∈ R; fg ∈ P} = P .

Let I ER be an ideal; we have annR(R/I) = annR(1 + I) = I. Then the prime
ideals associated with I are defined as ass(I) := assR(R/I). In particular we
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have ass(R) = assR(R/R) = assR({0}) = ∅; and if PER is a prime ideal, then we
have annR(f +P ) = P whenever f ∈ R \P , hence ass(P ) = assR(R/P ) = {P}.

Theorem. Let R be Noetherian, and let M 6= {0} be finitely generated.
a) Then assR(M) is a finite non-empty set, whose minimal elements are the
minimal prime divisors of annR(M) E R, and (

⋃
P∈assR(M) P ) \ {0} ⊆ R is the

set of zero-divisors on M .
b) If R is a graded K-algebra, where K is a field, and M is graded, then assR(M)
consists of homogeneous ideals.

Proof. a) i) Let 0 6= m ∈ M such that annR(m) E R is maximal amongst the
(proper) ideals {annR(u) E R; 0 6= u ∈ M} E R, and let f, g ∈ R such that
fg ∈ annR(m) and g 6∈ annR(m). Since annR(m) ⊆ annR(mg) we infer f ∈
annR(mg) = annR(m); thus annR(m)ER is a prime ideal, hence assR(M) 6= ∅.
Moreover, by construction P \ {0} consists of zero-divisors on M , for any P ∈
assR(M). Conversely, if f ∈ annR(u) for some 0 6= u ∈ M , then by the above
argument there is 0 6= m ∈ M such that annR(u) ⊆ annR(m) E R is maximal
amongst all annihilators, hence f ∈ annR(m) ∈ assR(M).

ii) Next we show that for any R-submodule N ≤ M we have assR(M) ⊆
assR(N) ∪ assR(M/N): Let P ∈ assR(M), and let R/P ∼= U ≤M . If U ∩N =
{0}, then we have R/P ∼= (U + N)/N ≤ M/N , and thus P ∈ assR(M/N); if
0 6= m ∈ U ∩N , then we have annR(m) = P ∈ assR(N).

In order to show that assR(M) is finite, we choose P1 ∈ assR(M) and let {0} 6=
M1 ≤ M such that M1

∼= R/P1, hence we have assR(M1) = {P1}. If M1 ≤ M ,
we choose P2 ∈ assR(M/M1), and let M1 < M2 ≤ M such that M2/M1

∼=
R/P2, hence we have assR(M2/M1) = {P2}. This successively yields a strictly
ascending chain {0} = M0 < M1 < M2 < · · · ≤ M . Since M is Noetherian, we
have Mr = M for some r ∈ N, so that assR(M) ⊆ {P1, . . . , Pr}.
iii) Let P E R be a prime ideal. First, we show that we have annR(M)R\P =
annRR\P (MR\P ): For f ∈ annR(M) we have Mf = 0 ∈ MR\P , hence we
conclude that annR(M)R\P ⊆ annRR\P (MR\P ).

Conversely, let f ∈ ν−1(annRR\P (MR\P )). Then for any m ∈ M we have
mf · vm = 0, for some vm ∈ R \ P . Thus since M is finitely generated there
is v ∈ R \ P such that Mfv = {0}, that is fv ∈ annR(M), implying that
f ∈ annR(M)R\P . Thus we have annRR\P (MR\P ) ⊆ annR(M)R\P as well. ]

Next we show that P ∈ assR(M) if and only if PR\P ∈ assRR\P (MR\P ): Let
0 6= m ∈ M such that P = annR(m); hence annRR\P (m) = {f ∈ R;mfv =
0 for some v ∈ R \ P}R\P =

⋃
v∈R\P (annR(mv)R\P ) = annR(m)R\P = PR\P .

Conversely, let 0 6= m
u ∈ MR\P such that PR\P = annRR\P (mu ) = annRR\P (m),

hence we have annR(m) ⊆ ν−1(annRR\P (m)) = ν−1(PR\P ) = P , where we may
assume that 0 6= m ∈ M is chosen such that annR(m) is maximal amongst the
(proper) ideals {annR(mv) E R; v ∈ R \ P}; then for f ∈ P we have mf = 0 ∈
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MR\P , hence mfv = 0 ∈M for some v ∈ R\P , thus f ∈ annR(mv) = annR(m),
entailing P ⊆ annR(m), hence P = annR(m). ]

Finally, we show that all the minimal prime divisors P E R of annR(M) are
actually associated with M : For such a prime ideal we conclude that PR\P E
RR\P is a minimal prime divisor of annR(M)R\P E RR\P , and hence is its
unique prime divisor. Since annR(M)R\P = annRR\P (MR\P ), we infer that
MR\P 6= {0} and that assRR\P (MR\P ) = {PR\P }, entailing that P ∈ assR(M).

b) Let 0 6= m =
∑r
i=1mi ∈ M , where r ∈ N and mi ∈ Mdi , where di ∈ Z such

that d1 < · · · < dr. We show that if annR(m) E R is a prime ideal, then it is
homogeneous: Let 0 6= f =

∑s
j=1 fj ∈ annR(m), where s ∈ N and fj ∈ Rej ,

where 0 ≤ e1 < · · · < es. We proceed by induction on r ∈ N: Let r = 1; then
from mf = m1f = 0 we get mfj = 0, hence fj ∈ annR(m) for all j.

Let r ≥ 2; we show that f1 ∈ annR(m), and then proceed by induction on s ∈ N:
We have m1f1 = 0, and thus annR(m) ⊆ annR(mf1) = annR(

∑r
i=2mif1). If

annR(m) = annR(mf1), then the latter is a prime ideal, hence by induction is
homogeneous, so that f1 ∈ annR(m); if annR(m) 6= annR(mf1), then letting
g ∈ annR(mf1) \ annR(m) we get f1g ∈ annR(m), hence f1 ∈ annR(m). ]

Corollary. Let R be Noetherian.
a) Then any ideal I ER has only finitely many minimal prime divisors.
b) If R is a graded K-algebra, where K is a field, and I E R is homogeneous,
then the minimal prime divisors of I are homogeneous as well.

(13.7) Theorem: Krull’s Principal Ideal Theorem [Krull 1928]. Let R
be a Noetherian commutative ring, let I := (f1, . . . , fr) E R where r ∈ N, and
let P ER be a minimal prime divisor of I. Then we have ht(P ) ≤ r.

Proof. By going over to RR\P we may assume that R is local with maximal

ideal P . Let : R → R/I =: R be the natural epimorphism. Since P is a
minimal prime divisor of I, it is the unique one. Hence we have nil(R) = P ,
and since P is finitely generated there is n ∈ N such that P

n
= {0}. Thus

we have the chain of R-submodules R ⊇ P ⊇ P
2 ⊇ · · · ⊇ P

n−1 ⊇ P
n

= {0},
whose subquotients are finitely generated R/P -vector spaces. By refining, there
is a finite chain of R-submodules whose subquotients are one-dimensional R/P -
vector spaces, thus being a finite R-module composition series of R. Now we
proceed by induction on r ∈ N:

i) Let r = 1; we show that for any prime ideal QER such that Q ⊂ P (if there
is any at all) we have ht(Q) = 0; this implies ht(P ) ≤ 1:

Let ν : R → RR\Q, and for i ∈ N0 let the i-th symbolic power of Q be the

contracted ideal Q(i) := ν−1(QiR\Q) = {g ∈ R; gu ∈ Qi for some u ∈ R\Q}ER.

Since by the Jordan-Hölder Theorem each finite chain of R-submodules of R
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can be refined to a finite composition series, we conclude that the chain of R-

submodules R ⊇ Q = Q(1) ⊇ Q(2) ⊇ · · · stabilizes. Hence letting m ∈ N0

such that Q(m) = Q(m+1), we show that Q(m) = Q(m+1) + Q(m)I: Indeed, for
g ∈ Q(m) by assumption there are g′ ∈ Q(m+1) and h ∈ R such that g = g′+hf1,
hence hf1 ∈ Q(m); and since f1 ∈ R \Q we infer that actually h ∈ Q(m).

Since I ⊆ P = rad(R), the Nakayama Lemma implies Q(m) = Q(m+1). This
yields QmR\Q = (Q(m))R\Q = (Q(m+1))R\Q = Qm+1

R\Q = QmR\Q ·QR\Q. Since RR\Q
is local with maximal ideal rad(RR\Q) = QR\Q, the Nakayama Lemma again
implies QmR\Q = {0}. Hence we have QR\Q ⊆ nil(RR\Q), thus the maximal ideal

QR\Q is the unique prime ideal of RR\Q, hence ht(Q) = dim(RR\Q) = 0.

ii) Now let r ≥ 2, and let Q E R be maximal amongst the prime ideals of R
being properly contained in P . Hence we have I 6⊆ Q, thus we may assume that
fr 6∈ Q. Hence P is a minimal prime divisor of J := Q+ (fr)ER, thus it is the
unique one, hence we have P/J = nil(R/J) ER/J .

In particular, there are mi ∈ N, and gi ∈ Q, and hi ∈ R such that fmii =
gi + frhi, for i ∈ {1, . . . , r − 1}. We show that QER is minimal prime divisor
of I ′ := (g1, . . . , gr−1) ER; then by induction ht(Q) ≤ r − 1, thus ht(P ) ≤ r:
Let J ′ := I ′+ (fr)ER. Since Pn ⊆ I, and fmii ∈ J ′ for i ∈ {1, . . . , r− 1}, there
is m ∈ N such that Pm ⊆ J ′. Hence P/J ′ ⊆ nil(R/J ′), thus the maximal ideal
P/J ′ is the unique prime ideal of R/J ′ . Hence P/I ′ER/I ′ is a minimal prime
divisor of J ′/I ′ (actually the unique one), and since J ′ = I ′ + (fr) by part (i)
we conclude that ht(P/I ′) ≤ 1. Hence I ′ ⊆ Q ⊂ P implies ht(Q/I ′) = 0. ]

14 Noether normalization

(14.1) Lemma. Let K be a field, let R := K[X ] = K[X1, . . . , Xn] where
n ∈ N, and let 0 6= f ∈ R \ R∗. Then there is Y := {Y1, . . . , Yn−1} ⊆ R such
that Y

.
∪ {f} is algebraically independent and S := K[Y, f ] ⊆ R is finite.

i) We may choose e ∈ N such that Yi = Xi − (Xn)e
i

, for i ∈ {1, . . . , n− 1}.
ii) If K is infinite, then we may choose ai ∈ K such that Yi = Xi − aiXn.
iii) If f is homogeneous, then we may choose the Yi homogeneous as well.

Proof. i) Assume that Y
.
∪ {f} ⊆ R such that S ⊆ R is finite. Then K(Y, f) ⊆

K(X ) is a finite field extension, hence algebraic. Thus we conclude that n =
trdegK(K(X )) = trdegK(K(Y, f)), hence Y

.
∪ {f} is algebraically independent.

Thus it remains to specify Y ⊆ R suitably such that S ⊆ R is finite:

Let e ∈ N be strictly greater than any part of any combination α associated with
any monomial Xα occurring in f . Letting Yi := Xi−Xei

n , for i ∈ {1, . . . , n−1},
and Y := {Y1, . . . , Yn−1}, we have S := K[Y, f ] ⊆ S[Xn] = K[Y, Xn] = R, thus
R is a finitely generated S algebra; we show that Xn is integral over S:

We have Xα = Xαn
n ·

∏n−1
i=1 (Yi + Xei

n )αi , and expanding with respect to Xn

we observe that Xα is monic of degree dα =
∑n−1
i=0 αie

i with respect to Xn,
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where α0 := αn. If Xα occurs in f , then by the choice of e the above sum
coincides with the e-adic representation of dα. Hence the degrees with respect
to Xn of the various monomials occurring in f are pairwise distinct. Thus
f ∈ K[Y, Xn] has positive degree and is monic, with respect to Xn. Hence

g := f(Y1 + T e, . . . , Yn−1 + T e
n−1

, T ) − f ∈ S[T ] has positive degree and is
monic, with respect to T , such that g(Xn) = 0. ]

ii) Now assume that K is infinite. Let f =
∑d
j=0 fj ∈ K[X ], where the fj are

homogeneous of degree j, and d := deg(f) ≥ 1. Letting Yi = Xi − aiXn, for
ai ∈ K and i ∈ {1, . . . , n−1}, and Y := {Y1, . . . , Yn−1}, we have S := K[Y, f ] ⊆
S[Xn] = K[Y, Xn] = R, thus R is a finitely generated S algebra; we show that
the ai can be specified suitably such that Xn is integral over S:

Writing fj = f(Y1+a1Xn, . . . , Yn−1+an−1Xn, Xn) ∈ K[Y, Xn], we observe that
fj is homogeneous of degree j, and expanding with respect to Xn shows that
fj has degree j and leading coefficient fj(a1, . . . , an−1, 1) ∈ K. In particular,
since fd 6= 0 and K is infinite, there are a1, . . . , an−1 ∈ K such that a :=
fd(a1, . . . , an−1, 1) ∈ K∗; note that for n = 1 we have fd ∈ K∗ anyway. Hence
g := f(Y1 + a1T, . . . , Yn−1 + an−1T, T )− f ∈ S[T ] has degree d ≥ 1 and leading
coefficient a ∈ S∗ with respect to T , such that g(Xn) = 0. ]

iii) Finally, assume that f is homogeneous. If K is infinite, then we have just
seen that the Yi can be chosen homogeneous of degree 1. To deal with the case
of finite fields, we let K be arbitrary again:

For i ∈ {1, . . . , n − 1} we successively choose Yi ∈ R+ homogeneous such that

the ideal Ii := fR+
∑i−1
j=1 YjR ⊆ R+ of R has height ht(Ii) = i:

Since R is a domain, by Krull’s Principal Ideal Theorem we have ht(I1) =
ht(fR) = 1. Now let P1, . . . , Ps ⊆ R+ be the (homogeneous) minimal prime di-
visors of Ii, where s ∈ N. Assume that

⋃s
k=1 Pk = R+; then by prime avoidance

we have R+ = Pk for some k, hence R+ is a minimal prime divisor of Ii, and
thus by Krull’s Principal Ideal Theorem we have ht(R+) ≤ i; since ht(R+) = n
this is a contradiction.

Thus we may choose Yi ∈ R+ \
⋃s
k=1 Pk homogeneous, so that by Krull’s Princi-

pal Ideal Theorem again we have i ≤ ht(Ii+1) ≤ i+1. Assume that ht(Ii+1) = i;
then let Q E R be a minimal prime divisor of Ii+1 such that ht(Q) = i; since
Ii ⊆ Q and ht(Ii) = i, we conclude that Q is a minimal prime divisor of Ii,
hence coincides with Pk for some k, thus Yi 6∈ Q; since Yi ∈ Ii+1 ⊆ Q this a
contradiction. Thus we have ht(Ii+1) = i+ 1, as desired ]

Hence we have ht(In) = n, and since ht(R+) = n we conclude that R+ E R
is a minimal prime divisor of In, and thus is its unique prime divisor. As
R+ER is finitely generated, we conclude that R+/InER/In is nilpotent. Hence
R/In has a finite filtration consisting of finitely generated R/R+-modules, since
R/R+

∼= K entailing that R/In is a finite-dimensional K-vector space. Since
S = K[Y, f ] is a graded K-algebra as well, we have In = (f,Y) = S+R E R.
Thus R/S+R being finite-dimensional, by the graded Nakayama Lemma we
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conclude that R is a finitely generated S-module, hence R is finite over S. ]

(14.2) Theorem. Let K be a field. Then dim(K[X1, . . . , Xn]) = n, for n ∈ N0.

Proof. We proceed by induction on n; the case n = 0 being trivial, we let
n ≥ 1, and let R := K[X1, . . . , Xn]. We have already seen that dim(R) ≥ n.
Hence for any strictly ascending chain of prime ideals {0} = P0 ⊂ · · · ⊂ Pr ER,
for r ∈ N0, we have to show that r ≤ n:

For 0 6= f ∈ P1 let S := K[f,Y] ⊆ R be as in (14.1). Since S ⊆ R is finite,
by incomparability we conclude that {0} = S ∩ P0 ⊂ S ∩ P1 ⊂ · · · ⊂ S ∩ Pr is
a strictly ascending chain of prime ideals of S, yielding the strictly ascending
chain of prime ideals fS = (S∩P1)+fS ⊂ · · · ⊂ (S∩Pr)+fSES/fS ∼= K[Y].
Since by induction we have dim(K[Y]) = n− 1, we infer r − 1 ≤ n− 1. ]

Corollary. Let R := K[f1, . . . , fn] be a finitely generated commutative K-
algebra, for n ∈ N0. Then dim(R) ≤ n, with equality if and only if {f1, . . . , fn}
is algebraically independent.

Proof. We have R ∼= K[X1, . . . , Xn]/I, for some ideal IEK[X1, . . . , Xn]. This
shows that dim(R) ≤ n. Moreover, if I = {0} then equality holds, while for
I 6= {0} we have ht(I) ≥ 1 so that dim(R) < n. ]

(14.3) Theorem: Noether’s Normalization Theorem [Noether, 1926;
Zariski, 1943; Nagata, 1962]. Let K be a field, let R := K[f1, . . . , fr], for
r ∈ N0, be a finitely generated commutative K-algebra, let n := dim(R) ∈
{0, . . . , r}, and let {0} = I0 ⊂ I1 ⊂ · · · ⊂ Is, for s ∈ N0, be a strictly ascending
chain of ideals IkCR such that n > n1 > · · · > ns ≥ 0, where nk := dim(R/Ik).

Then there is Y := {Y1, . . . , Yn} ⊆ R algebraically independent such that S :=
K[Y] ⊆ R is finite and S ∩ Ik = (Ynk+1, . . . , Yn) E S, for 0 ∈ {1, . . . , s}.
i) If K is infinite, we may choose the Yi as K-linear combinations of {f1, . . . , fr}.
ii) If R is graded and the ideals I1, . . . , Is are homogeneous, we may choose the
Yi homogeneous as well.

Proof. We may assume that R ∼= K[X1, . . . , Xr]/I, where I ⊂ I1 ⊂ · · · ⊂
IsCK[X1, . . . , Xr], hence dim(K[X1, . . . , Xr]/I) = dim(R) = n > n1. Thus we
may assume that R = K[X ] = K[X1, . . . , Xn]. Moreover, we may assume that
s ≥ 1, and hence that Is is maximal, so that ns = 0.

Now it is sufficient to find Y := {Y1, . . . , Yn} ⊆ R such that R is finite over
S := K[Y] and {Ynk+1, . . . , Yn} ⊆ Ik, for k ∈ {1, . . . , s}:
Indeed, since S ⊆ R is finite, we conclude that K(Y) ⊆ K(X ) is an algebraic
field extension, hence we have n = trdeg(K(X )) = trdeg(K(Y)), thus Y is
algebraically independent. Moreover, we have dim(S/(S ∩ Ik)) = dim(R/Ik) =
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nk = dim(K[Y1, . . . , Ynk ]) = dim(S/(Ynk+1, . . . , Yn)), where (Ynk+1, . . . , Yn)ES
is a prime ideal, hence (Ynk+1, . . . , Yn) = S ∩ Ik. ]

To do so, we construct the Yi ∈ R successively for i ∈ {n, n − 1, . . . , 1}, using
auxiliary elements Yi,j ∈ R, for j ≤ i, where we let Yn,j := Xj for j ∈ {1, . . . , n}.
Letting Si = K[Yi,1, . . . , Yi,i, Yi+1, . . . , Yn] be polynomial such that Si ⊆ R is
finite, and {Yj+1, . . . , Yn} ⊆ Ik where j := max{nk, i}, for k ∈ {1, . . . , s},
we introduce Yi, Yi−1,1, . . . , Yi−1,i−1 ∈ Si, retaining the above conditions, and
decrease i. Finally, we let S := S0. We proceed as follows:

Given i, let k ≥ 1 be minimal such that nk < i. Assume that K[Yi,1, . . . , Yi,i] ∩
Ik = {0}; since {Yi+1, . . . , Yn} ⊆ Ik, computing modulo (Yi+1, . . . , Yn) E Si
shows that any element of Si∩Ik has a representative in K[Yi,1, . . . , Yi,i]; thus we
infer (Yi+1, . . . , Yn) = Si∩IkESi, which since dim(Si/(Si∩Ik)) = dim(R/Ik) =
nk < i = dim(K[Yi,1, . . . , Yi,i]) = dim(Si/(Yi+1, . . . , Yn)) is a contradiction.

Hence let 0 6= Yi ∈ K[Yi,1, . . . , Yi,i]∩Ik; if Ik and the Yi,j are homogeneous, then
Yi may be chosen homogeneous as well. By (14.1) let {Yi−1,1, . . . , Yi−1,i−1} ⊆
K[Yi,1, . . . , Yi,i] such that {Yi−1,1, . . . , Yi−1,i−1}

.
∪ {Yi} is algebraically inde-

pendent such that K[Yi−1,1, . . . , Yi−1,i−1, Yi] ⊆ K[Yi,1, . . . , Yi,i] is finite; if Yi is
homogeneous the Yi−1,j may be chosen homogeneous as well, and if K is infinite
the Yi−1,j may be chosen as K-linear combinations of {Yi,1, . . . , Yi,i}.
Thus letting Si−1 := K[Yi−1,1, . . . , Yi−1,i−1, Yi, Yi+1, . . . , Yn] we conclude that
Si−1 ⊆ Si is finite, and since Si ⊆ R is finite, we infer that Si−1 ⊆ R is finite as
well. Moreover, we have {Yi, . . . , Yn} ⊆ Ik where i− 1 = max{nk, i− 1}. ]

Actually, in proving the above theorem, Noether dealt with infinite fields only,
while Zariski treated arbitrary fields, and the refined version, actually involving
only a single ideal, was given by Nagata.

(14.4) Theorem. a) Let K be a field, and let R be a finitely generated commu-
tative graded K-algebra. Then for the complexity of R we have γ(R) = dim(R),
and if R is a domain then we have dim(R) = trdeg(Q(R)).
b) Let M be a finitely generated graded R-module. Then for the complexity of
M we have γ(M) = γ(R/annR(M)) = dim(R/annR(M)) = dim(M).

Proof. a) Let K[Y] ∼= S ⊆ R be a Noether normalization, which is a finite
extension. Hence we have γ(R) = γ(S) and dim(R) = dim(S), where dim(S) =
|Y| = γ(S). Moreover, if R is a domain, since Q(S) ⊆ Q(R) is algebraic, we
have dim(R) = dim(S) = |Y| = trdeg(Q(S)) = trdeg(Q(R)).

b) We may assume that M 6= {0}. Then note first that annR(M) C R is
homogeneous, so that R/annR(M) is a finitely generated commutative graded
K-algebra indeed. Now, since M is a quotient of a finitely generated free graded
R/annR(M)-module, we have γ(M) ≤ γ(R/annR(M)) = dim(R/annR(M)).

Conversely, if P E R is a (homogeneous) minimal prime divisor of annR(M),
we have P ∈ assR(M). Thus there is an R-submodule N ≤ M such that
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R/P ∼= N , entailing that dim(R/P ) = γ(R/P ) ≤ γ(M). Hence we conclude
that dim(R/annR(M)) ≤ γ(M) as well, so that we have equality. ]

(14.5) Homogeneous systems of parameters. a) Let K be a field, let R be
a finitely generated commutative graded K-algebra, and let {f1, . . . , fn} ⊆ R
be homogeneous of positive degree and algebraically independent, such that
K[f1, . . . , fn] ⊆ R is finite. Then {f1, . . . , fn} is called a homogeneous system
of parameters, or h.s.o.p. for short, of R.

Note that necessarily n = dim(K[f1, . . . , fn] = dim(R) ∈ N0, and that by
Noether normalization homogeneous system of parameters always exist. But the
multiset of the degrees of the elements of a homogeneous system of parameters
is in general not uniquely defined:

For example, {X1, . . . , Xn} ⊆ K[X ] = K[X1, . . . , Xn] is a homogeneous sys-
tem of parameters, but {X2

1 , X2, . . . , Xn} ⊆ K[X ] is algebraically independent
such that K[X ] = 1 · S ⊕ X1 · S, where S := K[X2

1 , X2, . . . , Xn], saying that
{X2

1 , X2, . . . , Xn} is a homogeneous system of parameters as well.

b) Let G be a finite group, and let V be a K[G]-module; then we have n :=
dim(S[V ]G) = γ(S[V ]G) = dimK(V ) ∈ N0. A homogeneous system of pa-
rameters F := {f1, . . . , fn} of S[V ]G is called a set of primary invariants;
note that since S[V ]G ⊆ S[V ] is finite F ⊆ S[V ]G is a homogeneous system
of parameters of S[V ]G if and only if F is a homogeneous system of parame-
ters of S[V ]. Moreover, a homogeneous generating set {g1, . . . , gm} of S[V ]G as
K[f1, . . . , fn]-module, for m ∈ N, is called a set of secondary invariants.

i) In particular, if S[V ]G is polynomial, then a set of basic invariants is a set of
primary invariants, a set of secondary invariants being given by {1}.
ii) If V is a permutation K[G]-module, then R := K[en,1, . . . , en,n] ⊆ S[V ]G,
where R is polynomial and R ⊆ S[V ] is finite, so that the elementary symmetric
polynomials {en,1, . . . , en,n} form a set of primary invariants of S[V ]G, and by
Göbel’s Theorem the orbit sums of monomials associated with (n − 1)-special
combinations form a (typically non-minimal) set of secondary invariants.

15 Cohen-Macaulay algebras

(15.1) Regular sequences. a) Let K be a field, let R be a finitely generated
commutative graded K-algebra, and let M 6= {0} be a finitely generated graded
R-module. Then a homogeneous element 0 6= f ∈ R+ is called regular or
a non-zerodivisor on M , if for the associated multiplication map we have
kerM (·f) = {0}. In particular, an element of R being regular on the regular
R-module R is called regular. Note that, by the graded Nakayama Lemma, for
any f ∈ R+ the multiplication map on M 6= {0} is not surjective.

Proposition. We have dim(M) − 1 ≤ dim(M/Mf) ≤ dim(M), where if f is
regular on M then we have dim(M/Mf) = dim(M)− 1.
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Proof. We have dim(M) = γ(M) ∈ N0; moreover, since Mf 6= M we have
0 ≤ dim(M/Mf) ≤ dim(M). From the exact sequence of graded R-modules

{0} → N := kerM (·f) → M
·f−→ M → cokM (·f) = M/Mf → {0} we obtain

HM/Mf−HM+T deg(f)(HM−HN ) = 0, that is HM =
HM/Mf−Tdeg(f)HN

1−Tdeg(f) ∈ Q(T );

see also the proof of (6.1). Hence we have γ(M) ≤ γ(M/Mf) + 1; moreover, if
f is regular on M , then HN = 0 yields γ(M) = γ(M/Mf) + 1. ]

In particular, if dim(M) = 0 there cannot possibly be a regular element on M .
Alternatively, this can also be seen as follows: If γ(M) = dim(M) = 0, then M
is a finitely generated K-vector space, so that any injective K-endomorphism
of M is surjective as well, so there is no regular element on M .

b) A homogeneous sequence [f1, . . . , fk] ⊆ R+, where k ∈ N0, is called regular

on M , if fi is regular on M/M(f1, . . . , fi−1) = M/(
∑i−1
j=1Mfj), for all i ∈

{1, . . . , k}; in particular we have M(f1, . . . , fi) 6= M for all i ∈ {0, . . . , k}. The
depth depth(M) ∈ N0

.
∪ {∞} of M is defined as the maximum length of a

regular sequence on M .

Indeed, it follows by induction from the above proposition, and depth(M) = 0 if
dim(M) = 0, that the length of any regular sequence on M is bounded above by
dim(M), so that we have depth(M) ≤ dim(M) ∈ N0 as well. In view of this, M
is called Cohen-Macaulay, if we actually have equality depth(M) = dim(M).

In particular, if dim(R) = 0 then we have depth(R) = 0 as well, so that R
is Cohen-Macaulay. Moreover, if R is a domain such that dim(R) ≥ 1 then
depth(R) ≥ 1, so that any domain R such that dim(R) = 1 is Cohen-Macaulay.

Example. Let R = K[X1, . . . , Xn], for n ∈ N0, and let Pi := (X1, . . . , Xi)ER,
for i ∈ {0, . . . , n}, yielding the strictly ascending chain {0} = P0 ⊂ P1 ⊂
· · · ⊂ Pn E R. Since R/Pi−1

∼= K[Xi, . . . , Xn] is a domain, we conclude that
0 6= Xi ∈ R/Pi−1 is regular, for i ∈ {1, . . . , n}, hence [X1, . . . , Xn] ⊆ R+ is a
regular sequence of length n = dim(R), thus R is Cohen-Macaulay.

(15.2) Theorem: [Macaulay, 1916; Cohen, 1946]. Let K be a field, let
R be a finitely generated commutative graded K-algebra, and let M 6= {0}
be a finitely generated graded R-module. Then for the depth of M we have
depth(M) ≤ min{dim(R/P ) ∈ N0;P ∈ assR(M)}.

Proof. Recall that assR(M) 6= ∅ indeed. We proceed by induction on dim(M) ∈
N0; since for dim(M) = 0 we have depth(M) = 0, we may assume that
dim(M) ≥ 1. Let [f1, . . . , fk] ⊆ R+ be a regular sequence on M , for some k ≥ 1,
and abbreviate f := f1. Then by induction we have k − 1 ≤ depth(M/Mf) ≤
min{dim(R/Q) ∈ N0;Q ∈ assR(M/Mf)}. We show that for each P ∈ assR(M)
there is Q ∈ assR(M/Mf) such that P ⊂ Q; then k ≤ 1 + min{dim(R/Q) ∈
N0;Q ∈ assR(M/Mf)} ≤ min{dim(R/P ) ∈ N0;P ∈ assR(M)}:
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Since f is regular on M we have f 6∈ P . Let N := {m ∈ M ;mP ≤ Mf} ≤ M ,
then N is an R-submodule such that Mf ≤ N . Assume that Mf = N ; then we
consider the R-submodule U := {m ∈ M ;P ≤ annR(m)} ≤ N = Mf . Hence
for each u ∈ U there is m ∈M such that u = mf , thus we get mfP = uP = {0},
since f is regular on M entailing mP = {0}, that is m ∈ U . Thus we conclude
that U = Uf , hence by the graded Nakayama Lemma we have U = {0}, which
since P ∈ assR(M) is a contradiction.

Hence we have Mf 6= N , that is {0} 6= N/Mf ≤ M/Mf , where we have P ⊆
annR(N/Mf), and f ∈ annR(M/Mf) anyway. We have ∅ 6= assR(N/Mf) ⊆
assR(M/Mf), and for any Q ∈ assR(N/Mf) we have P ⊆ Q and f ∈ Q \ P . ]

Since assR(M) encompasses the minimal prime divisors of annR(M), in general
we have depth(M) ≤ min{dim(R/P ) ∈ N0;P ∈ assR(M)} ≤ max{dim(R/P ) ∈
N0;P ∈ assR(M)} = dim(R/annR(M)) = dim(M) ≤ dim(R) ∈ N0. Hence
if M is Cohen-Macaulay then it has the unmixedness property dim(R/P ) =
dim(M), for all P ∈ assR(M); this entails that assR(M) consists precisely of
the minimal prime divisors of annR(M), which all have the same dimension.

The unmixedness property was found by Macaulay for polynomial algebras,
and by Cohen for regular local rings, which is the reason for the terminology
used today. We remark that we only treat a special class of Cohen-Macaulay
rings here, inasmuch we only allow for graded algebras and homogeneous regular
sequences; these behave kind of similar to local Cohen-Macaulay rings.

(15.3) Cohen-Macaulay modules. Let K be a field, let R be a finitely gen-
erated commutative graded K-algebra such that n := dim(R) ∈ N0, and let
M 6= {0} be a finitely generated graded R-module. We show that in the Cohen-
Macaulay case the converse of the assertion in (15.1) also holds:

Proposition. If M is Cohen-Macaulay, then a homogeneous element 0 6= f ∈
R+ is regular on M , if and only if dim(M/Mf) = dim(M)− 1.

Proof. We may assume that 0 6= f ∈ R+ homogeneous is not regular on M ,
and we have to show that dim(M/Mf) = dim(M):

To do so, we first show that annR(M/Mf) ⊆
√

annR(M) + (f): To this end,
let g ∈ annR(M/Mf), and letting {m1, . . . ,mr} ⊆M , for some r ∈ N, be an R-
module generating set, there are aij ∈ (f)ER such thatmjg =

∑r
i=1miaij ∈M .

Letting A := X ·Er−[aij ]ij ∈ R[X]r×r, we have det(A) = Xr+
∑r
k=1 akX

r−k ∈
R[X], where a1, . . . , ak ∈ (f). Specifying X 7→ g, we have [m1, . . . ,mr] ·A(g) =
0, implying that [m1, . . . ,mr] · det(A(g)) = [m1, . . . ,mr] · A(g) · adj(A(g)) =
0. Thus we have det(A(g)) ∈ annR(M), implying that gr = det(A(g)) −∑r
k=1 akg

r−k ∈ annR(M) + (f). (Note that so far we have not used the fact
that f is a zero-divisor on M .)

Now, since f is a zero-divisor onM , there is P ∈ assR(M) such that f ∈ P . Thus
we have annR(M/Mf) ⊆

√
annR(M) + (f) ⊆ P , hence using unmixedness we
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infer dim(M) = dim(R/P ) ≤ dim(M/Mf) ≤ dim(M). ]

(15.4) Cohen-Macaulay algebras. We relate regular sequences to homoge-
neous sets of parameters, and proceed to the main structure theorem for Cohen-
Macaulay algebras, saying that the latter are characterized by having particu-
larly nice Noether normalizations. To this end, let K be a field, and let R be a
finitely generated commutative graded K-algebra such that n := dim(R) ∈ N0.

Proposition. Any regular sequence [f1, . . . , fk] ⊆ R+, for k ∈ {0, . . . , n}, can
be extended to a homogeneous set of parameters. In particular, a regular se-
quence of length n is a homogeneous set of parameters.

Proof. Let F := {f1, . . . , fk}, and let : R → R := R/(F) denote the natural
epimorphism. By Noether normalization let G ⊆ R+ homogeneous, such that
G ⊆ R+ is a homogeneous set of parameters of R, where by regularity we have
|G| = dim(R) = n − k. Moreover, let H ⊆ R be finite and homogeneous, such
that H generates R as a K[G]-module.

Let S := K[F ,G] ⊆ R. By the graded Nakayama Lemma we conclude that H
generates the K-vector space R/(G) ∼= R/(F ,G). Thus by the graded Nakayama
Lemma again we conclude that H generates R as an S-module. Hence S ⊆ R is
finite, thus we have dim(S) = dim(R) = n = k + |G|. Since S is as a K-algebra
generated by r + |G| elements, we conclude that S is polynomial. Hence the
concatenation of [f1, . . . , fk] with G is a homogeneous set of parameters of R. ]

Theorem. The following assertions are equivalent:
i) R is Cohen-Macaulay, that is there is a regular sequence of length n.
ii) Any homogeneous set of parameters is regular (for any ordering).
iii) R is a free graded S-module, for any Noether normalization S ⊆ R.
iv) R is a free graded S-module, for some Noether normalization S ⊆ R.

Proof. Let {f1, . . . , fn} ⊆ R+ be a homogeneous set of parameters of R, let
S := K[f1, . . . , fn] ⊆ R be the associated Noether normalization, and let : R→
R := R/(f1, . . . , fn) be the natural epimorphism. Since R is a finitely generated
S-module, by the graded Nakayama Lemma we conclude that R is a finitely
generated K-vector space; thus we have dim(R) = γ(R) = 0.

Moreover, let G = {g1, . . . , gm} ⊆ R homogeneous such that G ⊆ R is a K-basis,
where m = dimK(R) ∈ N0. Thus G ⊆ R is a minimal generating set of R as an
S-module, where we may assume that g1 = 1. Having this in place we get:

i)⇒ii). Since dim(R) = 0 and R is Cohen-Macaulay, [f1, . . . , fn] is regular.

ii)⇒iii). Assume to the contrary that G is not S-free. Then there are polyno-
mials hj ∈ K[X1, . . . , Xn], for j ∈ {1, . . . ,m}, such that [h1, . . . , hm] 6= 0 and∑m
j=1 gjhj(f1, . . . , fn) = 0 ∈ R. Let α ∈ N0 be maximal such that Xα

1 divides
all the hj , and let hj = Xα

1 · h′j ∈ K[X1, . . . , Xn]. Since f1 ∈ R is regular, we
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have
∑m
j=1 gjh

′
j(f1, . . . , fn) = 0 ∈ R, entailing

∑m
j=1 gjh

′
j(0, f2, . . . , fn) = 0 ∈

R/(f1), where by construction [h′1(0, X2, . . . , Xn), . . . , h′m(0, X2, . . . , Xn)] 6= 0.

Hence G ⊆ R/(f1) is not K[f2, . . . , fn]-free. By iteration this finally yields∑m
j=1 λjgj = 0 ∈ R, where λj ∈ K such that [λ1, . . . , λm] 6= 0; since G is

K-linearly independent, this a contradiction.

iii)⇒iv) is trivial.

iv)⇒i). Assume that R =
⊕m

j=1 gjS is a free S-module. Since S is a domain,

f1 ∈ S = g1 · S ⊆ R is regular, and we have R/(f1) =
⊕m

j=1(gj ·K[f2, . . . , fn]).
By iteration we conclude that the sequence [f1, . . . , fn] is regular. ]

(15.5) Hironaka decomposition. a) Let K be a field, let R be a finitely
generated commutative graded K-algebra such that n := dim(R) ∈ N0, let
F := {f1, . . . , fn} ⊆ R be a homogeneous set of parameters, let S := K[F ] ⊆ R,
let {g1, . . . , gm} ⊆ R, where m ∈ N, be a minimal homogeneous generating set
of R as a graded S-module, and let di := deg(fi) ∈ N and ej := deg(gj) ∈ N0.

Let R be Cohen-Macaulay. Then we have the associated Hironaka decompo-
sition R =

⊕m
j=1 gjS as a free graded S-module. Hence the Hilbert series of

R is given as HR = (
∑m
j=1 T

ej ) ·HS = (
∑m
j=1 T

ej ) ·
∏n
i=1

1
1−Tdi ∈ Q(T ). Since

γ(R) = γ(S) = n we have δ(R) = m · δ(S) = m ·
∏n
i=1

1
di
∈ Q; and if R is a

domain then by the degree theorem we have [Q(R) : Q(S)] = δ(R)
δ(S) = m.

b) If a Noether normalization S of R is given, since S is polynomial the associ-
ated degrees are uniquely defined and can be read off from HS , see (7.3). Then
the cardinality m of a minimal homogeneous generating set of R as an S-module,
and the associated degrees, can be read off from HR. Alone, the degrees of the
elements of a homogeneous set of parameters are not uniquely defined; thus a
certain amount of educated guesswork is needed to find a Noether normalization
in practice, where HR typically yields hints where to look.

We have the following method to check whether we have actually found a
Noether normalization of R: The homogeneous sets of parameters coincide with
the regular sequences of length n, where the latter can be built up successively,
checking the regularity condition in each step. Indeed, a homogeneous sequence
[f1, . . . , fk] ⊆ R+, for some k ∈ {0, . . . , n}, is regular, and thus can be fur-
ther extended regularly for k < n, if and only if dim(R/(f1, . . . , fk)) = n − k;
recall that dim(R/(f1, . . . , fk)) ≥ n − k anyway. In particular, a homoge-
neous sequence [f1, . . . , fn] ⊆ R+ is regular if and only if γ(R/(f1, . . . , fn)) =
dim(R/(f1, . . . , fn)) = 0, that is R/(f1, . . . , fn) is a finitely generated graded
K-vector space. In this case, by the graded Nakayama Lemma, a homogeneous
set G := {g1, . . . , gm}, for some m ∈ N, is a minimal homogeneous generating
set of R as an S-module, if and only if G ⊆ R = R/(f1, . . . , fn) is a K-basis.

(15.6) Cohen-Macaulay invariant algebras. We proceed to show how the
notion of Cohen-Macaulayness relates to invariant algebras. Let K be a field.
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Proposition. Let R be a finitely generated commutative graded K-algebra,
and let M be a finitely generated graded R-module which is a homogeneous
direct summand of a finitely generated free graded R-module (that is M is
projective graded). Then M is a free graded R-module.

Proof. Let {m1, . . . ,mr} ⊆ M be a minimal homogeneous generating set of
M , where r ∈ N0 and di := deg(mi) ∈ Z, and let F =

⊕r
i=1 fiR be the free

graded R-module generated in degrees di, so that there is an epimorphism of
graded R-modules ϕ : F →M : fi 7→ mi. We show that ϕ is an isomorphism:

By assumption there is a free graded R-module F ′ =
⊕s

j=1 f
′
jR, where s ∈ N0,

such that there is an epimorphism of graded R-modules π : F → M together
with a splitting ι : M → F , that is ιπ = idM . For j ∈ {1, . . . , s} choose hj ∈ F
homogeneous such that ϕ(hj) = π(f ′j), and let ψ : F ′ → F be the homomor-
phism of graded R-modules given by f ′j 7→ hj . Then we have (ψϕ)(f ′j) = π(f ′j),
thus ψϕ = π. Hence we have ιψ · ϕ = ιπ = idM , saying that ιψ : M → F is a
splitting of ϕ, so that F = (ιψ)(M)⊕ ker(ϕ).

Since F is Noetherian, ker(ϕ) is a finitely generated graded R-module. More-
over, for

∑r
i=1 figi ∈ ker(ϕ), where the gi ∈ R are homogeneous, applying ϕ we

get
∑r
i=1migi = 0 ∈ M . Since by the graded Nakayama Lemma we infer that

{m1, . . . ,mr} ⊆M/MR+ is K-linearly independent, we conclude that gi ∈ R+

for all i. Thus we have ker(ϕ) ≤ FR+ = (ιψ)(M)R+ ⊕ ker(ϕ)R+, so that
ker(ϕ) = ker(ϕ)R+, by the graded Nakayama Lemma entailing ker(ϕ) = {0}. ]

Theorem: [Hochster,Eagon,1971; Campbell,Hughes,Pollack,1991].
Let G be a finite group, let H ≤ G be a subgroup such that char(K) - [G : H],
and let V be a K[G]-module. If S[V ]H is Cohen-Macaulay, then so is S[V ]G.

Proof. Let S := S[V ], and let {f1, . . . , fn} ⊆ SG be a set of primary invariants,
where n := dimK(V ) ∈ N0. Hence we have R := K[f1, . . . , fn] ⊆ SG ⊆ SH ⊆ S.
Both extensionsR ⊆ SG ⊆ S are finite, hence S is a finitely generatedR-module.
Since R is Noetherian, the R-submodule SH ≤ S is finitely generated as well,
hence {f1, . . . , fn} ⊆ SH is a set of primary invariants of SH as well. Now we
have to alternative ways to proceed:

i) More abstractly, since SH is Cohen-Macaulay, SH is a free graded R-module.
The relative Reynolds operator RGH : SH → SG is a projection of graded R-
modules. Hence SG is a direct summand of SH , thus is a free graded R-module,
entailing that SG is Cohen-Macaulay.

ii) Alternatively, more concretely, we show that the sequence [f1, . . . , fn] ⊆
SG is regular, using the fact that, since SH is Cohen-Macaulay, the sequence
[f1, . . . , fn] ⊆ SH is regular: Let k ∈ {1, . . . , n}, and let Ik−1 := (f1, . . . , fk−1) =∑k−1
i=1 fi · SG E SG. Then we have fk 6∈ Ik−1 · SH E SH , so that fk 6∈ Ik−1.

Moreover, let gk ∈ SG such that fkgk = 0 ∈ SG/Ik−1, that is fkgk ∈ Ik−1 ⊆
Ik−1 ·SH . By regularity in SH we conclude that gk ∈ Ik−1 ·SH , that is there are
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h1, . . . , hk−1 ∈ SH such that gk =
∑k−1
i=1 fihi. Applying the relative Reynolds

operator RGH : SH → SG yields gk = RGH(gk) =
∑k−1
i=1 fi · RGH(hi) ∈ Ik−1, that

is gk = 0 ∈ SG/Ik−1. This shows that fk ∈ SG/Ik−1 is regular. ]

Corollary. i) If char(K) - |G|, then S[V ]G is Cohen-Macaulay.
ii) If p := char(K) | |G|, and H is a Sylow p-subgroup of G such that S[V ]H is
Cohen-Macaulay, then so is S[V ]G.

The absolute version of the previous theorem is due to Hochster, Eagon,
while the relative version is due to Campbell, Hughes, Pollack.

(15.7) Remark: Depth of invariant algebras. Compared to the non-
modular case, in the modular case the picture is much more complicated. We
give a few indications: To this end, let G be a finite group, let K be a field such
that char(K) | |G|, and let V be a faithful K[G]-module.

a) The depth of S[V ]G is at least min{3,dimK(V )} [Campbell, Hughes,
Kemper, Shank, Wehlau, 2000]. In particular, if dimK(V ) ≤ 3 then S[V ]G

is Cohen-Macaulay [Smith, 1996].

Moreover, the depth of S[V ]G is at least min{dimK(FixV (G)) + 2,dimK(V )}
[Ellingsrud, Skjelbred, 1980]. If dimK(FixV (G)) ≥ dimK(V ) − 1, then
S[V ]G is even polynomial [Landweber, Stong, 1984].

b) Let V be the regular K[G]-module. Then S[V ]G is Cohen-Macaulay if and
only if G ∈ {C2, C3, V4} [Kemper, 1999]; for the ‘̀ıf’ direction see (3.4), and
(9.7), and (17.4) below, respectively. (For the example G = C4, see (17.5).)

c) Let G be a p-group. (Here we expect the most complicated phenomena.)

i) If G is cyclic, then the depth of S[V ]G is equal to min{dimK(FixV (G)) +
2,dimK(V )} [Ellingsrud, Skjelbred, 1980].

In particular, if V is the regular K[G]-module, then the depth of S[V ⊕n]G,
where n ∈ N, is min{n + 2, n · |G|}; thus S[V ⊕n]G is Cohen-Macaulay if and
only if n · (|G| − 1) ≤ 2, that is G = C2 and n ≤ 2, or G = C3 and n = 1.
(Again, for the smallest counterexample G = C4, see (17.5).)

ii) An element 1 6= s ∈ G is called a bireflection, if we have dimK(FixV (s)) ≥
dimK(V ) − 2. Then S[V ]G is Cohen-Macaulay only if G is generated by bire-
flections [Kemper, 1999]. (The converse does not hold.)

In particular, ifG then S[V ⊕n]G is not Cohen-Macaulay whenever n ≥ 3 [Camp-
bell, Geramita, Hughes, Shank, Wehlau, 1999]. (This is another incar-
nation of the philosophy that vector invariants tend to be badly behaved.)

16 Cohen-Macaulay invariant algebras

(16.1) Cohen-Macaulayness of invariant algebras. Let K be a field, let G
be a finite group, let V be a faithful K[G]-module such that n := dimK(V ) ∈ N0,
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let F := {f1, . . . , fn} ⊆ SG ⊆ S := S[V ] be a set of primary invariants such
that di := deg(fi) ∈ N, and let d :=

∏n
i=1 di ∈ N be their degree product. Then

F is called optimal if its degree product d is minimal.

Theorem. a) Let m ∈ N be the cardinality of a minimal set of secondary
invariants associated with F . Then we have |G| | d and m · |G| ≥ d, where
equality m · |G| = d holds if and only if the invariant algebra SG is Cohen-
Macaulay. Moreover, we have m = 1 if and only if d = |G|.
b) For the coinvariant algebra we have dimK(SG) ≥ |G|, where we have equality
dimK(SG) = |G| if and only if S is a free graded SG-module.

Proof. a) Both extensions R := K[F ] ⊆ SG ⊆ S are finite, hence F is a
homogeneous set of parameters of S; thus we have γ(R) = γ(SG) = γ(S) = n,
and δ(R) = 1

d , and δ(SG) = 1
|G| , and δ(S) = 1. From the field extensions

Q(R) ⊆ S(V )G ⊆ S(V ), by the degree theorem we get δ(S)
δ(R) = [S(V ) : Q(R)] =

[S(V ) : S(V )G]·[S(V )G : Q(R)] = δ(S)
δ(SG)

· δ(S
G)

δ(R) ∈ Z, entailing d = |G|· δ(S
G)

δ(R) ∈ Z.

Let G := {g1, . . . , gm} ⊆ SG be a set of secondary invariants such that ej :=
deg(gj) ∈ N0. Now the minimum polynomial of any f ∈ S is irreducible over
Q(R), hence the Q(R)-subalgebra Q(R)[f ] ⊆ S(V ) already is a field, entailing
that S(V )G = SG ·Q(R); see also the proof of (6.3). Thus G generates S(V )G as

a Q(R)-vector space, hencem = |G| ≥ [S(V )G : Q(R)] = δ(SG)
δ(R) = d

|G| . Moreover,

we have m · |G| = d if and only if G is Q(R)-linearly independent, that is G is
R-linearly independent, in other words SG is a free graded R-module.

Finally, we have already shown that m = 1 implies d = |G|; hence let d = |G|.
Then we have [S(V )G : Q(R)] = δ(SG)

δ(R) = 1, thus S(V )G = Q(R), hence we get

R ⊆ SG ⊆ S(V )G = Q(R). Since R is factorial, thus is integrally closed, see
Exercise (19.11), from R ⊆ SG being integral we get R = SG, that is m = 1.

b) Let H := {h1, . . . , hr} be a minimal homogeneous generating set of S as a
graded SG-module, for r ∈ N, such that cs := deg(hs) ∈ N0. By the graded
Nakayama Lemma we conclude that SG = S/IG = S/(SG+ · S) is a graded
K-vector space of K-dimension r. As we have seen above, we have S(V ) =
S · S(V )G, thus H generates S(V ) as an S(V )G-vector space, hence we have
r = |H| ≥ [S(V ) : S(V )G] = |G|. Moreover, we have r = |G| if and only if H
is S(V )G-linearly independent, that is H is SG-linearly independent, in other
words S is a free graded SG-module. ]

i) In particular, if m = 1 then SG is polynomial; conversely, if SG is polynomial
then choosing F as a set of basic invariants entails m = 1.

If SG is polynomial, then S being Cohen-Macaulay entails that S is a free graded
SG-module. Conversely, by Chevalley’s Theorem (which we have proven in (7.2)
for the case char(K) = 0 or char(K) > |G|, but which actually holds in general),
it follows from S being a free graded SG-module that SG is polynomial.
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ii) If SG is not polynomial, but F can be chosen such that d = 2·|G| and m = 2,
then SG is Cohen-Macaulay. Choosing g ∈ SG \K[F ] homogeneous of minimal
degree e := deg(g) ∈ N, we get SG = K[F ]⊕ g ·K[F ] as graded K[F ]-modules.

Letting P := K[X1, . . . , Xn, X] with degrees [d1, . . . , dn, e], since g is integral
over K[F ], there are F, F ′ ∈ K[X1, . . . , Xn] homogeneous such that deg(F ) = e
and deg(F ′) = 2e, and (X2+FX+F ′)(f1, f2, g) = g2+F (f1, f2)g+F ′(f1, f2) =
0. Thus we have SG ∼= P/(X2 + FX + F ′) as graded K-algebras, via Xi 7→ fi
and X 7→ g; hence SG is a hypersurface.

(16.2) Polynomial invariant algebras. a) Let K be a field, let G be a fi-
nite group, let V be a faithful K[G]-module such that n := dimK(V ) ∈ N0, let
F := {f1, . . . , fn} ⊆ SG ⊆ S := S[V ] be algebraically independent and homo-
geneous, such that di := deg(fi) ∈ N, and let d :=

∏n
i=1 di. In order to ensure

polynomiality, we show that the (strong) finiteness assumption on K[F ] ⊆ SG

can actually be replaced by an (apparently weaker) degree assumption on F :

Theorem: [Kemper, 1996]. Assume that d = |G|. Then we have SG = K[F ],
that is SG is polynomial having F as a set of basic invariants.

Proof. Let S = K[X ], where X = {X1, . . . , Xn}, and where we may assume
that n ≥ 1, let Y := {Y1, . . . , Yn} be indeterminates, and let L be an algebraic
closure of K(Y). Hence we have a field isomorphism K(Y) → K(F) : Yi 7→ fi.
Since trdeg(K(F)) = trdeg(K(X )) = n, the field extension K(F) ⊆ K(X )
is algebraic; hence there are x1, . . . , xn ∈ L such that K(Y, x1, . . . , xn) →
K(X ) : Yi 7→ fi, xi 7→ Xi is a field isomorphism. Let gi(Y, T ) ∈ K(Y)[T ] be
the minimum polynomial of xi over K(Y); hence gi(F , Xi) = 0 ∈ K(X ). More-
over, since K(F) ⊆ K(X )G, letting G act trivially on K(Y), there an action
of G by field automorphisms on K(Y, x1, . . . , xn) such that the identification
K(Y, x1, . . . , xn)→ K(X ) is an isomorphism of G-sets.

Letting Z := {Z1, . . . , Zn} be indeterminates, we consider the system of equa-
tions fi(Z) − Yi = 0 ∈ L[Z]. Its solutions are precisely the identifications
of K(X ) with a subfield of L, being compatible with the fixed identification
K(F) → K(Y); hence in particular [x1, . . . , xn] ∈ Ln is amongst the solu-
tions. Given any solution [z1, . . . , zn] ∈ Ln, we conclude that {z1, . . . , zn} ⊆ L
is algebraically independent, and we get gi(Y, zi) = gi(F(z1, . . . , zn), zi) =
gi(F(Z), Zi)(z1, . . . , zn) = 0. Hence there are at most degT (gi) possibilities for
zi, so that the above system of equations has at most

∏n
i=1 degT (gi) solutions.

Moreover, for [x1, . . . , xn]g ∈ Ln, where g ∈ G, we have fi(x
g
1, . . . , x

g
n) − Yi =

(fi(x1, . . . , xn) − Yi)
g = 0. Since X ⊆ V is a K-basis, and G acts faith-

fully, we conclude that [X1, . . . , Xn] gives rise to a regular G-orbit. Hence
{[x1, . . . , xn]g ∈ Ln; g ∈ G} provides |G| solutions.

We consider the homogenized system of equations fi(Z)−YiZdi0 = 0 ∈ L[Z, Z0],
and let V ⊆ P := Pn(L) be the associated projective variety. Being the inter-
section of hypersurfaces of degree di, by Bézout’s Theorem V has at most
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∏n
i=1 di = d = |G| irreducible components, with respect to the Zariski topology.

Since the above system has at least |G| isolated solutions in the affine open sub-
set A := {[z1 : · · · : zn : z0] ∈ P; zi ∈ L, z0 6= 0} ⊆ P, we conclude that these are
all solutions, thus V = {[x1 : · · · : xn : 1] ∈ P; g ∈ G} ⊆ A such that |V| = |G|.
Moreover, there are no solutions in the closed subset P\A = {[z1 : . . . : zn : 0] ∈
P; [z1, . . . , zn] 6= 0} ⊆ P, saying that the system of equations fi(Z) = 0 ∈ L[Z]
has only the solution 0 ∈ Ln. Thus by Hilbert’s Nullstellensatz [1893] we
conclude that L[Z]+EL[Z] is the only maximal ideal dividing (F(Z)), thus is its
only prime divisor, so that

√
F(Z) = L[Z]+. This implies that

√
F = K[X ]+,

hence dim(K[X ]/(F)) = 0, thus F ⊆ K[X ] is regular, hence is a homogeneous
set of parameters. Finally, we conclude m = d

|G| = 1, that is K[X ]G = K[F ]. ]

Since the degrees of a set of basic invariants are uniquely defined, this yields
the following straightforward algorithm to check for polynomiality: We run the
standard algorithm to collect indecomposable homogeneous invariants, and look
for an n-set of them having degree product |G|. If such a set does not exist, by
exceeding n or |G|, we conclude that SG is not polynomial; if such a set exists
then we decide polynomiality of SG by checking for algebraic independence of
the set found, by using the Jacobian criterion. For example, this approach yields
for the pseudoreflection representation of G = A5 in characteristic 2, see (12.3).

b) Let now SG be polynomial. Then the coinvariant algebra SG, which is
a finite-dimensional graded K-algebra anyway, not only has K-dimension |G|,
but its structure as a K[G]-module can be explicitly determined:

Theorem: [Chevalley, 1955]. Let SG = K[F ] be polynomial. Then the

Hilbert series of the coinvariant algebra is HSG =
∏n
i=1(

∑di−1
j=0 T j) ∈ Z[T ], and

if char(K) - |G| then the K[G]-module SG is equivalent to the regular module.

Proof. Letting R := SG, the algebra S is a free graded R-module, of rank
r := dimK(SG) = |G|. More precisely, let H := {h1, . . . , hr} be a minimal
homogeneous generating set of S as a graded R-module. Then we have S =⊕r

s=1 hsR as graded R-modules, and R+S =
⊕r

s=1 hsR+ ⊆ S, so that SG =
S/R+S has homogeneous K-basis H := {h1, . . . , hr}, where : S → SG is the
natural epimorphism. Hence we have S ∼= SG ⊗ R as graded R-modules, the
isomorphism being given by hs 7→ hs ⊗ 1. Moreover, since G acts trivially on
R, and naturally on SG and S, we conclude that the above isomorphism is an
isomorphism of graded G-algebras.

Hence for the associated Hilbert series we have 1
(1−T )n = HS = HSG ·HR = HSG ·∏n

i=1
1

1−Tdi ∈ Q(T ), entailing HSG =
∏n
i=1

1−Tdi
1−T =

∏n
i=1(

∑di−1
j=0 T j) ∈ Q(T ),

For g ∈ G let A(g) := [aij(g)]ij ∈ Rr×r be the representing matrix of its
action on S with respect to the R-basis H; note that the matrix entries are
homogeneous such that aij(g) = 0 or deg(aij(g)) = deg(hj) − deg(hi) ∈ N0,
in particular we have aii(g) ∈ R0 = K. Noting that : S → SG restricts to
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the natural epimorphism R → R/R+ = K, we infer that A(g) ∈ Kr×r is the
representing matrix of the action of g on SG with respect to the K-basis H.

Since H is an S(V )G-basis of S(V ), see (16.1), we conclude that A(g) also is a
representing matrix of the action of g on S(V ). Now the field extension S(V )G ⊆
S(V ) is Galois with respect to G, so that by the normal basis theorem S(V )
carries the regular G-permutation action. Hence for the associated matrix traces
we get χSG(g) =

∑r
s=1 ass(g) =

∑r
s=1 ass(g) = χS(V )(g) = |G| · δ1,g ∈ K,

saying that SG affords the regular character. Since char(K) - |G|, from this we
conclude that SG carries the regular representation. ]

In particular, we have deg(HSG) =
∑n
i=1(di − 1). Recall that if char(K) = 0

or char(K) > |G| then G is a pseudoreflection group having precisely σ(G) =∑n
i=1(di− 1) pseudoreflections. (Again, this actually holds whenever char(K) -

|G|, but we have not shown this.) From the viewpoint of representation theory,
this shows that the group algebra K[G] of a pseudoreflection group G also carries
the structure of a commutative graded K-algebra, with degrees {0, . . . , σ(G)},
unraveling hidden combinatorial information about G (to say the least).

Note that, although HSG is unchanged, the characteristic dependent result
above cannot possibly hold whenever char(K) | |G|: In this case the unique
one-dimensional trivial K[G]-submodule of the regular module is not a direct
summand, while we have SG = K ⊕ (SG)+ as K[G]-modules.

(16.3) Finding primary invariants. Let K be a field, let G be a finite group,
let V be a faithful K[G]-module such that n := dimK(V ) ∈ N0.

Since SG ⊆ S := S[V ] is finite, a subset {f1, . . . , fn} ⊆ SG ⊆ S is a ho-
mogeneous set of parameters of SG if and only if it is a homogeneous set of
parameters of S; see (15.4). Since the polynomial algebra S is Cohen-Macaulay,
this is equivalent to [f1, . . . , fn] being a regular sequence in S. (Although this
does not imply that it is a regular sequence in SG.) Letting (f1, . . . , fn) E S
be the associated (generalized Hilbert) ideal of S, this in turn is equivalent to
dim(S/(f1, . . . , fn)) = 0, which by the graded Nakayama Lemma amounts to
S/(f1, . . . , fn) being a finitely generated graded K-vector space.

This paves the way to the following generic method to finding primary invari-
ants, which typically are far from being optimal:

Theorem: [Dade, 1996]. Let {X1, . . . , Xn} ⊆ V be a Dade K-basis, that is

Xi 6∈
⋃

g1,...,gi−1∈G
〈X1 · g1, . . . , Xi−1 · gi−1〉K ,

for i ∈ {1, . . . , n}, and let fi :=
∏
f∈XGi

f ∈ SG be the associated orbit product.

Then {f1, . . . , fn} ⊆ SG is a set of primary invariants, such that deg(fi) | |G|.
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Proof. We indeed have fi ∈ SG such that deg(fi) = |fGi | =
|G|

|StabG(fi)| . Letting

I := (f1, . . . , fn) E S, we proceed to show that dim(S/I) = 0:

Let K ⊆ K be an algebraic closure of K, let V := V ⊗K, let S = S[V ] = S⊗K,

and let I := I ⊗K = (f1, . . . , fn) E S. Now let l ∈ V ∗ be a K-linear form on
V such that l(fi) = 0, for all i ∈ {1, . . . , n}. Then we have l(Xi · gi) = 0, for
some gi ∈ G. Since the set {X1 · g1, . . . , Xn · gn} ⊆ V is a K-basis, and thus is
a K-basis of V , this implies l = 0.

Thus by Hilbert’s Nullstellensatz, saying that the maximal ideals of S are
in correspondence with the elements of V

∗
, we infer that S+ E S is the only

maximal ideal dividing I, thus is the only prime divisor of I, hence we have√
I = S+ E S. This entails that

√
I = S+ E S, which is a maximal ideal, hence

is the only prime divisor of I. Thus we have dim(S/I) = dim(S/S+) = 0. ]

Corollary: Dade’s degree bound. Let K be infinite. Then there is a set of
primary invariants of degree at most |G|.

Proof. We show that V is not the union of finitely many proper K-subspaces;
thus there is a Dade K-basis of V , hence an associated set of primary invariants:

We proceed by induction on n ∈ N; the cases n ≤ 1 being trivial, let n ≥ 2, and
assume that V =

⋃r
i=1 Vi, for some r ∈ N and maximal K-subspaces Vi ≤ V .

Since K is infinite, there are infinitely many maximal K-subspaces V ′ ≤ V .
Choosing V ′ 6= Vi for all i, we get V = V ∩ (

⋃r
i=1 Vi) =

⋃r
i=1(V ∩ Vi), where

V ∩ Vi ≤ V are maximal K-subspaces, which by induction is a contradiction. ]

The assumption on the field cannot generally be dispensed of: If K is finite, V
need not have a Dade K-basis, as for example the pseudoreflection representa-
tion of G = A5 over the (splitting) field K = F4 (having a polynomial invariant
algebra) shows; see (12.3).

(16.4) Broer’s degree bound. Let K be a field, let G be a finite group, let
V be a faithful K[G]-module such that n := dimK(V ) ∈ N0, let {f1, . . . , fn} be
a set of primary invariants such that di := deg(fi) ∈ N, and let {g1, . . . , gm} be
a minimal set of secondary invariants such that ej := deg(gj) ∈ N0, for m ∈ N.

Theorem: [Broer, 1997]. If S[V ]G is Cohen-Macaulay, then for the degrees
of the secondary invariants we have ej ≤

∑n
i=1(di − 1), for all j ∈ {1, . . . ,m}.

Proof. Let R := K[f1, . . . , fn] ⊆ SG ⊆ S := S[V ], since R ⊆ S is finite let
{h1, . . . , hr} ⊆ S, where r ∈ N, be a minimal homogeneous generating set of S an
an R-module, such that ck := deg(hk), where h1 = 1 and where we assume that
0 = c1 ≤ · · · ≤ cr. Since S is Cohen-Macaulay we have S =

⊕r
k=1 hkR as graded

R-modules, hence we have HS = 1
(1−T )n = (

∑r
k=1 T

ck) ·
∏n
i=1

1
1−Tdi ∈ Q(T ).

Thus we have
∑r
k=1 T

ck =
∏n
i=1

1−Tdi
1−T , hence cr =

∑n
i=1(di − 1).
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The elements of HomR(S,R) are determined by the image of {h1, . . . , hr}, thus
HomR(S,R)d = {0} for d < −cr. Similarly, by assumption we have SG =⊕m

j=1 gjR as graded R-modules, where we may assume that 0 = e1 ≤ · · · ≤ em;

hence we have HomR(SG, R)−em 6= {0}. We have to show that em ≤ cr:
SinceG acts faithfully, the trace map TrG : S → SG is a non-zero homomorphism
of graded SG-modules, that is 0 6= TrG ∈ HomSG(S, SG)0. Extending yields the
non-zero S(V )G-linear map TrG : S(V ) → S(V )G, which hence is surjective.
Since the field extension Q(R) ⊆ S(V ) is generated by S, there are f ∈ S and
0 6= h ∈ R such that TrG( fh ) = 1. Since R ⊆ SG, this entails TrG(f) = h ∈ R.

Let 0 6= ϕ ∈ HomR(SG, R)−em , and let g ∈ SG such that ϕ(g) 6= 0. Hence we
have ϕ(TrG(fg)) = ϕ(TrG(f)g) = ϕ(hg) = ϕ(g)h 6= 0 ∈ R. Thus we conclude
that 0 6= (TrG · ϕ) ∈ HomR(S,R)−em , entailing that −em ≥ −cr. ]

Corollary: Broer’s degree bound. Let K be infinite. Then, if S[V ]G is
Cohen-Macaulay, there is homogeneous generating set of S[V ]G as a K-algebra
consisting of elements of degree at most max{|G|, n(|G| − 1)}.

Proof. By Dade’s degree bound we have di ≤ |G| for all i ∈ {1, . . . , n}, hence
we have ej ≤ n(|G| − 1) for all j ∈ {1, . . . ,m}, ]

17 Examples: Some small groups

(17.1) Example: Cyclic groups. Let K be a field, let k ∈ N such that
char(K) - k, and assume that K contains a primitive k-th root of unity ζk, let
G := 〈z〉 ∼= Ck, and let S := K[X,Y ]; see (3.3).

i) We consider G → GL2(K) : z 7→ diag[ζk, ζk]. Then R := K[Xk, Y k] ⊆ SG

is a Noether normalization, where SG = R ⊕
⊕k−1

i=1 (Xk−iY i · R) as graded R-

modules, hence HSG = 1+(k−1)Tk

(1−Tk)2
∈ Q(T ). Thus {Xk, Y k} is a set of primary

invariants, and {1, Xk−1Y, . . . ,XY k−1} is a minimal set of secondary invariants.

Indeed, the primary invariants have degree product d = k2, and there are m = k
secondary invariants. Since there are no homogeneous invariants of positive
degree smaller than k, the degree product d = k2 is as small as possible, so that
{Xk, Y k} is an optimal set of primary invariants.

ii) We consider G → GL2(K) : z 7→ diag[ζk, ζ
−1
k ]. Then R := K[Xk, Y k] ⊆

SG = K[XY,Xk, Y k] is a Noether normalization, and SG =
⊕k−1

i=0 (XiY i ·R) as

graded R-modules, hence HSG = (
∑k−1
i=0 T

2i) · 1
(1−Tk)2

= 1+Tk

(1−T 2)(1−Tk)
∈ Q(T ).

Thus {Xk, Y k} is a set of primary invariants, and {1, XY, . . . ,Xk−1Y k−1} is
an associated minimal set of secondary invariants; we have d = k2 and m = k.
Alone, this set of primary invariants is not in general optimal:

Let G ≤ H := 〈z, s〉 ∼= D2k, where s 7→
[
0 1
1 0

]
∈ GL2(K); see (6.6). Then we
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have SH = K[XY,Xk+Y k], which is polynomial with degrees [2, k]. (Note that
to show equality, by Kemper’s Theorem it suffices to verify that {XY,Xk+Y k}
is algebraically independent.) Thus Q := SH ⊆ SG is a Noether normalization,
where d = 2k and m = 2. Hence HSG implies that there is an associated minimal
set of secondary invariants of degrees [0, k]. Since Y k ∈ SG is indecomposable,
we conclude that SG = Q⊕ (Y k ·Q) as graded Q-modules.

Hence {XY,Xk+Y k} is a set of primary invariants, with associated minimal set
{1, Y k} of secondary invariants. Since SG is not polynomial, this set of primary
invariants is optimal for all k ≥ 2, while the former one is so only for k ≤ 2. ]

(17.2) Example: Symmetric and alternating groups. a) Let K be a field,
let S := K[X ] = K[X1, . . . , Xn] where n ≥ 1, and let F := {en,1, . . . , en,n}.
Then R := SSn = K[F ] ⊆ S is a Noether normalization, thus F is a universal
set of primary invariants of K[X ]G, for any subgroup G ≤ Sn.

If char(K) 6 | |G|, then, since
∑n
i=1(deg(en,i) − 1) =

∑n−1
i=0 i =

(
n
2

)
, Broer’s

Theorem entails that SG has a homogeneous K-algebra generating set consisting
of elements of degree at most max{n,

(
n
2

)
}. This coincides with Göbel’s degree

bound; but note that the latter holds for arbitrary permutation groups, while
their invariant algebras are in general not Cohen-Macaulay.

b) For n ≥ 2 we have SAn = R⊕ (X λ)+ ·R, where λ = [n− 1, n− 2, . . . , 2, 1, 0];
see (9.7). Thus {1, (X λ)+} is an associated minimal set of secondary invariants;
we have d =

∏n
i=1 i = n! = 2 · |An| and m = 2. This shows that SAn is Cohen-

Macaulay for any field K. Moreover, since SAn is not polynomial for n ≥ 3,
we conclude that in this case F is an optimal set of primary invariants; recall
that for n = 2 we have SA2 = S. Note that if char(K) 6= 2, then we have
SAn = R ⊕ ∆n · R as well, where ∆n is the discriminant polynomial, so that
{1,∆n} also is an associated minimal set of secondary invariants. ]

In the sequel we consider the transitive permutation groups of degree n = 4
again; see (9.8): In order to do so, let S := K[X1, . . . , X4], and let R :=
K[e4,1, . . . , e4,4]. (We again need computational checks, whose details we spare.)

(17.3) Example: The dihedral group of order 8. We consider G := D8 =
〈(1, 2)(3, 4), (1, 3)〉 ≤ S4. Let f := (X1X3)+ and g := (X1X2)+; note that

e4,2 = f + g. Then we have SG =
⊕2

i=0(f i · R). We have d = 24 and m = 3,
hence SG is Cohen-Macaulay for any field K; and {e4,1, . . . , e4,4, f} is a minimal
K-algebra generating set, with degrees [1, 2, 3, 4, 2], thus SG is not polynomial.

We have HSG = 1+T 2+T 4

(1−T )(1−T 2)(1−T 3)(1−T 4) = 1+T 3

(1−T )(1−T 2)2(1−T 4) ∈ Q(T ), which

indicates that there might be primary invariants of degree [1, 2, 2, 4], and asso-
ciated secondary invariants of degree [1, 3]; then d = 16 and m = 2, so that the
putative primary invariants are optimal:

Let f1 := e4,1 = X+
1 , and f2 := f , and f3 := g, and f4 := e4,4 = X1X2X3X4,

and g2 := e4,3 = (X1X2X3)+. Letting R′ := K[f1, . . . , f4], we check that
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SG = R′ ⊕ g2R
′. Hence R′ ⊆ SG is finite, so that {e4,1, f, g, e4,4} is a set of

primary invariants, with associated minimal set of secondary invariants {1, e4,3};
moreover, {e4,1, f, g, e4,3, e4,4} is a minimal K-algebra generating set.

(17.4) Example: The Klein 4-group. We consider the regular represen-
tation of G := V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ≤ S4. Let f := (X1X3)+, and
g := (X1X2)+, and h := (X1X4)+; note that e4,2 = f + g + h. Then we have
SG =

⊕
p∈G pR, where G := {1, g, f, g2, f2, g2f}. Thus we have d = 24 and

m = 6, hence SG is Cohen-Macaulay for any field K.

Moreover, if char(K) 6= 2 then {e4,1, e4,2, e4,3, f, g} is a minimal K-algebra
generating set, having degrees [1, 2, 3, 2, 2]; but if char(K) = 2 then actu-
ally {e4,1, . . . , e4,4, f, g} is a minimal K-algebra generating set, having degrees
[1, 2, 3, 4, 2, 2]. Hence, in both cases, SG is not polynomial.

We get HSG = 1+2T 2+2T 4+T 6

(1−T )(1−T 2)(1−T 3)(1−T 4) = 1+T 3

(1−T )(1−T 2)3 = 1+T 2+T 4

(1−T )(1−T 2)2(1−T 3) =
1+T 2+T 3+T 5

(1−T )(1−T 2)2(1−T 4) ∈ Q(T ), which indicates that there might be primary invari-

ants of degree [1, 2, 2, 2], and associated secondary invariants of degree [1, 3]; or
primary invariants of degree [1, 2, 2, 3], and secondary ones of degree [1, 2, 4]; or
primary invariants of degree [1, 2, 2, 4], and secondary ones of degree [1, 2, 3, 5].

i) Let char(K) 6= 2, let f1 := e4,1 = X+
1 , and f2 := f , and f3 := g, and

f4 := h, and g2 := e4,3 = (X1X2X3)+, and let R′ := K[f1, . . . , f4]. Then we
check that SG = R′ ⊕ g2R

′. Hence R′ ⊆ SG is finite, so that {e4,1, f, g, h} is a
set of primary invariants, with associated minimal set of secondary invariants
{1, e4,3}; we have d = 8 and m = 2, so that the primary invariants are optimal.
From this we get the minimal K-algebra generating set {e4,1, f, g, h, e4,3}.
ii) Let char(K) = 2. Since SG is not generated in degrees at most 3, there
cannot possibly be primary invariants of degree [1, 2, 2, 2], excluding the case
m = 2. Next we check that there cannot possibly be primary invariants of
degree [1, 2, 2, 3], excluding the case m = 3:

By considering the homogeneous components of SG+/(S
G
+)2 of degree at most

4 we observe that {e4,1, f, g, h, e4,3, e4,4} are indecomposable invariants. Hence
assuming to the contrary that there are primary invariants of degree [1, 2, 2, 3],
we conclude that SG is generated by {1, e4,4} as an R′-module, where R′ :=
K[e4,1, f, g, h, e4,3] ⊆ SG (which is not polynomial). But we observe that e2

4,4 is
not contained in the right hand side, a contradiction. ]

Hence let f1 := e4,1, and f2 := e4,2, and f3 := f , and f4 := e4,4 = X1X2X3X4,
as well as g2 := g, and g3 := e4,3, and g4 = z := (X2

1X
2
2X3)+, and let R′ :=

K[f1, . . . , f4]. Then we check that SG = R′ ⊕
⊕4

i=2 giR
′. Hence R′ ⊆ SG is

finite, so that {e4,1, e4,2, f, e4,4} is a set of primary invariants, with associated
minimal set of secondary invariants {1, g, e4,3, z}; we have d = 16 and m =
4, so that the primary invariants are optimal. This yields the minimal K-
algebra generating set {e4,1, e4,2, f, g, e4,3, e4,4}. (The latter sets are suitable for
char(K) 6= 2 as well, but they are neither optimal nor minimal.)
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(17.5) Example: The cyclic group of order 4. We consider the regular
representation of G := C4 = 〈(1, 2, 3, 4)〉 ≤ S4. Let f := (X1X3)+, and f ′ :=
(X1X2)+, and g := (X2

1X2)+, and h := (X2
1X2X3)+; note that e4,2 = f + f ′.

a) Let char(K) 6= 2. Then SG =
⊕

p∈G pR, where G := {1, f, g, f2, h, fg}. We

have d = 24 and m = 6, where SG is Cohen-Macaulay by the Hochster-Eagon
Theorem. Moreover, {e4,1, . . . , e4,4, f, g, h} is a minimal K-algebra generating
set, having degrees [1, 2, 3, 4, 2, 3, 4], hence SG is not polynomial.

We have HSG = 1+T 2+T 3+2T 4+T 5

(1−T )(1−T 2)(1−T 3)(1−T 4) = 1+2T 3+T 4

(1−T )(1−T 2)2(1−T 4) ∈ Q(T ), which

indicates that there might be primary invariants of degree [1, 2, 2, 4], and asso-
ciated secondary invariants of degree [1, 3, 3, 4]; then d = 16 and m = 4, and
since HSG contradicts m ∈ {2, 3}, the putative primary invariants are optimal:

Let f1 := e4,1 = X+
1 , and f2 := f , and f3 := f ′, and f4 := e4,4 = X1X2X3X4,

and g2 := e4,3 = (X1X2X3)+, and g3 := g, and g4 := h, and let R′ :=

K[f1, . . . , f4]. Then we check that SG = R′ ⊕
⊕4

i=2 giR
′. Hence R′ ⊆ SG

is finite, so that {e4,1, f, f
′, e4,4} is a set of primary invariants, with associated

minimal set of secondary invariants {1, e4,3, g, h}, and {e4,1, f, f
′, e4,3, g, e4,4, h}

is a minimal K-algebra generating set.

b) i) Let char(K) = 2 and z := (X2
1X

2
2X3)+. We get SG =

∑
p∈G pR, where

G := {1, f, g, f2, h, z, fh} is a minimal set of secondary invariants. Hence d = 24
and m = 7, thus SG is not Cohen-Macaulay. Moreover, {e4,1, . . . , e4,4, f, g, h, z}
is a minimal K-algebra generating set, having degrees [1, 2, 3, 4, 2, 3, 4, 5].

We show that there are primary invariants of degree [1, 2, 2, 4]; since by the
Hilbert-Serre Theorem HSG contradicts the existence of primary invariants of
degree [1, 2, 2, 2] or [1, 2, 2, 3], the putative primary invariants are optimal:

Let again f1 := e4,1, and f2 := f , and f3 := f ′, and f4 := e4,4, and g2 :=
e4,3, and g3 := g, and g4 := h, and g4 := z, and let R′ := K[f1, . . . , f4].

Then we check that SG = R′ +
∑5
i=2 giR

′. Hence R′ ⊆ SG is finite, so that
{e4,1, f, f

′, e4,4} is a set of primary invariants, with associated minimal set of
secondary invariants {1, e4,3, g, h, z}; thus we have d = 16 and m = 5, also indi-
cating that SG is not Cohen-Macaulay. Moreover, {e4,1, f, f

′, e4,3, g, e4,4, h, z}
is a minimal K-algebra generating set.

Note that, being an invariant algebra of a finite p-group in defining charac-
teristic, SC4 is factorial; see Exercise (18.6). Hence this disproves Samuel’s
conjecture, saying that a factorial finitely generated graded K-algebra should
be Cohen-Macaulay [Bertin, 1965].

ii) We show that actually depth(SG) = 3, by showing that the sequences
[e4,1, e4,4, f ] and [e4,1, e4,4, f

′] are regular in SG:

First, since S is a domain we have e4,1S ∩ SG = e4,1S
G, and since e4,1 ∈ S is

irreducible and S is factorial, we conclude that e4,1SES and thus e4,1S
GESG are

prime, so that SG/e4,1S
G =: SG = S

G ⊆ S := S/e4,1S are domains, where S is

a polynomial graded G-algebra again. Next we show that e4,4SGESG is prime
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as well: Since Xi ∈ S is irreducible, hence XiS E S is prime, it suffices to show

that XiS ∩S
G

= e4,4S
G

, where e4,4S
G ⊆ XiS anyway; hence letting conversely

a ∈ XiS ∩ S
G

, then since G acts transitively on {X1, . . . , X4}, where the latter

are pairwise coprime, we conclude that a ∈
⋂n
i=1XiS =

∏4
i=1XiS = e4,4S,

hence a ∈ e4,4S ∩ S
G

= e4,4S
G

. Finally, since S
G
/e4,4S

G
is a domain, both

f, f ′ ∈ SG/e4,4S
G

are regular. ]

Since SG is not Cohen-Macaulay, the sequence [e4,1, e4,4, f, f
′] cannot possibly

be regular in SG. We check this explicitly:

We observe that e4,2 ·e4,3 = 2z+f ·(2e4,3 +g)+e4,1 ·(2e4,4−h) ∈ Z[X1, . . . , X4],
which reduces to the relation e4,2 · e4,3 = f · g + e4,1 · h ∈ S, in degree 5,
thus we have f ′ · e4,3 = f · (e4,3 + g) + e4,1 · h ∈ SG. This shows that f ∈
SG/(e4,1S

G + e4,4S
G + fSG) is a zero-divisor.

Note that this is related to the fact that, compared to the non-modular case,
an additional homogeneous generator of degree 5 is necessary; and that it even
shows that f ′ ∈ SG/(e4,1S

G + fSG) is a zero-divisor. ]

(17.6) Example: Vector invariants. Let K be a field such that char(K) = 2,
let G := 〈z〉 ∼= C2, and let V := K2 be the permutation K[G]-module given by

z 7→
[
0 1
1 0

]
. We consider the faithful K[G]-module V ⊕n for n ≥ 2; see (5.7):

For i ∈ {1, . . . , n} let Si := K[Xi, Yi] ∼= K[V ], let S :=
⊗n

i=1 Si
∼= K[V ⊕n], let

H := H1 × · · · ×Hn = 〈z1〉 × · · · × 〈zn〉 ∼= Cn2 , let Ri := K[li, qi] = SHii , where

li := Xi + Yi and qi := XiYi, and let R :=
⊗n

i=1Ri =
⊗n

i=1 S
Hi
i = SH ⊆ SG.

Then R is polynomial, where HR = 1
(1−T )n(1−T 2)n ∈ Q(T ), and we have HSG =

1
2 · ((1 + T )n + (1 − T )n) · HR ∈ Q(T ). Moreover, since R ⊆ S is finite, we
conclude that R ⊆ SG is finite as well, saying that R is a Noether normalization
of SG, and that {l1, . . . , ln, q1, . . . , qn} is a set of primary invariants. Since
K[e2n,1, . . . , e2n,2n] = SS2n ⊆ R ⊆ SG, from Göbel’s degree bound we infer
that SG has a set of secondary invariants with respect to R consisting of orbit
sums associated with (2n−1)-special combinations, thus having degree at most
β := n(2n− 1); note that li := X+

i and qi := (XiYi)
+ are orbit sums associated

with the special partitions [1] and [1, 1], respectively.

i) Let first n := 2; hence β = 6. Then we have HSG = 1+T 2

(1−T )2(1−T 2)2 ∈ Q(T ),

and we recover r12 := (X1X2)+ = X1X2+Y1Y2 ∈ SG\SH , being associated with
the special partition [1, 1]. Comparing Hilbert series shows that SG = R⊕r12R,
being Cohen-Macaulay, having {1, r12} as a minimal set of secondary invariants.

ii) Now let n := 3; hence β = 15 (so that we revert to computations whose

details we spare). Then HSG = 1+3T 2

(1−T )3(1−T 2)3 ∈ Q(T ), and we recover rij :=

(XiXj)
+ for i 6= j, being associated with the special partition [1, 1]. We observe

that {r12, r13, r23} is a K-linearly independent set of indecomposable invariants.
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From this, it already follows that SG is not Cohen-Macaulay: Assume to the
contrary that SG is Cohen-Macaulay. Then SG is a free graded R-module of
rank 4, with minimal set of secondary invariants of degrees [1, 2, 2, 2]; hence we
conclude that {1, r12, r13, r23} is R-linearly independent, which by the identity
l1r23 + l2r13 + l3r12 = l1l2l3 is a contradiction.

Alternatively, Cohen-Macaulayness implies that [l1, l2, l3] ⊆ SG is a regular
sequence; but l1r23 + l2r13 + l3r12 = l1l2l3 shows that l3r12 ∈ (l1, l2)ESG, while
since r12 is indecomposable we have r12 6∈ (l1, l2)2 = 〈l21, l1l2, l1l3, l22, l2l3〉K , so
that 0 6= l3 ∈ SG/(l1, l2) is a zero-divisor, a contradiction. ]

It remains to find a complete set of secondary invariants: It turns out that
r123 := (X1X2X3)+, being associated with the special partition [1, 1, 1], is an
indecomposable invariant, that {1, r12, r13, r23, r123} is a minimal set of sec-
ondary invariants indeed, and that {li, qi, rij for all i 6= j}∪{r123} is a minimal
homogeneous generating set of SG.
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III Exercises and references

18 Exercises: Invariant algebras

(18.1) Exercise: Quadratic forms.
For n ∈ N let V be the set of n-ary complex quadratic forms over C. Show that
any GLn(C)-invariant continuous complex-valued map on V is constant.

(18.2) Exercise: Binary quadratic forms.
Let q be a binary quadratic form over K ∈ {C,R} having discriminant ∆.
a) For K = C show that ∆ = 0 if and only if q is the square of a linear form.
b) For K = R, show that ∆ = 0 if and only if q or −q is a square.

(18.3) Exercise: Congruence of triangles.
A triangle ∆(P1, P2, P3) ⊆ R2 in the Euclidean plane R2 is uniquely determined
by its vertices Pi = [xi, yi] ∈ R2. Hence the set of triangles can be identified
with the state space R6 via ∆(P1, P2, P3) 7→ [x1, y1, x2, y2, x3, y3].

a) Triangles ∆ and ∆′(P ′1, P
′
2, P

′
3), where P ′i = [x′i, y

′
i], are called congruent, if

there are a permutation π ∈ S3 and a Euclidean transformation α on R2 such
that [x′i, y

′
i] = [xiπ, yiπ]α für i ∈ {1, 2, 3}. Describe the structure of the latter

symmetry group G, and show that congruence is an equivalence relation.

b) Show that G acts naturally via automorphisms on the R-algebras A :=
Maps(R6,R) and R := A ∩ R[X1, Y1, X2, Y2, X3, Y3].

A function F ∈ A is called geometric, if it is G-invariant, that is we have
F g = F for all g ∈ G. Show that the sets AG and RG of geometric (polynomial)
functions are R-subalgebras of A.

c) Show that letting

A(∆) :=

∣∣∣∣∣det

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣,
and C(∆) := S12 +S13 +S23, where Sij(∆) :=

√
(xi − xj)2 + (yi − yj)2, defines

geometric functions A and C. What is their geometric interpretation? Are they
polynomial? Are the functions Sij geometric as well?

d) A set of geometric functions which uniquely determines all congruence classes
of triangles is called defining. Show that both the (three) elementary sym-
metric functions in S12, S13, S23, and the elementary symmetric functions in
S2

12, S
2
13, S

2
23 are defining sets. What is the geometric interpretation?

e) Show that any R-algebra generating set of RG is defining. Actually, the
elementary symmetric functions in S2

12, S
2
13, S

2
23 are an R-algebra generating set

of RG; try to prove this. Write A2 as a polynomial in S2
12, S

2
13, S

2
23.
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(18.4) Exercise: Geometric functions.
Keeping the notation of Exercise (18.3), find defining sets, and the R-algebra of
geometric (polynomial) functions for i) the points in R2, and ii) the lines in R2.

(18.5) Exercise: Invariant algebras.
a) Let G and H be groups, let V be a K[G]-module, and let W be a K[H]-
module. Show that V ⊕W becomes a K[G × H]-module, that S[V ⊕W ] ∼=
S[V ]⊗ S[W ], and that S[V ⊕W ]G×H ∼= S[V ]G ⊗ S[W ]H .
b) Let G be a finite group, and let V be a K[G]-module. For d ∈ N0 show that
S[V ]Gd 6= {0} only if |ρV (G) ∩ Z(GL(V ))| divides d.

(18.6) Exercise: Factorial invariant algebras.
Let K be a field, let G be a group having only the trivial one-dimensional
K-representation, and let V be a K[G]-module. Show that S[V ]G is factorial.

Hint. For f ∈ S[V ] consider the G-action on the associated primary ideals.

(18.7) Exercise: Invariant fields.
Let K be a field, let G be a finite group, let V be a K[G]-module such that
n := dimK(V ) ∈ N0, and let {f1, . . . , fn} ⊆ S[V ] be algebraically independent.
(Why does such a set always exist?) Show that there is f ∈ S(V )G such that
S(V )G = K(f1, . . . , fn, f). Can this be achieved with less than n polynomials?

(18.8) Exercise: Jacobian and Hessian determinants.
Let K be a field, let G be a group, let V be a K[G]-module with associated
determinant representation detV : G → K∗ : g 7→ det(ρV (g)), and let S :=
K[X1, . . . , Xn] be the associated polynomial algebra, where n := dimK(V ).

a) For f1, . . . , fn ∈ S let det(J(f1, . . . , fn)) := det([ ∂fi∂Xj
]ij) ∈ S be their Jaco-

bian determinant. If the fi are homogeneous, show that det(J(f1, . . . , fn)) is
homogeneous as well, and express its degree in terms of the degree of the fi.

Show that for g ∈ G we have det(J(fg1 , . . . , f
g
n)) = detV (g) ·det(J(f1, . . . , fn))g.

Conclude that whenever detV is the trivial representation, and f1, . . . , fn ∈ SG,
then we have det(J(f1, . . . , fn)) ∈ SG as well.

b) For f ∈ S let H(f) := det([ ∂2f
∂Xi∂Xj ij

) ∈ S denote the corresponding Hessian

determinant. If f is homogeneous, show that H(f) is homogeneous as well,
and express its degree in terms of the degree of f .

Show that for g ∈ G we have H(fg) = detV (g)2·H(f)g. Conclude that whenever
det2

V is the trivial representation, and f ∈ SG, then we have H(f) ∈ SG as well.

(18.9) Exercise: The cyclic group of order 2.
Let K be a field such that char(K) 6= 2, and let G := 〈z〉 ∼= C2, where z :=
diag[−1,−1] ∈ GL2(K). Letting S := K[X,Y ] be the associated polynomial
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algebra, show that as graded K-algebras we have the presentation

SG = K[X2, XY, Y 2] ∼= K[A,B,C]/(AC −B2),

where K[A,B,C] is the polynomial algebra with degrees [2, 2, 2].

(18.10) Exercise: The cyclic group of order 3.
Let K be a field such that char(K) 6= 3, let G := 〈z〉 ∼= C3 act on K2 by

z 7→
[

0 1
−1 −1

]
,

and let S := K[X,Y ] be the associated polynomial algebra. Compute a minimal
homogeneous generating set of SG, and show that Noether’s degree bound is
sharp in this case. How does this relate to Exercise (18.13)?

(18.11) Exercise: The dihedral group of order 8.
Let K be a field such that char(K) 6= 2, and let G := 〈s, t〉 ∼= D8, where

s :=

[
−1 0
0 1

]
∈ GL2(K) and t :=

[
0 1
−1 0

]
∈ GL2(K).

Letting S := K[X,Y ] be the associated polynomial algebra, show that SG =
K[X2 + Y 2, X2Y 2]. Determine the Hilbert series of SG. Is SG polynomial?
How does this relate to (6.6)?

(18.12) Exercise: The dihedral group of order 2(p+ 1).
Let K be a field such that char(K) = p > 0, where p ≡ 3 (mod 4), and let
(a + bT ) ∈ Fp[T ]/(T 2 + 1) ∼= Fp2 have order p + 1. Moreover, let V := K2, let
S := K[X,Y ] be the associated polynomial algebra, and let G := 〈s, t〉, where

s :=

[
−1 0
0 1

]
∈ GL2(K) and t :=

[
a b
−b a

]
∈ GL2(K).

a) Show that t has order p+ 1, such that ts = t−1. Conclude that G ∼= D2(p+1).
b) Show that SG = K[X2 + Y 2, Xp+1 + Y p+1]. How does this relate to (6.6)?

(18.13) Exercise: Cyclic groups.
Let K be a field, let k ∈ N such that char(K) - k, let ζk ∈ K be a primitive k-th
root of unity, and let G := 〈z〉 ∼= Ck. We consider representations G→ GL2(K),
and let S := K[X,Y ] be the associated polynomial algebra.

a) We consider the representation given by z 7→ diag[ζk, ζk], for which we
have already seen that SG = K[f0, . . . , fk], where fi := XiY k−i ∈ S for
i ∈ {0, . . . , k}. Show that as graded K-algebras we have the presentation

SG ∼= K[F0, . . . , Fk]/(F0Fk − FiFk−i; 1 ≤ i ≤ bk
2
c),
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where K[F0, . . . , Fk] is polynomial with degrees [k, . . . , k].

b) We consider the representation given by z 7→ diag[ζk, ζ
−1
k ], for which we

have already seen that SG =
⊕k−1

i=0 (XiY i · R) as graded K-algebras, where
R := K[Xk, Y k]. Show that as graded K-algebras we have the presentation

SG ∼= K[F1, . . . , Fk, F
′
k]/(FkF

′
k − FiFk−i; 1 ≤ i ≤ bk

2
c),

where K[F1, . . . , Fk, F
′
k] is polynomial with degrees [2, 4, . . . , 2(k − 1), k, k].

(18.14) Exercise: Generic representations of cyclic groups.
Let G := 〈z〉 ∼= Ck be the cyclic group of order k ∈ N, and let K be a field such
that char(K) - k containing a primitive k-th root of unity ζk.
a) We consider the representation G → GLn(K) : z 7→ diag[ζeik ; i ∈ {1, . . . , n}],
where e1, . . . , en ∈ Z and n ∈ N. Letting S := K[X1, . . . , Xn] be the associated
polynomial algebra, show that SG is generated by the monomials

{
n∏
i=1

Xai
i ∈ S; a1, . . . , an ∈ {0, . . . , k},

n∑
i=1

aiei ≡ 0 (mod k)}.

b) In particular, letting k1, . . . , kn ∈ N be pairwise coprime such that k =∏n
i=1 ki, and z 7→ diag[ζki ; i ∈ {1, . . . , n}], show that SG = K[Xk1

1 , . . . , Xkn
n ].

(18.15) Exercise: Number of generators.
Let K be field, let G be a finite group such that char(K) - |G|, and let V be a
K[G]-module such that n := dimK(V ) ∈ N0.

a) Show that S[V ]G is generated by at most
(
n+|G|
n

)
homogeneous elements.

b) Let G := 〈z〉 ∼= Ck be the cyclic group of order k ∈ N, let K contain
a primitive k-th root of unity ζk, and let G act on V = Kn by z 7→ ζk · En.
Show that the minimal homogeneous generating sets of S[V ]G consist of

(
n+k−1
n−1

)
elements of degree p. (Thus the above bound is essentially sharp.)

(18.16) Exercise: The cyclic group of order p.
Let K be a field such that char(K) = p > 0, let V := K2, and let S := K[X,Y ]
be the associated polynomial algebra.
a) Let G := 〈z〉 ∼= Cp act by

z 7→
[
1 0
1 1

]
∈ GL2(K).

Show that SG = K[X,Y p − Xp−1Y ], so that SG is polynomial and Noether’s
degree bound holds. Show that the trace ideal equals SG{1} = (Xp−1) E SG.

b) Let H := 〈z, s〉 ∼= Cp : Cp−1 act by s 7→ diag[ζ−1
p−1, ζp−1] ∈ GL2(K), and let

U := 〈z, s, t〉 ∼= (Cp : Cp−1) × Cp−1 act by t 7→ diag[ζp−1, 1] ∈ GL2(K). Deter-
mine generating sets of SH and SU . Are these invariant algebras polynomial?
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(18.17) Exercise: The dihedral group of order 2p.
Let K be a field such that char(K) = p ≥ 3, let V := K2, let S := K[X,Y ] be
the associated polynomial algebra, and let G := 〈s, t〉 ∼= D2p.
i) Show that SG = K[X, (Y p −Xp−1Y )2], where G acts by

s 7→
[
1 0
0 −1

]
∈ GL2(K) and t 7→

[
1 0
1 1

]
∈ GL2(K).

ii) Show that SG = K[X2, Y p −Xp−1Y ], where G acts (contragrediently) by

s 7→
[
−1 0
0 1

]
∈ GL2(K) and t 7→

[
1 0
1 1

]
∈ GL2(K).

Moreover, for both actions, determine the Hilbert series of SG. Is SG polyno-
mial? Show that G is a pseudoreflection group. How many pseudoreflections
are there? Does Theorem (8.2) hold?

(18.18) Exercise: Bertin’s example.
Let K be a field such that char(K) = 2, let G := 〈z〉 ∼= C4, let V := K[G] be
the regular K[G]-module, with respect to the K-basis {1, z, z2, z3} ⊆ V , and
let S := K[X1, . . . , X4] be the associated polynomial algebra. Determine the
Hilbert ideal of SG. Does Hilbert’s Finiteness Theorem hold? Does Benson’s
Lemma hold for SG+ E SG?

(18.19) Exercise: An inadmissible counterexample.
Let K be a field, let G := K+ act on K2 by

K → GL2(K) : t 7→
[
1 0
t 1

]
,

and let S := K[X,Y ] be the associated polynomial algebra.
a) Show that (X2) E S is a G-invariant ideal, so that R := S/(X2) becomes
a graded K-algebra, on which G acts faithfully by automorphisms of graded
K-algebras. Is R a domain, or factorial, or a polynomial algebra?
b) Show that the set RG ⊆ R of G-fixed points in R is a K-algebra again, which
is generated by the image of {XY n ∈ S;n ∈ N0} with respect to the natural
epimorphism S → R. Conclude that RG is not a finitely generated K-algebra.

(18.20) Exercise: Nagata’s counterexample.
Let {aij ∈ C; i ∈ {1, . . . , 16}, j ∈ {1, . . . , 3}} be algebraically independent over
Q, and let G ≤ GL32(C) be the group of all block diagonal matrices

diag

[
ci ·
[
1 bi
0 1

]
∈ GL2(C); i ∈ {1, . . . , 16}

]
,

where
∏16
i=1 ci = 1 and

∑16
i=1 biaij = 0, for j ∈ {1, . . . , 3}. Show that the

invariant algebra S[C32]G is not a finitely generated C-algebra. (At least try.)
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(18.21) Exercise: Contragredient modules.
Let K be a field, let G be a finite group, let V be a K[G]-module, and let V ∗

be the associated contragredient K[G]-module.
a) Show that S[V ∗]d ∼= (S[V ]d)

∗ as K[G]-modules, for d ∈ N0.
b) Assume that char(K) - |G|. Show that we have HS[V ]G = HS[V ∗]G ∈ Q(T ).

c) Assume that char(K) = 0. Show that S[V ]G is polynomial if and only if
S[V ∗]G is polynomial. In this case, are S[V ]G and S[V ∗]G (graded) isomorphic?

(18.22) Exercise: Birman’s identity.
LetG be a finite group, letK be a field such that char(K) - |G|, let V be aK[G]-
module such that n := dimK(V ) ∈ N0, and let χV : G → K be the associated
character. Show that HS[V ]G = 1

|G| ·
∑
g∈G exp

(∑
d≥1

1
d · χV (gd)T d

)
∈ Q[[T ]].

(18.23) Exercise: Molien’s formula for semi-invariants.
Let G be a finite group, let K be a field such that char(K) - |G|, let λ : G→ K∗

be a one-dimensional representation, and let V be a K[G]-module such that
n := dimK(V ) ∈ N0. Show that the set of semi-invariants S[V ]Gλ ⊆ S[V ]
is a graded S[V ]G-module, and that its Hilbert series is given as HS[V ]Gλ

=

1
|G| ·

∑
g∈G

λ(g)−1

det(En−T ·ρV (g)) ∈ Q(T ), where we identify λ with its Brauer lift.

(18.24) Exercise: Stanley’s identity.
LetG be a finite group, letK be a field such that char(K) - |G|, let V be aK[G]-
module such that n := dimK(V ) ∈ N0, and let λ : G → K∗ : g 7→ det(ρV (g))−1

be the contragredient of the associated determinant representation. Show that
HS[V ]G(T−1) = (−T )n ·HS[V ]Gλ

∈ Q(T ). In particular, conclude S[V ]Gλ 6= {0}.

(18.25) Exercise: Sums of roots of unity.

For k ∈ N find
∑k−1
i=0

1
|1−ζik|2

∈ C, where ζk ∈ C is a primitive k-th root of unity.

(18.26) Exercise: Regular representation of cyclic groups.
Let G := 〈z〉 ∼= Cn be the cyclic group of order n ∈ N, and let V := C[G] be the
regular C[G]-module, given by the action of G on the C-basis {1, z, . . . , zn−1}.
Show that the Hilbert series of S[V ]G is HS[V ]G = 1

n ·
∑
d∈N, d |n

ϕ(d)

(1−Td)
n
d
∈ Q(T ),

where ϕ : N→ N is Euler’s totient function.

(18.27) Exercise: Abelian groups of order 8.
Let K be a field such that char(K) 6= 2 containing a primitive 4-th root of unity
ζ4, let V := K3, and let S := K[X,Y, Z] be the associated polynomial algebra.
Moreover, let G := 〈y〉 × 〈z〉 ∼= C2 × C4 act on V by y 7→ diag[−1,−1, 1] and
z 7→ diag[1, 1, ζ4], and let H := 〈a, b, c〉 ∼= C3

2 act on V by a 7→ diag[−1, 1, 1] and
b 7→ diag[1,−1, 1] and c 7→ diag[1, 1,−1].

Determine SG and SH , show that SG and SH are not isomorphic as K-algebras,
but have the same Hilbert series HSG = HSH = 1

(1−T 2)3 ∈ Q(T ),
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(18.28) Exercise: Nakajima’s example.
Let p be a prime, and let

G :=




1 0 a+ b b
0 1 b b+ c
0 0 1 0
0 0 0 1

 ∈ GL4(Fp); a, b, c ∈ Fp

 ≤ GL4(Fp).

Show that G is generated by pseudoreflections, where |G| = p3, but the associ-
ated invariant algebra S[F4

p]
G is not polynomial.

(18.29) Exercise: Reflection representation of Sn.
Let n ∈ N and let W be the natural permutation Q[Sn]-module, having permu-
tation Q-basis {b1, . . . , bn} ⊆W .
a) Show that W ′ := 〈

∑n
i=1 bi〉Q ≤ W is a trivial Q[Sn]-submodule, and that

V := W/W ′ is an absolutely irreducible faithful reflection representation of Sn.
b) Determine {f1, . . . , fn−1} ⊆ S[V ]Sn homogeneous and algebraically indepen-
dent such that deg(fi) = i+ 1 and S[V ]Sn = Q[f1, . . . , fn−1].

(18.30) Exercise: Polyhedral groups.
We consider the regular tetrahedron and the regular octahedron, embedded
into Euclidean 3-space, centered at the origin. Let T̂ ≤ O3(R) and Ô ≤ O3(R)

be their full symmetry groups, respectively, let T := T̂ ∩ SO3(R) and O :=

Ô ∩ SO3(R) be their rotational symmetry groups, also called the tetrahedral
and octahedral groups, respectively. Let S := S[R3].

a) Show that T̂ = {±E3} × T , where T ∼= A4, and that T̂ is generated by

reflections and irreducible. Conclude that ST̂ is polynomial with degrees [2, 3, 4].
(It is the group G2,2,3 in the Shephard-Todd classification.)

Show that HST = 1+T 6

(1−T 2)(1−T 3)(1−T 4) ∈ Q(T ), and provide a homogeneous

invariant f ∈ ST of degree 6, such that ST = ST̂ ⊕ fST̂ .

b) Show that Ô = {±E3} × O, where O ∼= S4, and that Ô is generated by

reflections and irreducible. Conclude that SÔ is polynomial with degrees [2, 4, 6].
(It is the group G2,1,3 in the Shephard-Todd classification.)

Show that HSO = 1+T 9

(1−T 2)(1−T 4)(1−T 6) ∈ Q(T ), and provide a homogeneous

invariant g ∈ SO of degree 9, such that SO = SÔ ⊕ gSÔ. How is this related to
the irreducible reflection representation of S4?

(18.31) Exercise: A complex reflection group.
We consider the group G := GL3(F2), which is the (up to isomorphism) unique
(non-abelian) simple group of order 168.

a) Show that G has conjugacy classes having elements of order [1, 2, 3, 4, 7, 7|,
and that its irreducible complex representations have dimension [1, 3, 3, 6, 7, 8].
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b) Let V be one of the (faithful) 3-dimensional irreducible C[G]-modules, and
let S ⊆ G be the set of involutions. Show that |S| = 21, and that s ∈ S has

trace χV (s) = −1 on V . Conclude that Ĝ := 〈−ρV (S)〉 ≤ GL3(C) is a non-real
complex pseudoreflection group, which is generated by reflections, and show
that Ĝ = {±E3}×G. (It is the group G24 in the Shephard-Todd classification.)

c) Show that S[V ]Ĝ is polynomial with degrees [4, 6, 14]. Moreover, show that

HS[V ]G = 1+T 21

(1−T 4)(1−T 6)(1−T 14) ∈ Q(T ), and provide a homogeneous invariant

g ∈ S[V ]G of degree 21, such that S[V ]G = S[V ]Ĝ ⊕ g · S[V ]Ĝ.

(18.32) Exercise: Invariant forms.
Let G be a finite group, and let n ∈ N.
a) If G ≤ GLn(C), show that there is A ∈ GLn(C) such that A−1GA ≤ Un(C).
If G ≤ GLn(R), show that there is B ∈ GLn(R) such that B−1GB ≤ On(R).
b) If G ≤ GLn(C) is irreducible, show that there is C ∈ GLn(C) such that
C−1GC ≤ GLn(R) if and only if there is a non-zero quadratic G-invariant.

(18.33) Exercise: Pseudoreflection groups.
Let K be a field such that char(K) = 0, let G be a finite group, let V be a faithful
K[G]-module such that G is generated by pseudoreflections, let d1, . . . , dn ∈ N
be the associated degrees, where n := dimK(V ) ∈ N0, and let ζm ∈ K be a
primitive m-th root of unity, where m ∈ N. Show that ζm ·En ∈ G, if and only
if m | di for all i ∈ {1, . . . , n}.

(18.34) Exercise: Basic invariants.
Let K be a field such that char(K) = 0, let G be a finite group, let V be a
K[G]-module such that n := dimK(V ) ∈ N0, and let S[V ]G = K[f1, . . . , fn] =
K[f ′1, . . . , f

′
n] be polynomial. Use Jacobian matrices to give an alternative proof

that the associated multisets of degrees coincide.

(18.35) Exercise: Jacobian criterion.
Let K be a field of char(K) = 0, let K[X ] = K[X1, . . . , Xn] for n ∈ N0, let
pn,k :=

∑n
i=1X

k
i ∈ K[X ] be the power sums for k ∈ N, and let en,1, . . . , en,n ∈

K[X ] be the elementary symmetric polynomials, where deg(en,i) = i. Use the
Jacobian criterion to show directly that {pn,1, . . . , pn,n} and {en,1, . . . , en,n} are
algebraically independent.

(18.36) Exercise: Newton identities.
a) Let K be a field, let K[X ] = K[X1, . . . , Xn] where n ∈ N0, let pn,k :=∑n
i=1X

k
i ∈ K[X ] be the power sums for k ∈ N, and let en,0, . . . , en,n ∈ K[X ]

be the elementary symmetric polynomials, where deg(en,i) = i. Show that for

k ∈ {1, . . . , n} we have ken,k =
∑k
i=1(−1)i−1pn,ien,k−i.

b) Let char(K) = 0 or char(K) > n. Determine all solutions [x1, . . . , xn] ∈ Kn

of the system of equations
∑n
i=1 x

k
i = 0, where k ∈ {1, . . . , n− 1}.
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(18.37) Exercise: Symmetric polynomials.
Let K be a field, let Sn act naturally on K[X ] := K[X1, . . . , Xn], where n ∈ N0,
and let pn,k :=

∑n
i=1X

k
i ∈ K[X ] be the power sums, for k ∈ N. Show that

K[X ]Sn = K[pn,1, . . . , pn,n] whenever char(K) = 0 or char(K) > n. Is the
assumption on the characteristic necessary?

(18.38) Exercise: Elementary symmetric polynomials.
Let K be a field, let Sn act naturally on K[X ] = K[X1, . . . , Xn], where n ∈ N0,
and let the monomials Xα ∈ K[X ], for α ∈ Nn0 , be totally ordered lexico-
graphically by letting X1 > · · · > Xn. Then the largest monomial occurring
in a polynomial 0 6= f ∈ K[X ] is called its leading monomial.
a) Let 0 6= f ∈ K[X ]Sn , and let Xα be its leading monomial, where α =
[α1, . . . , αn] ∈ Nn0 . Show that α is a partition, that is α1 ≥ · · · ≥ αn. Moreover,

show that
∏n
i=1 e

αi−αi−1

n,i ∈ K[X ]Sn , where α0 := 0, has leading monomial Xα.
b) Give an algorithm utilizing the lexicographic order on the set of monomials
to write a symmetric polynomial as a polynomial in the elementary symmetric
polynomials {en,1, . . . , en,n}. Compare this algorithm (which is actually due to
Gauss) with the algorithm given in (9.3).
c) For n ∈ {1, . . . , 4} and k ∈ {1, . . . , 4}, write the symmetric polynomials ∆2

n

and pn,k as polynomials in the elementary symmetric polynomials.

(18.39) Exercise: Göbel’s algorithm.
Let K be a field, let Sn act naturally on K[X ] = K[X1, . . . , Xn], where n ∈ N0,
and let G ≤ Sn. Give an algorithm utilizing Göbel’s Theorem to write a G-
invariant polynomial as a polynomial in the elementary symmetric polynomials
{en,1, . . . , en,n} and the orbit sums (Xα)+, where α ∈ N0 is (n− 1)-special.

(18.40) Exercise: Direct products of symmetric groups.
a) Let S := Sn1

× · · · × Snr ≤ Sn be a Young subgroup, where r ∈ N and
n =

∑r
i=1 ni ∈ N, let K be a field, and let S act on K[X1, . . . ,Xr], where

Xi := {Xi,1, . . . , Xi,ni}, and where the i-th direct factor acts naturally on Xi
and fixes the other indeterminates. Show that K[X1, . . . ,Xr]S is a polynomial
algebra, and determine a set of basic invariants.
b) Use this to give improved versions of the algorithms in Exercise (18.38)
for Young subgroups, and to give an improved version of Göbel’s algorithm in
Exercise (18.39) for intransitive permutation groups.

(18.41) Exercise: Trace ideal.
a) Let K be a field, let Sn act naturally on K[X ] = K[X1, . . . , Xn], where n ∈
N0, and let G ≤ Sn. Show that the trace ideal TrG(K[X ])EK[X ]G is generated
by TrG(Xα), where α ∈ N0 is (n− 1)-special such that p - [G : StabG(Xα)].
b) Let char(K) = 2 and n ≥ 2. Show that TrSn(K[X ]) = ∆n ·K[X ]Sn

c) Let char(K) = 2 and n ≥ 2. Give a similar description of TrAn(K[X ]).

Hint for c). Consider (n− 1)-special partitions of length at least n− 3.
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(18.42) Exercise: Galois resolvents.
Let K be a field, let f ∈ K[X] be separable of degree n ∈ N, having roots
{x1, . . . , xn} in a splitting field K ⊆ L, let AutK(L) ∼= A ≤ Sn be the Galois
group of f . Moreover, for H ≤ G ≤ Sn such that A ≤ G let πGH : G→ SH\G be
the action homomorphism of G with respect to H, and for F ∈ K[X1, . . . , Xn]H

let ρ := ρGH(F )(x1, . . . , xn) ∈ K[X] be the associated resolvent. If ρ is separable,
show that ρ has Galois group isomorphic to πGH(A).

(18.43) Exercise: Generalized quaternion groups.
Let K be a field containing a primitive 2k-th root of unity ζ2k, where k ≥ 2, let
G ∼= Q4k be the generalized quaternion group of order 4k, where

G :=
〈[ζ2k 0

0 ζ−1
2k

]
,

[
0 1
−1 0

]〉
≤ GL2(K),

and let S := K[X,Y ] be the associated polynomial algebra.

a) Show that the Hilbert series of SG is given as HSG = 1+T 2k+2

(1−T 4)(1−T 2k)
∈ Q(T ).

b) Find primary invariants {f1, f2} ⊆ SG such that deg(f1) = 4 and deg(f2) =
2k, and secondary invariants {g1, g2} ⊆ S[V ]G such that deg(g1) = 0 and

deg(g2) = 2k+2, yielding the Hironaka decomposition SG =
⊕2

i=1(gi·K[f1, f2]).
Conclude that {f1, f2} are optimal primary invariants, and that {f1, f2, g2} is
a minimal generating set of SG.
c) Show that as graded K-algebras we have the presentation

SG ∼= K[A,B,C]/(C2 −AB2 + 4Ak+1),

where K[A,B,C] is the polynomial algebra with degrees [4, 2k, 2k + 2].

(18.44) Exercise: An abelian group of order 8.
Let K be a field such that char(K) 6= 2 containing a primitive 4-th root of unity
ζ4, let V := K3, let S := K[X,Y, Z] be the associated polynomial algebra,
and let G := 〈y〉 × 〈z〉 ∼= C2 × C4 act on V by y 7→ diag[−1,−1, 1] and z 7→
diag[1, 1, ζ4]; recall that the Hilbert series of SG equals HSG = 1

(1−T 2)3 ∈ Q(T ).

a) Show that there is no set of primary invariants {f1, f2, f3} ⊆ SG such that
deg(f1) = deg(f2) = deg(f2) = 2.
b) Find primary invariants {f1, f2, f3} ⊆ SG such that deg(f1) = deg(f2) = 2
and deg(f3) = 4, and secondary invariants {g1, . . . , gm} ⊆ SG for some m ∈
N, yielding the Hironaka decomposition SG =

⊕m
i=1(gi · K[f1, . . . , f3]). Are

{f1, f2, f3} optimal primary invariants? Find a minimal generating set of SG.

(18.45) Exercise: Depth of invariant algebras.
Let K be a field, let G be a finite group, let V be a K[G]-module such that
dimK(V ) ≥ 2. Show that depth(S[V ]G) ≥ 2.
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(18.46) Exercise: Depth of invariant algebras.
Let K be a field, let G be a finite group, let H ≤ G, let V be a K[G]-module
such that n := dimK(V ) ∈ N0, and let S := S[V ].
a) Show that depth(SH) = depthSG(SH), where the latter denotes the depth
of SH as an SG-module.
b) Assume that char(K) - [G : H]. Show that depth(SG) ≥ depth(SH).
c) Conclude that SG is Cohen-Macaulay whenever n ≤ 2.

(18.47) Exercise: Cohen-Macaulay property.
Let p be a prime, let K be a field such that char(K) = p, and for the following
p-groups G let V be the natural K[G]-module, and let V ∗ be the associated
contragredient K[G]-module. For both S[V ]G and S[V ∗]G provide a set of
primary invariants and an associated minimal set of secondary invariants, as
well as a minimal homogeneous generating set; moreover, decide about their
Cohen-Macaulayness and polynomiality:
a) Let G ∼= C2

p be given as

G :=

{1 a b
0 1 0
0 0 1

 ∈ GL3(Fp); a, b ∈ Fp

}
≤ GL3(Fp).

Show that S[V ∗]G is polynomial, while S[V ]G is not, but is Cohen-Macaulay.
b) Let G ∼= C4

p be given as

G :=

{


1 0 0 a 0 0 d
0 1 0 0 b 0 d
0 0 1 0 0 c d
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


∈ GL7(Fp); a, b, c, d ∈ Fp

}
≤ GL7(Fp).

Show that S[V ]G is polynomial, while S[V ∗]G is not even Cohen-Macaulay.

(18.48) Exercise: Cohen-Macaulay property of vector invariants.
Let p be a prime, let G := 〈π〉 ∼= Cp be the cyclic group of order p, let K be a
field such that char(K) = p, let V = W ⊕W ⊕W as K[G]-modules, where

ρW : G→ GL2(K) : π 7→
[
1 1
0 1

]
,

let S[V ] = K[X1, Y1, X2, Y2, X3, Y3] be the associated polynomial K-algebra.
a) For 1 ≤ i < j ≤ 3 let hij := XiYj −XjYi ∈ S[V ]. Show that hij ∈ S[V ]G.
b) Show that {Y1, Y2, Y3} ⊆ S[V ]G can be extended to a homogeneous system
of parameters of S[V ]G, but [Y1, Y2, Y3] is not a regular sequence in S[V ]G.
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(18.49) Exercise: The dihedral group of order 10.
The dihedral group D10 is the symmetry group of the regular 5-gon in the
Euclidean plane, hence its action on the vertices gives rise to the embedding
D10
∼= G := 〈t, s〉 ≤ S5, where t := (1, 2, 3, 4, 5) and s := (1, 4)(2, 3). Let K be

a field, let V be the associated permutation K[G]-module, and let S := S[V ].

a) Compute the Hilbert series HSG of the invariant algebra SG, and show that
Noether’s degree bound holds for SG, independently of the characteristic of K.

b) Let char(K) 6= 5. Show that SG is Cohen-Macaulay. Moreover, show that
SG has an optimal set of primary invariants of degrees [1, 2, 2, 3, 5], and an
associated set of secondary invariants of degrees [1, 3, 4, 4, 5, 8]. Conclude that
SG has a minimal homogeneous generating set of degrees [1, 2, 2, 3, 3, 4, 4, 5, 5].

c) Let char(K) = 5. Show that SG has an optimal set of primary invariants
of degrees [1, 2, 3, 4, 5], and an associated set of secondary invariants of degrees
[1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 10]. Conclude that SG is Cohen-Macaulay, and has a
minimal homogeneous generating set of degrees [1, 2, 2, 3, 3, 4, 4, 5, 5, 6].

(18.50) Exercise: The dihedral group of order 8.
Let K be a field such that char(K) 6= 2, and let G := 〈s, t〉 ∼= D8, where

s :=

[
−1 0
0 1

]
∈ GL2(K) and t :=

[
0 1
−1 0

]
∈ GL2(K).

Letting S := K[X,Y ] be the associated polynomial algebra, by Exercise (18.11)
it is known that the invariant algebra SG is polynomial with degrees [2, 4].

Find a homogeneous K-basis of the coinvariant algebra SG, and show that its
Hilbert series equals HSG = 1+2T+2T 2+2T 3+T 4 ∈ Q(T ). Moreover, describe
the action of G on the homogeneous components of SG, and show that SG is as
a K[G]-module isomorphic to the regular module.

(18.51) Exercise: Broer’s degree bound.
LetG be a finite group, letK be a field such that char(K) - |G|, let V be aK[G]-
module such that n := dimK(V ) ∈ N0, let λ : G → K∗ : g 7→ det(ρV (g))−1,
let d ∈ N0 be the minimum degree of a non-zero homogeneous semi-invariant
with respect to λ (which by Exercise (18.24) exists), let {f1, . . . , fn} be a
set of primary invariants such that di := deg(fi) ∈ N, let {g1, . . . , gm} be a
minimal set of secondary invariants such that ej := deg(gj) ∈ N0, and let
e := max{e1, . . . , em}.
Show that e+ d =

∑n
i=1(di − 1). What happens in the case ρV (G) ≤ SL(V )?

19 Exercises: Commutative algebra

(19.1) Exercise: Tensor products.
Let K be a field, let V and W be K-vector spaces, and let V ⊗W be a tensor
product of V and W over K (which we assume to exist).
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a) Show that V ⊗W is uniquely determined up to isomorphism of K-vector
spaces, and that V ⊗W ∼= W ⊗ V as K-vector spaces. Moreover, if U be a
K-vector space, show that (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U) as K-vector spaces.

b) Let V and W be finitely generated, having K-bases {v1, . . . , vn} ⊆ V and
{w1, . . . , wm} ⊆ W , where n := dimK(V ) and m := dimK(W ). Show that
{vi ⊗ wj ∈ V ⊗W ; i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} ⊆ V ⊗W is a K-basis.

c) Let R and S be K-algebras. Show that R⊗S becomes a K-algebra by letting
(f ⊗ g)(f ′ ⊗ g′) := ff ′ ⊗ gg′, for f, f ′ ∈ R and g, g′ ∈ S; show that if R and S
are commutative then so is R⊗ S, and if R and S are graded then so is R⊗ S.

(19.2) Exercise: Symmetric algebras.
Let K be a field, let V be a finitely generated K-vector space, let T (V ) =⊕

d≥0 V
⊗d be the associated tensor algebra, and let T (V )− =

⊕
d≥0 V

⊗d,−.

Show that T (V )− is a homogeneous ideal of T (V ), which is generated by

{v ⊗ w − w ⊗ v ∈ V ⊗2; v, w ∈ V } ⊆ V ⊗2,−.

(19.3) Exercise: Exterior algebras.
Let K be a field, let V be a finitely generated K-vector space, and let T (V ) =⊕

d≥0 V
⊗d be the tensor algebra. Moreover, let T (V )+ ET (V ) be the (homoge-

neous) ideal generated by {v⊗v ∈ V ⊗2; v ∈ V }, and let Λ(V ) := T (V )/T (V )+ =⊕
d≥0 Λd(V ) be the associated graded exterior K-algebra, whose homoge-

neous components are called the exterior powers of V .

a) For d ∈ N0 let V ⊗d,+ := 〈(v1 ⊗ · · · ⊗ vd) · (1 + π); v1, . . . , vd ∈ V, π ∈ Sd〉K ≤
V ⊗d. Show that V ⊗2,+ ≤ T (V )+. Moreover, show that if char(K) 6= 2 then
T (V )+ is as an ideal generated by V ⊗2,+, and we have T (V )+ ∩ V ⊗d = V ⊗d,+,
so that Λd(V ) = V ⊗d/V ⊗d,+. (What happens in the case char(K) = 2?)

b) Show that Λ(V ) is graded commutative, that is for a ∈ Λd(V ) and b ∈
Λe(V ) we have ab = (−1)de · ba ∈ Λ(V ). Which universal property does Λ(V )
have? Moreover, provide a K-basis of Λd(V ), for d ∈ N0, in terms of a given
K-basis of V , and determine dimK(Λd(V )). Is Λ(V ) finite-dimensional, and if
so, what is its K-dimension? What is the Hilbert series of Λ(V )?

c) Let G be a group, and assume that V is a K[G]-module. Show that Λ(V )
naturally becomes a graded G-algebra. Moreover, if G is finite such that
char(K) - |G|, show that the Hilbert series of the invariant algebra Λ(V )G

is given as HΛ(V )G = 1
|G| ·

∑
g∈G det

(
ρV (1) + ρV (g) · T

)
∈ Q(T ).

(19.4) Exercise: Noetherian modules.
Let R be a commutative ring and let M be an R-module.
a) Let N ≤M be an R-submodule. Show that if M is Noetherian, then so are
N and M/N ; and conversely if both N and M/N are Noetherian, then so is M .
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b) Show that M is Noetherian if and only if each submodule of M is finitely
generated. Conclude that if R is Noetherian, then M is Noetherian if and only
if M is finitely generated.
c) Let S ⊆ R be a subring, such that S is a direct summand of R as an S-module.
Show that if R is Noetherian then so is S.

(19.5) Exercise: Prime avoidance.
Let R be a commutative ring.
a) Let P1, . . . , Pn E R be ideals, for n ∈ N, and assume that R is a K-algebra
for an infinite field K, or that at most two of the Pi are not prime. Given IER
such that I ⊆

⋃n
i=1 Pi , show that there is i ∈ {1, . . . , n} such that I ⊆ Pi.

b) Let I1, . . . , In ER be ideals, for n ∈ N, and let P ER be a prime ideal such
that

⋂n
i=1 Ii ⊆ P . Show that there is i ∈ {1, . . . , n} such that Ii ⊆ P .

c) Let R be Noetherian, let I E R be an ideal, and let M 6= {0} be a finitely
generated R-module. Show that either I contains a non-zerodivisor on M , or
there is 0 6= m ∈M such that I ⊆ annR(m).

(19.6) Exercise: Prime avoidance.
We present a few examples to show how prime avoidance cannot be improved:
a) Let R := F2[X,Y ]/(X,Y )2. Show that (X,Y ) E R is the union of three
properly smaller ideals.
b) Let K be a field, let R := K[X,Y ]/(XY, Y 2), and let P := (X) E R, and
Q := (Y )ER, and I := (X2, Y )ER. Show that the homogeneous elements of I
are contained in P ∪Q, but I 6⊆ P and I 6⊆ Q. Which of these ideals is prime?
c) Let K be an infinite field, let R := K[X,Y ], and let I := (X,Y ) ER. Show
that I is contained in the union of an infinite set of prime ideals, neither of
which contains I.

(19.7) Exercise: Localization.
Let R be a commutative ring, let U ⊆ R be a multiplicatively closed subset
such that 1 ∈ U , and let M be an R-module.
a) Show that RU is a commutative ring, and that ν : R → RU : r 7→ r

1 is
a homomorphism of commutative rings. Moreover, show that MU is an RU -
module, and that M →MU : m 7→ m

1 is a homomorphism of R-modules.
b) Show that the localization RU has the following universal property: If
ϕ : R → S is a homomorphism of commutative rings such that ϕ(U) ⊆ S∗,
then there is unique ring homomorphism ϕ̂ : RU → S such that ν · ϕ̂ = ϕ.
c) Show that for J E RU we have (ν−1(J))U = J , and conclude that the map
ν−1 : {JERU} → {IER} is an inclusion-preserving and intersection-preserving
injection, mapping prime ideals to prime ideals.
d) Show that for an ideal I E R we have I ⊆ ν−1(IU ) = {f ∈ R; fu ∈
I for some u ∈ U} E R, and conclude that we have IU 6= RU if and only if
I ∩ U = ∅. Moreover, show that for a prime ideal P ER we have P = ν−1(PU )
if and only if P ∩ U = ∅, in which case PU ERU is a prime ideal as well.
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(19.8) Exercise: Local rings.
Let R be a local commutative ring, and let M be a finitely generated R-module.
Show that M is projective, that is M is a direct summand of a free R-module,
if and only if M is free.

(19.9) Exercise: Nakayama Lemma.
Let R be a commutative ring, let IER be an ideal, let M be a finitely generated
R-module, and let ϕ ∈ EndR(M).
a) If ϕ(M) ≤ MI, show that there are a1, . . . , an ∈ R, for some n ∈ N, such
that ai ∈ Ii and ϕn +

∑n
i=1 aiϕ

n−i = 0 ∈ EndR(M).
b) If MI = M , show that there is a ∈ annR(M) such that a ≡ 1 (mod I).
c) Show that ϕ is surjective if and only if ϕ is bijective [Vasconcelos, 1969].

(19.10) Exercise: Lemma of Gauss.
Let R be a factorial domain. Show the Lemma of Gauss, saying that the
polynomial ring R[X] is factorial again.

(19.11) Exercise: Integral closure.
Let R ⊆ S be an extension of commutative rings.

a) Show that for R = R
S

:= {s ∈ S; s is integral over R} ⊆ S we have R = R.
b) Show that if R is a factorial domain, then it is integrally closed.

(19.12) Exercise: Integral extensions.
Let R ⊆ S be an integral extension of commutative rings.
a) Let S be a domain. Show that R is a field if and only if S is a field.
b) Let QES be a prime ideal. Show that Q is a maximal ideal of S if and only
if Q ∩RER is a maximal ideal of R.
c) Let P ER be a maximal ideal. Show that there is a prime ideal QE S such
that P = Q ∩R, and that any such Q is maximal.

(19.13) Exercise: Going up.
Let R ⊆ S be an integral extension of domains, such that R is integrally closed.
a) Assume that S is integrally closed as well, and that the field extension K :=
Q(R) ⊆ Q(S) =: L is normal. Given a prime ideal P ER, show that the Galois
group AutK(L) acts transitively on the set of prime ideals of S lying over P .
b) Let P ′ ⊆ P ER be prime ideals, and let QES be prime such that Q∩R = P .
Show that there is a prime ideal Q′ E S such that Q′ ⊆ Q and Q′ ∩R = P ′.

(19.14) Exercise: Krull’s Principal Ideal Theorem.
Let R be a Noetherian commutative ring, and let P ER be a prime ideal such
that ht(P ) = r, for some r ∈ N0. Show that there are f1, . . . , fr ∈ R such that
P is a minimal prime divisor of (f1, . . . , fr) ER.
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(19.15) Exercise: Zero-dimensional algebras.
Let K be a field, and let R be a finitely generated commutative K-algebra.
Show that dim(R) = 0 if and only if dimK(R) <∞.

(19.16) Exercise: Infinite dimension.
Let K be a field, let R = K[X1, X2, . . .] be the polynomial algebra in countably
infinitely many variables, let d0 := 0 and di ∈ N such that di < di+1, let
Pi := (Xdi−1+1, . . . , Xdi) ER, for i ∈ N, and let U := R \ (

⋃
i≥1 Pi) ⊆ R. Show

that RU is Noetherian such that dim(RU ) = sup{di − di−1 ∈ N; i ∈ N}.

(19.17) Exercise: Graded fields of fractions.
Let K be a field, and let R be a finitely generated (non-negatively) graded
K-domain. Then the associated graded field of fractions is defined as the
(non-connected) Z-graded K-algebra GrQ(R) := L =

⊕
d∈Z Ld ⊆ Q(R),

where Ld := { fg ∈ Q(R); f ∈ Ri+d, g ∈ Ri for i ∈ Z}K
a) Show that L is a K-domain containing R, which is graded in the appropriate
sense, and that any non-zero homogeneous element of L has a homogeneous
inverse, such that L0 is a field, but that L in general is not a field.

If L 6= L0, then let L0[X±1] be the algebra of Laurent polynomials over L0 in
the indeterminate X, where deg(X) := min{d ∈ N;Ld 6= {0}}. Show that we
have L ∼= L0[X±1] as Z-graded K-algebras, and that Q(R) = Q(L) = L0(X).

b) Let R ⊆ S be finite, where S is a finitely generated graded K-domain, and
let M := GrQ(S). Show that L ⊆ M is a finite extension of graded fields,
where actually M is a free L-module of finite rank [M : L] := rkL(M) ∈ N,
having an L-basis consisting of homogeneous elements of S.

Comparing with the (genuine) field extensions L0 ⊆M0 and Q(R) ⊆ Q(S), show
that [M0 : L0] = [M : L] = [Q(S) : Q(R)]. Give a reformulation of (the proof of)
the degree theorem for R ⊆ S in terms of their graded fields of fractions.

(19.18) Exercise: Carlson’s Lemma.
Let K be a field, let R be a graded K-algebra, and let M and N be finitely
generated graded R-modules. Show that any short exact sequence {0} →M →
M ⊕N → N → {0} of graded R-modules splits.

Hint. Consider {0} → HomR(N,M)0 → HomR(N,M ⊕N)0 → EndR(N)0.

(19.19) Exercise: Hilbert series.
Let K be a field, and let K[X ] := K[X1, . . . , Xn], for n ∈ N0, be the polynomial
algebra in the indeterminates X1, . . . , Xn.
a) For the standard grading show that dimK(K[X ]d) =

(
n+d−1

d

)
, for d ∈ N0.

b) Given any grading, letting d1, . . . , dn ∈ N0, show that K[X ]/(Xd1
1 , . . . , Xdn

n )
becomes a graded K-algebra, and determine its Hilbert series.
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c) Show that R := K[X1, X2, X3]/(X2
1 −X2

2 ) becomes a graded K-algebra with
respect to the degrees [1, 1, 2], having Hilbert series HR = 1

(1−T )2 ∈ Q(T ), but

R is not a polynomial algebra. Is R a domain or factorial?

(19.20) Exercise: Coefficient growth.
Let H := f∏k

i=1(1−Tdi ) =
∑
d≥0 adT

d ∈ Q((T )), where f ∈ Z[T±1], d1, . . . , dk ∈
N, and ad ≥ 0. Show that there is c ∈ N0 such that the sequence [addc ∈ Q; d ≥ 0]
is bounded, where for γ(H) := −ν1(H) ≥ 1 the minimal choice is c = γ(H)− 1.

(19.21) Exercise: Hilbert polynomials.
Let K be a field, let R be a commutative graded K-algebra, having a homoge-
neous generating set of cardinality k ∈ N0, and let M be a finitely generated
graded R-module. Show that there is a (unique) Hilbert polynomial h ∈ K[T ]
of degree at most k − 1, such that dimK(Md) = h(d) for all d� 0.

Hint. Mimic the proof of Hilbert’s Theorem on the shape of Hilbert series.

(19.22) Exercise: Noether normalization.
Let K be a field, and let R be a commutative graded K-algebra. Show that
the following assertions are equivalent: i) R is Noetherian. ii) R is a finitely
generated K-algebra. iii) The irrelevant ideal R+ ER is finitely generated.

(19.23) Exercise: Homogeneous sets of parameters.
Let K be a field, and let F1 := {X,XY } and F2 := {X2, XY }.
a) For i ∈ {1, 2}, show that Fi ⊆ K[X,Y ] is algebraically independent, but is
not a regular sequence. Conclude that dim(K[Fi]) = 2, but K[Fi] ⊆ K[X,Y ]
is not a Noether normalization.
b) Find a homogeneous generating set of K[X,Y ] as a K[Fi]-module, and de-
termine the field of fractions K(Fi). How does K(Fi) relate to K(X,Y )?

(19.24) Exercise: Regular sequences.
Let K be a field.
a) Let R := K[X2, X2Y, Y 2, Y 3] ⊆ K[X,Y ]. Show that {X2, Y 2} is a regular
sequence in K[X,Y ], but not a regular sequence in R.
b) Let R := K[X4, X3Y,XY 3, Y 4] ⊆ K[X,Y ]. Show that {X4, Y 4} is a homo-
geneous system of parameters of R, and that R is not Cohen-Macaulay.



120

20 References

Invariant theory

[1] D. Benson: Polynomial invariants of finite groups, London Mathematical
Society Lecture Note Series 190, Cambridge University Press, 1993.

[2] E. Campbell, D. Wehlau: Modular invariant theory, Encyclopaedia of
Mathematical Sciences 139, Springer, 2011.

[3] H. Derksen, G. Kemper: Computational invariant theory, Invariant
Theory and Algebraic Transformation Groups I, Encyclopaedia of Mathe-
matical Sciences 130, Springer, 2002.

[4] H. Kraft: Geometrische Methoden in der Invariantentheorie, 2. Aufl.,
Aspekte der Mathematik D1, Vieweg, 1985.

[5] M. Neusel: Invariant theory, Student Mathematical Library 36, American
Mathematical Society, 2007.

[6] M. Neusel, L. Smith: Invariant theory of finite groups, Mathematical
Surveys and Monographs 94, American Mathematical Society, 2002.

[7] L. Smith: Polynomial invariants of finite groups, Research Notes in Math-
ematics 6, Peters, 1995.

[8] T. Springer: Invariant theory, Lecture Notes in Mathematics 585,
Springer, 1977.

[9] R. Stanley: Invariants of finite groups and their applications to com-
binatorics, Bulletin of the American Mathematical Society 1 (3), 1979,
475—511.

[10] B. Sturmfels: Algorithms in invariant theory, Texts and Monographs in
Symbolic Computation, Springer, 2008.

Algebra and Commutative Algebra

[11] M. Atiyah, I. MacDonald: Introduction to commutative algebra,
Addison-Wesley, 1969.

[12] W. Bruns, J. Herzog: Cohen-Macaulay rings, Cambridge Studies in
Advanced Mathematics 39, Cambridge University Press, 1993.

[13] H. Cohen: A course in computational algebraic number theory, Graduate
Texts in Mathematics 138, Springer, 1993.

[14] D. Eisenbud: Commutative algebra, with a view toward algebraic geom-
etry, Graduate Texts in Mathematics 150, Springer, 1995.

[15] E. Kunz: Introduction to commutative algebra and algebraic geometry,
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