
Computer algebra

Friedrich-Schiller-Universität Jena, SS 2005

Jürgen Müller

Contents

1 Computational complexity . 1
2 Integer arithmetic . 5
3 Fast Fourier transform . 10
4 Resultants . 18
5 Lattice base reduction . 31
6 Polynomial factorization over finite fields 39
7 Polynomial factorization over the integers 47
8 Exercises (in German) . 55
9 References . 66

1

1 Computational complexity

We introduce the standard model of algorithmic computing, namely performing
operations on finite strings of symbols out of a finite alphabet, which are thought
of as being written onto an infinite tape, using a machine running back and forth
on the tape, reading and writing symbols according to a specified program.

By Church’s Hypothesis this idea precisely covers the intuitive notion of
algorithmic computability. One of the early occurrences of this type of questions
is Hilbert’s 10th problem on the decidability of the solubility of Diophantine
equations, see [6]; it was solved to the negative by Matijasevich (1972).

(1.1) Definition. An alphabet is a finite set X 6= ∅. The free monoid X ∗ :=⋃
n∈N0

Xn is called the set of words over X . A subset L ⊆ X ∗ is called a
(formal) language. For w ∈ Xn let l(w) = n ∈ N0 be the length of w. We
have X 0 = {ε}, where ε is the empty word.

(1.2) Definition. See [16].
A (deterministic) Turing machine over an alphabet X is a triple T :=
[X

.
∪ Y,S, τ], where Y is a working alphabet, in particular containing a blank

symbol ∈ Y, an accepting symbol 1, a rejecting symbol 0, and a failure
symbol ∅. Moreover, S is a finite set of states, in particular containing an initial
state s0 and a halting state s∞, and there is the transition function

τ : (X
.
∪ Y)× (S \ {s∞}) −→ (X

.
∪ Y)× {←, ↑,→}× S.

T acts on the set (X
.
∪ Y)∗ × S × (X

.
∪ Y)∗ of configurations as follows: The

initial configurations are given as [, s0, u], where u ∈ X ∗ is called an input;
an input of several u1, . . . , un ∈ X ∗ is encoded as u1 u2 . . . un ∈ (X

.
∪ Y)∗.

Let [v, s, w] be a configuration, where s ∈ S \ {s∞}. If ε 6= v, w ∈ (X
.
∪ Y)∗, let

v = v′x and w = yw′, where x, y ∈ X
.
∪ Y; if v = ε, let v′ := ε and x := ; if

w = ε, let w′ := ε and y := . Then T induces the transition

[v, s, w] 7→

 [v, s′, zw′], if τ(y, s) = [z, ↑, s′],
[vz, s′, w′], if τ(y, s) = [z,→, s′],
[v′, s′, xzw′], if τ(y, s) = [z,←, s′].

For a configuration [v, s∞, w] no transition is defined and T halts. We assume
that for all inputs leading to such a halting configuration we are in one and
the same of the following cases, depending on whether we consider decision
problems or function problems: Either we have w ∈ 1(X

.
∪ Y)∗ or w ∈

0(X
.
∪ Y)∗, i. e. T accepts or rejects the input, respectively; or we have

w ∈ ∅(X
.
∪ Y)∗ or w ∈ w′ (X

.
∪ Y)∗, where w′ ∈ X ∗, i. e. T fails or outputs

w′.

2

(1.3) Example. Let X := {1} and S := {s0, s1, s∞}, and let T be given by
the following transition function τ :

τ 1
s0 [1,←, s1] [1,→, s0]
s1 [,→, s∞] [1,←, s1]

Hence e. g. upon input 11 ∈ X 2 we obtain:

s0 11 7→ 1 s0 1 7→ 11 s0 7→

1 s1 11 7→ s1 111 7→ s1 111 7→ s∞ 111 ,

and for ε ∈ X 0 we obtain:

s0 7→ s1 1 7→ s∞ 1 .

Thus it is easily seen that T computes the successor function N0 → N : n 7→ n+1,
where N0 is given in unary encoding. For the successor function in binary
encoding, see Exercise (8.1).

(1.4) Definition. a) A language L ⊆ X ∗ is called decidable (recursive),
if there is a Turing machine T deciding L, i. e. T halts for all w ∈ X ∗, and
accepts w if and only if w ∈ L, otherwise rejects w.

A language L ⊆ X ∗ is called recursively enumerable, if there is a Turing
machine T accepting L, i. e. T halts for w ∈ X ∗ if and only if w ∈ L.

Note that if L is decidable, then it is recursively enumerable: Let T decide L,
then T ′ accepting L is a copy of T , except that whenever T rejects an input,
then T ′ enters an infinite loop.

b) A Turing machine T deciding a language L ⊆ X ∗ is called to run in time
f : {N,N + 1, . . .} → R>0, if T halts after at most f(l(w)) transitions, for all
w ∈ X ∗ such that l(w) ≥ N . The complexity class TIME(f) ⊆ Pot(X ∗) is
the set of all languages being decidable in time f .

In particular, we have the complexity class P :=
⋃
k∈N TIME(n 7→ nk) of lan-

guages being decidable in polynomial time, and the complexity class EXP :=⋃
k∈N TIME(n 7→ cn

k

) of languages being decidable in exponential time, where
c > 1; note that this does not depend on the choice of c > 1.

(1.5) Definition. a) A non-deterministic Turing machine over an alpha-
bet X is a triple T := [X

.
∪ Y,S, τ], where X

.
∪ Y and S are as in (1.2), while

the transition function

τ : (X
.
∪ Y)× (S \ {s∞}) −→ Pot

(
(X

.
∪ Y)× {←, ↑,→}× S

)
allows for choices and thus branching. Let the non-determinateness be
defined as dT := max{|τ(x, s)|;x ∈ X

.
∪ Y, s ∈ S \ {s∞}} ∈ N. The machine

3

T halts if no further transition in either branch is possible. We assume that
for all inputs T on halting either accepts or rejects, or outputs; for acceptance,
rejection or the output one of the branches is chosen randomly.

b) A language L ⊆ X ∗ is called non-deterministically decidable, if there is
a non-deterministic Turing machine T deciding L, i. e. T halts for all w ∈ X ∗,
and we have w ∈ L if and only if there is a branch accepting w, otherwise
all branches reject w; note the asymmetry in the treatment of acceptance and
rejection. The complexity class NTIME(f) is the set of all languages being
non-deterministically decidable in time f .

In particular, we have the complexity class NP :=
⋃
k∈N NTIME(n 7→ nk) of lan-

guages being decidable in non-deterministic polynomial time. Let coNP be
the complexity class of languages L ⊆ X ∗ such that (X ∗\L) ∈ NP. Analogously,
let coP be the complexity class of languages L ⊆ X ∗ such that (X ∗ \ L) ∈ P.
Obviously we have coP = P ⊆ NP ∩ coNP.

The most outstanding open problem of computational complexity theory is the
Conjecture: We have P 6= NP and NP 6= coNP as well as P 6= NP ∩ coNP.

(1.6) Proposition. We have NTIME(f) ⊆
⋃
c>1 TIME(n 7→ cf(n)). Thus in

particular we have NP ⊆ EXP.

Proof. See [13, Thm.2.6] or Exercise (8.3).]

(1.7) Proposition. Given a language L ⊆ X ∗, where |X | ≥ 2, then we have
L ∈ NP if and only if there is a relation R ⊆ X ∗ ×X ∗ such that:
i) We have L = {w ∈ X ∗; [w, v] ∈ R for some v ∈ X ∗}.
ii) There is k ∈ N such that l(v) ≤ l(w)k, for all [w, v] ∈ R.
iii) Letting LR := {w v; [w, v] ∈ R} ⊆ X ∗ X ∗, we have LR ∈ P.

Given w ∈ L, an element v ∈ X ∗ such that [w, v] ∈ R is called a polynomial
certificate for w.

Proof. Let R be as in the assertion. Then L is decided by a non-deterministic
Turing machine, which for w ∈ X ∗ first finds a certificate v ∈ X ∗ of polynomial
length l(v) ≤ l(w)k, hence in polynomial time, and then decides in polynomial
time whether [w, v] ∈ R. Hence we have L ∈ NP.

Conversely, let L ∈ NP be decided by the non-deterministic Turing machine T ,
running in polynomial time and having non-determinateness dT . Each finite
sequence choices of T can be encoded dT -adically into an element of N0, and
hence |X |-adically into an element of X ∗. Thus we define R ⊆ X ∗ × X ∗ by
letting [w, v] ∈ R if and only if v ∈ X ∗ is the encoding of a sequence of choices
of an accepting computation for w ∈ X ∗. Hence by construction of R we have
i) and ii). Moreover, for w v it can be checked in linear time whether v indeed
encodes an accepting computation for w, hence we also have iii).]

4

(1.8) Definition. a) A (one-sided) Monte-Carlo machine for a language
L ⊆ X ∗ is a non-deterministic Turing machine T halting for all w ∈ X ∗, having
an error bound 0 < ε < 1 such that T accepts w ∈ L in at least a fraction of
ε of the branches, while T rejects w 6∈ L in all branches.

Hence acceptance is correct, but rejection might be incorrect with an error
probability 1− ε. Note that we may fix an error bound 0 < ε0 < 1 a priorly: If
ε < ε0, then T is repeated k times, until (1− ε)k ≤ (1− ε0).

b) The complexity class RP of languages being decidable in randomized poly-
nomial time is the set of languages possessing a Monte-Carlo machine running
in polynomial time. Hence we have P ⊆ RP ⊆ NP.

Let coRP be the complexity class of languages L ⊆ X ∗ such that (X ∗ \L) ∈ RP.
Let ZPP := RP ∩ coRP be the complexity class of languages being decidable in
randomized polynomial time with zero probability error:

For L ∈ ZPP let T ′ and T ′′ be Monte-Carlo machines for L and X ∗ \ L, re-
spectively, both with error bound 0 < ε < 1. A Las-Vegas machine for L is a
non-deterministic Turing machine T defined as follows: T runs both T ′ and T ′′,
if T ′ accepts then T accepts, if T ′′ accepts then T rejects, and otherwise repeats
this. Hence it is not guaranteed that T halts, but if it halts then the answer is
correct. Moreover, T halts after at most k repetitions with a probability of at
least 1− (1− ε)k.

c) The complexity class BPP of languages being decidable in polynomial time
with bounded probability error is the set of languages possessing a non-
deterministic Turing machine T , called a two-sided Monte-Carlo machine,
running in polynomial time halting for all w ∈ X ∗, having an error bound
1
2 < ε < 1 such that T accepts w ∈ L in at least a fraction of ε of the branches,
and T rejects w 6∈ L in at least a fraction of ε of the branches.

Note that we may fix an error bound 1
2 < ε0 < 1 a priorly, by running T

repeatedly, k times say, and accepting an input if and only if it is accepted
by a strict majority of the runs. This is seen as follows: The i-th run of T
on w ∈ L is considered as a random variable Xi assuming the values 1 and 0
with probability ε and 1 − ε, respectively. Letting X :=

∑k
i=1Xi be the sum

of the independent random variable Xi, rejection is equivalent to X ≤ k
2 , or

equivalently
∑k
i=1(1 − Xi) = k − X ≥ k

2 ; note that E(1 − Xi) = 1 − ε. Let
ϑ := min{1, 2ε−1

2(1−ε)}, hence 0 < ϑ ≤ 1; note that 2ε−1
2(1−ε) ≥ 1 if and only if ε ≥ 3

4 .
This yields (1+ϑ)(1− ε) ≤ 1

2 , and thus by Chernoff’s bound, see Exercise (8.4),
we have P [k −X ≥ k

2] ≤ P [k −X ≥ (1 + ϑ)(1− ε)k] ≤ e−
1
2ϑ

2(1−ε)k. Hence we
have P [k −X ≥ k

2] ≤ 1− ε0 whenever k ≥ −2 ln(1−ε0)
ϑ2(1−ε) .

Finally, we have BPP = coBPP and RP ∪ coRP ⊆ BPP, while it is conjectured
that BPP 6⊆ NP holds.

(1.9) Definition. a) Let X be an alphabet and let R ⊆ X ∗×X ∗ be a relation.
The function problem associated to R is, given w ∈ X ∗, find a solution

5

v ∈ X ∗ such that [w, v] ∈ R, if such a v exists at all, otherwise report failure.
A Turing machine T solves the function problem R, if T halts for all w ∈ X ∗,
and outputs a solution, if any solution exists at all, and fails otherwise.

There are straightforward notions of running time and complexity classes. More-
over, this immediately generalizes to non-deterministic Turing machines, and
there is a straightforward notion of Monte-Carlo machines for function prob-
lems. Note that the latter are usually called Las-Vegas machines for function
problems, which does not seem appropriate, since the straightforward notion of
Las-Vegas machines does not make sense.

b) The function problems associated to L ∈ NP are the function problems
associated to the polynomial certificate relations R for L. Let FNP be the com-
plexity class of function problems associated to languages in NP. In particular,
function problems in FNP are solvable by non-deterministic Turing machines
running in polynomial time. Let FP ⊆ FNP be the complexity class of function
problems being solvable by Turing machines running in polynomial time; it is
conjectured that FP 6= FNP holds.

c) A language L ⊆ X ∗ reduces in polynomial time to a language L′ ⊆ X ∗,
if there is a function problem in FP, associated to a relation R ⊆ X ∗×X ∗, such
that for all w ∈ X ∗ there is v ∈ X ∗ such that [w, v] ∈ R, i. e. failure does not
occur, and for all [w, v] ∈ R we have w ∈ L if and only if v ∈ L′.
A Turing machine deciding L′ is called an oracle for L. Languages L and L′
are called polynomial time equivalent, if L reduces in polynomial time to
L′ and vice versa. Given a complexity class C of languages, L′ ∈ C is called C-
complete if each L ∈ C reduces in polynomial time to L′. Given a complexity
class C of languages, a function problem is called C-hard if each L ∈ C reduces
in polynomial time to that function problem.

2 Integer arithmetic

(2.1) Definition. Let D ⊆ N0 such that {N,N+1, . . .} ⊆ D for some N ∈ N0,
and let f : D → R be an eventually positive function, i. e. we have f(n) > 0
for all n ≥ N .

Let O(f) be the set of eventually positive functions g : D → R such that the
sequence [g(n)

f(n) ;n ≥ N] ⊆ R>0 is bounded. Let o(f) be the set of eventually

positive functions g : D → R such that limn→∞
g(n)
f(n) = 0; hence g ∈ O(f). These

symbols are also called Landau symbols.

Let g : D → R be an eventually positive function. Then the functions g and
f are called asymptotically equivalent g ∼ f , if limn→∞

g(n)
f(n) = 1; hence

f ∈ O(g) and g ∈ O(f).

For h : R → R let h(O(f)) := {h ◦ g : D → R; g ∈ O(f)} and h(o(f)) :=
{h ◦ g : D → R; g ∈ o(f)}. Moreover, we use a straightforwardly generalized

6

notation for functions in several variables, or for functions defined on subsets of
R unbounded to the right.

E. g. we have Stirling’s formula limn→∞
n!·en

nn·
√

2πn
= 1, see [5, Formula 96.2], and

thus n! ∼ (ne)n ·
√

2πn. Hence we have ln(n!) ∼ n(ln(n)−1)+ 1
2 · ln(n)+ln(

√
2π),

and thus ln(n!) ∼ n ln(n).

E. g. letting π(n) := |{p ∈ N; p ≤ n, p prime}| ∈ N0, for n ∈ N, by the Prime
Number Theorem, see [4, Ch.22], we have π(n) ∼ n

ln(n) .

(2.2) Definition. The number of digits to the base 1 6= z ∈ N necessary
to represent n =

∑b
i=0 niz

i ∈ N, where ni ∈ {0, . . . , z − 1}, is given as the
bit length bz(n) := 1 + b = 1 + blogz(n)c = 1 + b ln(n)

ln(z) c, where b·c denote
lower Gaussian brackets. Note that for n ∈ Z we only need an additional
sign. Hence for the input length of n ∈ Z into a Turing machine we have
1 + bz(|n|) ∈ O(ln(n)).

The computational complexity of integer arithmetic is counted in bit opera-
tions, i. e. and, or, exclusive or, not and shift on bit strings, hence for the base
z = 2. More generally, typical generalized bit operations could be Byte op-
erations, word operations and long word operations with respect to the
bases z = 28, z = 232 and z = 264, respectively. Using multiple string Turing
machines, see Exercise (8.2), it is easily seen that the time needed for these
operations indeed is polynomial in the input length 1 + bz(|n|).
Hence we treat bit operations as oracles. An algorithm using integer arithmetic,
whose input up to sign is n ∈ N, is called an Lα,c-time algorithm, for 0 ≤ α ≤ 1
and c > 0, if it needs Lα,c := O(ec(ln(n))α(ln(ln(n)))1−α

) bit operations. Hence
for α = 0 we have Lα,c = O(lnc(n)), thus the algorithm runs in polynomial
time with respect to bit operations, and thus is a polynomial time algorithm.
Moreover, for α = 1 we have Lα,c = O(ec ln(n)) = O(nc), thus the algorithm runs
in exponential time with respect to bit operations, and thus is a exponential time
algorithm. Finally, for 0 < α < 1 we have cxα ln1−α(x) ∈ o(x), see Exercise
(8.5), thus the algorithm runs in subexponential time with respect to bit
operations, i. e. it needs O(eh(ln(n))) bit operations, for some eventually positive
function h(x) ∈ o(x).

(2.3) Algorithm: Ring operations.
These in general are addition, subtraction and multiplication, as well as division
by units; the latter of course do not play a role for integers.

a) Addition is described as follows: Let n ≥ m ∈ N and b := bz(n), for some
1 6= z ∈ N. Hence we have n =

∑b−1
i=0 niz

i, and we may assume m =
∑b−1
j=0mjz

j ,
by letting mj := 0 for j ∈ {bz(m), . . . , b− 1}:
1. δ ← 0.
2. for k ∈ [0, . . . , b− 1] do

sk ← nk +mk + δ

7

if sk ≥ z then
sk ← sk − z
δ ← 1

else δ ← 0
3. sb ← δ
4. return [s0, . . . , sb]

Hence we have n+m =
∑b
k=0 skz

k. For each k this needs a fixed number of bit
operations, and hence needs O(bz(n)) = O(ln(n)) bit operations. For subtrac-
tion see Exercise (8.7); again this needs O(max{bz(n), bz(m)}) bit operations.

b) Multiplication is described as follows: Let n,m ∈ N and bn := bz(n)
as well as bm := bz(m). Hence we have nm =

∑bn−1
i=0

∑bm−1
j=0 nimjz

i+j =∑bn+bm−1
k=0 (

∑min{bn−1,k}
l=max{0,k−bm+1} nlmk−l) · zk. Using the former formula yields:

1. for k ∈ [0, . . . , bn + bm − 1] do sk ← 0
2. for i ∈ [0, . . . , bn − 1] do

δ ← 0
for j ∈ [0, . . . , bm − 1] do

s← si+j + nimj + δ # s = (s mod z) + b sz c · z
si+j ← s mod z
δ ← b sz c

si+bm ← δ
3. return [s0, . . . , sbn+bm−1]

Hence we have nm =
∑bn+bm−1
k=0 skz

k. For each i and j this needs a fixed number
of bit operations, thus needs O(bz(n)bz(m)) = O(ln(n) ln(m)) bit operations.

(2.4) Algorithm: Karatsuba (1962).
Let k ∈ N0 and b = 2k, as well as 1 6= z ∈ N and m,n ∈ N such that m,n < zb,
hence we have bz(m), bz(n) ≤ b. Let m = m′ · z b2 + m′′ and n = n′ · z b2 + n′′,
where 0 ≤ m′,m′′, n′, n′′ < z

b
2 . Then we have m ·n = m′n′zb + (m′n′′+m′′n′) ·

z
b
2 +m′′n′′, where m′n′′ +m′′n′ = m′n′ +m′′n′′ + (m′ −m′′)(n′′ − n′), and in

particular |m′ −m′′|, |n′ − n′′| < z
b
2 . Let K(m,n, b) be defined as follows:

1. if b = 1 then return mn
2. if b > 1 then

r ← K(m′, n′, b2)
s← K(m′′, n′′, b2)
t← K(|m′ −m′′|, |n′ − n′′|, b2)

3. return rzb + (r + s± t) · z b2 + s

Hence by induction with respect to b ∈ N we have K(m,n, b) = mn. We
show that this divide and conquer technique needs O(blog2(3)) bit opera-
tions. Since we may assume that n ≥ m and b

2 < bz(n) ≤ b, this amounts to
O((2 ln(n))log2(3)) = O((ln(n))log2(3)) bit operations; note that log2(3) < 159

100 :

Let κ(b) ∈ N be the number of bit operations needed to compute K(·, ·, b).

8

Then we have κ(1) = 1, and for b > 1 we have 3 calls of K(·, ·, b2) as well as
additions and shifts, thus κ(b) = 3κ(b2) + γb, for some γ > 0. By induction we

get κ(b) = 3k · κ(b
2k

) + γb ·
∑k−1
i=0 (3

2)i = 3k + γ2k · (3
2)k−1
3
2−1

= 3k + 2γ · (3k −
2k) = (2γ + 1) · 3k − γ2k+1. Hence we have κ(b) ∈ O(3k) = O(3log2(b)) =
O((2log2(3))log2(b)) = O(blog2(3)).]

(2.5) Algorithm: Quotient and remainder.
Let m ≥ n ∈ N, hence there are unique q, r ∈ N0 such that r < n and m = qn+r.
Note that in particular to compute in the ring Z/〈n〉 we need the computation
of remainders.

Let b′ := bz(m) and b′′ := bz(n), for some 1 6= z ∈ N. Replacing [m,n] by a
suitable multiple [km, kn], for some 1 ≤ k < z, we may assume that nb′′−1 ≥
b z2c. Moreover, after replacing n by nzl for some l ∈ N0, i. e. after a suitable
shift, we may assume that we have bz(n) = b and bz(m) ∈ {b, b + 1}, where
b ∈ {b′, b′ + 1}. To compute q, we compute q′ := min{bmbz+mb−1

nb−1
c, z − 1}. We

show that q′ − 2 ≤ q ≤ q′:
We have nb−1q

′ ≥ mbz+mb−1− (nb−1−1). Hence m−q′n ≤ m−q′nb−1z
b−1 ≤

m − (mbz + mb−1)zb−1 + (nb−1 − 1)zb−1 = (nb−1 − 1)zb−1 +
∑b−2
j=0mjz

j <

nb−1z
b−1 ≤ n. As we have q ≤ z− 1 anyway, we conclude q ≤ q′. Moreover, we

have q′ ≤ m
nb−1zb−1 <

m
n−zb−1 and q = bmn c >

m
n −1. Assume to the contrary that

3 ≤ q′−q < m
n−zb−1 − (mn −1) = m·zb−1

n(n−zb−1)
+1. Thus we have m

n > 2 · (nb−1−1),
and hence z − 4 ≥ q′ − 3 ≥ q = bmn c ≥ 2 · (nb−1 − 1) ≥ z − 3, a contradiction.
Thus q′ − 2 ≤ q.]

Computing [km, kn] needs O(b′) bit operations, the shifts need O(b′′(b′−b′′)) bit
operations. To compute the quotient q at most 3 trials are necessary, as bz(q′) =
1 the trial multiplication to compute q′n needs O(b) = O(b′) bit operations, and
the addition r := m − qn as well needs O(b′) bit operations. This amounts to
O(max{b′, b′′(b′ − b′′)}) bit operations, where b′′(b′ − b′′) ≥ b′ whenever b′ > b′′;
as m ≥ n this hence needs O(ln(m) ln(n)) ⊆ O(ln2(m)) bit operations.

(2.6) Algorithm: Binary modular exponentiation.
Let e, n ∈ N and m ∈ {0, . . . , n− 1}.
1. r ← 1
2. while e > 0 do

if 1 ≡ e mod 2 then r ← rm mod n
e← b e2c.
m← m2 mod n.

3. return r.

Using the binary representation of e ∈ N shows that r ∈ {0, . . . , n − 1} such
that r ≡ me mod n. Moreover, as b2(e) ∈ O(ln(e)) and both multiplication
and computing remainders need O(ln2(n)) bit operations, we need O(ln(e) ·

9

ln2(n)) bit operations; note that the classical exponentiation algorithm needs
O(e · ln2(n)) bit operations, and hence needs exponential time.

(2.7) Algorithm: Extended Euclidean algorithm.
Let m,n ∈ N.

1. r0 ← m, s0 ← 1, t0 ← 0
2. r1 ← n, s1 ← 0, t1 ← 1
3. i← 1
4. while ri 6= 0 do

ri+1 ← ri−1 mod ri
qi ← b ri−1

ri
c # quotient and remainder

si+1 ← si−1 − qisi
ti+1 ← ti−1 − qiti
i← i+ 1

5. return [ri−1, si−1, ti−1]

We have r0 = s0m+ t0n and r1 = s1m+ t1n, and by induction on i ≥ 1 we have
ri+1 = ri−1−qiri = (si−1m+ti−1n)−qi ·(sim+tin) = si+1m+ti+1n. As we have
ri < ri−1 for all i ≥ 1, the algorithm halts, after step i := l + 1 say, returning
[rl, sl, tl] =: [d, s, t]. The number l of steps needed is discussed in Exercise (8.10).
Thus we have d = sm + tn, and hence gcd(m,n) | d. Conversely, running the
algorithm reversely shows that d | ri for all i ≥ 0, hence d | m,n and thus
d | gcd(m,n). Thus [d, s, t] ⊆ Z such that 0 < d = gcd(m,n) = sm + tn; the
elements s, t ∈ Z are called Bezout coefficients. Note that the computation
of the coefficients si and ti can be left out, the remaining algorithm is called the
Euclidean algorithm.

Let 1 6= z ∈ N. For i ∈ {1, . . . , l} we need O(bz(ri)bz(qi)) bit operations
to compute [qi, ri]. As bz(qi) = 1 + blogz(qi)c, we have O(

∑l
i=1 bz(qi)) =

O(bz(
∏l
i=1 qi)) ⊆ O(bz(r0)). Hence computing the quotients and remainders

needs O(
∑l
i=1 bz(ri)bz(qi)) ⊆ O(bz(r1) ·

∑l
i=1 bz(qi)) ⊆ O(bz(r1)bz(r0)) bit op-

erations. To compute the linear combination needs O(
∑l
i=1 bz(qi)bz(si)) bit op-

erations, where in turn bz(si) ∈ O(bz(si−1) + bz(qi−1)), hence we have bz(si) ∈
O(
∑i−1
j=1 bz(qj)), yielding O(

∑l
i=1

∑i−1
j=1 bz(qi)bz(qj)) bit operations. As above

we from this obtain O(
∑l−1
j=1

∑l
i=j+1 bz(qj)bz(qi)) ⊆ O(

∑l−1
j=1 bz(qj)bz(rj)) ⊆

O(bz(r1) ·
∑l−1
j=1 bz(qj)) ⊆ O(bz(r1)bz(r0)) bit operations. Thus this needs

O(bz(r1)bz(r0)) = O(bz(m)bz(n)) bit operations; if m ≥ n this hence needs
O(ln2(m)) bit operations.

(2.8) Remark: Polynomial arithmetic.
Let R be a commutative ring and let R[X] be the polynomial ring over R in the
indeterminate X. For 0 6= f =

∑d
i=0 fiX

i ∈ R[X], where fi ∈ R and fd 6= 0, let
deg(f) := d denote its degree. The computational complexity of polynomial
arithmetic is usually measured in ring operations in R, related to the degrees of
the polynomials in R[X] involved. Hence in general this is not directly related

10

to the number of bit operations needed, since coefficient growth in R has to
be taken into account, e. g. for R = Z; it directly relates to the number of bit
operations needed in the case of a finite ring R, e. g. for Z/〈n〉 or for finite
fields Fq. The algorithms for integer arithmetic straightforwardly generalize to
polynomial arithmetic by letting z := X, and even have a tendency to become
slightly easier, see Exercise (8.16):

Let 0 6= f, g ∈ R[X], where deg(f) ≥ deg(g). Addition f + g and subtraction
f − g need O(deg(f)) ring operations, while multiplication f · g, using the
classical technique, needs O(deg(f)2) ring operations. The Karatsuba algorithm
generalizes to multiplication f · g, where deg(f),deg(g) < 2k for some k ∈ N0;
hence if deg(f) ≥ deg(g) it needs O(deg(f)log2(3)) ring operations. Given e ∈ N
and assuming deg(f) ≤ deg(g), to compute r ∈ R[X] such that r = 0 or
deg(r) < deg(g), and fe ≡ r mod g, needs O(ln(e) · deg(g)2) ring operations.

Let 0 6= g ∈ R[X] such that its leading coefficient lc(g) := gdeg(g) ∈ R∗ is a unit
in R. Hence for f ∈ R[X] there exist unique q, r ∈ R[X] such that r = 0 or
deg(r) < deg(g), fulfilling f = qg + r. We may assume deg(f) ≥ deg(g), hence
to compute [q, r] ⊆ R[X] needs O(deg(f) · (deg(f)−deg(g))) ⊆ O(deg(f)2) ring
operations in R; note that only gdeg(g) ∈ R∗ has to be inverted, and that q can be
computed without guessing. Finally, R[X] is Euclidean if and only if R is a field;
in this case the extended Euclidean algorithm generalizes to 0 6= f, g ∈ R[X],
and needs O(deg(f) · deg(g)) ring operations.

3 Fast Fourier transform

(3.1) Definition. Let R be a commutative ring and let n ∈ N. An element
ω ∈ R is called a primitive n-th root of unity, if ωn = 1 and ωk−1 is neither
0 nor a zero-divisor in R, for all k ∈ {1, . . . , n− 1}.
Note that ω ∈ R∗, and if R is an integral domain, then the condition on ωk − 1
amounts to ωk 6= 1, for all k ∈ {1, . . . , n − 1}. E. g. ζn := e

2π
√
−1
n ∈ C is the

standard primitive n-th root of unity in C. E. g. if q ∈ N is a prime power,
then by Artin’s Theorem we have F∗q ∼= Z/〈q−1〉, which has an element of order
n if and only if n | q − 1, thus the finite field Fq has a primitive n-th root of
unity if and only if n | q − 1.

E. g. the ring (Z/〈8〉) does not have primitive square roots of unity: We have
(Z/〈8〉)∗ = {±1,±3} ∼= (Z/〈2〉)2, hence for all 1 6= u ∈ (Z/〈8〉)∗ we have u2 = 1,
but u− 1 is a zero-divisor.

(3.2) Lemma. Let R be a commutative ring and let n ∈ N.
a) Let ω ∈ R such that ωn = 1 and ω

n
p − 1 is neither 0 nor a zero-divisor, for

all prime divisors p | n. Then ω is a primitive n-th root of unity.
b) Let ω ∈ R be a primitive n-th root of unity, let k ∈ {1, . . . , n − 1} and
m := n

gcd(k,n) ∈ N. Then ωk is a primitive m-th root of unity; in particular ω−1

is a primitive n-th root of unity. Finally, we have
∑n−1
i=0 ω

ik = 0.

11

Proof. Recall that Xb − 1 = (Xa − 1) ·
∑ b

a−1
i=0 Xai ∈ R[X], for all a | b ∈ N.

a) We have to show that ωk − 1 is neither 0 nor a zero-divisor, for all k ∈
{1, . . . , n − 1}: Let d := gcd(k, n) = xk + yn ∈ N, for suitable x, y ∈ Z. Thus
we have d < n and d | n, hence there is a prime divisor p | n such that d | np .
Hence we have ωk − 1 | ωxk − 1 = ωxk+yn− 1 = ωd− 1 | ω

n
p − 1, and since the

latter is neither 0 nor a zero-divisor, this also holds for the former.
b) From n | kn

gcd(k,n) = km we have (ωk)m = 1. Assume that (ωk)j − 1 is 0
or a zero-divisor for some j ∈ {1, . . . ,m− 1}, then we have n | kj, hence m =

n
gcd(k,n) | j, a contradiction. Finally, we have (ωk−1) ·

∑n−1
i=0 ω

ik = ωkn−1 = 0,

and since ωk − 1 is neither 0 nor a zero-divisor we conclude
∑n−1
i=0 ω

ik = 0.]

(3.3) Definition. Let R be a commutative ring and let n ∈ N. Note that Rn

becomes an R-algebra by componentwise addition and multiplication.

a) Let R[X]<n := {f =
∑n−1
i=0 fiX

i ∈ R[X]; deg(f) < n}
.
∪ {0}. Hence we

have an isomorphism of free R-modules κ : Rn → R[X]<n : [f0, . . . , fn−1] 7→∑n−1
i=0 fiX

i. Moreover, we have the natural isomorphism of free R-modules
ν : R[X]<n → R[X]/〈Xn − 1〉; note that Xn − 1 is monic. The R-algebra
structure of R[X]/〈Xn − 1〉 is transported back to Rn via κν as follows:

For f =
∑n−1
i=0 fiX

i and g =
∑n−1
j=0 gjX

j let h =
∑n−1
k=0 hkX

k ∈ R[X]<n such
that fg ≡ h mod (Xn−1). Then we have fg =

∑n−1
i=0

∑n−1
j=0 figjX

i+j , and thus
computing mod(Xn − 1) yields hk :=

∑
i+j≡k mod n figj . We write f ∗ g :=

h ∈ R[X]<n as well as [f0, . . . , fn−1]∗ [g0, . . . , gn−1] := [h0, . . . , hn−1], called the
associated (positive) wrapped convolution on R[X]<n and Rn, respectively.
Note that if deg(f) + deg(g) < n, then we have f ∗ g = fg.

b) Let ω ∈ R be a primitive n-th root of unity. Then the concatenation
δω : Rn → Rn of κ : Rn → R[X]<n and the n-point evaluation map R[X]<n →
Rn : f 7→ [f(ω0), . . . , f(ωn−1)] is called the discrete Fourier transform: We
have δω : [f0, . . . , fn−1] 7→ [

∑n−1
i=0 fi(ω

j)i; j ∈ {0, . . . , n−1}] = [f0, . . . , fn−1]·∆ω,
where ∆ω := [ωij ; i, j ∈ {0, . . . , n− 1}]ij ∈ Rn×n.

To evaluate f =
∑n−1
i=0 fiX

i ∈ R[X]<n for an arbitrary argument w ∈ R, we
use the Horner scheme:

1. s← 0
2. for i ∈ [n− 1, n− 2, . . . , 0] do s← s · w + fi
3. return s

Hence we have s = f(w), needing O(n) ring operations. Thus to compute
[f0, . . . , fn−1]δω classically, we have to evaluate f =

∑n−1
i=0 fiX

i for the n argu-
ments ω0, . . . , ωn−1, where each evaluation needs O(n) ring operations, hence
amounting to O(n2) ring operations. We can do better than that:

(3.4) Algorithm: Fast Fourier transform (FFT), Cooley-Tukey (1965).
Let n ∈ N be even, let ω ∈ R be a primitive n-th root of unity, and let f =

12

∑n−1
i=0 fiX

i ∈ R[X]<n. Then there are q, r, q′, r′ ∈ R[X]<n
2

such that f =
q · (X

n
2 − 1) + r = q′ · (X

n
2 + 1) + r′. Letting f = f ′ · X n

2 + f ′′, where
f ′ =

∑n
2−1
i=0 fn

2 +iX
i ∈ R[X]<n

2
and f ′′ =

∑n
2−1
i=0 fiX

i ∈ R[X]<n
2

, we have
f − (f ′′+ f ′) = f ′(X

n
2 − 1), hence f ≡ f ′′+ f ′ mod (X

n
2 − 1), thus r = f ′′+ f ′,

and similarly f − (f ′′ − f ′) = f ′(X
n
2 + 1), hence f ≡ f ′′ − f ′ mod (X

n
2 + 1),

thus r′ = f ′′ − f ′.
From 0 = ωn−1 = (ω

n
2 −1)(ω

n
2 +1), since ω

n
2 −1 is neither 0 nor a zero-divisor,

we conclude ω
n
2 = −1. Hence for k ∈ {0, . . . , n2 − 1} we find f(ω2k) = q(ω2k) ·

((ω2k)
n
2 − 1) + r(ω2k) = q(ω2k) · (ωkn − 1) + r(ω2k) = r(ω2k) and f(ω2k+1) =

q′(ω2k+1) · ((ω2k+1)
n
2 + 1) + r′(ω2k+1) = q′(ω2k+1) · ((ωnkω n

2 + 1) + r′(ω2k+1) =
r′(ω2k+1) = r′(ω · ω2k) = r′′(ω2k), where r′′(X) := r′(ωX) ∈ R[X]<n

2
.

Let l ∈ N0 and n = 2l, let ω ∈ R be a primitive 2l-th root of unity, and let
F (f, ω, n) be defined as follows:

1. if n = 1 then return [f0]
2. r ←

∑n
2−1
i=0 (fi + fn

2 +i)Xi

3. r′′ ←
∑n

2−1
i=0 (fi − fn2 +i)ωiXi

4. [r0, r2, . . . , rn−2]← F (r, ω2, n2)
5. [r1, r3, . . . , rn−1]← F (r′′, ω2, n2)
6. return [r0, . . . , rn−1]

Hence we have F (f, ω, n) = [f0, . . . , fn−1]δω; note that ω2 is a primitive n
2 -th

root of unity, for n > 1. Let κ(n) ∈ N be the number of ring operations needed
to compute F (·, ·, n). Hence we have κ(1) = 1, and for n > 1 we have 2 calls
of F (·, ·, n2), as well as O(n) ring operations to compute r and r′′. Hence we
have κ(n) = 2κ(n2) + γn, for some γ > 0. Thus by induction we find κ(n) =
2κ(n2)+γn = 2(2κ(n4)+ γn

2)+γn = 4κ(n4)+2γn = . . . = 2l+γnl = n+γn log2(n),
hence κ(n) ∈ O(n ln(n)).

(3.5) Proposition. The discrete Fourier transform δω is a homomorphism of
R-algebras (Rn, ∗) → (Rn, ·). Moreover, we have δω−1δω = n · idRn , hence if
n ∈ R∗ then δω is an isomorphism.

Proof. We show that ([f0, . . . , fn−1] ∗ [g0, . . . , gn−1])δω = [f0, . . . , fn−1]δω ·
[g0, . . . , gn−1]δω: For f =

∑n−1
i=0 fiX

i and g =
∑n−1
j=0 gjX

j we have fg ≡
f ∗ g mod (Xn − 1), hence there is q ∈ R[X] such that f ∗ g = fg + q(Xn − 1).
Thus (f ∗ g)(ωk) = f(ωk)g(ωk) + q(ωk)((ωk)n − 1) = f(ωk)g(ωk), for k ∈
{0, . . . , n − 1}. Hence [(f ∗ g)(ω0), . . . , (f ∗ g)(ωn−1)] = [f(ω0), . . . , f(ωn−1)] ·
[g(ω0), . . . , g(ωn−1)].

Since ω−1 also is a primitive n-th root of unity, δω−1 : Rn → Rn is a discrete
Fourier transform. We show that ∆ω−1∆ω = n · idRn : For i, j ∈ {0, . . . , n− 1}
we have [∆ω−1∆ω]ij =

∑n−1
k=0 ω

−ikωkj =
∑n−1
k=0 ω

(j−i)k. Thus for i 6= j we have
[∆ω−1∆ω]ij = 0, while for i = j we obtain [∆ω−1∆ω]ii = n.]

13

(3.6) Theorem. Let R support FFT, i. e. we have 2 ∈ R∗ and R has primi-
tive 2l-th roots of unity for all l ∈ N0; this holds e. g. for R = Z[1

2 , ζ2l ; l ∈ N] ⊆
Q[ζ2l ; l ∈ N] ⊆ Qab ⊆ Q. Then to compute the wrapped convolution f ∗ g, for
f, g ∈ R[X]<n, needs at most O(n ln(n)) ring operations. In particular, to com-
pute the product fg, for f, g ∈ R[X] such that deg(fg) ≤ deg(f) + deg(g) < n,
needs at most O(n ln(n)) ring operations.

Proof. Let l ∈ N0 such that 2l−1 < n ≤ 2l, and let ω ∈ R be a prim-
itive 2l-th root of unity. Let f =

∑2l−1
i=0 fiX

i and g =
∑2l−1
j=0 gjX

j and

f ∗ g =
∑2l−1
k=0 hkX

k. Then we have ([f0, . . . , f2l−1]δω · [g0, . . . , g2l−1]δω)δ−1
ω =

([f0, . . . , f2l−1] ∗ [g0, . . . , g2l−1])δωδ−1
ω = [h0, . . . , h2l−1]. Since componentwise

multiplication needs O(2l) ring operations, and both discrete Fourier transfor-
mations δω and δ−1

ω = 2−l · δω−1 need O(2l · l) ring operations, this amounts to
O(2l · l) = O(n ln(n)) ring operations.]

Note that if 2 6∈ R∗, then after replacing δ−1
ω by δω−1 no division in R is needed

at all, and we obtain 2l · (f ∗ g) instead, where l is as in the above proof.

(3.7) Algorithm: Schönhage-Strassen (1971), polynomial version.
Let R be a commutative ring such that 2 ∈ R∗, and let n = 2l for some l ∈ N.
For 0 6= f, g ∈ R[X] such that deg(fg) ≤ deg(f) + deg(g) < n, to compute
fg ∈ R[X], it is sufficient to compute the negative wrapped convolution
h ∈ R[X]<n such that fg ≡ h mod (Xn + 1). Thus we may assume we have
given f, g ∈ R[X]<n, and aim to compute h ∈ R[X]<n; the idea is to impose
additional primitive roots of unity:

Let m := 2b
l
2 c and t := n

m = 2d
l
2 e, and let f =

∑t−1
i=0 fiX

mi and g =∑t−1
j=0 gjX

mj , for suitable fi, gj ∈ R[X]<m. Moreover let f ′ :=
∑t−1
i=0 fiY

i ∈
R[X,Y] and g′ :=

∑t−1
j=0 gjY

j ∈ R[X,Y], thus we have f = f ′(X,Xm) and
g = g′(X,Xm). It suffices to compute h′ ∈ (R[X])[Y]<t such that f ′g′ ≡
h′ mod (Y t + 1): From f ′g′ = h′ + q′(Y t + 1), for some q′ ∈ R[X,Y], we
get fg = f ′(X,Xm)g′(X,Xm) = h′(X,Xm) + q′(X,Xm)(Xmt + 1), hence
fg ≡ h′(X,Xm) mod (Xn + 1).

A comparison of coefficients at Y i, for i ≥ t, yields degX(q′) ≤ degX(f ′g′) ≤
degX(f ′) + degX(g′) < 2m, and thus degX(h′) < 2m as well. Hence h′ can
be computed in R[X,Y]/〈X2m + 1, Y t + 1〉 ∼= (R[X]/〈X2m + 1〉)[Y]/〈Y t + 1〉.
Using the natural map : R[X] → R[X]/〈X2m + 1〉, let f ′ :=

∑t−1
i=0 fiY

i ∈
(R[X]/〈X2m + 1〉)[Y] and g′ :=

∑t−1
j=0 gjY

j ∈ (R[X]/〈X2m + 1〉)[Y]. It suffices
to compute h′ ∈ (R[X]/〈X2m + 1〉)[Y]<t such that f ′g′ ≡ h′ mod (Y t + 1).

The element X ∈ R[X]/〈X2m + 1〉 is a primitive 4m-th root of unity: We
have X

2m
= −1 and X

4m
= 1, and since 4m = 22+b l2 c, it suffices to consider

X
2m − 1 = −2 ∈ R[X]/〈X2m + 1〉, which being a unit is neither 0 nor a zero-

divisor. If l is even, we have t = m and ω := X
2

is a primitive 2t-th root of
unity in R[X]/〈X2m + 1〉, while if l is odd, we have t = 2m and ω := X is

14

a primitive 2t-th root of unity. Hence in both cases we have ωt = −1. Thus
the above congruence is equivalent to f ′(ωY)g′(ωY) ≡ h′(ωY) mod (Y t − 1) in
(R[X]/〈X2m + 1〉)[Y].

Thus computing h′ amounts to wrapped convolution in (R[X]/〈X2m+1〉)[Y]<t,
based on FFT for t = 2d

l
2 e ∈ R∗, where multiplication in R[X]/〈X2m+1〉 again

is negative wrapped convolution in R[X]<2m, which is done by recursion for
l ≥ 3; for l ≤ 2 the classical or the Karatsuba multiplication algorithm is used.
Finally we get h′(Y) = h′(ω−1(ωY)) and h = h′(X,Xm).]

(3.8) Example. Let R := F5 as well as f := 3 + 2X + X4 ∈ F5[X] and
g := 2 + 4X + X2 + 2X3 ∈ F5[X]. Hence we may take l = 3, thus n = 8 as
well as m = 2 and t = 4. Moreover, we have f ′ = (3 + 2X) + Y 2 ∈ F5[X,Y]
and g′ = (2 + 4X) + (1 + 2X) · Y . We have ω = X ∈ F5[X]/〈X4 + 1〉, and thus
f ′ = 3 + 2X + Y 2 and g′ = 2 + 4X + 1 + 2X · Y ∈ (F5[X]/〈X4 + 1〉)[Y], hence
f ′(ωY) = f ′(X · Y) = 3 + 2X +X2 · Y 2 and g′(ωY) = 2 + 4X +X + 2X2 · Y ∈
(F5[X]/〈X4 + 1〉)[Y]. Classical multiplication yields f ′(ωY)g′(ωY) = h′(ωY) =
(3 + 2X+X2 ·Y 2) ·(2 + 4X+X + 2X2 ·Y) = 1 +X + 3X2 +3X + 3X2 + 4X3 ·
Y + 2X2 + 4X3 · Y 2 + 3 +X3 · Y 3 ∈ (F5[X]/〈X4 + 1〉)[Y]; where we have used
that X3 + 2X4 = 3 +X3 ∈ F5[X]/〈X4 + 1〉. Using ω−1 = ω7 = 4ω3 = 4X

3 ∈
F5[X]/〈X4 + 1〉 we get h′(Y) = 1 +X + 3X2 + (3X + 3X2 + 4X3) · 4X3 · Y +
(2X2 + 4X3) ·X6 · Y 2 + (3 +X3) · 4X9 · Y 3 = 1 +X + 3X2 + 3 + 3X + 4X2 ·
Y + 2 + 4X · Y 2 + 1 + 2X · Y 3 ∈ (F5[X]/〈X4 + 1〉)[Y]. Hence h′ = (1 + X +
3X2)+(3+3X+4X2) ·Y +(2+4X) ·Y 2 +(1+2X) ·Y 3 ∈ F5[X,Y] and thus for
h′(X,X2) = (1+X+3X2)+(3+3X+4X2)·X2 +(2+4X)·X4 +(1+2X)·X6 =
1+X+X2+3X3+X4+4X5+X6+2X7 ∈ F5[X] we have fg ≡ h′ mod (X8+1),
where since deg(g) + deg(g) = 7 < 8 we even have fg = h′.

(3.9) Theorem. Let R be a commutative ring such that 2 ∈ R∗. Then to
compute the negative wrapped convolution fg mod (X2l +1) of f, g ∈ R[X]<2l ,
for some l ∈ N, needs at most O(2l ·l ln(l)) ring operations. Thus to compute the
product fg ∈ R[X], for f, g ∈ R[X] such that deg(fg) ≤ deg(f) + deg(g) < n,
for some n ∈ N, needs at most O(n ln(n) ln(ln(n))) ring operations.

Proof. The second assertion follows from the first one by letting l ∈ N such
that 2l−1 < n ≤ 2l, which implies O(2l · l ln(l)) = O(n ln(n) ln(ln(n))). To
prove the first assertion, we count the ring operations needed to perform the
Schönhage-Strassen algorithm for polynomials: Let τ(l) be the number of ring
operations needed for input in R[X]<2l , where we may assume τ(l) = 1 for l ≤ 2.
For l ≥ 3, to compute f ′(ωY) and g′(ωY) as well as h′(Y) = h′(ω−1(ωY)),
each needs O(t) operations in R[X]/〈X2m + 1〉, which are shifts of coefficient
lists and sign inversions in R, hence each need O(m) ring operations, while
to compute h = h′(X,Xm) needs O(mt) ring operations. Thus this amounts
to O(mt) ring operations in R. Moreover, FFT needs O(t ln(t)) operations
of replacing Y ← ωY , thus needs O(mt ln(t)) ring operations in R, and to

15

compute the wrapped convolution by componentwise multiplication we need t
multiplications in R[X]/〈X2m + 1〉, where a multiplication is done recursively
by negative wrapped convolution, which needs τ(log2(2m)) ring operations.

Thus there is γ > 0 such that τ(l) = γmt log2(t) + tτ(log2(2m)) = γ · 2l · d l2e+
2d

l
2 e · τ(b l2c + 1). Hence letting σ(l) be defined by τ(l) = 2l−1(l − 2)σ(l − 1)

we for l ≥ 3 get 2l−1(l − 2)σ(l − 1) = γ · 2l · d l2e + 2d
l
2 e · 2b l2 c(b l2c − 1)σ(b l2c),

hence σ(l − 1) = 2γ·d l2 e
l−2 + 2(b l2 c−1)

l−2 · σ(b l2c). Since b l2c − 1 ≤ l−2
2 and 2·d l2 e

l−2 ≤
4, for l ≥ 3, there is γ′ > 0 such that σ(l − 1) ≤ γ′ + σ(b l2c). Moreover,
since for l ≥ 3 we have b l2c ≤

l
2 = (l−1)+1

2 ≤ 3(l−1)
4 , by induction we get

σ(l − 1) ≤ γ′ · log 4
3
(l−1

2) + σ(2) ≤ γ′′ ln(l − 1), for some γ′′ > 0. This yields
τ(l) ∈ O(2l−1(l − 2) ln(l − 1)) = O(2l · l ln(l)).]

(3.10) Corollary. Let R be a commutative ring. Then to compute the product
fg, for f, g ∈ R[X] such that deg(fg) ≤ deg(f) + deg(g) < n, needs at most
O(n ln(n) ln(ln(n))) ring operations.

Proof. Using the division-free version of FFT in the Schönhage-Strassen algo-
rithm, we compute t · fg ∈ R[X], where 2l−1 < n ≤ 2l and t = 2d

l
2 e ∈ O(n

1
2).

Similarly, using the Schönhage algorithm (1977), see Exercise (8.20), em-
ploying the division-free version of 3-adic FFT, we compute t′ · fg ∈ R[X],
where 3l

′−1 < n ≤ 3l
′

and t′ = 3b
l′
2 c ∈ O(n

1
2). Hence we compute s, s′ ∈ Z such

that st+ s′t′ = 1 ∈ Z, which needs O(ln2(n
1
2)) = O(ln2(n)) bit operations, and

s(t · fg) + s′(t′ · fg) ∈ R[X], which needs O(n) ring operations.]

(3.11) Algorithm: Schönhage-Strassen (1971), integer version.
Let a, b ∈ N such that b2(ab) ≤ b2(a) + b2(b) ≤ n = 2l, for some l ∈ N. Hence
to compute ab ∈ N it is sufficient to compute negative wrapped convolution
ab mod (2n + 1). Thus we may assume we have given a, b ∈ {1, . . . , 2n}; as we
have 2n ≡ −1 mod (2n + 1), the cases a = 2n or b = 2n are easy special cases,
hence we may additionally assume that b2(a), b2(b) ≤ n = 2l:

Let m := 2b
l
2 c and t := n

m = 2d
l
2 e, and let a =

∑m−1
i=0 ai ·2ti and b =

∑m−1
j=0 bj ·2tj

as well as ab =
∑2m−1
k=0 ck · 2tk, for suitable ai, bj ∈ {0, . . . , 2t − 1} and ck ∈ N0

Hence we have ck =
∑k
i=0 aibk−i, for k ∈ {0, . . . , 2m− 1}, where we let bj := 0

for j ≥ m. Since mt = 2l = n we have 2mt = 2n ≡ −1 mod (2n + 1), and
we get ab ≡

∑m−1
k=0 dk · 2tk mod (2n + 1), for k ∈ {0, . . . ,m − 1}, where dk :=

ck − cm+k ∈ Z.

Counting the number of summands yields |ck| ≤ (k+1)·(2t−1)2 < (k+1)·22t and
|cm+k| ≤ (m−k−1)·(2t−1)2 < (m−k−1)·22t, for k ∈ {0, . . . ,m−1}. Hence we
have −(m− k− 1) · 22t < dk < (k+ 1) · 22t. Since ((k+ 1) + (m− k− 1)) · 22t =
m · 22t, it is sufficient to compute dk mod (m · (22t + 1)). Since the moduli
m = 2b

l
2 c and 22t + 1 = 22·d l2 e + 1 are coprime, we compute d′k ≡ dk mod m

16

and d′′k ≡ dk mod (22t + 1), and let δk := (22t + 1)((d′k − d′′k) mod m) + d′′k .
Applying the Chinese remainder theorem, since 22t + 1 ≡ 1 mod m, we have
δk ≡ d′k mod m and δk ≡ d′′k mod (22t + 1), hence dk ≡ δk mod (m · (22t + 1)).

To compute d′k we proceed as follows: Let a′i ≡ ai mod m and b′j ≡ bj mod m,
for i, j ∈ {0, . . . ,m− 1}, as well as â :=

∑m−1
i=0 a′i ·m3i and b̂ :=

∑m−1
j=0 b′j ·m3j .

Hence âb̂ =
∑2m−1
k=0 c′k ·m3k, where c′k =

∑k
i=0 a

′
ib
′
k−i, for k ∈ {0, . . . , 2m − 1},

and where we let b′j := 0 for j ≥ m. Since 0 ≤ c′k < m ·m2 the c′k can be read
off from âb̂, and we have d′k ≡ c′k − c′m+k mod m, for k ∈ {0, . . . ,m− 1}.

To compute d′′k we proceed as follows: Let ω := 2
2t
m ∈ Z/〈22t + 1〉, then ω is a

primitive 2m-th root of unity: We have ωm = 22t = −1 ∈ Z/〈22t+1〉 and hence
ω2m = (−1)2 = 1 ∈ Z/〈22t + 1〉, and since 2m = 21+b l2 c, it suffices to consider
ωm − 1 = −2 ∈ Z/〈22t + 1〉, which being a unit is neither 0 nor a zero-divisor.
We have [a0ω

0, . . . , am−1ω
m−1] ∗ [b0ω0, . . . , bm−1ω

m−1] = [δ′′0 , . . . , δ
′′
m−1], where

δ′′k = ωk ·
∑
i+j≡k mod m aibj ∈ Z/〈22t + 1〉, for k ∈ {0, . . . ,m − 1}. Hence we

have d′′k = ω−k · δ′′k ∈ Z/〈22t+ 1〉. Thus d′′k mod (22t+ 1) can be computed using
FFT for m = 2b

l
2 c ∈ (Z/〈22t + 1〉)∗, and multiplication mod(22t + 1) which for

l ≥ 4 by recursion is negative wrapped convolution.]

(3.12) Theorem. To compute the negative wrapped convolution ab mod (22l+
1), for a, b ∈ N such that b2(a), b2(b) ≤ 2l, for some l ∈ N, needs at most
O(2l · l ln(l)) bit operations. Thus to compute the product ab ∈ N, for a, b ∈
N such that b2(ab) ≤ b2(a) + b2(b) ≤ n, for some n ∈ N, needs at most
O(n ln(n) ln(ln(n))) bit operations.

Proof. The second assertion follows from the first one by letting l ∈ N such that
2l−1 < n ≤ 2l, which implies O(2l · l ln(l)) = O(n ln(n) ln(ln(n))). To prove the
first assertion, we count the ring operations needed to perform the Schönhage-
Strassen algorithm for integers: Let τ(l) be the number of bit operations needed
for input of bit length 2l, where we may assume τ(l) = 1 for l ≤ 3. To compute
ab from the dk, we need m additions of numbers of bit length O(ln(m · 22t)),
hence O(m ln(m · 22t)) ⊆ O(mt) = O(n) bit operations; note that the dk have
to be multiplied by 2-powers, which amounts to shifts and actually need not
be performed explicitly. To compute δk from d′k and d′′k we need O(t ln(m))
bit operations to compute each remainder and each product, hence altogether
O(mt ln(m)) ⊆ O(n ln(m)) bit operations.

To compute d′k we need O(t ln(m)) bit operations to compute each remainder,
hence altogether O(mt ln(m)) = O(n ln(m)) bit operations, moreover we need
O((3ml)log2(3)) = O(n

log2(3)
2 (ln(n))log2(3)) ⊆ O(n) bit operations to compute the

single product âb̂ using the Karatsuba algorithm, and we need O(3
2 · l ln(m)) bit

operations to compute each final remainder, hence altogether O(ml ln(m)) =
O(n

1
2 ln2(n)) ⊆ O(n) bit operations. To compute d′′k we need O(m ln(m)) mul-

tiplications of integers of bit length t with 2-powers, which hence amounts to

17

shifts, to compute the Fourier transform, hence O(mt ln(m)) = O(n ln(m)) bit
operations, m recursive calls needing τ(d l2e+ 1) bit operations each, and finally
m multiplications of integers of bit length t with 2-powers, hence O(mt) = O(n)
bit operations.

Thus there is γ > 0 such that τ(l) = γn log2(m) +mτ(d l2e+ 1) = γ · 2l · b l2c+
2b

l
2 c · τ(d l2e + 1). Hence letting σ(l) be defined by τ(l) = 2l−1(l − 3)σ(l − 1)

we for l ≥ 4 get 2l−1(l − 3)σ(l − 1) = γ · 2l · b l2c + 2b
l
2 c · 2d l2 e(d l2e − 2)σ(d l2e),

hence σ(l − 1) = 2γ·b l2 c
l−3 + 2(d l2 e−2)

l−3 · σ(d l2e). Since d l2e − 2 ≤ l−3
2 and 2·b l2 c

l−3 ≤
4, for l ≥ 4, there is γ′ > 0 such that σ(l − 1) ≤ γ′ + σ(d l2e). Moreover,
since for l ≥ 4 we have d l2e ≤

l+1
2 = (l−1)+2

2 ≤ 5(l−1)
6 , by induction we get

σ(l − 1) ≤ γ′ · log 6
5
(l−1

3) + σ(3) ≤ γ′′ ln(l − 1), for some γ′′ > 0. This yields
τ(l) ∈ O(2l−1(l − 3) ln(l − 1)) = O(2l · l ln(l)).]

(3.13) Remark. a) In practice, instead of using the Schönhage-Strassen al-
gorithm for integers, we use 3-primes modular FFT multiplication: Let
z = 264, and let a =

∑n−1
i=0 aiz

i ∈ N0 and b =
∑n−1
j=0 ajz

j ∈ N0, where
ai, bj ∈ {0, . . . , z − 1}. Moreover, let A :=

∑n−1
i=0 aiX

i ∈ Z[X]<n and B :=∑n−1
j=0 bjX

j ∈ Z[X]<n, hence we have a = A(z) and b = B(z). Let AB = C :=∑2n−1
k=0 ckX

k ∈ Z[X]<2n−1, where 0 ≤ ck =
∑n−1
i=0 aibk−i <

∑n−1
i=0 z

2 ≤ nz2; we
again let bj := 0 for j < 0 or j ≥ n; hence we have ab = C(z).

To compute C ∈ Z[X]<2n−1, we proceed as follows: We assume that n <
z
23 = 261, and choose pairwise different primes z

2 = 263 ≤ p1, p2, p3 < z. Since
nz2 < 2189 and p1p2p3 ≥ 23·63 = 2189, the Chinese remainder theorem allows
to compute C from C mod pi, for i ∈ {1, . . . , 3}. To compute the product
AB mod pi using FFT, we choose Fourier primes p such that p−1 is divisible
by a high 2-power. Actually, all primes p = k · 257 + 1 < z such that 257 | p
are given as follows, where w ∈ N is minimal such that w ∈ Z/〈p〉 is a primitive
257-th root of unity:

k 29 71 75 95 108 123
w 21 287 149 55 64 493

Note p < z
2 only for k = 29, and that for k = 108 we even have 259 | (p − 1),

which is the only prime p < z having this property, and no higher 2-powers
dividing p− 1 occur for primes p < z.

Anyway, we choose 3 of these pairs once and for all. Hence we are able to apply
FFT for polynomials such that 2n− 1 ≤ 257, hence n ≤ 256, thus for a, b ∈ N0

such that bz(a), bz(b) ≤ 256, hence b2(a), b2(b) ≤ 26+56 = 262, i. e. for a, b ∈ N0

which need up to ∼ 4, 6 · 1018 bit ∼ 5, 8 · 1017 Byte.

b) Having at hand fast multiplication over Z and F [X], where F is a field,
there are fast algorithms for modular multiplication and to compute quotient
and remainder, see [3, Ch.9.1], and fast algorithms for polynomial multipoint

18

evaluation and interpolation, for reduction modulo several moduli and Chinese
remaindering, see [3, Ch.10]. These are not presented here.

4 Resultants

(4.1) Algorithm: Euclidean algorithm, polynomial versions.
a) Let R be an integral domain, and let K := Quot(R) be its fields of fractions.
Let 0 6= f =

∑d
i=0

f ′i
f ′′i
·Xi ∈ K[X], where f ′i , f

′′
i ∈ R, and let ν :=

∏d
i=0 f

′′
i ∈ R.

Hence we have νf =
∑d
i=0 fiX

i ∈ R[X], where fi = νf ′i
f ′′i
∈ R. Letting b(f) :=

max{b(ν), b(f0), . . . , b(fd)}, where b(·) is the input length function for the ring
R, the input length of f is given as (deg(f) + 2) · b(f).

We discuss coefficient growth in the quotient and remainder algorithm: Let
0 6= f, g ∈ K[X] be monic, hence we have f = (

∑d−1
i=0

fi
ν X

i) + Xd ∈ K[X]
and g = (

∑e−1
j=0

gj
µ X

i) + Xe ∈ K[X], where d = deg(f) and e = deg(g) as
well as ν, µ, fi, gj ∈ R. Let f = qg + ρr, where q, r ∈ K[X] such that r = 0
or deg(r) < e = deg(g) and r is monic, and ρ ∈ K. Assuming deg(g) =
e = d − 1 = deg(f) − 1 we have q = µfd−1−νge−1

νµ + X and ρr = f − qg = 1
νµ2 ·

(µ2(νf)−νµ(µg)X−(µfd−1−νge−1)(µg)). Hence we have b(q) ≤ b(f)+b(g)+1
and b(ρr) ≤ b(f) + 2b(g) + 3, and since r may be computed using the leading
coefficient of νµ2ρ · r, we also have b(r) ≤ b(f) + 2b(g) + 3. Thus letting
b := max{b(f), b(g)}, we obtain b(r) ≤ 3b+ 3; note that for single quotient and
remainder computations this in general indeed occurs.

E. g. letR = Z as well as f = r0 := −5+2X+8X2−3X3−3X4+X6+X8 ∈ Z[X]
and g = r1 := 21− 9X − 4X2 + 5X4 + 3X6 ∈ Z[X], see [8, Ch.4.6.1, pp.426ff.]
and [3, Exc.6.42]. The Euclidean algorithm yields r2 = 1

9 · (−3+X2−5X4) and
r3 = 1

25 ·(441−225X−117X2) as well as r4 = 1
19 773 ·(−307 500+233 150X) and

r5 = − 1 288 744 821
543 589 225 . Note that gcd computations in Z are used to write rational

numbers as quotients of coprime integers.

b) Modifying the Euclidean algorithm to use monic remainders throughout,
called the monic Euclidean algorithm, for 0 6= f, g ∈ K[X] monic:

1. λ0 ← lc(f), r0 ← 1
λ0
· f , s0 ← 1

λ0
, t0 ← 0, n0 ← deg(f)

2. λ1 ← lc(g), r1 ← 1
λ1
· g, s1 ← 0, t1 ← 1

λ1
, n1 ← deg(g)

3. i← 1
4. while ri 6= 0 do

r̂i+1 ← ri−1 mod ri
qi ← ri−1−r̂i+1

ri
λi+1 ← lc(r̂i+1)
ri+1 ← 1

λi+1
· r̂i+1

si+1 ← 1
λi+1
· (si−1 − qisi)

ti+1 ← 1
λi+1
· (ti−1 − qiti)

ni+1 ← deg(ri+1)

19

i← i+ 1
5. return [ri−1, si−1, ti−1] # i = l + 1

Assuming that we have a regular degree sequence, i. e. we have ni−1−ni = 1
for all i ≥ 1, we for the monic remainders ri obtain b(ri) ≤ 3ib + 3(3i−1)

2 , for
i ≥ 2, hence b(ri) ∈ O(3i(b+ 3)). Thus assuming d = max{deg(f),deg(g)} this
yields b(ri) ∈ O(3d(b + 3)). This hence is an exponential bound in the input
lengths of f and g; for R = Z we will show a polynomial bound in (4.12).

E. g. Letting r0 := −5 + 2X + 8X2 − 3X3 − 3X4 + X6 + X8 ∈ Q[X] and
r1 := 1

3 · (21− 9X − 4X2 + 5X4) +X6 ∈ Q[X] the monic Euclidean algorithm
yields r′2 = 1

9 · (−3 + X2 − 5X4), hence r2 = 1
5 · (3 − X2) + X4, and r′3 =

1
25 · (147 − 75X − 39X2), hence r3 = 1

13 · (−49 + 25X) + X2, as well as r′4 =
1

2 197 · (61 500 − 46 630X), hence r4 = − 6 150
4 663 + X, and r′5 = 11 014 913

21 743 569 , hence
r5 = 1. Note that gcd computations in Z are used to write rational numbers as
quotients of coprime integers.

c) To avoid computations in K completely, we use pseudo-division yielding
pseudo-remainders: Let 0 6= f, g ∈ R[X] such that deg(f) =: d ≥ e :=
deg(g). Hence there are q, r ∈ R[X] such that lc(g)d−e+1f = qg + r, and
r = 0 or deg(r) < e = deg(g); note that if we have lc(g) = ge ∈ R∗, then this
amounts to compute quotient and remainder. Pseudo-division in general leads
to exponential growth of the coefficients of the remainders, but still is useful
e. g. for multivariate polynomial rings over integral domains.

E. g. letting f = r0 := −5 + 2X + 8X2 − 3X3 − 3X4 + X6 + X8 ∈ Z[X] and
g = r1 := 21− 9X − 4X2 + 5X4 + 3X6 ∈ Z[X] again, the Euclidean algorithm
using only pseudo-division yields r2 = −9 + 3X2 − 15X4 and r3 = −59 535 +
30 375X+15 795X2 as well as r4 = −1 654 608 338 437 500+254 542 875 143 750X
and r5 = 12 593 338 795 500 743 100 931 141 992 187 500 ∼ 1, 2 · 1034.

d) Let R be factorial. For 0 6= f =
∑d
i=0 fiX

i ∈ R[X] the element γ(f) :=
gcd(f0, . . . , fd) ∈ R is called the content of f , and if γ(f) ∈ R∗ then f is called
primitive. Thus, if we are given 0 6= f =

∑d
i=0

f ′i
f ′′i
·Xi ∈ K[X] as above, where

f ′i , f
′′
i ∈ R, then we might assume f ′i , f

′′
i ∈ R to be coprime, and could use

ν′ := lcm(f ′′0 , . . . , f
′′
d) ∈ R instead of ν ∈ R, to obtain a primitive polynomial

ν′f ∈ R[X]; note that this requires gcd computations in R.

Moreover, for using pseudo-division we may compute and divide out the contents
of the pseudo-remainders, leading to the primitive Euclidean algorithm, for
0 6= f, g ∈ R[X] primitive:

1. r0 ← f , n0 ← deg(f)
2. r1 ← g, n1 ← deg(g)
3. i← 1
4. while ri 6= 0 do

r̂i+1 ← (lc(ri)ni−1−ni+1 · ri−1) mod ri
γi+1 ← γ(r̂i+1) # content
ri+1 ← 1

γi+1
· r̂i+1

20

ni+1 ← deg(ri+1)
i← i+ 1

5. return ri−1 # i = l + 1

Note that this needs gcd computations in R, and that the primitive and the
monic Euclidean algorithm are equivalent as far as the growth of the coeffi-
cients of the remainders is concerned. In practice, since the primitive Euclidean
algorithm tends to need less gcd computations in R, it is superior to the monic
Euclidean algorithm.

E. g. still letting f = r0 := −5+2X+8X2−3X3−3X4 +X6 +X8 ∈ Z[X] and
g = r1 := 21−9X−4X2+5X4+3X6 ∈ Z[X], the primitive Euclidean algorithm
yields r̂2 = −9 + 3X2 − 15X4, hence γ(r̂2) = 3 and r2 = −3 + X2 − 5X4, and
r̂3 = −2 205+1 125X+585X2, hence γ(r̂3) = 45 and r3 = −49+25X+13X2, as
well as r̂4 = −307 500 + 233 150X, hence γ(r̂4) = 50 and r4 = −6 150 + 4 663X,
and r̂5 = 143 193 869, hence γ(r̂5) = 143 193 869 and r5 = 1.

e) Let R be factorial. To avoid gcd computations in R completely, but still to
get polynomial growth of the coefficients of the remainders, Collins’s algorithm
(1967), see Exercise (8.25), can be used. It runs completely in R[X] and uses
pseudo-division, but instead of making the remainders primitive by dividing out
their contents, which would need gcd computations in R, only certain divisors
of the contents are divided out. The proof of the validity of Collins’s algorithm
is based on subresultants. For R = Z, similarly to (4.12), these are also used to
prove a polynomial bound for the bit lengths of the coefficients of the remainders
in terms of the input lengths of f and g; hence in practice Collins’s algorithm
is superior to the primitive Euclidean algorithm. Finally, the proof of validity
also shows that resultants, although defined as determinants in a linear algebra
context, can be computed using this variant of the Euclidean algorithm.

E. g. still letting f = r0 := −5+2X+8X2−3X3−3X4 +X6 +X8 ∈ Z[X] and
g = r1 := 21−9X−4X2+5X4+3X6 ∈ Z[X], the Collins algorithm yields λ1 = 3
and η1 = 9, as well as r2 = r̂2 = −9 + 3X2 − 15X4 and λ2 = −15 and η2 = 25,
as well as r̂3 = −59 535 + 30 375X + 15 795X2 and r3 = −245 + 125X + 65X2

and λ3 = 65 and η2 = 169, as well as r̂4 = −115 312 500 + 87 431 250X and
r4 = 12 300 − 9 326X and λ4 = η4 = −9 326, as well as r̂5 = 2 863 877 380 and
r5 = λ5 = η5 = 260 708.

For a detailed cost analysis of the various algorithms, which we do not present
here, see [3, Ch.6]. We set out to develop the necessary machinery for resultants
and subresultants, and derive a few of their properties, leading to the polynomial
bound in (4.12).

(4.2) Definition. Let R be an integral domain, let 0 6= f, g ∈ R[X] such
that f =

∑n
i=0 fiX

i and g =
∑m
j=0 gjX

j , where n = deg(f) and m = deg(g).
Moreover, let ϕ(f, g) : R[X]<m×R[X]<n → R[X]<n+m : [s, t] 7→ sf + tg, where
for n = 0 we let R[X]<n := {0}. Note that ϕ(f, g) is R-linear and we have
rkR(R[X]<m ×R[X]<n) = n+m = rkR(R[X]<n+m).

21

By the R-bases [[Xm−1, 0], [Xm−2, 0], . . . , [1, 0], [0, Xn−1], [0, Xn−2], . . . , [0, 1]] of
R[X]<m×R[X]<n, and [Xn+m−1, Xn+m−2, . . . , 1] of R[X]<n+m, for n+m ≥ 1,
we obtain the matrix of ϕ(f, g) as the Sylvester matrix

S(f, g) :=

fn fn−1 . . . f0

fn . . . f1 f0

.
fn f0

gm gm−1 . . . g0

gm . . . g1 g0

.
gm g0

∈ R(n+m)×(n+m),

where the upper half consists of m = deg(g) rows, and the lower half consists of
n = deg(f) rows. Moreover, let res(f, g) := det(S(f, g)) ∈ R be the resultant
of f, g ∈ R[X]. If n = m = 0 then S(f, g) ∈ R0×0 is an empty matrix, and in
this case we let res(f, g) := det(S(f, g)) := 1 ∈ R. Treating the zero polynomial
as a constant polynomial, this yields res(f, 0) = 0 if deg(f) = n ≥ 1, and
res(f, 0) = 1 if f is constant, and similar statements for res(0, g).

(4.3) Proposition. Let F be a field, and let 0 6= f, g ∈ F [X] such that n =
deg(f) and m = deg(g).
a) Then f, g ∈ F [X] are coprime if and only if ϕ(f, g) : F [X]<m × F [X]<n →
F [X]<n+m is injective, which happens if and only if ϕ(f, g) is bijective, which
is equivalent to res(f, g) 6= 0 ∈ F .
b) If ϕ(f, g) is bijective and n + m ≥ 1, let [s, t] := 1ϕ(f, g)−1 ∈ F [X]<m ×
F [X]<n, i. e. we have sf + tg = 1. Then we have [sl, tl] = rl · [s, t], where
sl, tl ∈ F [X] are the Bezout coefficients computed by the extended Euclidean
algorithm for f and g.

Proof. a) We have to show that gcd(f, g) ∈ F [X] is non-constant if and only if
there are s ∈ F [X]<m and t ∈ F [X]<n such that [s, t] 6= [0, 0] and sf + tg = 0:
Let h := gcd(f, g) ∈ F [X] monic, if deg(h) ≥ 1 then we let s := −g

h ∈ F [X]<m
and t := f

h ∈ F [X]<n. Conversely, let s ∈ F [X]<m and t ∈ F [X]<n such that
[s, t] 6= [0, 0] and sf+tg = 0, and assume f, g ∈ F [X] are coprime. Then s, t 6= 0,
and hence sf = −tg implies f | t. Since deg(t) < n this is a contradiction.

b) We consider the extended Euclidean algorithm: For i ≥ 1 we by induction
show that deg(si+1) = n1−ni: We have s2 = s0−q1s1 = 1, hence deg(s2) = 0 =
n1 − n1, as well as s3 = s1 − q2s2 = −q2s2, hence deg(s3) = deg(q2) = n1 − n2,
and for i ≥ 3 we from deg(qi) = ni−1−ni get deg(qisi) = ni−1−ni+n1−ni−1 =
n1 − ni and deg(si−1) = n1 − ni−2, hence deg(qisi) > deg(si−1), and thus from
si+1 = si−1 − qisi we conclude deg(si+1) = deg(qisi) = n1 − ni. Similarly, for
i ≥ 0 we by induction show that deg(ti+1) = n0 − ni: We have t1 = 1, hence
deg(t1) = 0 = n0−n0, and t2 = t0−q1t1 = q1, hence deg(t2) = deg(q1) = n0−n1;

22

note that t2 = q1 = 0 if and only if n0 = n < m = n1. In the latter case we have
t3 = t1−q2t2 = t1 = 1 and hence deg(t3) = 0 = n0−n0 = n0−n2, while for i = 2
and n0 ≥ n1, as well as for i ≥ 3, we have deg(qiti) = ni−1 − ni + n0 − ni−1 =
n0 − ni and deg(ti−1) = n0 − ni−2, hence deg(qiti) > deg(ti−1), and thus
from ti+1 = ti−1 − qiti we conclude deg(ti+1) = deg(qiti) = n0 − ni. Hence
for the Bezout coefficients we have deg(sl) = n1 − nl−1 < n1 = deg(g) and
deg(tl) = n0− deg(rl−1) < n0 = deg(f). Since slf + tlg = rl ∈ F ∗ the assertion
follows from the injectivity of ϕ(f, g).]

(4.4) Corollary. Let R be factorial, and let f, g ∈ R[X] such that [f, g] 6= [0, 0].
Then gcd(f, g) ∈ R[X] is non-constant if and only if res(f, g) = 0 ∈ R.

Proof. For f, g 6= 0 the assertion follows by Gauß’s Theorem from the above.
If g = 0 then we have gcd(f, g) = f , and hence the assertion follows directly
from the definition of res(f, 0); if f = 0 we argue similarly.]

(4.5) Corollary. Let R be an integral domain, and let 0 6= f, g ∈ R[X] such
that n+m ≥ 1, where n := deg(f) andm := deg(g). Then there are s ∈ R[X]<m
and t ∈ R[X]<n such that [s, t] 6= [0, 0] and sf + tg = res(f, g) ∈ R ⊆ R[X].

Proof. Let K := Quot(R). If res(f, g) = 0 ∈ R ⊆ K, then f, g ∈ K[X] are not
coprime, hence there are s′ ∈ K[X]<m and t′ ∈ K[X]<n such that [s′, t′] 6= [0, 0]
and s′f + t′g = 0, and thus we let s := λs′ ∈ R and t := λt′ ∈ R, for some
suitable 0 6= λ ∈ R.

If res(f, g) 6= 0 ∈ R ⊆ K, then f, g ∈ K[X] are coprime, hence there are
s′ ∈ K[X]<m and t′ ∈ K[X]<n such that [s′, t′] 6= [0, 0] and s′f + t′g = 1.
Moreover, [s′, t′] arises as the solution of the system of K-linear equations
[S0, . . . , Sm−1, T0, . . . , Tn−1] ·S(f, g) = [0, . . . , 0, 1] ∈ Kn+m, where Si, Tj are in-
determinates over K. Since det(S(f, g)) = res(f, g) 6= 0, this solution is uniquely
determined and can be computed using Cramer’s rule. Hence there are s′i, t

′
j ∈ R

such that 1
res(f,g) · [s

′
0, . . . , s

′
m−1, t

′
0, . . . , t

′
n−1] · S(f, g) = [0, . . . , 0, 1] ∈ Kn+m.

Thus letting s := res(f, g) ·
∑m−1
i=1 s′iX

i ∈ R[X] and t := res(f, g) ·
∑n−1
j=1 t

′
jX

j ∈
R[X] we obtain sf + tg = res(f, g) ∈ R.]

(4.6) Proposition. Let R be an integral domain, let K := Quot(R), and let
K be an algebraic closure of K. Moreover, let 0 6= f, g ∈ R[X] such that
f = fn ·

∏n
i=1(X − σi) ∈ K[X] and g = gm ·

∏m
j=1(X − τj) ∈ K[X], for suitable

σi, τj ∈ K. Then R 3 res(f, g) = fmn ·
∏n
i=1 g(σi) = (−1)nmgnm ·

∏m
j=1 f(τj) =

fmn g
n
m ·
∏n
i=1

∏m
j=1(σi − τj) ∈ K.

Proof. We may assume n,m ≥ 1. Let P := K[S1, . . . , Sn, T1, . . . , Tm], where
S1, . . . , Sn, T1, . . . , Tm are indeterminates over K. Moreover, let f̂ := fn ·∏n
i=1(X − Si) ∈ P [X] as well as ĝ := gm ·

∏m
j=1(X − Tj) ∈ P [X]. Consider the

23

Vandermonde matrix Vn,m := [vij] ∈ P (n+m)×(n+m), where for 1 ≤ i ≤ n + m
we let vij := Tn+m−i

j for 1 ≤ j ≤ m, and vij := Sn+m−i
n−j for m+ 1 ≤ j ≤ n+m:

Vn,m :=

Tn+m−1

1 . . . Tn+m−1
m Sn+m−1

1 . . . Sn+m−1
n

Tn+m−2
1 Sn+m−2

n
...

...
T 0

1 . . . T 0
m S0

1 . . . S0
n

 ,
where hence the left half consists of m columns, and the right half consists
of n columns. Hence det(Vn,m) =

∏
1≤i<j≤m(Ti − Tj) ·

∏
1≤i<j≤n(Si − Sj) ·∏m

j=1

∏n
i=1(Tj − Si) 6= 0 ∈ P . Moreover, let S(f̂ , ĝ) ∈ P (n+m)×(n+m) the

associated Sylvester matrix. Since f̂(Si) = 0 = ĝ(Tj) ∈ P , for all 1 ≤ i ≤ n and
1 ≤ j ≤ m, we thus have S(f̂ , ĝ) · Vn,m =

Tm−1
1 f̂(T1) . . . Tm−1

m f̂(Tm) 0 . . . 0
Tm−2

1 f̂(T1) 0
...

...
T 0

1 f̂(T1) . . . T 0
mf̂(Tm) 0 . . . 0

0 . . . 0 Sn−1
1 ĝ(S1) . . . Sn−1

n ĝ(Sn)
0 Sn−2

n ĝ(Sn)
...

...
0 . . . 0 S0

1 ĝ(S1) . . . S0
nĝ(Sn)

.

The Vandermonde determinant again yields det(S(f̂ , ĝ) · Vn,m) =
∏m
j=1 f̂(Tj) ·∏

1≤i<j≤m(Ti − Tj) ·
∏n
i=1 ĝ(Si) ·

∏
1≤i<j≤n(Si − Sj) ∈ P , thus resX(f̂ , ĝ) ·∏m

j=1

∏n
i=1(Tj − Si) =

∏m
j=1 f̂(Tj) ·

∏n
i=1 ĝ(Si). Since f̂(Tj) = fn ·

∏n
i=1(Tj −

Si) 6= 0 ∈ P and ĝ(Si) = gm ·
∏m
j=1(Si − Tj) 6= 0 ∈ P this yields resX(f̂ , ĝ) =

fmn ·
∏n
i=1 ĝ(Si) = (−1)mngnm ·

∏m
j=1 f̂(Tj) = fmn g

n
m ·
∏n
i=1

∏m
j=1(Si − Tj) ∈ P .

Using the K-algebra homomorphism ε : P [X] → K[X] : Si 7→ σi, tj 7→ τj , since
deg(f̂) = deg(f) and deg(ĝ) = deg(g) we finally have res(f, g) = resX(f̂ , ĝ)ε.]

(4.7) Corollary. Let R be an integral domain, let K := Quot(R), let f ∈ R[X]
such that n := deg(f) ≥ 1. Then disc(f) := (−1)

n(n−1)
2 · 1

lc(f) · res(f, ∂f∂X) ∈ K
is called the discriminant of f , where ∂f

∂X ∈ R[X] is the formal derivative.

Letting K be an algebraic closure of K, and f = lc(f) ·
∏n
i=1(X − σi) ∈ K[X],

then we have disc(f) = lc(f)n+m−1 ·
∏

1≤i<j≤n(σi − σj)2 ∈ R, where m :=
deg(∂f∂X), treating the zero polynomial as a constant polynomial; note that if
char(R) 6 | n then we have m = n− 1.

Proof. We have ∂f
∂X = lc(f) ·

∑n
k=1

∏
j 6=k(X − σj) ∈ K[X]. Hence if σi = σj

for some i 6= j, then (X − σi) | ∂f
∂X ∈ K[X], hence ∂f

∂X (σi) = 0, and thus

24

res(f, ∂f∂X) = 0; note that this also holds for ∂f
∂X = 0. If the σi are pairwise

different, then we have ∂f
∂X 6= 0 and ∂f

∂X (σi) = lc(f) ·
∏
j 6=i(σi − σj) ∈ K, and

thus we obtain res(f, ∂f∂X) = lc(f)m ·
∏n
i=1

(
lc(f) ·

∏
j 6=i(σi − σj)

)
= (−1)

n(n−1)
2 ·

lc(f)n+m ·
∏

1≤i<j≤n(σi − σj)2.

It remains to show disc(f) ∈ R: Since for n = 1 we have disc(f) = 1 any-
way, we may assume n ≥ 2 and that the σi are pairwise different. Since the
product

∏
1≤i<j≤n(σi − σj)2 ∈ K is invariant under any permutation of the σi,

it can be written as a Z-polynomial in {en,1(σ1, . . . , σn), . . . , en,n(σ1, . . . , σn)},
where en,i :=

∑
1≤k1<k2<···<ki≤m(

∏i
l=1Xkl) ∈ Z[X1, . . . , Xn] is the elemen-

tary symmetric polynomial of degree i in the indeterminates {X1, . . . , Xn}.
Since en,i(σ1, . . . , σn) ∈ 1

lc(f) · R, for all i ∈ {1, . . . , n}, we also have lc(f) ·∏
1≤i<j≤n(σi − σj)2 ∈ R. Note that if m = n − 1, then we may also argue

as follows: We have lc(f) | lc(∂f∂X), which using the Sylvester matrix S(f, ∂f∂X)
implies lc(f) | res(f, ∂f∂X) ∈ R.]

(4.8) Definition. Let R be an integral domain, let 0 6= f, g ∈ R[X] such
that f =

∑n
i=0 fiX

i and g =
∑m
j=0 gjX

j , where n = deg(f) as well as m =
deg(g). For k ∈ {0, . . . ,min{n,m}} let ϕk(f, g) : R[X]<m−k × R[X]<n−k →
R[X]<n+m−2k : [s, t] 7→ b sf+tg

Xk
c, where for h =

∑
i≥Nh hiX

i ∈ R((X)) =
Quot(R[[X]]), for some Nh ∈ Z, we let bhc :=

∑
i≥0 hiX

i ∈ R[[X]]. Note that
ϕk(f, g) is R-linear and we have rkR(R[X]<m−k ×R[X]<n−k) = n+m− 2k =
rkR(R[X]<n+m−2k); moreover, we have ϕ0(f, g) = ϕ(f, g).

Similar to the above, using the R-bases [Xn+m−2k−1, Xn+m−2k−2, . . . , 1] as
well as [[Xm−k−1, 0], [Xm−k−2, 0], . . . , [1, 0], [0, Xn−k−1], [0, Xn−k−2], . . . , [0, 1]]
of R[X]<n+m−2k and R[X]<m−k × R[X]<n−k, respectively, for n + m > 2k,
we obtain the matrix of ϕk(f, g) as the k-th generalized Sylvester matrix
Sk(f, g) ∈ R(n+m−2k)×(n+m−2k), letting fi := 0 and gj := 0 for i, j < 0, as

Sk(f, g) :=

fn fn−1 . . . fn−m+k+1 . . . fk+1 . . . f2k−m+1

fn
.

fn . . . fm . . . fk
gm gm−1 . . . gk+1 . . . gm−n+k+1 . . . g2k−n+1

gm
.

gm
.

gm . . . gk

,

where the upper and lower halves consist of m− k and n− k rows, respectively.
Note that for k′ ≥ k the matrix Sk′(f, g) is a submatrix of Sk(f, g). Moreover,
let resk(f, g) := det(Sk(f, g)) ∈ R be the k-th subresultant of f, g ∈ R[X].

25

If n = m = k then Sk(f, g) ∈ R0×0 is an empty matrix, and in this case
we let resk(f, g) := det(Sk(f, g)) := 1 ∈ R. Note that in any case we have
resk(g, f) = (−1)(n−k)(m−k) · resk(f, g).

(4.9) Proposition. Let F be a field, and let 0 6= f, g ∈ F [X] such that n =
deg(f) and m = deg(g). In the extended Euclidean algorithm for f and g
let ni := deg(ri) be the associated degree, for i ∈ {0, . . . , l}, and let nl+1 :=
deg(rl+1) = deg(0) < 0. Let k ∈ {0, . . . ,min{n,m}}.
a) Then k ∈ {n1, . . . , nl} if and only if ϕk(f, g) : F [X]<m−k × F [X]<n−k →
F [X]<n+m−2k is injective, which happens if and only if ϕk(f, g) is bijective,
which is equivalent to resk(f, g) 6= 0 ∈ F .
b) If ϕk(f, g) is bijective and n + m > 2k, let i ∈ {1, . . . , l} such that k = ni,
and let [s, t] := 1ϕk(f, g)−1 ∈ F [X]<m−k × F [X]<n−k. Then we have [si, ti] =
lc(ri) · [s, t], where lc(ri) ∈ F ∗ is the leading coefficient of ri ∈ F [X].

Proof. a) We show that k 6∈ {n1, . . . , nl} if and only if there are s ∈ F [X]<m−k
and t ∈ F [X]<n−k such that [s, t] 6= [0, 0] and sf + tg ∈ F [X]<k, i. e. [s, t] ∈
ker(ϕk(f, g)): Let k 6∈ {n1, . . . , nl}, and let i ∈ {2, . . . , l + 1}, such that ni <
k < ni−1, where we let Let s := si ∈ F [X] and t := ti ∈ F [X] in the extended
Euclidean algorithm. From the proof of (4.3) we know that deg(si) = m−ni−1

for i ∈ {2, . . . , l + 1}, and deg(ti) = n− ni−1 for i ∈ {1, . . . , l + 1}. This yields
deg(sf + tg) = deg(ri) = ni < k as well as deg(s) < m− k and deg(t) < n− k,
where for i ≥ 2 we have deg(si) ≥ 0 and thus s = si 6= 0.

Let conversely s ∈ F [X]<m−k and t ∈ F [X]<n−k such that [s, t] 6= [0, 0] and
r := sf + tg ∈ F [X]<k, and let i ∈ {2, . . . , l + 1}, such that ni < k ≤ ni−1.

We consider the equation [f, g] ·
[
si s
ti t

]
= [ri, r] ∈ F [X]2. Assume that

det
([

si s
ti t

])
= sit − sti 6= 0, then by Cramer’s rule we have f = rit−rti

sit−sti ∈

F (X) = Quot(F [X]), which since deg(rit − rti) ≤ max{ni + deg(t),deg(r) +
deg(ti)} < max{ni+n−k, k+n−ni−1} ≤ n = deg(f) is a contradiction. Thus
we have sit = sti ∈ F [X].

We show that sj , tj ∈ F [X] are coprime for j ∈ {0, . . . , l+ 1}: For j ∈ {0, . . . , l}

let Rj :=
[
sj sj+1

tj tj+1

]
∈ F [X]2×2. Hence [f, g] · Rj = [rj , rj+1], where R0 =

E2, and where since sj+2 = sj − qj+1sj+1 and tj+2 = tj − qj+1tj+1 we have

Rj+1 = Rj ·
[

0 1
1 −qj+1

]
, for j ∈ {0, . . . , l − 1}. Hence by induction on j ≥ 0

we have sjtj+1 − sj+1tj = det(Rj) = (−1)j , for j ∈ {0, . . . , l}.
Hence from sit = sti we conclude si | s. Since si 6= 0 and [s, t] 6= [0, 0]
there is 0 6= h ∈ F [X] such that s = sih. This finally yields m − ni−1 ≤
deg(h) +m− ni−1 = deg(sih) = deg(s) < m− k, hence k < ni−1.

b) We have s1 = 0 and deg(si) = m − ni−1 < m − k for i ≥ 2. Moreover, we

26

have deg(ti) = n − ni−1 < n − k for i ≥ 2, and for i = 1 we have k = m ≤ n,
hence from n + m > 2k we get k < n, thus deg(t1) = n − n0 = 0 < n − k. We
have deg(sif + tig) = deg(ri) = ni = k, hence [si, ti]ϕk(f, g) = lc(ri) ∈ F ∗.]

(4.10) Proposition: Fundamental theorem on subresultants.
Let F be a field and 0 6= f, g ∈ F [X], and let λi ∈ F ∗, for i ∈ {0, . . . , l}, be as
in the monic extended Euclidean algorithm for f and g. Then for i ∈ {1, . . . , l}
we have resni(f, g) = (−1)

∑i−1
j=1(nj−1−ni)(nj−ni) · λn1−ni

0 ·
∏i
j=1 λ

nj−1−ni
j .

In particular, if res(f, g) 6= 0, i. e. nl = 0 occurs in the degree sequence, then
we have res(f, g) = (−1)

∑l−1
j=1 nj−1nj · λn1

0 ·
∏l
j=1 λ

nj−1
j ; hence res(f, g) can be

computed using the monic extended Euclidean algorithm.

Proof. See Exercise (8.24).
Let i ∈ {1, . . . , l − 1} and k ∈ {0, . . . , ni+1}. Then the polynomial division
λi+1ri+1 = r̂i+1 = ri−1 − qiri can be interpreted in terms of row operations on
Sk(ri−1, ri) ∈ F (ni−1+ni−2k)×(ni−1+ni−2k), yielding

r̂i+1,ni+1 r̂i+1,2k−ni+1

. . .
...

r̂i+1,ni+1 . . . r̂i+1,k

ri,ni ri,2k−ni−1+1

. . .
...

. . .
...

ri,ni ri,k

,

where the upper and lower halves consist of ni−k and ni−1−k rows, respectively.
Multiplying the rows in the upper half by 1

λi+1
and interchanging the upper

and lower halves yields a matrix of the form
[
∗ ∗∗
0 Sk(ri, ri+1)

]
, where now

the upper and lower halves consist of ni−1 − ni+1 and (ni+1 − k) + (ni − k)
rows, respectively, and where the upper left and lower right submatrices are
square. Since ri,ni = 1 the upper left submatrix is unitriangular, and hence we
have resk(ri−1, ri) = (−1)(ni−1−k)(ni−k) · λni−ki+1 · resk(ri, ri+1). Thus we from

resni(ri−1, ri) = 1 obtain resni(r0, r1) =
∏i−1
j=1

(
(−1)(nj−1−ni)(nj−ni) · λnj−nij+1

)
,

and from resni(f, g) = λn1−ni
0 λn0−ni

1 · resni(r0, r1) the assertion follows.]

(4.11) Definition. Let 0 6= f :=
∑n
i=0 fiX

i ∈ C[X]. Then let ||f ||1 :=∑n
i=0 |fi| ∈ R>0 be the 1-norm, let ||f ||2 :=

√∑n
i=0 |fi|2 ∈ R>0 be the 2-norm

and let ||f ||∞ := max{|fi|; i ∈ {0, . . . , n}} ∈ R>0 be the maximum norm of f ;
we let ||0||1 = ||0||2 = ||0||∞ = 0. Since for f 6= 0 we have

∑n
i=0 |fi|2 ≤ (

∑n
i=0 |fi|)2

we conclude ||f ||∞ ≤ ||f ||2 ≤ ||f ||1 ≤
√

deg(f) + 1 · ||f ||∞.

27

(4.12) Theorem. Let 0 6= f, g ∈ Z[X] such that n = deg(f) and m = deg(g)
and ||f ||∞, ||g||∞ ≤ B for some B > 0. Then the numerators and denominators of
the coefficients of the elements ri, si, ti ∈ Q[X] in the monic extended Euclidean
algorithm for f and g are absolutely bounded by 2(n+ 1)

m
2 · (m+ 1)

n
2 ·Bn+m.

Note that if n ≥ m, then the input length of f is (n + 2) · b(f) = (n + 2) ·
max{b(f0), . . . , b(fn)} = (n+2)·b(||f ||∞) ∼ n·ln(B), which also bounds the input
length of g, and we have b(ri), b(si), b(ti) ∈ O(ln((n+1)n ·B2n)) ⊆ O(n·ln(nB)).

Proof. Let i ∈ {2, . . . , l} and k = ni = deg(ri); note that hence n + m >
2k. Since lc(ri) = 1 the elements si ∈ Q[X]<m−k and ti ∈ Q[X]<n−k are
given by [si, ti] = 1ϕk(f, g)−1. Letting 0 6= ρk := resk(f, g) ∈ Z, then we
have ρksif + ρktig = ρkri, where by Cramer’s rule ρksi, ρkti, ρkri ∈ Z[X]. By
Hadamard’s inequality (5.3) we get |ρk| = |det(Sk(f, g))| ≤ ||f ||m−k2 · ||g||n−k2 ≤
(n + 1)

m−k
2 · (m + 1)

n−k
2 · ||f ||m−k∞ · ||g||n−k∞ . Moreover, applying Cramer’s rule

to find si and ti, Hadamard’s inequality yields ||ρksi||∞ ≤ ||f ||
m−k−1
2 · ||g||n−k2 ≤

(n+1)
m−k−1

2 ·(m+1)
n−k

2 · ||f ||m−k−1
∞ · ||g||n−k∞ and ||ρkti||∞ ≤ ||f ||

m−k
2 · ||g||n−k−1

2 ≤
(n+1)

m−k
2 ·(m+1)

n−k−1
2 · ||f ||m−k∞ · ||g||n−k−1

∞ . This finally yields ||ρkri||∞ ≤ (m+
1)·(||ρksi||∞·||f ||∞+||ρkti||∞·||g||∞) ≤ 2(n+1)

m−k+1
2 ·(m+1)

n−k+1
2 ·||f ||m−k∞ ·||g||n−k∞ ;

note that for k = 0 we have rl = 1 anyway.]

We proceed towards modular techniques for gcd computations in Z[X], which
are asymptotically faster than techniques based on resultants, but still require
resultants as a theoretical tool. We only present the basic ideas, for variants
of modular gcd computations in Z[X] and for modular gcd computations in
F [X,Y], where F is a field, see [3, Ch.6.5, 6.7, 6.11]. Moreover, for an asymp-
totically fast extended Euclidean algorithm in Z and R[X], where R is factorial,
based on a divide and conquer technique, see [3, Ch.11.1]. Mignotte’s inequality
actually is proved without using resultants; for a sharper version of Mignotte’s
inequality, using the same line of proof, see [2, Thm.3.5.1]; for a related even
better bound, the Bombieri norm, see [8, Exc.4.6.2.21].

(4.13) Proposition: Landau inequality (1905).
Let 0 6= f = fn ·

∏n
i=1(X−zi) ∈ C[X], and let M(f) := |fn|·

∏n
i=1 max{1, |zi|} ∈

R>0 be its Mahler measure. Then we have M(f) ≤ ||f ||2.

Proof. Let first 0 6= g =
∑m
i=0 giX

i ∈ C[X], where we let gi := 0 for i < 0
and i > m. Then for z ∈ C we have ||(X − z)g||22 =

∑m+1
i=0 |gi−1 − zgi|2 =∑m+1

i=0 (gi−1 − zgi)(gi−1 − zgi) = ||g||22 · (1 + |z|2)−
∑m+1
i=0 (zgigi−1 + zgi−1gi) =∑m+1

i=0 (zgi−1 − gi)(zgi−1 − gi) =
∑m+1
i=0 |zgi−1 − gi|2 = ||(zX − 1)g||22.

As for M(f), we may assume that |z1|, . . . , |zk| > 1 and |zk+1|, . . . , |zn| ≤ 1, for
some k ∈ {0, . . . , n}. Hence we have M(f) = |fn ·

∏k
i=1 zi|. Letting g := fn ·∏k

i=1(ziX−1)·
∏n
i=k+1(X−zi) =

∑n
i=0 giX

i ∈ C[X], we have gn = fn·
∏k
i=1 zi ∈

C and thus M(f)2 = |gn|2 ≤ ||g||22 = || g∏k
i=1 ziX−1

·
∏k
i=1(X − zi)||22 = ||f ||22.]

28

(4.14) Proposition. Let 0 6= f =
∑n
i=0 fiX

i ∈ C[X] such that n = deg(f)
and 0 6= h =

∑m
j=0 hjX

j ∈ C[X] such that m = deg(h) and h | f ∈ C[X].

Then we have ||h||1 ≤ 2m ·M(h) ≤ |hm||fn| · 2
m ·M(f).

Proof. Let f = fn ·
∏n
i=1(X − zi) ∈ C[X] and h = hm ·

∏m
j=1(X − uj) ∈

C[X]; note that the uj ∈ C are a subsequence of the zi ∈ C. Let em,i :=∑
1≤k1<k2<···<ki≤m(

∏i
l=1Xkl) ∈ C[X1, . . . , Xm] be the elementary symmetric

polynomial of degree i ∈ {1, . . . ,m} in the indeterminates {X1, . . . , Xm}. Then
for j ∈ {0, . . . ,m − 1} we have hj = (−1)m−jhmem,m−j(u1, . . . , um) ∈ C, and
thus we have |hj | ≤ |hm| ·

∑
1≤k1<k2<···<km−j≤m(

∏m−j
l=1 |ukl |) ≤

(
m
j

)
· M(h);

note that |hm| ≤
(
m
m

)
· M(h) as well. Hence we have ||h||1 =

∑m
j=0 |hj | ≤

M(h) ·
∑m
j=1

(
m
j

)
= 2m ·M(h) ≤ |hm||fn| · 2

m ·M(f).]

(4.15) Theorem: Mignotte inequality.
Let 0 6= f, g, h ∈ Z[X], where n = deg(f) and k = deg(g) as well as m = deg(h),
such that gh | f ∈ Z[X]. Then we have ||g||1 · ||h||1 ≤ 2m+k · ||f ||2. In particular,
this yields ||h||∞ ≤ 2m ·

√
n+ 1 · ||f ||∞.

Proof. We have lc(g)lc(h) | lc(f), and thus Landau’s inequality implies ||g||1 ·
||h||1 ≤ 2m+k ·M(f) ≤ 2m+k · ||f ||2, thus proving the first inequality. The second
inequality follows from taking g := 1 ∈ Z[X].]

(4.16) Lemma. Let R be an integral domain, let I C R be a prime ideal,
and let : R→ R/I denote the natural map; note that R/I again is an integral
domain. Let 0 6= f, g ∈ R[X] such that lc(f) 6∈ I, i. e. we have deg(f) = deg(f).
Then for k ∈ {0, . . . ,min{deg(f),deg(g)}} we have resk(f, g) = 0 if and only if
resk(f, g) = 0.

Note that if lc(g) 6∈ I as well, i. e. we have deg(g) = deg(g) as well, we have
resk(f, g) = resk(f, g) anyway. Moreover note that without any assumption on
lc(f) and lc(g) the assertion does not hold in general: E. g. let R := Z and
p := 2, as well as f := −X + 4X3 and g := 1 + 2X, then we have res(f, g) = 0
and res(f, g) = res(X, 1) = 1.

Proof. Let f =
∑n
i=0 fiX

i and g =
∑m
j=0 gjX

j , where n = deg(f) and m =
deg(g). If n = m = 0, then res0(f, g) = 1 6∈ I and res0(f, g) = 1 6= 0, while if
n = 0 and m > 0, we have res0(f, g) = fmn 6∈ I and res0(f, g) = fn

deg(g) 6= 0.
Hence let n ≥ 1. If g = 0, then res0(f, g) = 0, and since gj ∈ I for all
j ∈ {0, . . . ,m} we have res0(f, g) ∈ I as well. If g 6= 0 let j := deg(g), hence

29

j ∈ {0, . . . ,m} is maximal such that gj 6= 0. For k ∈ {0, . . . ,min{n, j}} we have

Sk(f, g) =

fn . . . fn−m+j f2k−m+1

. . .
...

fn f2k−j+1

. . .
...

fn fk
gm . . . gj g2k−n+1

. . .
...

. . .
...

gm gk

,

where the lower right submatrix taken modulo I yields Sk(f, g), where all entries
in the lower left submatrix are in I, and the upper left submatrix is an upper
triangular matrix with fn’s on the diagonal. Thus we obtain resk(f, g) = fn

m−j ·
resk(f, g), and since fm−jn 6∈ I the assertion follows also in this case.]

(4.17) Proposition. Let R be a principal ideal domain, let p ∈ R be a prime,
and let : R → R/〈p〉 =: F denote the natural map; note that F is a field.
Moreover, let 0 6= f, g ∈ R[X] such that p 6 | gcd(lc(f), lc(g)) ∈ R, and let
h := gcd(f, g) ∈ R[X]. Then we have lc(h) ∈ F ∗ and deg(h) = deg(h) ≤
deg(gcd(f, g)). Moreover, we have deg(h) = deg(gcd(f, g)) if and only if h ∼
gcd(f, g) ∈ F [X], which in turn holds if and only if p 6 | res(fh ,

g
h) ∈ R.

Proof. Since h | f, g, we have lc(h) | lc(f), lc(g), which implies lc(h) |
gcd(lc(f), lc(g)), thus p 6 | lc(h). Letting u := f

h ∈ R[X] and v := g
h ∈ R[X],

we obtain f = uh ∈ F [X] and g = vh ∈ F [X], hence h | gcd(f, g), im-
plying deg(h) ≤ deg(gcd(f, g)), and showing that equality is equivalent to
h ∼ gcd(f, g) ∈ F [X]. Moreover, we have h ∼ gcd(f, g) ∈ F [X] if and only if
u, v ∈ F [X] are coprime, which holds if and only if res(u, v) 6= 0 ∈ F . Since we
may assume that p 6 | lc(f), implying p 6 | lc(u), the assertion res(u, v) 6= 0 ∈ F
is equivalent to res(fh ,

g
h) = res(u, v) 6= 0 ∈ R.]

(4.18) Theorem. Let R be a principal ideal domain, let K := Quot(R), let
p ∈ R be a prime, let : R → R/〈p〉 =: F denote the natural map, and let
0 6= f, g ∈ R[X] such that p 6 | gcd(lc(f), lc(g)) ∈ R.

Then the degree sequence for f and g is a subsequence of the degree sequence
for f and g, where for i ∈ {1, . . . , l} the degree ni occurs in the degree sequence
for f and g, if and only if p 6 | resni(f, g) ∈ R. In this case, for the elements
ri, si, ti occurring in the monic extended Euclidean algorithm for f and g we have
ri, si, ti ∈ R(p)[X] ⊆ K[X], and ri, si, ti ∈ F [X] occur in the monic extended
Euclidean algorithm for f and g, where deg(ri) = ni.

30

Proof. For k ∈ {0, . . . ,min{deg(f),deg(g)}} we have resk(f, g) ∼ resk(f, g) ∈
F . Hence the degree sequence for f and g is a subsequence of the degree
sequence for f and g, and ni occurs in the degree sequence for f and g if and
only if p 6 | resni(f, g) ∈ R. In this case, letting k = ni, if n + m > 2k then
we have [si, ti] = 1ϕk(f, g)−1, thus si, ti, ri ∈ 1

resk(f,g) · R[X] ⊆ R(p)[X]. Hence
[si, ti]ϕk(f, g) = 1, thus sif + tig = ri ∈ F [X]; if k = n = m and hence
k = deg(f) = deg(g), then i = 1 and p 6 | lc(f), lc(g), hence from s1 = 0 and
t1 = 1

lc(g) using s1f + t1g = r1 we get s1f + t1g = r1 ∈ F [X].]

(4.19) Algorithm: Modular Euclidean Algorithm.
Let 0 6= f, g ∈ Z[X] primitive such that deg(f) = n ≥ m = deg(g), and let
h = gcd(f, g) ∈ Z[X] primitive. Then by (4.12) we in particular have ||h||∞ ≤
2(n+ 1)

m
2 · (m+ 1)

n
2 ·max{||f ||∞, ||g||∞}n+m ≤ 2(n+ 1)n ·max{||f ||∞, ||g||∞}2n,

while Mignotte’s inequality yields the better bound ||h||∞ ≤ 2m ·
√
n+ 1 ·

min{||f ||∞, ||g||∞}.
To compute h = gcd(f, g) ∈ Z[X] we choose a prime p ∈ N such that p ≥
2 · 2m ·

√
n+ 1 · min{||f ||∞, ||g||∞}. Then compute gcd(f, g) ∈ Z/〈p〉[X], and

let h̃ ∈ Z[X] such that deg(h̃) = deg(gcd(f, g)) and ||h̃||∞ ≤
p−1

2 as well as

h̃ = gcd(f, g). Hence if h̃ | f, g ∈ Z[X], then h̃ ∼ gcd(f, g) ∈ Z[X]. Note
that this holds if and only if p 6 | res(fh ,

g
h) ∈ Z, hence only a finite number of

primes p have to be excluded; note that by the proof of (4.12) and Mignotte’s
inequality we have |res(fh ,

g
h)| ≤ (n + 1)n · max{|| fh ||∞, ||

g
h ||∞}

2n ≤ (n + 1)2n ·
22n2 ·max{||f ||∞, ||g||∞}2n.

To compute the monic remainders ri ∈ Q[X] and the coefficients si, ti ∈ Q[X],
such that sif + tig = ri ∈ Q[X], for i ∈ {1, . . . , l}, by (4.12) we choose a prime
p ∈ N such that p ≥ 8(n+1)m ·(m+1)n. Hence ni occurs in the degree sequence
for f and g, and thus si, ti, ri ∈ Q[X] can be found from ri, si, ti ∈ Z/〈p〉[X] by
rational number reconstruction, see Exercise (8.29).

E. g. for f = r0 := −5+2X+8X2−3X3−3X4 +X6 +X8 ∈ Z[X] and g = r1 :=
21−9X−4X2+5X4+3X6 ∈ Z[X], the degree sequence is n0 = 8, n1 = 6, n2 = 4,
n3 = 2, n4 = 1, n5 = 0, n6 < 0, and we find res0(f, g) = 260 708 = 22·7·9 311 and
res1(f, g) = 9 326 = 2·4 663, as well as res2(f, g) = 169 = 132 and res3(f, g) = 0,
as well as res4(f, g) = 25 = 52 and res5(f, g) = 0, and finally res6(f, g) = 9 = 32.

Moreover, we obtain the degree sequences in the monic extended Euclidean
algorithm for f and g: For p 6∈ {2, 3, 5, 7, 13, 4 663, 9 311} the degree sequence
[6, 4, 2, 1, 0] is unchanged, while for p = 2 we get [6, 4, 2], for p = 3 we get
[4, 2, 1, 0], for p = 5 we get [6, 2, 1, 0], for p ∈ {7, 9 311} we get [6, 4, 2, 1], for
p = 13 we get [6, 4, 1, 0], and for p = 4 663 we get [6, 4, 2, 0].

31

5 Lattice base reduction

(5.1) Definition. Let K ∈ {R,C} and let V 6= {0} be a finite dimensional K-
vector space. Let 〈·, ·〉 : V ×V → K : [v, w] 7→ 〈v, w〉 be a hermitian sesquilin-
ear form, i. e. we have 〈v + v′, w〉 = 〈v, w〉 + 〈v′, w〉 and 〈vλ,w〉 = λ〈v, w〉 as
well as 〈w, v〉 = 〈v, w〉, for all v, v′, w ∈ V and λ ∈ K. In particular, we have
〈v, wλ〉 = λ〈v, w〉. For U ≤ V let U⊥ := {v ∈ V ; 〈v, u〉 = 0 for all u ∈ U} ≤ V .
In particular, rad(〈·, ·〉) := V ⊥ is called the radical of 〈·, ·〉. The form 〈·, ·〉
is called non-degenerate if rad(〈·, ·〉) = {0}. A vector 0 6= v ∈ V is called
isotropic, if 〈v, v〉 = 0; the form 〈·, ·〉 is called anisotropic if there are no
isotropic vectors. If K = R the form 〈·, ·〉 just is a symmetric bilinear form.

Let q : V → K : v 7→ 〈v, v〉 be the quadratic form associated to 〈·, ·〉. Hence
we have q(vλ) = 〈vλ, vλ〉 = λλ〈v, v〉 = |λ|2 · q(v), for all λ ∈ K, and q(v) =
〈v, v〉 = 〈v, v〉 = q(v) ∈ R. The quadratic form q is called positive definite
if q(v) > 0 for all 0 6= v ∈ V . Note that in this case 0 = 〈v, v〉 = q(v) implies
v = 0, hence 〈·, ·〉 is anisotropic, thus non-degenerate, and for U ≤ V we have
V = U ⊕ U⊥. If q is positive definite, then for K = C the vector space V is
called a unitary, for K = R it is called Euclidean.

Note that 〈·, ·〉 can be recovered from q: We have 1
2 · (q(v+w)− q(v)− q(w)) =

1
2 · (〈v+w, v+w〉 − 〈v, v〉 − 〈w,w〉) = 1

2 · (〈v, w〉+ 〈w, v〉) = Re(〈v, w〉), and for
K = C we additionally have 1

2 ·(q(v+ iw)−q(v)−q(iw)) = 1
2 ·(〈v+ iw, v+ iw〉−

〈v, v〉 − 〈iw, iw〉) = 1
2 · (−i〈v, w〉+ i〈w, v〉) = −i

2 · (〈v, w〉 − 〈v, w〉) = Im(〈v, w〉).

(5.2) Algorithm: Gram-Schmidt orthogonalization (1883/1907).
Let V be a unitary or Euclidean vector space with quadratic form q and as-
sociated sesquilinear form 〈·, ·〉, and let B = {b1, . . . , bn} ⊆ V be a K-basis,

where K ∈ {R,C}. For i ∈ {1, . . . , n} let by induction µij := 〈bi,b′j〉
〈b′j ,b′j〉

∈ K, for

j ∈ {1, . . . , i− 1}, and b′i := bi −
∑i−1
j=1 b

′
jµij ∈ V , as well as B′ := {b′1, . . . , b′n}.

Then for i ∈ {1, . . . , n} we have Ui := 〈b1, . . . , bi〉K = 〈b′1, . . . , b′i〉K ≤ V . More-
over, b′i is the image of bi under the projection V = Ui−1⊕U⊥i−1 → U⊥i−1, where
U0 := {0}. In particular B′ ⊆ V is an orthogonal K-basis, called the associated
Gram-Schmidt K-basis, such that the base change matrix B′ idB ∈ Kn×n is
lower unitriangular.

Proof. We have to show that bi − b′i ∈ Ui−1 and b′i ∈ U⊥i−1; then we conclude
Ui = 〈b′1, . . . , b′i〉K , in particular b′i 6= 0, and 〈b′i, b′j〉 = 0 for j ∈ {1, . . . , i − 1}.
We proceed by induction on i ∈ {1, . . . , n}: For i = 1 we have b1− b′1 = 0 ∈ U0,
and U⊥0 = V anyway. For i ≥ 2 we have bi − b′i =

∑i−1
j=1 b

′
jµij ∈ Ui; and for

k ∈ {1, . . . , i − 1} we have 〈b′i, b′k〉 = 〈bi, b′k〉 −
∑i−1
j=1〈b′j , b′k〉 ·

〈bi,b′j〉
〈b′j ,b′j〉

= 〈bi, b′k〉 −

〈b′k, b′k〉 ·
〈bi,b′k〉
〈b′k,b

′
k〉

= 0; note that by induction we have Ui−1 = 〈b′1, . . . , b′i−1〉K ,
where b′1, . . . , b

′
i−1 are pairwise orthogonal.]

32

Note that the µij ∈ K, for 1 ≤ j < i ≤ n, the 〈b′i, b′i〉 ∈ R, for i ∈ {1, . . . , n},
and the base change matrix B′ idB ∈ Kn×n can successively be computed from
the Gram matrix Q = [〈bi, bj〉]ij ∈ Kn×n of 〈·, ·〉 alone, without explicitly
computing the b′i. Moreover, note that B′ ⊆ V is not necessarily an orthonormal
K-basis; an orthonormal K-basis can subsequently be found by replacing b′i by
b′′i = b′i · 1√

q(b′i)
, for i ∈ {1, . . . , n}.

(5.3) Corollary: Hadamard inequality (1893).
Let n ∈ N and 〈·, ·〉 : Cn×Cn → C be given by 〈ei, ei〉 := 1 and 〈ei, ej〉 := 0, for
i 6= j ∈ {1, . . . , n}, where {e1, . . . , en} ⊆ Cn is the standard C-basis. Then for
v = [v1, . . . , vn] ∈ Cn we have q(v) = 〈v, v〉 =

∑n
i=1 |vi|2 ∈ R≥0, the standard

quadratic form, hence ||v|| :=
√
q(v) =

√∑n
i=1 |vi|2 =∈ R≥0 is the 2-norm.

Let A = [aij] ∈ Cn×n, and let ai := [ai1, . . . , ain] ∈ Cn denote its rows, for

i ∈ {1, . . . , n}. Then we have |det(A)| ≤
∏n
i=1 ||ai|| =

∏n
i=1

(∑n
j=1 |aij |2

) 1
2
.

Proof. We may assume that det(A) 6= 0, and let B := {a1, . . . , an} ⊆ C
n,

which hence is a C-basis. Let B′ = {a′1, . . . , a′n} ⊆ C
n be the associated

Gram-Schmidt C-basis, and let A′ ∈ C
n×n be the matrix whose rows are

a′1, . . . , a
′
n. Since B′ idB ∈ Cn×n is lower unitriangular we have det(A) = det(A′).

Moreover, by the orthogonality of a′1, . . . , a
′
n with respect to 〈·, ·〉 we have

A′ · A′tr = diag[〈a′i, a′i〉; i ∈ {1, . . . , n}]. Finally, for i ∈ {1, . . . , n} we have
q(ai) = q(a′i+

∑i−1
j=1 a

′
jµij) = 〈a′i, a′i〉+

∑i−1
j=1〈a′j , a′j〉·|µij |2 = q(a′i)+

∑i−1
j=1 q(a

′
j)·

|µij |2. Hence in conclusion we have |det(A)|2 = |det(A′)|2 = det(A′ · A′tr) =
det(diag[〈a′i, a′i〉]) =

∏n
i=1 q(a

′
i) ≤

∏n
i=1 q(ai) =

∏n
i=1 ||ai||

2.]

(5.4) Algorithm. This leads to a modular technique to compute determi-
nants for matrices A = [aij] ∈ Zn×n: Choose pairwise non-associate primes

p1, . . . , ps ∈ N such that
∏s
k=1 pk ≥ 2 ·

∏n
i=1

(∑n
j=1 |aij |2

) 1
2 ≥ 2 · |det(A)|.

Then use the Gauß algorithm over the fields Z/〈pk〉 to compute the determi-
nants det(A) ∈ Z/〈pk〉, for all k ∈ {1, . . . , s}, and by Chinese remaindering find
det(A) ∈ Z/〈

∏s
k=1 pk〉.

(5.5) Definition. a) A free Z-module L 6= {0} of finite Z-rank together with
a positive definite quadratic form q on LR := L⊗Z R is called a Z-lattice. Let
B ⊆ L be a Z-basis, and let Q ∈ Rn×n be the Gram matrix of the symmetric
bilinear form 〈·, ·〉 associated to q, with respect to the R-basis B ⊆ LR. Hence
we have q(v) = vBQv

tr
B , where vB ∈ Rn denotes the coordinate tuple associated

to v ∈ LR. Thus Q is a positive definite symmetric matrix. Let B′ ⊆ Rn be the
associated Gram-Schmidt R-basis and P := B′ idB ∈ GLn(R). Then we have
PQP tr = diag[||b′i||

2; i ∈ {1, . . . , n}] ∈ Rn×n. In particular, since det(P) = 1 we
have det(Q) =

∏n
i=1 ||b′i||

2
> 0.

33

Z-Lattices L and L′, having quadratic forms q and q′, respectively, are called
isomorphic or equivalent, if there is a Z-lattice isomorphism ϕ : L → L′,
i. e. ϕ is a Z-isomorphism such that q′(vϕ) = q(v), for all v ∈ L. Let B ⊆ L and
B′ ⊆ L′ be Z-bases, where |B| = |B′| = n, let Q,Q′ ∈ Rn×n be the associated
Gram matrices, respectively, and let P := BϕB′ ∈ GLn(Z). Then we have
vBQv

tr
B = q(v) = q′(vϕ) = vB · PQ′P tr · vtr

B , for all v ∈ LR, and since 〈·, ·〉 can
be recovered from q we have Q = PQ′P tr. Thus since det(P) ∈ Z∗ = {±1} we
conclude det(Q) = det(Q′). Hence det(L) :=

√
det(Q) > 0 is independent of

the choice of a Z-basis of L, and called the determinant of L.

b) More generally, if Q ∈ Rn×n is any positive definite symmetric matrix,
there is an orthogonal matrix P ∈ On(R) such that PQP−1 = PQP tr =
diag[β1, . . . , βn] ∈ Rn×n, where βi > 0. Letting B := P−1 · diag[

√
βi] ∈ Rn×n,

we obtain Q = (P−1 · diag[
√
βi]) · (diag[

√
βi] · P−tr) = BBtr. Hence in the Eu-

clidean R-vector space Rn carrying the standard quadratic form, by restriction
of the quadratic form we have a Z-lattice L := 〈b1, . . . , bn〉Z ⊆ Rn whose Gram
matrix equals Q, where b1, . . . , bn ∈ Rn are the rows of B, which are an R-basis
of Rn. Note that more generally we may let B ∈ Rn×m, for m ≥ n, such that
Q = BBtr, where still the rows b1, . . . , bn ∈ Rm of B are R-linearly independent.

In particular, given any Z-lattice L with Gram matrix Q ∈ Rn×n, up to equiv-
alence of Z-lattices we may assume that L is embedded into Rn as described
above. Thus q(v) = ||v||2 for all v ∈ Rn, and Hadamard’s inequality implies
0 < det(L) =

√
det(Q) = |det(B)| ≤

∏n
i=1 ||bi|| =

∏n
i=1

√
q(bi).

c) Given a Z-lattice L ⊆ R
n, then min(L) := min{||v||; 0 6= v ∈ L} ≥ 0

is called the minimum of L; an element v ∈ L such that ||v|| = min(L) is
called a minimal or shortest vector. Given a Z-basis {b1, . . . , bn} ⊆ L and
the associated Gram-Schmidt R-basis {b′1, . . . , b′n} ⊆ R

n, then we show that
min(L) ≥ min{||b′i||; i ∈ {1, . . . , n}}, hence we have min(L) > 0, and L ⊆ Rn is
a discrete subset, thus the minimum min(L) is attained:

For 0 6= v ∈ L we have v =
∑k
i=1 biνi, for suitable νi ∈ Z, where k ∈ {1, . . . , n} is

chosen such that νk 6= 0. Thus v =
∑k
i=1(b′i+

∑i−1
j=1 b

′
jµij)νi = b′kνk+

∑k−1
i=1 b

′
iν
′
i,

for suitable ν′i ∈ R. Hence ||v||2 = ν2
k · ||b′k||

2 +
∑k−1
i=1 (ν′i)

2 · ||b′i||
2 ≥ ||b′k||

2.]

(5.6) Definition. Let L ⊆ Rn be a Z-lattice having Z-basis B = {b1, . . . , bn} ⊆
L, let {b′1, . . . , b′n} ⊆ Rn be the associated Gram-Schmidt R-basis, and let µij :=
〈bi,b′j〉
||b′j ||

2 ∈ R, for 1 ≤ j < i ≤ n. Then B is called LLL reduced if the following

holds, with respect to some fixed 1
4 < γ ≤ 1 and where we let α := 1

γ− 1
4

:

i) µ2
ij ≤ α−1

α for all 1 ≤ j < i− 1 ≤ n, and
ii) |µi,i−1| ≤ 1

2 for all i ∈ {2, . . . , n}, as well as
iii) Lovasz condition: ||b′i||

2 ≥ (γ − µ2
i,i−1) · ||b′i−1||

2 for all i ∈ {2, . . . , n}.

Note that the Lovasz condition is equivalent to ||b′i + b′i−1µi,i−1||2 = ||b′i||
2 +

µ2
i,i−1 · ||b′i−1||

2 ≥ γ · ||b′i−1||
2, for all i ∈ {2, . . . , n}, where b′i + b′i−1µi,i−1 ∈ Rn

34

and b′i−1 ∈ Rn are the images of bi ∈ Rn and bi−1 ∈ Rn, respectively, under the
projection Rn → U⊥i−2 in (5.2). Moreover, as 1

4 < γ ≤ 1 varies, we have α ≥ 4
3 ,

and hence α−1
α ≥ 1

4 . Thus condition (i) is fulfilled whenever |µij | ≤ 1
2 for all

1 ≤ j < i− 1 ≤ n, unifying conditions (i) and (ii). Note that the typical choice
is γ = 3

4 , yielding α = 2.

(5.7) Proposition. Using the notation of (5.6), let B be LLL reduced. Then:
a) For 1 ≤ j ≤ i ≤ n we have ||bj || ≤ α

i−1
2 · ||b′i||.

b) We have ||b1|| ≤ α
n−1

4 · det(L)
1
n .

c) We have ||b1|| ≤ α
n−1

2 ·min(L).
d) We have det(L) ≤

∏n
i=1 ||bi|| ≤ α

n(n−1)
4 · det(L).

Proof. For i ∈ {2, . . . , n} we have ||b′i||
2 ≥ (γ− 1

4)·||b′i−1||
2 = 1

α ·||b
′
i−1||

2. Hence for
1 ≤ j ≤ i ≤ n we get ||b′j ||

2 ≤ αi−j · ||b′i||
2. Thus ||bi||2 = ||b′i||

2 +
∑i−1
j=1 µ

2
ij · ||b′j ||

2 ≤
(1+(α−1) ·

∑i−1
j=1 α

i−j−1) · ||b′i||
2 = αi−1 · ||b′i||

2. Hence for 1 ≤ j ≤ i ≤ n we have
||bj ||2 ≤ αj−1 · ||b′j ||

2 ≤ αj−1 · αi−j · ||b′i||
2 = αi−1 · ||b′i||

2, proving a). This yields

||b1||2n ≤
∏n
i=1 α

i−1 · ||b′i||
2 = α

n(n−1)
2 ·

∏n
i=1 ||b′i||

2 = α
n(n−1)

2 · det(L)2, proving b).

Let 0 6= v =
∑k
i=1 biνi =

∑k
i=1 b

′
iν
′
i ∈ L, for suitable νi ∈ Z and ν′i ∈ R, and

where k ∈ {1, . . . , n} is chosen such that νk 6= 0, hence we have ν′k = νk ∈ Z.
Thus ||v||2 =

∑k
i=1 ν

′2
i · ||b′i||

2 ≥ ν′2k · ||b′k||
2 ≥ ||b′k||

2 ≥ α−(k−1) · ||b1||2 ≥ α−(n−1) ·
||b1||2, proving c). Finally, the first inequality in d) holds anyway, and we have∏n
i=1 ||bi||

2 ≤
∏n
i=1 α

i−1 · ||b′i||
2 = α

n(n−1)
2 ·

∏n
i=1 ||b′i||

2 = α
n(n−1)

2 ·det(L)2, proving
the second inequality in d).]

(5.8) Algorithm: LLL, Lenstra-Lenstra-Lovasz (1982).
Let L ⊆ R

n be a Z-lattice having Z-basis B = {b1, . . . , bn} ⊆ R
n, let B′ =

{b′1, . . . , b′n} ⊆ Rn be the associated Gram-Schmidt R-basis, and let 1
4 < γ ≤ 1.

1. k ← 2
2. while k ≤ n do
3. for l ∈ [k − 1, . . . , 1] do # size reduction

µkl ← 〈bk,b′l〉
||b′l||

2

bk ← bk − bl · dµklc
4. µk,k−1 ←

〈bk,b′k−1〉
||b′k−1||

2

βk ← ||b′k||
2 + µ2

k,k−1 · ||b′k−1||
2

if βk < γ · ||b′k−1||
2 then # check Lovasz condition

bk ↔ bk−1 # swap
b← b′k + b′k−1 · µk,k−1

b′k ← b′k−1 ·
||b′k||

2

βk
− b′k ·

µk,k−1·||b′k−1||
2

βk

b′k−1 ← b
if k ≥ 3 then k ← k − 1

35

else k ← k + 1
5. return [b1, . . . , bn]

Here, for x ∈ R we let dxc := bx+ 1
2c ∈ Z be the nearest integer function.

a) The LLL algorithm successively modifies B and B′, where B ⊆ L always
is a Z-basis, and where we show that B′ ⊆ Rn always is the associate Gram-
Schmidt R-basis; note that the related numbers µij ∈ R and ||b′i|| ∈ R are always
recomputed using the current sets B and B′: In step 3, since bl ∈ Uk−1, where
Ui ≤ Rn for i ∈ {0, . . . , n} is as in (5.2), the Gram-Schmidt R-basis B′ ⊆ Rn is
unchanged. Hence after step 3 we have |µkl| = |〈bk,b′l〉|

||b′l||
2 ≤ 1

2 , for all 1 ≤ l < k.

In step 4, let b′′k−1, b
′′
k ∈ Rn be the elements to replace b′k−1, b

′
k ∈ B′ after

exchanging bk−1, bk ∈ Rn; note that the other elements of B′ are unchanged.
Since b′′k−1 is the image of bk under the projection V → U⊥k−2, we have b′′k−1 =
b′k + b′k−1 · µk,k−1. Moreover, since b′′k is the image of bk−1 under the projection

V → (Uk−2 +〈bk〉R)⊥, we have b′′k = b′k−1−b′′k−1 ·
〈bk−1,b

′′
k−1〉

||b′′k−1||
2 . We have ||b′′k−1||

2 =

||b′k||
2 + µ2

k,k−1 · ||b′k−1||
2 = βk. Since bk−1 ∈ Uk−1 and b′k ∈ U⊥k−1, as well as

bk−1 − b′k−1 ∈ Uk−2 and b′k−1 ∈ U⊥k−2, we have 〈bk−1, b
′′
k−1〉 = 〈bk−1, b

′
k〉 +

µk,k−1 · 〈bk−1, b
′
k−1〉 = µk,k−1 · ||b′k−1||

2. Using this we finally obtain b′′k = b′k−1−
(b′k+b′k−1 ·µk,k−1) · µk,k−1·||b′k−1||

2

βk
= b′k−1 ·(1−

µ2
k,k−1·||b

′
k−1||

2

βk
)−b′k ·

µk,k−1·||b′k−1||
2

βk
=

b′k−1 ·
||b′k||

2

βk
− b′k ·

µk,k−1·||b′k−1||
2

βk
. Thus, if the LLL algorithm terminates, then

the Lovasz condition is fulfilled as well, and hence B ⊆ L is an LLL reduced
Z-basis, in particular thus proving the existence of LLL reduced Z-bases.

b) We show that the LLL algorithm terminates: For l ∈ {1, . . . , n} let Ql :=
[〈bi, bj〉; i, j ∈ {1, . . . , l}]ij ∈ Rl×l be the Gram matrix of 〈·, ·〉|Ul×Ul , and let
dl := det(Ql). Hence we have dl :=

∏l
i=1 ||b′i||

2
> 0, and in particular dn =

det(L)2. Thus d :=
∏n
l=1 dl > 0 changes only if swapping, involving b′k and

b′k−1 say, occurs in step 4: In this case we have ||b′′k−1||
2 = βk and ||b′′k ||

2 = ||b′k||
4

β2
k
·

||b′k−1||
2+ µ2

k,k−1·||b
′
k−1||

4

β2
k

·||b′k||
2 = ||b′k−1||

2 ·||b′k||
2 · ||b

′
k||

2+µ2
k,k−1·||b

′
k−1||

2

β2
k

= ||b′k−1||
2·||b′k||

2

βk
,

thus we obtain ||b′′k−1||
2 · ||b′′k ||

2 = ||b′k−1||
2 · ||b′k||

2. Hence dl is unchanged for
l ≤ k − 2 or l ≥ k, while since βk < γ · ||b′k−1||

2 the number dk−1 is multiplied

by ||b
′′
k−1||

2

||b′k−1||
2 = βk

||b′k−1||
2 < γ ≤ 1, hence d > 0 also is multiplied by that number.

If Q ∈ Zn×n, i. e. we have an integral lattice, then we always have d ∈ Z.
Since d becomes strictly smaller in each swapping step, this possibly occurs
only finitely many times, hence the LLL algorithm terminates in this case.

In the general case Q ∈ Rn×n we use the Hermite constant (1846) γn > 0,

for which min(L) ≤ γ
1
2
n · det(L)

1
n = γ

1
2
n · det(Q)

1
2n for any Z-lattice L ⊆ Rn,

and which in this sense is best possible; see [2, Prop.6.4.1] or [8, Exc.3.3.4.9].
Since min(〈b1, . . . , bl〉Z) ≥ min(L), this yields dl = det(Ql) ≥ (min(L)2

γl
)l, for all

36

l ∈ {1, . . . , n}, and thus d ≥ min(L)n(n+1) ·
∏n
l=1

1
γll
> 0. Hence if additionally

γ < 1, then in the general case swapping possibly occurs only finitely many
times, and the LLL algorithm terminates.

c) Similarly to the Gram-Schmidt orthogonalization, it is possible to start with
the Gram matrix Q ∈ Rn×n alone, where the suitably adjusted LLL algorithm
returns the LLL reduced basis in terms of a base change matrix, see Exercise
(8.37). The larger the parameter γ is chosen, the better the LLL reduced basis
becomes, but the longer the LLL algorithm runs, although both aspects seem
to be rather insensitive to the value of γ, see [2, Ch.2.6.1]. Note that if B ⊆ Zn
then for the associated Gram matrix we have Q ∈ Zn×n as well, and thus the
LLL algorithm completely runs over Q; moreover, the analysis in the proof of
(5.9) already indicates the denominators actually occurring, opening up a way
to a version of the LLL algorithm running completely over Z, see [2, Ch.2.6.3].

(5.9) Theorem. Let L ⊆ Rn be a Z-lattice having Z-basis B = {b1, . . . , bn} ⊆
Z
n such that ||bi|| ≤ A for all i ∈ {1, . . . , n}, for some A > 0; note that hence the

input length of L is in O(n2 ln(A)). Then the LLL algorithm, with parameter
1
4 < γ < 1, needs at most O(n4 ln(A)) ring operations in Q, where the occurring
numerators and denominators have bit length in O(n ln(A)).

Proof. Each evaluation of 〈·, ·〉, and hence of || · ||2, needs O(n) ring operations
in Q. Adding a Q-multiple of a vector to another vector also needs O(n) ring
operations in Q. Hence each execution of step 3 needs O(n2) ring operations
in Q, and thus each execution of step 2 as well. Let B′ = {b′1, . . . , b′n} be the
Gram-Schmidt R-basis associated to the current Z-basis B during execution of
the LLL algorithm. As in (5.8) let dl =

∏l
i=1 ||b′i||

2 ∈ N, for l ∈ {1, . . . , n},
and d0 := 1, as well as d =

∏n
l=1 dl ∈ N. Hence from ||b′i|| ≤ ||bi||, for i ∈

{1, . . . , n}, we for the initial Z-basis B conclude dl ≤
∏l
i=1 ||bi||

2 ≤ A2l ≤ A2n,
and thus d =

∏n
l=1 dl ≤

∏n
l=1A

2l = An(n+1). Hence swapping occurs at most
log 1

γ
(An(n+1)) ∈ O(n2 ln(A)) times. Thus this needs at most O(n4 ln(A)) ring

operations in Q. Note that at the very beginning, the Gram-Schmidt R-basis B’
associated to the initial Z-basis B has to be computed; this needs O(n· n(n−1)

2) =
O(n3) ring operations in Q.

To estimate the occurring numerators and denominators we derive bounds for
||bk|| and ||b′k|| as well as |µkl|, for k ∈ {1, . . . , n} and 1 ≤ l < k ≤ n, and show
that certain Z-multiples of b′k and µkl are in Zn and Z, respectively:

Let B′ idB = [λij] ∈ Qn×n; note that B′ idB is lower unitriangular. Hence for
1 ≤ l < k ≤ n we from 〈bl, b′k〉 = 0 obtain

∑k−1
j=1 λkj · 〈bl, bj〉 = −〈bl, bk〉 ∈ Z.

Hence [λk1, . . . , λk,k−1] ∈ Qk−1 is the solution of a system of Q-linear equations
with associated matrix Qk−1 ∈ Z(k−1)×(k−1), thus by Cramer’s rule we have
dk−1λkj ∈ Z, for 1 ≤ j < k ≤ n. Hence we also have b′kdk−1 ∈ Zn, for k ∈
{1, . . . , n}, and thus the denominators of the entries of b′k ∈ Qn are absolutely
bounded by dk−1 ≤ A2n, thus these have bit lengths in O(n ln(A)).

37

Moreover, for 1 ≤ l < k ≤ n we obtain dlµkl = dl · 〈bk,b
′
l〉

||b′l||
2 = dl−1 · 〈bk, b′l〉 =

〈bk, b′ldl−1〉 ∈ Z. Thus the denominator of µkl ∈ Q is absolutely bounded by
dl ≤ A2n, thus also have bit length in O(n ln(A)); and as |µkl| ≤ 1

2 outside step
3 this estimate also holds for the numerators of those µkl ∈ Q.

Initially we have ||b′k|| ≤ ||bk|| ≤ A, for k ∈ {1, . . . , n}, Moreover, for swapping
for some k ≥ 2 we have ||b′′k−1||

2 = βk < γ · ||b′k−1||
2 ≤ ||b′k−1||

2, and since b′′k
is the image of bk−1 under the projection V → (Uk−2 + 〈bk〉R)⊥, while b′k−1 is
the image of bk−1 under the projection V → U⊥k−2, we have ||b′′k || ≤ ||b′k−1|| as
well. Hence we have ||b′k|| ≤ A, for k ∈ {1, . . . , n}. Thus from b′kdk−1 ∈ Zn
we conclude that the numerators of the entries of b′k are absolutely bounded by
||b′kdk−1|| ≤ A2n+1, hence have bit lengths in O(n ln(A)).

Moreover, outside step 3 we have |µkl| ≤ 1
2 for all 1 ≤ l < k ≤ n, and hence

letting µkk := 1 yields ||bk||2 =
∑k
l=1 µ

2
kl · ||b′l||

2 ≤ nA2, hence ||bk|| ≤ n
1
2 · A;

note that if bk has not been touched at all, we have ||bk|| ≤ A anyway. Thus the
entries in those bk ∈ Zn have bit lengths in O(ln(n) + ln(A)) ⊆ O(n ln(A)).

Hence it remains to consider the behavior of size reduction: At the beginning
of step 3 let mk := max{|µkl|; l ∈ {1, . . . , k}}, where again µkk := 1. Since for
l ∈ {1, . . . , n} we have ||b′l|| = (dl

dl−1
)

1
2 ≥ (1

dl−1
)

1
2 , for 1 ≤ l < k ≤ n by the

Cauchy-Schwarz inequality we get |µkl| = 〈bk,b′l〉
||b′l||

2 ≤ ||bk||·||b′l||
||b′l||

2 ≤ d
1
2
l−1 · ||bk||, and

thus mk ≤ max{d
1
2
l−1; l ∈ {1, . . . , k − 1}} · ||bk|| ≤ An−2 · ||bk|| ≤ n

1
2 ·An−1.

During size reduction, for intermediate µ̃kl, where 1 ≤ l ≤ k ≤ n, we have
|µ̃k,l| ≤ 2k−lmk: This holds true for l = k and l = k − 1, and for l ≤ k − 1
we have µ̃k,l−1 = µk,l−1 − dµ̃k,lc · µl,l−1. Hence by the triangle inequality,
and using mk + 1

4 ≤ 3 · 2k−l−1mk, we get |µ̃k,l−1| ≤ mk + (2k−lmk + 1
2) · 1

2 =
(1+2k−l−1)mk+ 1

4 ≤ 4 ·2k−l−1mk = 2k−(l−1)mk. In particular, we have |µ̃k,l| ≤
2n−1mk ≤ n

1
2 · (2A)n−1. Since dlµ̃k,l ∈ Z the numerator of µ̃k,l is absolutely

bounded by |dlµ̃k,l| ≤ n
1
2 · 2n−1A3n−1, hence has bit length in O(n ln(A)).

Finally, for intermediate b̃k during size reduction we have ||̃bk||2 =
∑k
l=1 µ̃

2
kl ·

||b′l||
2 ≤ n · n(2A)2(n−1) · A2 ≤ 22(n−1)n2A2n, hence ||̃bk|| ≤ 2n−1nAn. Thus the

entries in b̃k ∈ Zn have bit lengths in O(n ln(A)).]

For variants of the LLL algorithm, such as the modified LLL algorithm which
accepts also linear dependent vectors as input, and applications of these algo-
rithms, such as the computation of minimal vectors or the enumeration of short
vectors in lattices, or the computation of kernels and images of integer matrices,
or the computation of minimal polynomials of algebraic integers, see [2, Ch.2.6,
2.7]. A detailed discussion of successive minima of lattices and related lattice
bases is given in [15, Ch.3.3]. Here we only present the following application:

(5.10) Example: Simultaneous Diophantine approximation.
Let α1, . . . , αn ∈ R. Then by a Theorem of Dirichlet, there are infinitely many

38

tuples [q; p1, . . . , pn] ∈ Zn+1 such that |αi − pi
q | ≤ q−

n+1
n , for all i ∈ {1, . . . , n}.

Finding simultaneous approximations is interpreted as a short vector problem:

Let β1, . . . , βn ∈ Q be approximations of the α, . . . , αn, respectively, where
the βi need not have the same denominator. Moreover, let 0 < ε < 1 and
c := 2−

n(n+1)
4 · εn+1, and let L := 〈b0, . . . , bn〉Z ⊆ Rn+1, where the bi ∈ Rn+1 are

the rows of the following matrix:

B :=

c β1 β2 . . . βn
. −1
. . −1
...

. . .
...

. −1

 ∈ R(n+1)×(n+1).

Let {b̂0, . . . , b̂n} ⊆ L be an LLL reduced Z-basis, with respect to the parameter
γ = 3

4 . Hence we ||̂b0|| ≤ 2
n
4 · det(L)

1
n+1 , and since det(L) = |det(B)| = c

we conclude ||̂b0|| ≤ ε < 1. There are q, p1, . . . , pn ∈ Z such that b̂0 = b0q +∑n
i=1 bipi = [qc, qβ1 − p1, . . . , qβn − pn] ∈ L. We may assume that q ≥ 0.

Moreover, assume that q = 0, then ||̂b0||2 =
∑n
i=1 p

2
i ≥ 1, a contradiction.

Hence we have q ≥ 1. Then we have 2−
n(n+1)

4 · εn+1q = qc ≤ ||̂b0|| ≤ ε, hence
q ≤ 2

n(n+1)
4 · ε−n, thus ε ≤ 2

n+1
4 · q− 1

n . This yields |βi − pi
q | ≤

1
q · ||̂b0|| ≤

ε
q ≤

2
n+1

4 · q−n+1
n . Note that this approximates the approximations βi of the αi, and

is weaker than Dirichlet’s bound by a factor of 2
n+1

4 .

E. g. we consider the musical scale: In the well-tempered scale the idea is to
divide the octave into finitely many equal half tones, q ∈ N say, such that the
natural intervals, with frequency ratio r ∈ Q say, are approximated well by an
integral number of half tones, p ∈ N say, i. e. we would like to minimize |2

p
q −r|,

which amounts to minimize | log2(r) − p
q |. The natural intervals considered

are the octave itself, the fifth, the fourth, the major third, the minor third
and major second, whose frequency ratios are given as follows, together with
approximations of their binary logarithms up to 3 decimals; we also indicate the
corresponding number of half tones in the well-tempered scale:

i ri log2(ri) ∼ pi

1 2
1 1 12

2 3
2 0, 585 7

3 4
3 0, 415 5

4 5
4 0, 322 4

5 6
5 0, 263 3

6 9
8 0, 167 2

As log2(r1) = 1 anyway, the task is to find q ∈ N small and p2, . . . , p6 ∈ N
such that | log2(ri)− pi

q | is minimized. Note that we have log2(r2) + log2(r3) =

39

log2(r2r3) = 1, hence we could ignore r2 as well. Anyway, let n := 5. To find
the parameter c = 2−

n(n+1)
4 · εn+1 ≤ 2−

n(n+1)
4 · (2n+1

4 · q− 1
n)n+1 = 2

n+1
4 · q−n+1

n

we proceed as follows: We would like to have 1 ≤ q ≤ 100, say. For q = 100
and n = 5 this inequality is fulfilled whenever c ≤ 0, 0112. Hence we choose
c := 1

100 , and let

B :=

1
100

585
1000

415
1000

322
1000

263
1000

167
1000

. −1

. . −1 . . .

. . . −1 . .

. . . . −1 .

. −1

 ∈ Q
6×6.

The LLL algorithm yields the following Z-basis B̂ := {b̂0, . . . , b̂5} ⊆ Q6, which
decomposes into the Z-basis B as indicated by B̂ idB ∈ Z6×6:

B̂ :=

3
25

1
50

−1
50

−17
125

39
250

1
250

19
100

23
200

−23
200

59
500

−3
1000

173
1000

−11
50

13
100

−13
100

−21
250

107
500

163
500

3
20

−9
40

9
40

−17
100

−11
200

101
200

17
100

−11
200

11
200

237
500

471
1000

−161
1000

−9
50

47
100

53
100

51
250

133
500

−3
500

∈ Q6×6,

B̂ idB :=

12 7 5 4 3 2
19 11 8 6 5 3
−22 −13 −9 −7 −6 −4

15 9 6 5 4 2
17 10 7 5 4 3
−18 −11 −8 −6 −5 −3

 ∈ Z
6×6.

Hence good rational approximations, due to b̂0 are found taking q := 12; and
indeed in the well-tempered scale the octave is divided into 12 half tones. Hence
the pi found coincide with the number of half tones into which the natural
intervals actually are divided. Note that the second vector b̂1 also yields a good
rational approximations, which mean a division of the octave into 19 third tones,
and the indicated number of third tones for the natural intervals; even more,
the third tone scale allows to distinguish intervals e. g. such as the minor third
and augmented second, which have 5 and 4 third tones, respectively, but in the
well-tempered scale both have 3 half tones.

6 Polynomial factorization over finite fields

40

(6.1) Algorithm: Squarefree factorization.
Let p ∈ N be a prime, let q = pf for some f ∈ N, and let 0 6= Ψ ∈ Fq[X] be
monic such that deg(Ψ) = n. The ultimate aim is to find the prime power
factorization Ψ =

∏r
k=1 Φekk , where Φ1, . . . ,Φr ∈ Fq[X] are pairwise differ-

ent irreducible monic polynomials, and where ek = eΦk(Ψ) ∈ N is called the
corresponding multiplicity; note that since Fq[X] is factorial the prime power
factorization is uniquely defined, and the prime polynomials are precisely the
irreducible ones. The polynomial Ψ is called squarefree if ek = 1 for all
k ∈ {1, . . . , r}.
The Frobenius map ϕp : Fq → Fq : α 7→ αp is a field automorphism, where
we even have Gal(Fq/Fp) = 〈ϕp〉, which hence is a cyclic group of order f . We
conclude that Fq is a perfect field, i. e. all finite field extensions of Fq are
separable. Hence we conclude that 0 6= Ψ ∈ Fq[X] is squarefree if and only if
Ψ ∈ F[X] does not have multiple roots, where Fq ⊆ F is an algebraic closure of
Fq. The latter by (4.7) holds if and only if 0 6= disc(Ψ) ∈ Fq, which in turn holds
if and only if 0 6= res(Ψ,Ψ′) ∈ Fq, where Ψ′ = ∂Ψ

∂X ∈ Fq[X] denotes the formal
derivative. The latter by (4.4) holds if and only if gcd(Ψ,Ψ′) = 1 ∈ Fq[X].

We have Ψ =
∏n
e=1 Ψe

e, where Ψe :=
∏
k∈Ke Φk ∈ Fq[X] and Ke := {l ∈

{1, . . . , r}; el = e}; note that the Ψe are squarefree and pairwise coprime for
e ∈ {1, . . . , n}. The polynomials Ψe, for e ∈ {1, . . . , n}, are found as follows:

Let Θ := gcd(Ψ,Ψ′) ∈ Fq[X] monic, and let Φ ∈ Fq[X] be monic irreducible
such Φ | Θ. Hence there is a unique e ∈ {1, . . . , n} such that Φ | Ψe,
and Φ = Φk for some k ∈ Ke; note that hence Ψe 6= 1. We have Ψ′ =∑n
e=1

(
eΨ′eΨ

e−1
e ·

∏
d∈{1,...,n}\{e}Ψd

d

)
. Thus for e 6= c ∈ {1, . . . , n} we have

the multiplicity eΦ(
∏
d∈{1,...,n}\{c}Ψd

d) = e, and hence for the corresponding
summand of Ψ′ we have eΦ(cΨ′cΨ

c−1
c ·

∏
d∈{1,...,n}\{c}Ψd

d) ≥ e. Moreover,
for p | e the e-th summand of Ψ′ vanishes anyway, while for p 6 | e we have
eΦ(eΨ′eΨ

e−1
e ·

∏
d∈{1,...,n}\{e}Ψd

d) = e − 1; note that since Ψe is squarefree we
have gcd(Ψe,Ψ′e) = 1. Thus eΦ(Θ) = e − 1 if p 6 | e, and since Θ | Ψ we have
eΦ(Θ) = e if p | e. This yields Θ =

∏
e∈{1,...,n},p 6 | e Ψe−1

e ·
∏
e∈{1,...,n},p | e Ψe

e.

To actually compute the squarefree factors Ψe, for e ∈ {1, . . . , n}, we by in-
duction define Θk ∈ Fq[X] and Λk ∈ Fq[X] monic, for k ∈ N, as follows: Let
Θ1 := Θ = gcd(Ψ,Ψ′) ∈ Fq[X] and Λ1 := Ψ

Θ ∈ Fq[X], and for k ≥ 1 we let
Λk+1 := gcd(Θk,Λk) ∈ Fq[X] if p 6 | k, and Λk+1 := Λk ∈ Fq[X] if p | k, as well
as Θk+1 := Θk

Λk+1
∈ Fq(X) = Q(Fq[X]).

We by induction show that for k ∈ N we have Λk =
∏
e∈{k,...,n},p 6 | e Ψe and

Θk =
∏
e∈{k,...,n},p 6 | e Ψe−k

e ·
∏
e∈{1,...,n},p | e Ψe

e; hence in particular we indeed
have Θk ∈ Fq[X]: For k = 1 we have Λ1 = Ψ

Θ =
∏
e∈{1,...,n},p 6 | e Ψe and

Θ1 = Θ =
∏
e∈{1,...,n},p 6 | e Ψe−1

e ·
∏
e∈{1,...,n},p | e Ψe

e. For k ≥ 1 and p 6 | k
we have Λk+1 = gcd(Θk,Λk), and since for e ≥ k we have Ψe | Θk if and
only if e ≥ k + 1, we conclude Λk+1 =

∏
e∈{k+1,...,n},p 6 | e Ψe; for k ≥ 1 and

41

p | k we have Λk+1 = Λk =
∏
e∈{k,...,n},p 6 | e Ψe =

∏
e∈{k+1,...,n},p 6 | e Ψe; finally

for k ≥ 1 we have Θk+1 = Θk
Λk+1

=
∏
e∈{k,...,n},p 6 | e Ψe−ke∏
e∈{k+1,...,n},p 6 | e Ψe

·
∏
e∈{1,...,n},p | e Ψe

e =∏
e∈{k+1,...,n},p 6 | e Ψe−(k+1)

e ·
∏
e∈{1,...,n},p | e Ψe

e.

This yields Ψe = Λe
Λe+1

whenever e ∈ {1, . . . , n} such that p 6 | e. Hence we have
computed those Ψe, and to obtain the Ψe for p | e we proceed as follows: We
have Λk = 1 for all k > n; and whenever we have k ∈ {1, . . . , n} such that Λk =

1, then we conclude Θk = Θk−1 =
∏
e∈{1,...,n},p | e Ψe

e =
(∏

e∈{1,...,n},p | e Ψ
e
p
e

)p
.

Hence letting
∏
e∈{1,...,n},p | e Ψ

e
p
e =: Ψ̃ = X ñ +

∑ñ−1
i=1 ψ̃iX

i ∈ Fq[X], where

ñ ∈ N0, we have Θk(X) = Ψ̃(X)p = X ñp+
∑ñ−1
i=1 ψ̃

p
iX

ip ∈ Fq[X], thus Ψ̃ can be
obtained from Θk by extracting p-th roots. Note that since the Frobenius map
ϕp : Fq → Fq is a field automorphism, p-th roots always exist and are unique,
and can be found using iterated application of ϕp, which has order f . Moreover,
the squarefree factors of Ψ̃ are Ψ̃ e

p
= Ψe ∈ Fq[X], where e ∈ {1, . . . , n} such

that p | e. Hence the Ψe for p | e can be computed from Ψ̃ by recursion.

(6.2) Proposition. Let p ∈ N be a prime, let q = pf for some f ∈ N, and for
n ∈ N0 let Pq,n := {0 6= Φ ∈ Fq[X]; Φ monic, irreducible, deg(Φ) = n}. Then
for all d ∈ N we have Xqd −X =

∏
1≤n | d

∏
φ∈Pq,n Φ ∈ Fq[X]. In particular, we

have Pq,n 6= ∅.

Proof. For α ∈ F∗qd we have αq
d−1 = 1, thus Xqd −X ∈ Fqd [X] has qd pairwise

distinct roots in Fqd , thus Xqd − X =
∏
α∈F

qd
(X − α) ∈ Fqd [X]. Hence in

particular Xqd −X ∈ Fq[X] is squarefree. Note that this shows that Fq ⊆ Fqd
is a splitting field of the polynomial Xqd − X ∈ Fq[X], proving existence and
uniqueness of Fqd whenever Fq exists; starting with the prime field Fp this shows
existence and uniqueness of the finite fields Fqd .

Thus we have to show that for all n ∈ N and Φ ∈ Pq,n we have Φ | Xqd −X if
and only if n | d: Let Φ | Xqd −X. Then there is α ∈ Fqd such that Φ(α) = 0,
and since Φ ∈ Fq[X] is irreducible we have Fqn ∼= Fq[X]/〈Φ〉 ∼= Fq(α) ⊆ Fqd .
Since Fq ⊆ Fqn and Fq ⊆ Fqd are field extensions of degree n and d, respectively,
we conclude that Fqn ⊆ Fqd is a field extension of degree d

n , hence n | d.

Conversely, let n | d. Then Xqd −X = (Xqn −X) ·
∑m−1
i=0 Xi(qn−1) ∈ Fq[X],

where m := qd−1
qn−1 =

∑ d
n−1
j=0 qjn ∈ N. Moreover, for α := X ∈ Fq[X]/〈Φ〉 ∼= Fqn

we have Φ(α) = Φ(X) = Φ(X) = 0 ∈ Fqn , hence X − α | Φ ∈ Fqn [X].
Since α 6= 0 we have αq

n−1 = 1 ∈ Fqn , and hence X − α | (Xqn − X) |
(Xqd −X) ∈ Fqn [X] as well. Thus X − α | gcd(Φ, Xqd −X) ∈ Fqn [X]. Since
both Φ, Xqd − X ∈ Fq[X], their monic gcd’s in Fq[X] and in Fqn [X] coincide,

42

thus we have gcd(Φ, Xqd − X) ∈ Fq[X] non-constant. Since Φ ∈ Fq[X] is
irreducible we conclude Φ | Xqd −X ∈ Fq[X].]

(6.3) Corollary. Let q ∈ N be a prime power and n ∈ N. Then 0 6= Ψ ∈ Fq[X]
monic such that deg(Ψ) = n is irreducible, if and only if Xqn ≡ X mod Ψ and
gcd(Xq

n
l −X,Ψ) = 1 ∈ Fq[X], for all primes l ∈ N such that l | n.

Note that Xqn mod Ψ is found using binary modular exponentiation in Fq[X].

Proof. If Ψ ∈ Fq[X] is irreducible, then we have Ψ | Xqn − X ∈ Fq[X] and
Ψ 6 | Xq

n
l − X ∈ Fq[X], for all l | n. Conversely, if the above conditions are

fulfilled, then for all Φ ∈ Fq[X] irreducible such that Φ | Ψ | Xqn −X ∈ Fq[X]
we have deg(Φ) | n; assume that deg(Φ) < n, then let l ∈ N be a prime such that
l | n and Φ | Xq

n
l −X ∈ Fq[X], hence we have Φ | gcd(Xq

n
l −X,Ψ) ∈ Fq[X],

a contradiction.]

(6.4) Algorithm: Distinct degree factorization, Zassenhaus (1969).
Let q ∈ N be a prime power and let 0 6= Ψ =

∏r
k=1 Φk ∈ Fq[X] be monic and

squarefree, where Φ1, . . . ,Φr ∈ Fq[X] are pairwise different irreducible monic
polynomials, and thus Ψ =

∏n
d=1 Ψd ∈ Fq[X], where n := deg(Ψ) and Ψd :=∏

k∈Kd Φk ∈ Fq[X] and Kd := {l ∈ {1, . . . , r}; deg(Φl) = d}; note that the Ψd

are pairwise coprime for d ∈ {1, . . . , n}.

Letting Ψ̃d := Ψ∏d−1
c=1 Ψc

=
∏n
c=d Ψc ∈ Fq[X], for all d ∈ N, we successively

compute Ψd = gcd(Xqd −X, Ψ̃d) ∈ Fq[X]. Moreover, since Ψ̃d | Ψ̃d−1 we have

(Xqd mod Ψ̃d) ≡
(

(Xqd−1
mod Ψ̃d−1) ·Xq

)
mod Ψ̃d.

(6.5) Algorithm: Cantor-Zassenhaus (1981).
Let q ∈ N be a prime power, and let 0 6= Ψ =

∏r
k=1 Φk ∈ Fq[X] be monic and

squarefree, where n := deg(Ψ) and Φ1, . . . ,Φr ∈ Fq[X] are pairwise different
irreducible monic polynomials such that deg(Φi) = d for all i ∈ {1, . . . , r},
where d is known. Hence we have n = dr; note that we are done if n = d, and
hence we may assume that r ≥ 2.

Let Θ ∈ Fq[X]. From Xqd − X =
∏
α∈F

qd
(X − α) ∈ Fqd [X], we get Θqd −

Θ =
∏
α∈F

qd
(Θ − α) ∈ Fqd [X], hence any α ∈ Fqd is a root of Θqd − Θ ∈

Fq[X] ⊆ Fqd [X]. Thus Xqd −X | Θqd − Θ ∈ Fq[X]. Since deg(Φi) = d for all
i ∈ {1, . . . , r} we have Φi | Xqd −X ∈ Fq[X], and thus Ψ | Θqd −Θ ∈ Fq[X].

Since the Φi are irreducible such that deg(Φi) = d and pairwise coprime, the
Chinese remainder theorem yields Fq[X]/〈Ψ〉 ∼=

⊕r
i=1 Fq[X]/〈Φi〉 ∼=

⊕r
i=1 Fqd ,

where for i ∈ {1, . . . , r} the corresponding projections are derived from the
natural maps πi : Fq[X]→ Fq[X]/〈Φi〉.

43

a) Let q be odd. Since we have Θqd −Θ = Θ · (Θ
qd−1

2 −1) · (Θ
qd−1

2 +1) ∈ Fq[X],

where gcd(Θ
qd−1

2 −1,Θ
qd−1

2 +1) = gcd(Θ
qd−1

2 −1, 2) = 1 and gcd(Θ
qd−1

2 ±1,Θ) =

gcd(1,Θ) = 1, we have Ψ = gcd(Ψ,Θ) · gcd(Ψ,Θ
qd−1

2 − 1) · gcd(Ψ,Θ
qd−1

2 + 1) ∈
Fq[X], where the factors are pairwise coprime. Moreover, we have gcd(Ψ,Θ) = 1
if and only if Θπi ∈ (Fq[X]/〈Φi〉)∗ ∼= F

∗
qd for all i ∈ {1, . . . , r}. Thus if we choose

Θ ∈ Fq[X]<n randomly, then the probability to have gcd(Ψ,Θ) 6= 1, which if
Θ 6= 0 yields a non-trivial factor, is given as 1−(q

d−1
qd

)r ∼ r
qd

, hence is negligible.

Since F∗qd is a cyclic group of order qd − 1, we have a group epimorphism

F
∗
qd → {±1} : α 7→ α

qd−1
2 , where {±1} ≤ F

∗
qd is a cyclic group of order 2.

Hence we have a partition F∗qd = {α ∈ F∗qd ;α
qd−1

2 = 1}
.
∪ {α ∈ F∗qd ;α

qd−1
2 =

−1} into two subsets of cardinality qd−1
2 . Hence for Θ ∈ Fq[X]<n such that

gcd(Ψ,Θ) = 1 and fixed i ∈ {1, . . . , r} we either have (Θ
qd−1

2)πi = 1 ∈
Fq[X]/〈Φi〉, i. e. Φi | gcd(Ψ,Θ

qd−1
2 − 1) ∈ Fq[X], or (Θ

qd−1
2)πi = −1 ∈

Fq[X]/〈Φi〉, i. e. Φi | gcd(Ψ,Θ
qd−1

2 + 1) ∈ Fq[X]. If we choose Θ ∈ Fq[X]<n
such that gcd(Ψ,Θ) = 1 randomly then either possibility occurs with probability
1
2 . As this happens independently for all i ∈ {1, . . . , r}, both the probability to

have gcd(Ψ,Θ
qd−1

2 − 1) = 1 and the probability to have gcd(Ψ,Θ
qd−1

2 + 1) = 1,

i. e. gcd(Ψ,Θ
qd−1

2 − 1) = Ψ, are equal to 1
2r . Thus for these Θ the probability

to have 1 6= gcd(Ψ,Θ
qd−1

2 − 1) 6= Ψ is given by 1− 1
2r−1 .

Note that for constant polynomials Θ = λ ∈ F∗q we have λ
qd−1

2 ∈ {±1} ∈ F∗q ,

independent of i ∈ {1, . . . , r}, and hence gcd(Ψ, λ
qd−1

2 −1) = 1 or gcd(Ψ, λ
qd−1

2 −
1) = Ψ; thus these need not be tested, which increases the success probability for
non-constant test polynomials even further. Anyway, testing all non-constant
polynomials Θ ∈ Fq[X]<n finally yields a complete factorization, where we are
done as soon as r pairwise coprime factors have been found.

Note that the above probability analysis even shows the following: If we choose
Θ ∈ Fq[X]<2d such that gcd(Ψ,Θ) = 1 randomly then still either of the above
possibilities occurs with probability 1

2 independently for 2 of the factors Φi,

hence for these Θ the probability to have 1 6= gcd(Ψ,Θ
qd−1

2 − 1) 6= Ψ still
is given by 1 − 1

22−1 = 1
2 . Thus this decreases the success probability, but it

still is large enough to allow for the following randomized algorithm: Choose
0 6= Θ ∈ Fq[X] monic such that 1 ≤ deg(Θ) < 2d randomly, and compute

Ψ̃ := gcd(Ψ,Θ
qd−1

2 − 1) ∈ Fq[X]; note that Θqd−1 mod Ψ is found using binary
modular exponentiation in Fq[X]. If 1 6= Ψ̃ 6= Ψ, then proceed with Ψ̃ ∈ Fq[X]
and Ψ

Ψ̃
∈ Fq[X] recursively.

b) Let q be even, hence q = 2f ∈ N, where f ∈ N. Letting Tf :=
∑f−1
i=0 X

2i ∈
F2[X] we have Tf · (1 + Tf) = (

∑f−1
i=0 X

2i) · (1 +
∑f−1
i=0 X

2i) = (
∑f−1
i=0 X

2i) +

44

(
∑f−1
i=0 X

2i)2 = (
∑f−1
i=0 X

2i) + (
∑f−1
i=0 X

2i+1
) = X +X2f ∈ F2[X].

Thus we also have (
∑fd−1
i=0 Θ2i) · (1 +

∑fd−1
i=0 Θ2i) = Θ + Θ2fd ∈ Fq[X], where

gcd(
∑fd−1
i=0 Θ2i , 1 +

∑fd−1
i=0 Θ2i) = gcd(

∑fd−1
i=0 Θ2i , 1) = 1, hence we conclude

Ψ = gcd(Ψ,
∑fd−1
i=0 Θ2i) · gcd(Ψ, 1 +

∑fd−1
i=0 Θ2i) ∈ Fq[X], where the factors are

pairwise coprime.

Since Tfd · (1 + Tfd) = X + X2fd =
∏
α∈F

qd
(X − α) ∈ Fqd [X], as well as

deg(Tfd) = 2fd−1, we have a partition Fqd = {α ∈ Fqd ;Tfd(α) = 0}
.
∪ {α ∈

Fqd ;Tfd(α) = 1} into two sets of cardinality 2fd−1 = qd

2 . Hence for Θ ∈ Fq[X]<n
and fixed i ∈ {1, . . . , r} we either have

∑fd−1
i=0 Θ2i = 0 ∈ Fq[X]/〈Φi〉, i. e.

Φi | gcd(Ψ,
∑fd−1
i=0 Θ2i) ∈ Fq[X], or

∑fd−1
i=0 Θ2i = 1 ∈ Fq[X]/〈Φi〉, i. e.

Φi | gcd(Ψ, 1 +
∑fd−1
i=0 Θ2i) ∈ Fq[X]. Thus, if we choose Θ ∈ Fq[X]<n ran-

domly, then either possibility occurs with probability 1
2 . Hence again both

the probability to have gcd(Ψ,
∑fd−1
i=0 Θ2i) = 1 and the probability to have

gcd(Ψ, 1 +
∑fd−1
i=0 Θ2i) = 1, i. e. gcd(Ψ,

∑fd−1
i=0 Θ2i) = Ψ, are equal to 1

2r , and
thus the probability to have 1 6= gcd(Ψ,

∑fd−1
i=0 Θ2i) 6= Ψ is given by 1− 1

2r−1 .

Note that for constant polynomials Θ = α ∈ F∗q we have the following: Let
TFq/F2 : Fq → Fq : α 7→

∑f−1
i=0 α

σi2 =
∑f−1
i=0 α

2i = Tf (α); note that we have
Gal(Fq/F2) = 〈σ2〉, which is a cyclic group of order f , hence TFq/F2 actu-
ally is the associated Galois trace map. Since σ2|F2 = idF2 , we conclude that
TFq/F2 is an F2-linear map, and since we have Fq = {α ∈ Fq;Tf (α) = 0}

.
∪

{α ∈ Fq;Tf (α) = 1}, we conclude that actually TFq/F2 : Fq → F2 surjective.
Anyway, since σf2 |Fq = idFq , for α ∈ F

∗
q we have Tfd(α) =

∑fd−1
i=0 α2i =

d ·
∑f−1
i=0 α

2i = d · Tf (α) ∈ F2 = {0, 1}, independent of i ∈ {1, . . . , r}, hence
gcd(Ψ,

∑fd−1
i=0 α2i) = 1 or gcd(Ψ,

∑fd−1
i=0 α2i) = Ψ; thus constant polynomials

need not be tested. Again, testing all non-constant polynomials Θ ∈ Fq[X]<n
finally yields a complete factorization.

Note that again we may restrict ourselves to Θ ∈ Fq[X]<2d, where still for these
Θ the probability to have 1 6= gcd(Ψ,

∑fd−1
i=0 Θ2i) 6= Ψ is given by 1

2 . Thus
we have the following randomized algorithm: Choose 0 6= Θ ∈ Fq[X] monic
such that 1 ≤ deg(Θ) < 2d randomly, and compute Ψ̃ := gcd(Ψ,

∑fd−1
i=0 Θ2i) ∈

Fq[X]; note that Θ2i mod Ψ is found using modular squaring in Fq[X]. If 1 6=
Ψ̃ 6= Ψ, then proceed with Ψ̃ ∈ Fq[X] and Ψ

Ψ̃
∈ Fq[X] recursively.

We present another algorithm, the Berlekamp algorithm, for the final splitting,
which is based on linear algebra techniques. Actually it does not require that
the prime divisors of the polynomial all have the same degree, and hence distinct
degree factorization can be avoided here. For further algorithms for polynomial
factorization in Fq[X], see [3, Ch.14].

45

(6.6) Algorithm: Berlekamp (1970).
Let q ∈ N be a prime power and let 0 6= Ψ =

∏r
i=1 Φi ∈ Fq[X] be monic and

squarefree, where n := deg(Ψ) and Φ1, . . . ,Φr ∈ Fq[X] are pairwise different
irreducible monic polynomials. Note that the number r is not a priorly known;
Ψ might even be irreducible, i. e. we might have r = 1.

Then for Θ ∈ Fq[X]<n we have Ψ | Θq −Θ if and only if there are α1, . . . , αr ∈
Fq such that Φi | Θ − αi for all i ∈ {1, . . . , r}: Since the Φi are irreducible
and pairwise coprime, by the Chinese remainder theorem we have Fq[X]/〈Ψ〉 ∼=⊕r

i=1 Fq[X]/〈Φi〉 ∼=
⊕r

i=1 Fqdeg(Φi) , where for i ∈ {1, . . . , r} the corresponding
projections are derived from the natural maps πi : Fq[X]→ Fq[X]/〈Φi〉. Hence,
given α1, . . . , αr ∈ Fq the polynomial Θ ∈ Fq[X]<n is uniquely determined by
Φi | Θ− αi for all i ∈ {1, . . . , r}. Hence we have (Θq)πi = (αqi)

πi = απii = Θπi ,
thus Φi | Θq − Θ for all i ∈ {1, . . . , r}. Conversely, if Ψ | Θq − Θ, then from
Xq −X =

∏
α∈Fq (X − α) ∈ Fq[X] we get Φi | Ψ | Θq −Θ =

∏
α∈Fq (Θ− α) ∈

Fq[X], for all i ∈ {1, . . . , r}. Since Φi is irreducible, we conclude that there is
αi ∈ Fq such that Φi | Θ− αi.
Hence, if Θ ∈ Fq[X]<n such that Ψ | Θq − Θ, then Ψ =

∏
α∈Fq gcd(Ψ,Θ −

α) ∈ Fq[X], where since gcd(Θ − α,Θ − α′) = gcd(Θ − α, α − α′) = 1 for
α 6= α′ ∈ Fq, the factors are pairwise coprime. Thus the aim is to find suitable
polynomials Θ, yielding non-trivial factors; we proceed as follows: Let UΨ :=
{Θ ∈ Fq[X]<n; Ψ | Θq − Θ}. Since for Θ ∈ Fq[X]<n we have Θ ∈ UΨ if and
only if Θπi ∈ Fq ⊆ Fq[X]/〈Φi〉, we conclude that UΨ ≤ Fq[X]<n, and that
UΨ + 〈Ψ〉 ⊆ Fq[X]/〈Ψ〉 is an Fq-subalgebra, called the Berlekamp algebra.
In particular, UΨ encompasses the constant polynomials λ ∈ Fq[X], but since
we gcd(Ψ, λ − α) = 1 for λ 6= α, and gcd(Ψ, λ − α) = Ψ for λ = α, these need
not be tested. Letting α1, . . . , αr ∈ Fq vary, by the uniqueness statement in the
Chinese remainder theorem we have |UΨ| = qr, hence we have dimFq (UΨ) = r.
To find UΨ first we proceed as follows:

Let Θ =
∑n−1
j=0 ϑjX

j ∈ Fq[X]<n, then Θq =
∑n−1
i=0 ϑ

q
iX

qi =
∑n−1
i=0 ϑiX

qi ∈
Fq[X], and letting Xqi ≡

∑n−1
j=0 ξijX

j mod Ψ, for ξij ∈ Fq and i ∈ {0, . . . , n−1},
we get Θq ≡

∑n−1
i=0

∑n−1
j=0 ϑiξijX

j mod Ψ. Thus Θq ≡ Θ mod Ψ is equivalent
to
∑n−1
j=0 ϑjX

j ≡
∑n−1
i=0

∑n−1
j=0 ϑiξijX

j mod Ψ, which holds if and only if ϑj =∑n−1
i=0 ϑiξij ∈ Fq, for all j ∈ {0, . . . , n − 1}. Thus with respect to the Fq-

basis {1, X, . . . ,Xn−1} ⊆ Fq[X]<n, the polynomial Θ ∈ Fq[X]<n is described
by ϑ := [ϑ0, . . . , ϑn−1] ∈ Fnq , and the Fq-linear map Fq[X]/〈Ψ〉 → Fq[X]/〈Ψ〉
induced by the Frobenius map Fq[X] → Fq[X] : Θ 7→ Θq is described by the
Petr-Berlekamp matrix QΨ := [ξij] ∈ Fn×nq . Hence the Θ ∈ UΨ searched for
are precisely given as the solutions in Fnq of the system of Fq-linear equations
ϑ·QΨ = ϑ, i. e. as the solutions of the eigenvalue problem ϑ·(QΨ−En) = 0 ∈ Fnq .

Hence we have to compute the row kernel ker(QΨ − En) ∈ Fnq ; note that an
Fq-basis can be computed using the Gauß algorithm over the finite field Fq.
Note that by the above we have dimFq (ker(QΨ−En)) = r, hence this yields the
so far unknown number r of prime divisors of Ψ, in particular Ψ is irreducible

46

if and only if rkFq (QΨ − En) = n− 1.

We finally have to pick Θ ∈ UΨ yielding non-trivial factors: For i 6= j ∈
{1, . . . , r} there is Θ ∈ UΨ such that αi := Θπi 6= Θπj =: αj ∈ Fq, i. e. we have
Φi | gcd(Ψ,Θ − αi) and Φj 6 | gcd(Ψ,Θ − αi), as well as Φj | gcd(Ψ,Θ − αj)
and Φi 6 | gcd(Ψ,Θ − αj). Hence given an Fq-basis {Θ0, . . . ,Θr−1} ⊆ UΨ,
where we may assume Θ0 = 1, by Fq-linearity there is an element Θk, for some
k ∈ {1, . . . , r − 1}, having the same distinguishing property. Thus we have the
following deterministic algorithm:

We successively for k ∈ {1, . . . , r − 1} and α ∈ Fq compute gcd(Ψ̃,Θk − α) ∈
Fq[X], where Ψ̃ ∈ Fq[X] runs through all the factors of Ψ found so far; here we
initially have Ψ̃ = Ψ, and whenever 1 6= gcd(Ψ̃,Θk) 6= Ψ̃ we replace Ψ̃ by the
non-trivial factors found; we terminate as soon as a total of r factors has been
found. Note that computing the Petr-Berlekamp matrix QΨ ∈ Fn×nq and the
kernel ker(QΨ − En) ∈ Fnq are costly; hence it is better to proceed in the way
described above, rather than to use the algorithm recursively whenever a non-
trivial factor has been found. Moreover, note that the number of polynomials
Θ−α to be tested grows linearly with the field size q; thus the Cantor-Zassenhaus
algorithm is superior for large q, whenever q ≥ 100, say.

As an alternative for large q, we have the following randomized algorithm for
q ≥ 3 odd: We choose λ0, . . . , λr−1 ∈ Fq randomly, let Θ :=

∑r−1
k=0 Θkλk ∈

Fq[X]<n, and compute gcd(Ψ̃,Θ
q−1

2 − 1) ∈ Fq[X], where as above Ψ̃ ∈ Fq[X]
runs through all the factors of Ψ found so far, and if due is replaced by newly
found factors. The success probability is given as follows: For all i ∈ {1, . . . , r}
we have (Θ

q−1
2)πi ∈ {0,±1}, as in (6.5). The first case occurs with probability

1
q , which is negligible for large q. The latter two cases occur with probability
q−1
2q ∼

1
2 each. Hence if Ψ̃ is reducible, a non-trivial factor is found from

gcd(Ψ̃,Θ
q−1

2 − 1) with probability at least 2 · q−1
2 ·

q+1
2 ·

1
q2 = 1

2 −
1

2q2 ≥ 4
9 .

(6.7) Remark. We briefly comment on running times: The input length of
0 6= Ψ ∈ Fq[X] of degree deg(Ψ) = n is asymptotically ∼ n ln(q). Squarefree
factorization uses ring operations, quotient and remainder operations, and gcd
computations in Fq[X], applied to polynomials whose degree is bounded by n,
thus this needs a number of field operations in Fq which is a polynomial in n.
Distinct degree factorization additionally uses binary modular exponentiation,
where the exponents are in O(qn), which hence needs O(ln(qn)) = O(n ln(q))
ring operations as well as quotient and remainder operations in Fq[X], thus this
needs a number of field operations in Fq which is a polynomial in n ln(q). Note
that squarefree factorization and distinct degree factorization are deterministic.

The randomized Cantor-Zassenhaus algorithm, where the success probability
has been determined above, needs a number of field operations in Fq which
is a polynomial in n ln(q). The deterministic version of the Cantor-Zassenhaus
algorithm has to test O(qn) = O(en ln(q)) polynomials, hence runs in exponential

47

time. Since linear algebra algorithms over Fq need a number of field operations
in Fq which is a polynomial in n, the randomized Berlekamp algorithm, where
the success probability has been determined above, needs a number of field
operations in Fq which is a polynomial in n ln(q). The deterministic version
of the Berlekamp algorithm has to test O(nq) = O(neln(q)) polynomials, hence
runs in exponential time. Actually, it is an open problem whether polynomial
factorization in Fq[X] can be performed in deterministic polynomial time.

7 Polynomial factorization over the integers

(7.1) Remark. Let 0 6= Ψ ∈ Z[X] be primitive; note that otherwise we have to
deal with integer factorization as well. Again the aim is to find the factorization
Ψ =

∏r
k=1 Φekk , where Φ1, . . . ,Φr ∈ Z[X] are pairwise non-associate irreducible

polynomials and ek = eΦk(Ψ) ∈ N; note that the Φk ∈ Z[X] again are primi-
tive. By Gauß’s Theorem the Φk ∈ Q[X] are irreducible as well; in this sense
factorization in Z[X] and in Q[X] are equivalent.

By Gauß’s Theorem again Ψ ∈ Z[X] is squarefree if and only if Ψ ∈ Q[X] is
squarefree. Since Q is a perfect field, we by (4.7) conclude that the latter holds if
and only if disc(Ψ) 6= 0 ∈ Z, which by (4.4) holds if and only if gcd(Ψ,Ψ′) ∈ Z[X]
is constant, where Ψ′ = ∂Ψ

∂X ∈ Z[X] denotes the formal derivative. Moreover,
similar to (6.1), we let Ψ =

∏n
e=1 Ψe

e, where Ψe :=
∏
k∈Ke Φk ∈ Z[X] and

Ke := {l ∈ {1, . . . , r}; el = e}, and now get gcd(Ψ,Ψ′) =
∏n
e=1 Ψe−1

e ∈ Z[X],
thus Ψ

gcd(Ψ,Ψ′) =
∏n
e=1 Ψe =

∏r
k=1 Φk ∈ Z[X]. Note that an algorithm similar

to the one in (6.1) actually yields the Ψe ∈ Z[X], see Exercise (8.38). Thus we
may assume that 0 6= Ψ ∈ Z[X] is squarefree, hence disc(Ψ) 6= 0 ∈ Z.

We apply a modular technique: Let p ∈ N be a prime such that p 6 | lc(Ψ), and
let : Z→ Z/〈p〉 ∼= Fp denote the natural map; hence we have deg(Ψ) = deg(Ψ)
and Ψ =

∏r
k=1 Φk ∈ Fp[X], where p 6 | lc(Φk). Hence in particular if Ψ ∈ Fp[X]

is irreducible, then Ψ ∈ Z[X] also is. The Φk ∈ Fp[X] in general are reducible:
Actually there are irreducible monic Φ ∈ Z[X], such that Φ ∈ Fp[X] is reducible
for all primes p. Moreover, by the Chebotarev density theorem, see [3, Ch.15.3],
the modular factorization pattern varies with the prime chosen, which shows
that we cannot hope to find suitable primes with sufficiently high probability.

Hence after factorizing Ψ ∈ Fp[X] for a fixed big prime p, we try to deduce
the factorization of Ψ ∈ Z[X] by trial and error factor combination from the
modular factorization pattern found. Note that by the variability in the modular
factorization patterns, using several small primes and the Chinese remainder
theorem would require to fit the various factorizations together, which is even
harder than trying the possible factor combinations coming from a single big
prime.

Subsequently, we present another modular technique, where instead of using a
big prime, we use a small prime p, and successively improve the factorization
mod p to factorizations modulo sufficiently high powers of p. Still, this does not

48

save us from finally having to try all possible factor combinations to find the
genuine divisors. Finally, although this does not yield a practical algorithm, we
show how lattice base reduction can be used to solve the factorization problem
in polynomial time; actually this was the original reason for the invention of
LLL reduction.

(7.2) Example: A Swinnerton-Dyer polynomial.
Let Φ := 1 − 10X2 + X4 ∈ Z[X]. We have disc(Φ) = 147 456 = 214 · 32 ∈ Z,
hence Φ is squarefree, and as we show below Φ for p 6= 2, 3 also is. Indeed,
for p = 2 we have Φ = 1 + X4 = (1 + X)4 ∈ F2[X], and for p = 3 we have
Φ = 1 + 2X2 + X4 = (1 + X2)2 ∈ F3[X]. Moreover, we have Φ = (X −

√
2 −√

3)(X−
√

2+
√

3)(X+
√

2−
√

3)(X+
√

2+
√

3) = (−1−2
√

2+X2)(−1+2
√

2+
X2) = (1−2

√
3+X2)(1+2

√
3+X2) = (−5−2

√
6+X2)(−5+2

√
6+X2) ∈ C[X].

Thus for p ≥ 5 we conclude as follows: Let F∗2p := {α2;α ∈ F∗p} ≤ F∗p. Hence
if both 2, 3 ∈ F∗2p , then Φ ∈ Fp[X] factors into 4 linear factors; if 2 ∈ F∗2p and
3 ∈ F∗p \ F∗2p , then Φ ∈ Fp[X] factors into 2 irreducible factors of degree 2; and
if 3 ∈ F∗2p and 2 ∈ F∗p \ F∗2p , then Φ ∈ Fp[X] also factors into 2 irreducible
factors of degree 2. Finally, if both 2, 3 ∈ F∗p \F∗2p , then since p is odd and hence
[F∗p : F∗2p] = 2, we have 6 = 2 · 3 ∈ F∗2p , and again Φ ∈ Fp[X] also factors into 2
irreducible factors of degree 2.

Thus for all primes p ∈ N these modular factorization patterns are compatible
either with Φ ∈ Z[X] being irreducible or Φ ∈ Z[X] having a factorization into
2 factors of degree 2. But letting K2 := Q(

√
2) ⊆ C and K3 := Q(

√
3) ⊆ C, the

splitting field of Φ ∈ Q[X] is given as K := K2K3 ⊆ C; note that K2 ∩K3 = Q.
Hence we have [K : Q] = 4 and Gal(K/Q) = 〈α2, α3〉 ∼= V4, the Klein 4-group,
where α2 :

√
2 7→ −

√
2,
√

3 7→
√

3 and α3 :
√

2 7→
√

2,
√

3 7→ −
√

3. Hence
Gal(K/Q) acts transitively on the roots of Φ ∈ K[X], and thus Φ ∈ Q[X] is
irreducible.

(7.3) Algorithm: Lifting factorizations, big prime version.
Let 0 6= Ψ ∈ Z[X] be primitive and squarefree, where n := deg(Ψ), and let
p ∈ N be a prime such that p 6 | lc(Ψ). The polynomial Ψ ∈ Fp[X] is squarefree
if and only if disc(Ψ) 6= 0 ∈ Fp. Since by (4.16) we have disc(Ψ) = disc(Ψ) ∈ Fp,
the latter holds if and only if p 6 | disc(Ψ) ∈ Z. Hence there are only finitely
many primes p ∈ N such that Ψ ∈ Fp[X] is not squarefree, and we may choose
p suitably such that Ψ actually is squarefree.

If Θ | Ψ ∈ Z[X], then Mignotte’s inequality yields ||Θ||1 · ||
Ψ
Θ ||1 ≤ 2n ·

√
n+ 1 ·

||Ψ||∞. Hence letting BΨ := |lc(Ψ)| · 2n ·
√
n+ 1 · ||Ψ||∞ ∈ N, where the reason

for the additional factor |lc(Ψ)| becomes clear below, we additionally choose
p ∈ N such that p ≥ 2BΨ. Lifting the factors of Ψ ∈ Fp[X] to Z[X], let
Θ1, . . . ,Θs ∈ Z[X] be monic such that ||Θl||∞ ≤

p
2 , for all l ∈ {1, . . . , s}, and

Ψ = lc(Ψ) ·
∏s
l=1 Θl ∈ Fp[X]; note that hence the Θl ∈ Z[X] are primitive,

irreducible and pairwise coprime.

49

For a subset I ⊆ {1, . . . , s}, lifting the corresponding subproduct, let Θ, Θ̃ ∈
Z[X] such that p 6 | lc(Θ), lc(Θ̃) and ||Θ||∞, ||Θ̃||∞ ≤

p
2 as well as Θ = lc(Ψ) ·∏

l∈I Θl ∈ Fp[X] and Θ̃ = lc(Ψ) ·
∏
l∈{1,...,s}\I Θl ∈ Fp[X]. We show that

Θ · Θ̃ = lc(Ψ) ·Ψ ∈ Z[X] if and only if ||Θ||1 · ||Θ̃||1 ≤ BΨ:

If Θ · Θ̃ = lc(Ψ) · Ψ, then Mignotte’s inequality applied to lc(Ψ) · Ψ yields

||Θ||1 · ||Θ̃||1 ≤ BΨ. Conversely, we have Θ · Θ̃ = lc(Ψ) · Ψ ∈ Fp[X] anyway.
Let Θ =

∑n
i=0 ϑiX

i ∈ Z[X] and Θ̃ =
∑n
j=0 ϑ̃jX

j ∈ Z[X], then ||Θ · Θ̃||1 =

||
∑n
k=0

∑k
l=0(ϑk−lϑ̃l) · Xk||1 =

∑n
k=0 |

∑k
l=0(ϑk−lϑ̃l)| ≤

∑n
k=0

∑k
l=0 |ϑk−l| ·

|ϑ̃l| = (
∑n
k=0 |ϑk|) · (

∑n
l=0 |ϑ̃l|) = ||Θ||1 · ||Θ̃||1. Hence we have ||Θ · Θ̃||∞ ≤

||Θ · Θ̃||1 ≤ ||Θ||1 · ||Θ̃||1 ≤ BΨ, and since ||lc(Ψ) · Ψ||∞ = |lc(Ψ)| · ||Ψ||∞ ≤ BΨ as
well we conclude Θ · Θ̃ = lc(Ψ) ·Ψ.]

Note that by computing the constant coefficient ϑ0 = Θ(0) ∈ Z first, we may
exclude cases such that Θ(0) 6 | lc(Ψ) ·Ψ(0) ∈ Z from consideration in advance.
Then, the condition ||Θ||1 · ||Θ̃||1 ≤ BΨ is easily checked, replacing trial division.
If this condition holds then we have Ψ = Θ

γ(Θ) ·
Θ̃

γ(Θ̃)
∈ Z[X], where γ(·) ∈

Z denoting the content, the factors are primitive; note that γ(lc(Ψ) · Ψ) =
lc(Ψ). Thus we successively run through the subsets I ⊆ {1, . . . , s} such that
1 ≤ t := |I| ≤ s

2 , with t increasing, until we find Θ | Ψ ∈ Z[X]; hence
Θ ∈ Z[X] is irreducible; and we proceed with Θ̃ := Θ

Φ ∈ Z[X] and index sets
Ĩ ⊆ {1, . . . , s} \ I, where t ≤ Ĩ ≤ s−t

2 .

E. g. let Ψ := 1 + 6X − 7X2 − 2X3 − 6X4 + X6 ∈ Z[X]. Hence we have n =
deg(Ψ) = 6 and lc(Ψ) = 1 as well as disc(Ψ) = −10 930 094 080 = −218·5·31·269,
thus we choose p 6∈ {2, 5, 31, 269}. Moreover, we have BΨ = 26 · 7 ·

√
7 ∼

1 185, 3. Note that varying p we find several modular factorization patterns,
with varying number s ≥ 2 of modular prime divisors. We make the minimal
possible choice p := 2 371 ≥ 2 370 = 2BΨ, where s is not minimal possible, thus
leaves something to do: Factorization of Ψ ∈ Fp[X], and lifting the factors to
Z[X], yields s = 4 and Θ1 = 1 130 +X ∈ Z[X] and Θ2 = 1 133 +X ∈ Z[X], as
well as Θ3 = −1 068−1 130X+X2 ∈ Z[X] and Θ4 = 971−1 133X+X2 ∈ Z[X].

For linear, quadratic or cubic factors Θ | Ψ Mignotte’s inequality shows that
we have ||Θ||∞ ≤ 2 · 7 ·

√
7 ∼ 37, 0 and ||Θ||∞ ≤ 22 · 7 ·

√
7 ∼ 74, 1 and ||Θ||∞ ≤

23 · 7 ·
√

7 ∼ 148, 2, respectively. This or a consideration of constant coefficients
excludes the case t = 1, i. e. the singleton subsets I ⊆ {1, . . . , 4}. For t = 2
and I = {1, 2} we get Θ = −50− 108X +X2 ∈ Z[X] and Θ̃ = −901− 994X −
147X2 + 2 224X3 +X4 ∈ Z[X], thus ||Θ||∞ · ||Θ̃||∞ = 108 · 2 224 > BΨ excludes
this case. For I = {1, 4} we get Θ = −543 + 1 021X − 3X2 + X3 ∈ Z[X] and
Θ̃ = −834− 1 018X + 3X2 +X3 ∈ Z[X], thus ||Θ||∞ · ||Θ̃||∞ = 1 012 · 1 018 > BΨ

excludes this case. Note that the latter cases can also be excluded directly
using Mignotte’s inequality or considering constant coefficients. Finally, for
I = {1, 3} we get Θ = −1 + X + X3 ∈ Z[X] and Θ̃ = −1 − 7X + X3 ∈ Z[X],

50

thus ||Θ||1 · ||Θ̃||1 = 3 · 9 ≤ BΨ implies that Θ · Θ̃ = Ψ ∈ Z[X]; note that the
above analysis also shows that Θ, Θ̃ ∈ Z[X] are irreducible.

(7.4) Proposition: Hensel lifting.
Let R be an integral domain, let π ∈ R, and let 0 6= f ∈ R[X]. Moreover,
let 0 6= g, h ∈ R[X] such that deg(g) > 0, as well as lc(g) ∈ (R/〈π〉)∗ and
π 6 | lc(h), as well as f ≡ gh mod π; note that this implies π 6 | lc(f) and
deg(g) + deg(h) = deg(f). Finally, let s, t ∈ R[X] such that deg(s) < deg(h)
and π 6 | lc(s), as well as deg(t) < deg(g) and π 6 | lc(t), and sg + th ≡ 1 mod π,
i. e. g and h are Bezout coprime mod π.

Then there are ĝ, ĥ ∈ R[X] such that deg(ĝ) = deg(g) and deg(ĥ) = deg(h)
as well as ĝ ≡ g mod π and ĥ ≡ h mod π, as well as lc(ĝ) = lc(g) and f ≡
ĝĥ mod π2. Moreover, there are ŝ, t̂ ∈ R[X] such that deg(ŝ) < deg(ĥ) and
deg(t̂) < deg(ĝ), as well as ŝ ≡ s mod π and t̂ ≡ t mod π, as well as ŝĝ + t̂ĥ ≡
1 mod π2; note that here we let deg(0) < 0.

Hence ĝ, ĥ, ŝ, t̂ ∈ R[X] fulfill the assumptions made for g, h, s, t ∈ R[X], with
π ∈ R replaced by π2 ∈ R; note that we have π2 6 | lc(h) anyway, and that from
lc(g)·α−1 = βπ, for some α, β ∈ R, we get lc(g)·α(1−βπ) = (1+βπ)(1−βπ) =
1− β2π2, and thus lc(g) ∈ (R/〈π2〉)∗.

Proof. Let δ := 1
π · (f − gh) ∈ R[X]. Since lc(g) ∈ (R/〈π〉)∗, by quotient and

remainder in R/〈π〉[X] let q, r ∈ R[X] such that deg(r) < deg(g) and π 6 | lc(r),
as well as r ≡ tδ − qg mod π, and let u ∈ R[X] such that π 6 | lc(u), and
u ≡ sδ + qh mod π. Let ĝ := g + rπ ∈ R[X] and ĥ := h+ uπ ∈ R[X].

Then since sg + th ≡ 1 mod π we have f − ĝĥ ≡ f − (g + rπ)(h + uπ) ≡
δπ− (ug+ rh)π− ruπ2 ≡ δπ− (sδ+ qh)gπ− (tδ− qg)hπ ≡ δπ− (sg+ th)δπ ≡
(1−sg− th)δπ ≡ 0 mod π2. We may assume u, r 6= 0. From deg(r) < deg(g) we
get deg(ĝ) = deg(g) and lc(ĝ) = lc(g) as well as ĝ ≡ g mod π. Moreover, we have
rh+ug ≡ (tδ−qg)h+(sδ+qh)g ≡ (th+sg)δ ≡ δ mod π. Since deg(δ) ≤ deg(f),
and deg(rh) = deg(r) + deg(h) < deg(g) + deg(h) = deg(f) as well as π 6 | lc(u)
and lc(g) ∈ (R/〈π〉)∗, we conclude that deg(ug) = deg(u) + deg(g) ≤ deg(f)
and hence deg(u) ≤ deg(h). Thus deg(ĥ) ≤ deg(h), and since ĥ ≡ h mod π and
π 6 | lc(h) we conclude deg(ĥ) = deg(h).

Let ε := 1
π ·(1−sĝ−tĥ) ∈ R[X]. Again by quotient and remainder inR/〈π〉[X] let

q, r ∈ R[X] such that deg(r) < deg(ĝ) and π 6 | lc(r), as well as r ≡ tε−qĝ mod π,
and let u ∈ R[X] such that π 6 | lc(u), and u ≡ sε+ qĥ mod π. Let ŝ := s+uπ ∈
R[X] and t̂ := t+ rπ ∈ R[X].

Then we have ŝĝ + t̂ĥ ≡ (s + uπ)ĝ + (t + rπ)ĥ ≡ (1 − επ) + (uĝ + rĥ)π +
ruĝĥπ2 ≡ (1 − επ) + (sε + qĥ)ĝπ + (tε − qĝ)ĥπ ≡ (1 − επ) + (sĝ + tĥ)επ ≡
(1−επ)+(1−επ)επ ≡ 1−ε2π2 ≡ 1 mod π2. Again we may assume u, r 6= 0. Since
deg(r) < deg(ĝ) and deg(t) < deg(g) = deg(ĝ) we conclude that deg(t̂) < deg(ĝ)
as well as t̂ ≡ t mod π, similarly ŝ ≡ s mod π. Finally, since π 6 | lc(s), lc(u),

51

thus π | lc(uπ) and π2 6 | lc(uπ), we have π2 6 | lc(ŝ), thus since lc(ĝ) ∈ (R/〈π2〉)∗
and deg(t̂ĥ) = deg(t̂) + deg(ĥ) < deg(ĝ) + deg(ĥ) = deg(f), we conclude that
deg(ŝĝ) = deg(ŝ) + deg(ĝ) < deg(f), and hence deg(ŝ) < deg(ĥ).]

(7.5) Algorithm: Lifting factorizations, Zassenhaus (1969).
Let 0 6= Ψ ∈ Z[X] be primitive and squarefree, where n := deg(Ψ) > 0, and let
p ∈ N be a prime such that p 6 | lc(Ψ) and that Ψ ∈ Fp[X] is squarefree. Let
again Θ1, . . . ,Θs ∈ Z[X] be monic, irreducible and pairwise coprime, such that
||Θl||∞ ≤

p
2 , for all l ∈ {1, . . . , s}, and Ψ = lc(Ψ) ·

∏s
l=1 Θl ∈ Fp[X], where the

Θl ∈ Fp[X] are irreducible.

To apply Hensel lifting, for R = Z and modulus p2i ∈ Z, where i ∈ N0, we
consider the factorization Ψ ≡ Θ · Θ̃ mod p, where Θ, Θ̃ ∈ Z[X] such that
p 6 | lc(Θ), lc(Θ̃) and ||Θ||∞, ||Θ̃||∞ ≤

p
2 as well as Θ ≡ lc(Ψ) ·

∏k
l=1 Θl mod p and

Θ̃ ≡
∏s
l=k+1 Θl mod p, and k := b s2c. Since the Θl ∈ Z[X] are monic and p 6 |

lc(Ψ), where Z/〈p〉 ∼= Fp is a field, the assumptions in (7.4) on leading coefficients
are fulfilled, and since Ψ is squarefree the extended Euclidean algorithm in Fp[X]
yields Bezout coefficients fulfilling the degree assumptions.

Letting BΨ := |lc(Ψ)|·2n ·
√
n+ 1·||Ψ||∞ ∈ N, and e := dlog2(logp(2BΨ))e ∈ N as

well as π := p2e ≥ 2BΨ, iterated application of Hensel lifting yields Θ̂, ̂̃Θ ∈ Z[X]

such that ||Θ̂||∞, ||
̂̃Θ||∞ ≤ π

2 and Ψ ≡ Θ̂ · ̂̃Θ mod π. Applying this recursively to

Θ̂, ̂̃Θ ∈ Z[X], we finally obtain Ψ ≡ lc(Ψ) ·
∏s
l=1 Θ̂l mod π, where ||Θ̂l||∞ ≤

π
2

and Θ̂l ≡ Θl mod p, where the Θ̂l ∈ Z[X] are monic.

Now we proceed similar to (7.3): For a subset I ⊆ {1, . . . , s} let Θ, Θ̃ ∈
Z[X] such that p 6 | lc(Θ), lc(Θ̃) and ||Θ||∞, ||Θ̃||∞ ≤

π
2 as well as Θ ≡ lc(Ψ) ·∏

l∈I Θ̂l mod π and Θ̃ ≡ lc(Ψ) ·
∏
l∈{1,...,s}\I Θ̂l mod π. Again we have Θ · Θ̃ =

lc(Ψ)·Ψ ∈ Z[X] if and only if ||Θ||1 ·||Θ̃||1 ≤ BΨ; and in this case Ψ = Θ
γ(Θ) ·

Θ̃

γ(Θ̃)
∈

Z[X]. Thus again we successively run through the subsets I ⊆ {1, . . . , s} until
we find Θ | Ψ ∈ Z[X], and proceed recursively with Θ̃ := Θ

Φ ∈ Z[X].

(7.6) Lemma. Let R be a principal ideal domain, let p ∈ R be a prime, and
let : R → R/〈p〉 =: F be the natural map; note that F is a field. Let 0 6=
f, g, h ∈ R[X] such that deg(f) > 0 and p 6 | lc(g), lc(h) as well as f ≡ gh mod p
and gcd(g, h) = 1 ∈ F [X]; note that hence g and h are Bezout coprime mod p.

Let ĝ, ĥ ∈ R[X] be the associated Hensel lifts, with respect to pe for some e ∈ N.
Let g̃, h̃ ∈ R[X] such that lc(g̃) = lc(ĝ) and lc(h̃) = lc(ĥ), as well as g̃ ≡ g mod p
and h̃ ≡ h mod p, and f ≡ g̃h̃ mod pe. Then g̃ ≡ ĝ mod pe and h̃ ≡ ĥ mod pe.

Proof. Assume that g̃ 6≡ ĝ mod pe or h̃ 6≡ ĥ mod pe. Let 1 ≤ i < e be maximal
such that both g̃ ≡ ĝ mod pi and h̃ ≡ ĥ mod pi. Hence there are u, v ∈ R[X]
such that g̃ − ĝ = upi and h̃ − ĥ = vpi, where p 6 | u or p 6 | v. We may assume

52

that p 6 | u. Hence from 0 ≡ g̃h̃− ĝĥ ≡ g̃(h̃− ĥ) + ĥ(g̃− ĝ) ≡ (g̃v+ ĥu)pi mod pe

we conclude p | pe−i | g̃v + ĥu ∈ R[X].

Letting s, t ∈ R[X] such that deg(s) < deg(h) and deg(t) < deg(g), as well as
p 6 | lc(s), lc(t) and sg + th ≡ 1 mod p, we have sg + th = 1 ∈ F [X]. Thus

we get 0 = t(g̃v + ĥu) = tgv + (1 − sg)u = (tv − su)g + u ∈ F [X], which
implies g | u ∈ F [X]. Since lc(g̃) = lc(ĝ) we have deg(u) ≤ deg(u) < deg(g̃) =
deg(ĝ) = deg(g) = deg(g). Thus we conclude u = 0, a contradiction.]

(7.7) Lemma. Let R be a principal ideal domain, let p ∈ R be a prime, and let
: R → R/〈p〉 =: F be the natural map. Let 0 6= f ∈ R[X] such that p 6 | lc(f)

and f ∈ F [X] is squarefree, let g ∈ R[X] such that g | f , and let h ∈ R[X] such
that p 6 | lc(h) and deg(h) > 0 as well as f ≡ hu mod pe, for some u ∈ R[X]
such that p 6 | lc(u) and some e ∈ N, and g ≡ hv mod p, for some v ∈ R[X] such
that p 6 | lc(v). Then we have g ≡ hv̂ mod pe, for some v̂ ∈ R[X].

Proof. We have p 6 | lc(g) and g ∈ F [X] is squarefree, hence gcd(h, v) = 1 ∈
F [X], thus h and v are Bezout coprime modp. Hence Hensel lifting yields
ĥ, v̂ ∈ R[X] such that ĥ ≡ h mod p and v̂ ≡ v mod p, as well as lc(ĥ) = lc(h)
and deg(v̂) = deg(v), as well as g ≡ ĥv̂ mod pe.

Letting w ∈ R[X] such that f = gw, we have p 6 | lc(w) and ĥ · (v̂w) ≡ gw ≡ f ≡
hu mod pe. Moreover, from hvw = hu ∈ F [X] we get v̂w = vw = u ∈ F [X].
Since lc(ĥ) = lc(h) and lc(v̂w) ≡ lc(u) mod p, by (7.6) there is p 6 | λ ∈ R such
that v̂w ≡ uλ mod pe and ĥ ≡ h mod pe. Thus g ≡ ĥv̂ ≡ hv̂ mod pe.]

(7.8) Lemma. Let 0 6= f, g ∈ Z[X] such that n := deg(f) > 0 and m :=
deg(g) > 0. Moreover, let π ∈ N such that ||f ||m2 · ||g||

n
2 < π, and let 0 6= h ∈ Z[X]

monic such that deg(h) > 0 and f ≡ hh′ mod π as well as g ≡ hh′′ mod π, for
some h′, h′′ ∈ Z[X]. Then gcd(f, g) ∈ Z[X] is non-constant.

Proof. Assume that gcd(f, g) ∈ Z[X] is constant. By (4.4) and (4.5) there are
s, t ∈ Z[X] such that sf + tg = res(f, g) 6= 0 ∈ Z. Hence res(f, g) ≡ h(sh′ +
th′′) mod π, and since h is monic and deg(h) > 0, we have π | res(f, g) ∈ Z. By
Hadamard’s inequality we have |res(f, g)| ≤ ||f ||m2 · ||g||

n
2 < π, a contradiction.]

(7.9) Algorithm: Factorization using lattice base reduction.
Let 0 6= Ψ ∈ Z[X] be primitive and squarefree, where n := deg(Ψ) > 0, and
let p ∈ N be a prime such that p 6 | lc(Ψ) and that Ψ ∈ Fp[X] is squarefree.
By Mignotte’s inequality let BΨ := 2n ·

√
n+ 1 · ||Ψ||∞ ∈ N, and let e :=

dlog2(logp(2
n2
2 ·B2n

Ψ))e ∈ N, thus π := p2e ≥ 2
n2
2 ·B2n

Ψ .

By Hensel lifting let Θ1, . . . ,Θs ∈ Z[X] be monic, irreducible and pairwise co-
prime, such that ||Θi||∞ ≤

π
2 , for all i ∈ {1, . . . , s}, and Ψ ≡ lc(Ψ) ·

∏s
i=1 Θi mod

π, in particular we have Ψ = lc(Ψ) ·
∏s
i=1 Θl ∈ Fp[X], where the Θi ∈ Fp[X] are

53

irreducible. Let Θ ∈ {Θ1, . . . ,Θs} and l := deg(Θ) > 0, and let
∑deg(Φ)
j=0 ϕjX

j =
Φ | Ψ ∈ Z[X] be irreducible such that Θ | Φ ∈ Fp[X]. Then by (7.7) we have
Φ ≡ ΘΘ̃ mod π for some Θ̃ ∈ Z[X], where deg(Θ̃) = deg(Φ)− l ≥ 0.

For l < m ≤ n let L ⊆ Rm be the Z-lattice generated by the coefficient tuples of
the polynomials {Θ,Θ ·X, . . . ,Θ ·Xm−l−1} ⊆ Z[X] and {π, πX, . . . , πX l−1} ⊆
Z[X], with respect to the Z-basis {1, X, . . . ,Xm−1} ⊆ Z[X]<m, i. e. letting
Θ =

∑l
k=0 ϑkX

k, the Z-lattice L is generated by the rows of the following
matrix, where the upper half consists of m− l rows, and the lower half consists
of l rows:

ϑ0 ϑ1 . . . ϑl−1 1
ϑ0 . . . ϑl−2 ϑl−1 1

.
.

ϑ0 1
π

π
. . .

π

∈ Zm×m.

We have [g0, . . . , gm−1] ∈ L if and only if for Γ :=
∑m−1
j=0 gjX

j ∈ Z[X]<m there
are q ∈ Z[X]<m−l and r ∈ Z[X]<l such that Γ = qΘ+rπ ∈ Z[X], which holds if
and only if there is q ∈ Z[X]<m−l such that Γ ≡ qΘ mod π: If [g0, . . . , gm−1] ∈
L, then indeed we have Γ ≡ qΘ mod π. If conversely Γ :=

∑m−1
j=0 gjX

j ∈
Z[X]<m such that there is q ∈ Z[X]<m−l such that Γ ≡ qΘ mod π, i. e. there is
r ∈ Z[X]<m such that Γ = qΘ + rπ ∈ Z[X], then since Θ ∈ Z[X] is monic there
are q′ ∈ Z[X]<m−l and r′ ∈ Z[X]<l such that r = q′Θ + r′ ∈ Z[X]. This yields
Γ = qΘ + (q′Θ + r′)π = (q+ q′π)Θ + r′π ∈ Z[X], and since deg(q+ q′π) < m− l
and deg(r′) < l we have [g0, . . . , gm−1] ∈ L.

Hence for m > deg(Φ) ≥ l we have deg(Θ̃) < m−l, and from Φ ≡ ΘΘ̃ mod π we
conclude [ϕ0, . . . , ϕm−1] ∈ L, where we let ϕj := 0 for j > deg(Φ). Still letting
m > deg(Φ), let [γ0, . . . , γm−1] ∈ L be the first element of an LLL reduced Z-
basis of L, with respect to parameter γ = 3

4 , and let Γ :=
∑m−1
j=0 γjX

j ∈ Z[X].

Since ||Φ||2 ≤ ||Φ||1 ≤ BΨ by (5.7) we have ||Γ||2 ≤ 2
m−1

2 ·min(L) ≤ 2
n
2 · ||Φ||2 ≤

2
n
2 ·BΨ. Hence ||Γ||deg(Φ)

2 · ||Φ||deg(Γ)
2 ≤ 2

n2
2 ·B2n

Ψ ≤ π. Since Γ ≡ qΘ mod π and
Φ ≡ ΘΘ̃ mod π, by (7.8) we have gcd(Γ,Φ) ∈ Z[X] non-constant, thus since Φ ∈
Z[X] is irreducible we have gcd(Γ,Φ) ∼ Φ ∈ Z[X]. Hence for m = deg(Φ) + 1
we have m− 1 = deg(Φ) ≤ deg(Γ) < m, and thus Γ ∼ Φ ∈ Z[X].

Hence we successively let m ∈ {l+1, . . . , n}, as above compute the first element
Γ of an LLL reduced Z-basis of L, and check whether Γ | Ψ ∈ Z[X]. Note
that we also can apply other checks, e. g. the one using 1-norms applied in the
Zassenhaus algorithm.

54

(7.10) Remark. We briefly comment on running times: The input length of
0 6= Ψ ∈ Z[X] of degree deg(Ψ) = n is asymptotically ∼ n ln(||Ψ||∞).

Squarefree factorization needs a gcd computation gcd(Ψ,Ψ′) ∈ Z[X], where
Ψ′ := ∂Ψ

∂X ∈ Z[X] is the formal derivative; since ||Ψ′||∞ ≤ n · ||Ψ||∞ the bit
lengths of the coefficients of the polynomials occurring in the extended Euclidean
algorithm are by (4.12) in O(n · ln(n2 · ||Ψ||∞)), hence this needs a polynomial
number of bit operations. Moreover, a division Ψ

gcd(Ψ,Ψ′) ∈ Z[X] is needed,
which as well needs a polynomial number of bit operations.

In the big prime version to lift factorizations we choose p ≥ |lc(Ψ)| · 2n+1 ·√
n+ 1 · ||Ψ||∞, where we have to avoid prime divisors of disc(Ψ) ∈ Z. As by

the proof of (4.12) we have |disc(Ψ)| = |res(Ψ,Ψ′)| ≤ (n + 1)n · n2n · ||Ψ||2n∞ ,
we additionally choose p ≥ |disc(Ψ)|, thus the bit length ln(p) is a polynomial
in n ln(||Ψ||∞). Note that by Bertrand’s postulate there always is a prime
at most twice as large as a given positive integer. Polynomial factorization in
Fp[X] deterministically needs at least O(p) finite field operations, hence has
exponential running time, while a randomized version needs a number of finite
field operations which is a polynomial in n ln(p). The coefficients of the integer
polynomials occurring are bounded by p, hence a polynomial number of bit
operations for the ring operations in Z[X] is needed. Alone 2s−1 subsets of the
index set {1, . . . , s} have to be checked, which needs exponential running time.

In the Zassenhaus algorithm we choose a small prime p 6 | lc(Ψ), where still
we have to avoid prime divisors of disc(Ψ) ∈ Z. Using the prime number
theorem, see [3, Ch.18.4], a prime p fulfilling these requirements and such
that p ∼ n · ln(n · ||Ψ||∞) can be found deterministically needing a polynomial
number of bit operations, see [3, Cor.18.12]. Thus polynomial factorization
in Fp[X], deterministically needing a number of finite field operations which
is a polynomial in n ln(p), needs a polynomial number of bit operations. The
number of Hensel lifting steps e is polynomial, and the coefficients of the integer
polynomials occurring are bounded by π = p2e ∼ |lc(Ψ)| · 2n+1 ·

√
n+ 1 · ||Ψ||∞,

hence a polynomial number of bit operations for the ring operations in Z[X] is
needed. Still, alone 2s−1 subsets of the index set {1, . . . , s} have to be checked,
which needs exponential running time.

Factorization using lattice base reduction avoids the factor combination step
in the Zassenhaus algorithm. The elements, b say, of the Z-bases defining the
relevant Z-lattices fulfill ||b|| ≤ π ∼ 2

n2
2 · (2n ·

√
n+ 1 · ||Ψ||∞)2n, thus by (5.9) the

LLL algorithm needs O(n4 · ln(π)) ring operations in Q, where the numerators
and denominators occurring have bit length in O(n · ln(π)), which amounts to a
polynomial number of bit operations; moreover the LLL algorithm is performed
polynomially many times. Although the running time still is dominated by the
lattice base reduction step, we thus get an overall polynomial running time.

55

8 Exercises (in German)

(8.1) Aufgabe: Turing-Maschinen.
Man gebe eine Turing-Maschine über dem Alphabet X = {0, 1} an, die für n ∈
N0 in Binärdarstellung als Eingabe den Nachfolger n+1 ∈ N in Binärdarstellung
ausgibt.

Beweis. Siehe [13, Ex.2.2].]

(8.2) Aufgabe: k-Band-Turing-Maschinen.
a) Für k ∈ N gebe man eine Definition einer k-Band-Turing-Maschine über
dem Alphabet X mit Transitionsfunktion

τ :
(
X

.
∪ Y

)k
× (S \ {s∞}) −→

(
(X

.
∪ Y)× {←, ↑,→}

)k
× S

an, und definiere Eingaben, Ausgaben und Konfigurationen.
b) Man zeige: Wird die Sprache L durch eine k-Band-Turing-Maschine mit
Laufzeit f akzeptiert, so wird L von einer Turing-Maschine mit Laufzeit in
O(f2) akzeptiert.

Beweis. Siehe [13, Ch.2.3] oder [1, La.10.1].]

(8.3) Aufgabe: Nichtdeterministische Turing-Maschinen.
Man zeige: Wird die Sprache L durch die nichtdeterministische Turing-Maschine
T mit Laufzeit f entschieden, so wird L von einer 3-Band-Turing-Maschine mit
Laufzeit in O(n 7→ c

f(n)
T) entschieden, wobei cT > 1 eine von T abhängige

Konstante ist.

Beweis. Siehe [13, Ch.2.3].]

(8.4) Aufgabe: Chernoff-Schranke.
Es seien X1, . . . , Xk unabhängige Zufallsvariablen mit Wertebereich {0, 1} und
P [Xi = 1] = ε, für 0 < ε < 1, sowie X :=

∑k
i=1Xi. Man zeige: Für 0 < ϑ ≤ 1

gilt P [X ≥ (1 + ϑ)εk] ≤ e− 1
2ϑ

2εk.

Hinweis. Man betrachte die Zufallsvariable etX , für t ∈ R, und verwende
P [X ≥ sE(X)] ≤ 1

s , für s > 0, und die Konvexität der Exponentialfunktion.

Beweis. Siehe [13, La.11.9].]

(8.5) Aufgabe: Asymptotisches Verhalten.
a) Man zeige ohne Benutzung der Stirling-Formel: Es gelten ln(n!) ∈ O(n ln(n))
und n ln(n) ∈ O(ln(n!)).
b) Für k ∈ N zeige man: Es gilt

∑n
i=1 i

k ∼ nk+1

k+1 .

56

c) Man betrachte die Fibonacci-Zahlen Fn := Fn−1 + Fn−2 ∈ N, für n ≥ 3,
wobei F2 = F1 := 1. Man gebe eine einfache Funktion g mit Fn ∼ g(n) an.
d) Man betrachte die folgenden Funktionen N\{1} → R>0, wobei 0 < ε < 1 < c:

1 < ln(ln(n)) < ln(n) < e(ln(n))
1
2 ·(ln(ln(n))

1
2 < nε < nc < nln(n) < cn < nn < cc

n

Man zeige, daß für je zwei dieser Funktionen mit f < g auch f ∈ o(g) gilt.

Beweis. a) Siehe [10, Ex.2.2.2, Exc.2.2.4]. b) Siehe [10, Ex.2.1.3].
c) Siehe [10, Exc.2.2.2]. d) Siehe [12, Ex.2.58].]

(8.6) Aufgabe: Laufzeitabschätzungen.
a) Man zeige: Für n ∈ N kann man n! mit O(n2 · ln2(n)) Bitoperationen berech-
nen. Wieviele Bitoperationen braucht man zur Berechnung von nn?
b) Man zeige: Für n ∈ N gilt

∑n
i=1 i

2 = n(n+1)(2n+1)
6 . Wieviele Bitoperationen

braucht man zur Berechnung der linken bzw. der rechten Seite dieser Gleichung?
c) Für i ∈ N sei Fi ∈ N die zugehörige Fibonacci-Zahl. Wieviele Bitoperationen
braucht man zur Berechnung von

∑n
i=1 Fi bzw.

∏n
i=1 Fi, für n ∈ N?

d) Für 1 6= z ∈ N und n ∈ N seien Pz,n := {p ∈ N prim; bz(p) ≤ n}. Wieviele
Bitoperationen braucht man zur Berechnung von

∑
Pz,n bzw.

∏
Pz,n?

Beweis. a) Siehe [10, Ex.2.3.3] und [10, Exc.2.3.1]. b) Siehe [10, Exc.2.3.3].
c) Siehe [10, Exc.2.3.5]. d) Siehe [10, Exc.2.3.6].]

(8.7) Aufgabe: Subtraktion.
Man gebe einen Algorithmus zur Subtraktion zweier Zahlen n,m ∈ N an. Wie
entscheidet man algorithmisch, ob n ≥ m gilt?

Beweis. Siehe [3, Exc.2.3].]

(8.8) Aufgabe: Matrixmultiplikation.
Für k,m, n ∈ N seien A ∈ Zk×m und B ∈ Zm×n. Wieviele Ringoperationen
braucht man zur klassischen Berechnung des Matrixprodukts AB ∈ Zk×n?

Beweis. Siehe [3, Exc.2.11].]

(8.9) Aufgabe: Euklidischer Algorithmus.
Für q,m, n ∈ N, q 6= 1 zeige man: Es gilt ggT(qm − 1, qn − 1) = qggT(m,n) − 1.

(8.10) Aufgabe: Satz von Lamé.
Es seien m ≥ n ∈ N. Man zeige, daß der erweiterte Euklidische Algorithmus
höchstens l = d ln(

√
5·n)

ln(1+
√

5
2)
e − 2 Schritte benötigt.

Beweis. Siehe [2, Thm.1.3.2].]

57

(8.11) Aufgabe: Binärer ggT-Algorithmus.
Es seien m,n ∈ N.

1. k ← 0.
2. while 0 ≡ m mod 2 and 0 ≡ n mod 2 do

m← m
2

n← n
2

k ← k + 1
3. while 0 ≡ m mod 2 do m← m

2
4. while 0 ≡ n mod 2 do n← n

2
5. repeat

t← m−n
2 .

if t 6= 0 then while 0 ≡ t mod 2 do t← t
2

if t > 0 then m← t
if t < 0 then n← −t
until t = 0

6. return 2k ·m
Man zeige, daß dieser Algorithmus ggT(m,n) berechnet, und gebe unter Ver-
wendung von max{b2(m), b2(n)} eine Abschätzung für die benötigte Anzahl
von Bitoperationen an. Welche Vorteile besitzt dieser Algorithmus gegenüber
dem erweiterten Euklidischen Algorithmus, wenn es nur auf die Berechnung von
ggT(m,n) ankommt?

Beweis. Siehe [2, Alg.1.3.5].]

(8.12) Aufgabe: Arithmetik in Z.
Man implementiere die folgenden Algorithmen zur Arithmetik in Z, unter Be-
nutzung eines Computeralgebra-Systems wie MAPLE, und vergleiche Laufzeiten
und asymptotisches Verhalten:
a) Klassischer und Karatsuba-Algorithmus zur Multiplikation.
b) Klassischer und binärer Algorithmus zum modularen Potenzieren.
c) Erweiterter Euklidischer und binärer Algorithmus zur ggT-Berechnung.

(8.13) Aufgabe: Modulare Inversion.
a) Man gebe einen Algorithmus an, der für m ∈ N und k ∈ {0, . . . ,m− 1} mit
k ∈ (Z/〈m〉)∗ das modulare Inverse l ∈ {0, . . . ,m − 1} mit kl = 1 ∈ Z/〈m〉
berechnet. Man gebe eine Laufzeitabschätzung an.
b) Ist m ∈ N eine Primzahl, so gebe man einen alternativen Algorithmus zur
Berechnung von modularen Inversen an, der den Satz von Fermat benutzt. Man
gebe eine Laufzeitabschätzung an.

Beweis. a) Siehe [3, Ch.4.2]. b) Siehe [3, Ch.4.4].]

58

(8.14) Aufgabe: Lineare diophantische Gleichungen.
Es seien a, b, c ∈ Z mit [a, b] 6= [0, 0]. Man zeige: Die lineare diophan-
tische Gleichung ax + by = c hat genau dann eine Lösung [x, y] ∈ Z2, wenn
ggT(a, b) | c gilt. Wie sieht in diesem Fall die Lösungsgesamtheit aus? Was
bedeutet das für die Entscheidbarkeit des Lösungsproblems für lineare diophan-
tische Gleichungen?

Beweis. Siehe [3, Ch.4.5].]

(8.15) Aufgabe: Chinesischer Restsatz.
Es sei k ∈ N. Man gebe einen Algorithmus an, der für n1, . . . , nk ∈ N mit
ggT(ni, nj) = 1, für alle i, j ∈ {1, . . . , k}, sowie ri ∈ {0, . . . , ni − 1} die simul-
tanen Kongruenzen r ≡ ri mod ni löst, und die eindeutig bestimmte Lösung
r ∈ {0, . . . , n − 1}, wobei n :=

∏k
i=1 ni ∈ N, berechnet. Man zeige, daß dazu

höchstens O(ln2(n)) Bitoperationen benötigt werden.

Beweis. Siehe [3, Ch.5.4].]

(8.16) Aufgabe: Polynomarithmetik.
Es seien R ein kommutativer Ring, F ein Körper, und R[X] sowie F [X] die
zugehörigen Polynomringe.
a) Man formuliere den Karatsuba-Algorithmus zur Multiplikation der Polynome
0 6= f, g ∈ R[X], und zeige für deg(f) ≥ deg(g), daß hierzu O(deg(f)log2 3)
Ringoperationen im Ring R benötigt werden.
b) Man formuliere den erweiterten Euklidischen Algorithmus für Polynome 0 6=
f, g ∈ F [X], und zeige, daß hierzu O(deg(f) · deg(g)) Ringoperationen im Ring
F benötigt werden.
c) Man gebe einen Algorithmus zum Lösen simultaner Kongruenzen über dem
Polynomring F [X], zusammen mit einer Laufzeitabschätzung, an.

(8.17) Aufgabe: Primitive Einheitswurzeln.
Es seien F ein Körper und 1 6= n ∈ N mit char(F) 6 | n. Ist X ∈ F [X]/〈Xn− 1〉
eine primitive n-te Einheitswurzel?

Beweis. Siehe [3, Exc.8.28].]

(8.18) Aufgabe: FFT-Algorithmus.
Es seien R ein kommutativer Ring, l ∈ N und n := 2l, sowie ω ∈ R eine primitive
n-te Einheitswurzel. Man gebe einen FFT-Algorithmus zur Berechnung der
diskreten Fourier-Transformation δω für f ∈ R[X]<n an, der auf der Zerlegung
f = f0(X2) +X · f1(X2) ∈ R[X], für geeignete f0, f1 ∈ R[X]<n

2
, beruht. Man

gebe eine Laufzeitabschätzung an.

Beweis. Siehe [3, Exc.8.25].]

59

(8.19) Aufgabe: 3-adischer FFT-Algorithmus.
Es seien R ein kommutativer Ring, n = 3l für ein l ∈ N, und ω ∈ R eine prim-
itive n-te Einheitswurzel. Man gebe einen FFT-Algorithmus zur Berechnung
der diskreten Fourier-Transformation δω : Rn → Rn an. Man zeige, daß dazu
höchstens O(n ln(n)) Ringoperationen benötigt werden.

Hinweis. Für f ∈ R[X]<n betrachte man f mod (X
n
3 −ω

jn
3) für j ∈ {0, . . . , 2}.

Beweis. Siehe [3, Exc.8.26].]

(8.20) Aufgabe: Schönhage-Algorithmus.
Es seien R ein kommutativer Ring mit 3 ∈ R∗ und 2n = 2 ·3l für ein l ∈ N. Man
gebe einen zum Schönhage-Strassen-Algorithmus analogen Algorithmus an, der
für f, g ∈ R[X]<2n die kubische Konvolution h ∈ R[X]<2n mit h ≡ fg mod
(X2n +Xn + 1) berechnet. Man zeige, daß dazu höchstens O(n ln(n) ln(ln(n)))
Ringoperationen benötigt werden.

Hinweis. Es seien m := 3d
l
2 e und t := 3b

l
2 c, sowie ω ∈ R[X]/〈X2m +Xm + 1〉

eine primitive 3t-te Einheitswurzel. Man schreibe f = f ′(X,Xm) und g =
g′(X,Xm) für f ′, g′ ∈ R[X,Y], und für j ∈ {1, 2} seien h′j ∈ R[X,Y] mit
f ′(ωjY)g′(ωjY) ≡ h′j(ω

jY) mod (Y t − 1) in (R[X,Y]/〈X2m + Xm + 1〉)[Y].
Man setze h′ := 2ωt+1

3 ·(Y t(h′2−h′1)+ω2th′1−ωth′2) ∈ R[X,Y]. Zur Berechnung
der h′j verwende man den 3-adischen FFT-Algorithmus und Rekursion.

Beweis. Siehe [3, Exc.8.30].]

(8.21) Aufgabe: Sylvester-Matrix.
Es seien F ein Körper und 0 6= f, g ∈ F [X] mit deg(f) + deg(g) ≥ 1. Wie
kann man mittels des Gauß-Algorithmus, angewendet auf die Sylvester-Matrix
S(f, g), den ggT(f, g) ∈ F [X] bestimmen?

(8.22) Aufgabe: Sylvester-Matrix.
Es seien F ein Körper und 0 6= f, g ∈ F [X] mit deg(f)+deg(g) ≥ 1. Man zeige:
Es gilt dimF (ker(S(f, g))) = deg(ggT(f, g)).

Hinweis. Es gibt s ∈ F [X]deg(g)−k und t ∈ F [X]deg(f)−k mit 0 6= [s, t] ∈
ker(ϕ(f, g)) genau dann, wenn k ∈ {1, . . . ,deg(ggT(f, g))} ist.

Beweis. Siehe [3, Exc.6.16].]

(8.23) Aufgabe: Resultanten.
Es seien R ein faktorieller Ring und f, g, h ∈ R[X]. Man zeige:
a) Für λ ∈ R gilt ggT(f(λ), g(λ)) | res(f, g) ∈ R.
b) Es gilt res(f, gh) = res(f, g) · res(f, h) ∈ R.
c) Ist 0 ≤ k ≤ min{deg(f),deg(g)}, so gilt ggT(lc(f), lc(g)) | resk(f, g) ∈ R.

60

Beweis. a) Siehe [3, Exc.6.10]. b) Siehe [3, Exc.6.12]. c) Siehe [3, Exc.6.41].]

(8.24) Aufgabe: Fundamentalsatz über Subresultanten.
Es seien F ein Körper und 0 6= f, g ∈ F [X]. Für i ∈ {0, . . . , l} seien λi ∈ F ∗
die Leitkoeffizienten und ni ∈ N0 die Restgrade im normierten Euklidischen
Algorithmus für f und g. Für i ∈ {1, . . . , l} zeige man: Es gilt resni(f, g) =
(−1)

∑i−1
j=1(nj−1−ni)(nj−ni) · λn1−ni

0 ·
∏i
j=1 λ

nj−1−ni
j .

Hinweis. Siehe Aufgabe (8.21).

(8.25) Aufgabe: Collins-Algorithmus.
Es seien R ein faktorieller Ring, 0 6= f, g ∈ R[X] primitiv mit deg(f) ≥ deg(g).

1. r0 ← f , r1 ← g
2. n0 ← deg(f), λ0 ← 1, η0 ← 1
3. i← 1
4. while ri 6= 0 do

ni ← deg(ri)
δi ← ni−1 − ni
λi ← lc(ri)
ηi ← η1−δi

i−1 · λ
δi
i

r̂i+1 ← (λδi+1
i · ri−1) mod ri # Pseudo-Division

ri+1 ← 1

λi−1·η
δi
i−1

· r̂i+1

i← i+ 1
5. return ri−1 # i = l + 1

a) Man zeige: Für i ∈ {1, . . . , l} gelten ηi = ±resni(f, g) ∈ R und ri ∈ R[X].
b) Man zeige: Sind R = Z und ||f ||∞, ||g||∞ ≤ B, für ein B > 0, so gilt für
i ∈ {1, . . . , l} auch ||ri||∞ ≤ (n+ 1)

m
2 · (m+ 1)

n
2 ·Bn+m.

c) Was ist der Vorteil des Collins-Algorithmus im Vergleich zum primitiven
Euklidischen Algorithmus und zum normierten Euklidischen Algorithmus über
Quot(R)[X]? Wie kann man die Resultante res(f, g) mit ihm berechnen?

Hinweis zu a). Was bedeutet Pseudo-Division für die verallgemeinerte
Sylvester-Matrix Sni(f, g)? Außerdem betrachte man geeignet vergrößerte ve-
rallgemeinerte Sylvester-Matrizen S̃ni−1(f, g), um die Koeffizienten von ri als
Determinanten zu beschreiben.

Beweis. Siehe [8, p.429ff., Exc.4.6.1.24] und [2, Alg.3.3.7].]

(8.26) Aufgabe: Bivariate Polynome.
Es seien F ein Körper und 0 6= f, g ∈ F [X] mit degX(f),degX(g) ≤ n und
degY (f),degY (g) ≤ d, für n, d ∈ N0, sowie lcX(f) = lcX(g) = 1. Man zeige: Ist
ggT(f(X,λ), g(X,λ)) ∈ F [X] nicht kontant für mindestens 2nd + 1 paarweise
verschiedene λ ∈ F , so ist degX(ggT(f, g)) > 0.

61

Beweis. Siehe [3, Exc.6.20].]

(8.27) Aufgabe: Ebene Kurven.
Es seien f := (Y 2 + 6)(X − 1)− Y (X2 + 1) ∈ Z[X,Y] und g(X,Y) := f(Y,X),
sowie X := {[x, y] ∈ C2; f(x, y) = 0} und Y := {[x, y] ∈ C2; g(x, y) = 0} die
zugehörigen ebenen Kurven. Man zeichne die R-rationalen Punkte X ∩R2 und
Y ∩ R2, und berechne X ∩ Y.

Beweis. Siehe [3, Ex.6.41].]

(8.28) Aufgabe: Minimalpolynome.
Es seien K ⊆ L eine algebraische Körpererweiterung, und 0 6= α ∈ L mit
K-Minimalpolynom f ∈ K[X].
a) Es seien 0 6= β ∈ L mit K-Minimalpolynom g ∈ K[X], und h ∈ K[X] das K-
Minimalpolynom von α+β ∈ L. Man zeige: Es gilt h | resY (f(X−Y), g(Y)) ∈
K[X]. Für a, b ∈ K gebe man eine Verallgemeinerung für aα+ bβ ∈ L an.
b) Man zeige, daß f̃ := f−1

0 · Xn · f(X−1) ∈ K[X] das K-Minimalpolynom
von α−1 ∈ L ist, wobei n = deg(f) und f0 ∈ K den konstanten Koeffizienten
von f bezeichne. Damit zeige man: Sind 0 6= β ∈ L mit K-Minimalpolynom
g ∈ K[X], und h ∈ K[X] das K-Minimalpolynom von αβ ∈ L, so gilt h |
resY (f̃(Y), g(XY)) ∈ K[X]. Man gebe eine analoge Formel für α

β ∈ L an.
c) Man zeige: Sind 0 6= g ∈ K[X] mit deg(g) < deg(f) und h ∈ K[X] das
K-Minimalpolynom von g(α) ∈ L, so gilt h | resY (f(Y), X − g(Y)) ∈ K[X].
Man bestimme degX(resY (f(Y), X − g(Y))).
d) Man berechne die Q-Minimalpolynome der Elemente α1 :=

√
2 +
√

3 und
α2 :=

√
2− 2

√
3, sowie α3 :=

√
2 · 3
√

3 und α4 := 1 +
√

3.

Beweis. Siehe [3, Ch.6.8, Ex.6.35, Ex.6.36].]

(8.29) Aufgabe: Rekonstruktion rationaler Zahlen.
Es seien r, t ∈ Z mit t > 0 und ggT(r, t) = 1. Ziel ist es, zu zeigen, daß r

t ∈ Q
aus einer modularen Reduktion n mod m zurückgewonnen werden kann, wenn
m genügend groß ist.

Dazu seien also m ∈ N mit ggT(t,m) = 1 und n ∈ N0 mit n < m und r ≡
nt mod m. Weiter gebe es k ∈ N mit |r| < k und kt ≤ m. Schließlich seien
i ∈ {1, . . . , l+1} im erweiterten Euklidischen Algorithmus für m und n minimal
mit k > ri, und a ∈ N minimal mit k > ri−1 − ari.
Man zeige: Es gilt [r, t] = ±[ri, ti] oder [r, t] = ±[ri−1 − ari, ti−1 − ati].

Beweis. Siehe [3, Ch.5.10].]

62

(8.30) Aufgabe: Satz von Sturm.
Es sei 0 6= f ∈ R[X] mit paarweise verschiedenen Nullstellen in C[X]. Man
modifiziere den Euklidischen Algorithmus für r0 := f und r1 := ∂f

∂X durch
Verwenden der Polynomdivision ri−1 = qiri − ri+1, für i ∈ {1, . . . , l − 1}.
Für a ∈ R sei νa(f) ∈ N0 die Anzahl der Vorzeichenwechsel in der Folge
[sgn(r0(a)), . . . , sgn(rl(a))], wobei Einträge 0 ignoriert werden. Man zeige: Für
a < b gilt |{a < x ≤ b; f(x) = 0}| = νa(f)− νb(f).

Hinweis. Gewisse Vorzeichenfolgen können nicht vorkommen.

Beweis. Siehe [8, p.434, Exc.4.6.1.22].]

(8.31) Aufgabe: Charakteristisches Polynom.
Für M = [mij] ∈ Cn×n seien PM := En · X −M ∈ C[X]n×n die zugehörige
charakteristische Matrix und χM := det(PM) = Xn +

∑n−1
k=0 ckX

k ∈ C[X] das
zugehörige charakteristische Polynom.
a) Man zeige: Ist B > 0, so daß |mij | ≤ B, für alle i, j ∈ {1, . . . , n}, so gilt
|cn−k| ≤

(
n
k

)
· k k2 ·Bk, für alle k ∈ {0, . . . , n− 1}.

b) Man zeige: Es gilt χM =
∑n
k=0

(
det(PM (k)) ·

∏
j∈{0,...,n}\{k}

X−j
k−j

)
.

c) Man zeige: Ist A ∈ C[X]n×n die adjungierte Matrix zu PM , so gilt Spur(A) =
∂χM
∂X ∈ C[X], wobei ∂χM

∂X die formale Ableitung bezeichne.
d) Man gebe einen Algorithmus zur Berechnung des charakteristischen Poly-
noms quadratischer komplexer Matrizen an, der das Ergebnis aus c) benutzt.

Beweis. a) Siehe [2, Prop.2.2.10]. b) Siehe [2, Ch.2.2.4].
c) Siehe [2, La.2.2.8]. d) Siehe [2, Alg.2.2.7].]

(8.32) Aufgabe: Mignotte-Ungleichung.
Es seien 0 6= f =

∑n
i=0 fiX

i ∈ C[X] und g =
∑m
j=0 gjX

j ∈ C[X] ein Teiler von
f , wobei n = deg(f) und m = deg(g). Man zeige: Für alle j ∈ {0, . . . ,m} gilt
|gj | ≤

(
m−1
j

)
· ||f ||2 +

(
m−1
j−1

)
· |fn|.

Beweis. Siehe [2, Thm.3.5.1] und [8, Exc.4.6.2.20].]

(8.33) Aufgabe: Monagan-Test.
Für 0 6= f =

∑n
i=0 fiX

i ∈ C[X], mit n = deg(f), sei die zugehörige Cauchy-
Schranke definiert als Bf := 1 + max{| fifn |; i ∈ {0, . . . , n}} ∈ R>0.
a) Man zeige: Ist α ∈ C mit f(α) = 0, so gilt |α| < Bf .
b) Nun sei f ∈ Z[X] primitiv mit f0 6= 0. Man zeige: Gibt es ein k ∈ N, so daß
f(Bf + k) ∈ Z oder f(−Bf − k) ∈ Z prim ist, so ist f irreduzibel. Wie kann
man daraus einen randomisierten Irreduzibilitätstest gewinnen?

Beweis. Siehe [11, p.46].]

63

(8.34) Aufgabe: Paar-Reduktion.
Es sei L := {a, b}Z ⊆ Rn, für n ≥ 2, wobei {a, b} ⊆ Rn R-linear unabhängig sei.

1. if ||b||2 < ||a||2 then b↔ a

2. c← b− a · d 〈b,a〉||a||2 c
3. while ||c||2 < ||a||2 do

b← a
a← c
c← b− a · d 〈b,a〉||a||2 c

4. return B := [a, b]

Man zeige: Es ist B ⊆ L eine LLL-reduzierte Z-Basis, für jeden Parameter
3
4 < γ ≤ 1, und a ∈ L ist ein minimaler Vektor.

Beweis. Siehe [2, Alg.1.3.14] und [15, Exc.3.3.3].]

(8.35) Aufgabe: LLL-Reduktion.
Es seien L ⊆ Rn ein Z-Gitter mit LLL-reduzierter Z-Basis B = {b1, . . . , bn},
sowie {v1, . . . , vs} ⊆ L eine Z-linear unabhängige Teilmenge. Man zeige: Für
j ∈ {1, . . . , s} gilt ||bj || ≤ 2

n−1
2 ·max{||v1||, . . . , ||vs||}.

Beweis. Siehe [2, Thm.2.6.2.(5)].]

(8.36) Aufgabe: LLL-Reduktion.
Man zeige, daß man die Lovasz-Bedingung ||b′k||

2 ≥ (γ−µ2
k,k−1 ·||b′k−1||

2 der LLL-
Reduktion für geeignete Wahlen für 1

4 < γ ≤ 1 durch die Siegel-Bedingung
||b′k||

2 ≥ 1
2 · ||b

′
k−1||

2 ersetzen kann.

Beweis. Siehe [2, Rem.2.6.1.(5)].]

(8.37) Aufgabe: LLL-Algorithmus.
Es sei Q ∈ Rn×n eine positiv definite symmetrische Matrix. Man gebe eine
Variante des LLL-Algorithmus an, der Q als Eingabe und eine LLL-reduzierte
Basis in Form einer als Ausgabe hat. Man gebe eine Laufzeitabschätzung an.

Beweis. Siehe [2, Rem.2.6.1.(2)].]

(8.38) Aufgabe: Quadratfreie Faktorisierung.
Es seien K ein Körper der Charakteristik 0 und 0 6= Ψ ∈ K[X] normiert mit
deg(Ψ) = n. Weiter seien Ψ1, . . . ,Ψn ∈ K[X] normiert, quadratfrei und paar-
weise teilerfremd mit Ψ =

∏n
e=1 Ψe

e. Man gebe einen Algorithmus an, der mit
Ψ als Eingabe die Polynome Ψ1, . . . ,Ψn berechnet.

Beweis. Siehe auch [3, Ch.14.6].]

64

(8.39) Aufgabe: Quadratfreie Polynome.
Es sei q ∈ N eine Primzahlpotenz. Man zeige: Die Wahrscheinlichkeit, daß ein
zufällig gewähltes normiertes Polynom in Fq[X] vom Grad n ∈ N0 quadratfrei
ist, ist unabhängig von n und beträgt 1− 1

q .

Hinweis. Für die Anzahl sn ∈ N0 der normierten quadratfreien Polynome vom
Grad n zeige man die Rekursionsformel qn =

∑
0≤2k≤n q

k · sn−2k, und gewinne
daraus eine geschlossene Formel für sn.

Beweis. Siehe [3, Exc.14.32].]

(8.40) Aufgabe: Irreduzible Polynome.
Es seien q ∈ N eine Primzahlpotenz und n ∈ N0 sowie Pq,n := {0 6= Φ ∈
Fq[X]; Φ normiert, irreduzibel, deg(Φ) = n}. Ziel dieser Aufgabe ist es, eine
Formel für die Mächtigkeit |Pq,n| ∈ N0 zu finden.
a) Die Möbius-Funktion µ : N→ Z sei definiert durch µ(1) := 1, und µ(n) :=
0 falls n > 1 nicht quadratfrei ist, sowie µ(n) := (−1)k falls n > 1 quadratfrei
ist und genau k ∈ N paarweise nicht-assoziierte Primteiler hat. Man zeige:
Die Funktion µ ist multiplikativ, d. h. für alle m,n ∈ N teilerfremd gilt
µ(mn) = µ(m)µ(n), und es gilt

∑
d |n µ(d) = 0 für alle n > 1.

b) Es seien R ein kommutativer Ring, f : N → R eine Funktion und g : N →
R : n 7→

∑
d |n f(d), für alle n ∈ N. Man zeige: Es gilt Möbius-Inversion

f(n) =
∑
d |n µ(nd)g(d) ∈ R, für alle n ∈ N. Man gebe eine analoge Inversions-

formel für die Funktion h : N→ R : n 7→
∏
d |n f(d) an.

c) Man zeige: Es gilt |Pq,n| = 1
n ·
∑
d |n µ(nd) · qd. Man berechne |Pq,n| ∈ N0 für

q ≤ 9 und n ≤ 10.
d) Wie groß ist asymptotisch für qn >> 0 die Wahrscheinlichkeit, daß ein zufällig
gewähltes normiertes Polynom in Fq[X] vom Grad n irreduzibel ist? Man gebe
einen randomisierten Algorithmus an, der bei Eingabe von q und n ein zufälliges
irreduzibles normiertes Polynom in Fq[X] vom Grad n ausgibt.

Beweis. Siehe [3, Ch.14.9, Exc.14.46].]

(8.41) Aufgabe: Kreisteilungspolynome.
Es seien n ∈ N und ζn := e

2π
√
−1
n ∈ C, sowie Φn :=

∏
k∈(Z/〈n〉)∗(X − ζkn) ∈ C[X]

das n-te Kreisteilungspolynom. Insbesondere ist also deg(Φn) = ϕ(n), wobei
ϕ : N→ N die Eulersche ϕ-Funktion sei. Man zeige:
a) Es sind {ζkn ∈ C; k ∈ (Z/〈n〉)∗} genau die primitiven n-ten Einheitswurzeln
in C, und es gelten Xn − 1 =

∏
d|n Φd ∈ C[X] sowie Φn =

∏
d|n(Xd − 1)µ(nd) ∈

C(X), wobei µ : N → Z die Möbius-Funktion aus Aufgabe (8.40) sei. Man
folgere daraus, daß Φn ∈ Z[X] gilt.
b) Für Primzahlen p ∈ N gilt Φp =

∑p−1
i=0 X

i ∈ Z[X]; für n ≥ 3 ungerade gilt
Φ2n(X) = Φn(−X); für Primzahlen p ∈ N mit p 6 | n gilt Φpn(X) · Φn(X) =
Φn(Xp); und falls jeder Primteiler von k ∈ N auch Primteiler von n ist, so gilt
Φkn(X) = Φn(Xk).

65

c) Man gebe einen Algorithmus an, der bei Eingabe von n und seinen Primteilern
das Polynom Φn als Ausgabe hat, und berechne Φn für n ≤ 100.

Beweis. Siehe [3, Ch.14.10].]

(8.42) Aufgabe: Kreisteilungspolynome.
Es seien p ∈ N eine Primzahl, f ∈ N und q := pf ∈ N, sowie Fq der endliche
Körper mit q Elementen. Weiter sei n = pe · m ∈ N, wobei e ∈ N0 und
p 6 | m. Man zeige: Das n-te Kreisteilungspolynom Φn ∈ Fq[X] zerfällt in ϕ(m)

d
paarweise nicht-assoziierte irreduzible Polynome vom Grad d, wobei d ∈ N die
Ordnung von q ∈ (Z/〈m〉)∗ sei.

Beweis. Siehe auch [3, La.14.50].]

(8.43) Aufgabe: Faktorisierung in Fq[X].
Man gebe genaue Abschätzungen für die benötigten Körperoperationen in Fq,
in Abhängigkeit vom Grad n des Eingabepolynoms in Fq[X] und der Ordnung q
des Grundkörpers Fq, für die quadratfreie Faktorisierung, die Distinct-Degree-
Faktorisierung, sowie die deterministischen und randomisierten Versionen des
Cantor-Zassenhaus-Algorithmus und des Berlekamp-Algorithmus an.

Beweis. Siehe [3, Ch.14].]

66

9 References

[1] A. Aho, J. Hopcroft, J. Ullman: The design and analysis of computer
algorithms, second printing, Addison-Wesley Series in Computer Science
and Information Processing, 1975.

[2] H. Cohen: A course in computational algebraic number theory, Graduate
Texts in Mathematics 138, Springer, 1993.

[3] J. von zur Gathen, J. Gerhard: Modern computer algebra, second
edition, Cambridge University Press, 2003.

[4] G. Hardy, E. Wright: An introduction to the theory of numbers, 5.
edition, Oxford University Press, 1979.

[5] H. Heuser: Lehrbuch der Analysis, Teil 1, Teubner, 1980.

[6] D. Hilbert: Mathematische Probleme, Vortrag, gehalten auf dem inter-
nationalen Mathematiker-Kongreß zu Paris 1900.

[7] D. Knuth: The art of computer programming, vol. 1: fundamental algo-
rithms, 2. printing of the 2. edition, Addison-Wesley Series in Computer
Science and Information Processing, Addison-Wesley, 1975.

[8] D. Knuth: The art of computer programming, vol. 2: seminumerical al-
gorithms, 2. edition, Addison-Wesley Series in Computer Science and In-
formation Processing, Addison-Wesley, 1981.

[9] D. Knuth: The art of computer programming, vol. 3: sorting and search-
ing, Addison-Wesley Series in Computer Science and Information Process-
ing, Addison-Wesley, 1973.

[10] N. Koblitz: Algebraic aspects of cryptography, Algorithms and Compu-
tation in Mathematics 3, Springer, 1998.

[11] B. Matzat: Vorlesung ‘Computeralgebra’, IWR, Universität Heidelberg,
private Mitschrift, 1995.

[12] A. Menezes, P. van Oorschot, S. Vanstone: Handbook of applied
cryptography, CRC Press Series on Discrete Mathematics and its Applica-
tions, 1997.

[13] C. Papadimitriou: Computational complexity, Addison-Wesley, 1995.

[14] M. Pohst: Computational algebraic number theory, DMV Seminar Bd.
21, Birkhäuser, 1993.

[15] M. Pohst, H. Zassenhaus: Algorithmic algebraic number theory, re-
vised reprint of the 1989 original, Encyclopedia of Mathematics and its
Applications 30, Cambridge University Press, 1997.

[16] A. Turing: On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. Ser. 2, 42, 1936, 230–265.

