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0 Introduction

(0.1) The basic model of communication is that of sending information between
communication partners, Alice and Bob say, who communicate through some
channel, which might be anything as, for example, a telephone line, radio, an
audio compact disc, a keyboard, and so on. This leads to the following questions:

e Information theory. What is information? How much information can be
sent through a channel per time unit?

e Coding theory. The channel might be noisy, that is information might be
changed randomly when sent through the channel. How is it possible to recover
a sufficiently large fraction of the original information from distorted data?

e Cryptography. The channel might be insecure, that is information which
is intended to be kept private to Alice and Bob might be caught by an opponent,
Oscar say, or even be changed deliberately by Oscar. How can this be prevented?

(0.2) Alphabets. A finite set X’ such that |X| > 2 is called an alphabet,
its elements are called letters or symbols. A finite sequence w = [z1,...,Ty]
consisting of n € N letters z; € X is called a word over X of length I(w) = n.
The empty sequence € is called the empty word, and we let [(€) := 0. Let X™ be
the set of all words of length n € Ny, and let X'* := HnENo X", Forv,w € X* let
vw € X* be their concatenation. We have ve = ev = v and (uv)w = u(vw),
for u,v,w € X*. Hence X* is a monoid, the free monoid over X', and the
length function I: X* — (Ng,+): w +— [(w) is a monoid homomorphism.

To describe numbers, typically alphabets Z, := {0,...,¢—1} for ¢ € N\ {1} are
used, for example ¢ = 10. In computer science, the alphabet Zy = {0, 1}, whose
elements are called binary digits or bits, the alphabet Zg, whose elements
are called Bytes, and the hexadecimal alphabet {0,...,9,A, B,C,D,E F}
being in bijection with Zi4 are used. For interchange of written texts the Latin
alphabet {A, ..., Z} being in bijection with Zsg, and the American Standard
Code for Information Interchange (ASCII) alphabet being in bijection
with Zq,5 are used.

Then, to transmit information, it has to be (source) encoded into words over
an alphabet X suitable for the chosen channel, and words have to be decoded
again after transmition. Thus, a code is just a subset # # C C X*; then C is
interpreted as the set of all words representing sensible information.

1 Parity check codes

Parity check codes are used to detect typing errors. They are not capable of
correcting errors, and thus are used whenever the data can easily be reentered



Table 1: Typing errors.

’ error \ \ frequency ‘
single a—b 79.0%
adjacent transposition | ab — ba 10.2%
jump transposition abc — cba 0.8%
twin aa — bb 0.6%
jump twin aca — beb 0.3%
phonetic a0 — la 0.5%
random 8.6%

again. Typical typing errors and their frequencies are given in Table 1; an
example of a phonetic error is replacing ‘thirty’ by ‘thirteen’.

(1.1) Example: The ISBN [1968, 2007]. The International Standard
Book Number is used to identify books, where up to the year 2006 the stan-
dard was ISBIN-10, which from the year 2007 on has been replaced by ISBN-
13. The ISBN-10 is formed as follows:

The alphabet is Z11, where 10 is replaced by the Roman letter X, and words
[1;22,...,%6;T7,...,T9; x10] € ZJy X Z11 have length 10, where X might pos-
sibly occur only as a last letter. Here x1,...,x9 are information symbols,
where 7 is the group code, z; € {0,1} referring to English, z; = 2 re-
ferring to French, and x; = 3 referring to German, [zs,...,xz¢] is the pub-
lisher code, [z7,...,x9] is the title code, and x1¢ is a check symbol fulfilling
T19 = Z?:l ix; € Z11. Hence a valid ISBN-10 is an element of the Z;1-subspace
{[w1, ..., 210) € ZIG Y02 iy = 0 € Zn } < Z39.

From 2007 on the ISBN-13 is used: After a 3-letter prefix, being a country code
978 or 979 referring to ‘bookland’, the first 9 letters of the ISBN-10 are taken,
and then a check symbol is added such that the EAN standard is fulfilled, see
(1.2). For example, a valid ISBN-10 is ‘1-58488-508-4": We have 1-1+2-5+3-8+4-
44-5-846-84+7-5+8:0+9-8 = 246 = 4 € Zq1. The corresponding ISBN-13 is ‘978-
1-58488-508-5"; indeed we have 943-74+8+3-1+5+3-84+4+3-84+8+3-5+0+3-8 =
145 =5 = —5 € Zqp.

(1.2) Example: The EAN [1977]. The International Article Number
(EAN), formerly European Article Number, is formed as follows: The
alphabet is Zjg, and words [z1,...,23;%4,...,27; T8, ..., T12;713] € Z13 have
length 13. Here x1,...,212 are information symbols, where |21, ..., 23] is the
country code, z; = 4 referring to Germany, [z4,...,27] is the company
code, [zg,...,x12] is the article code, and x5 is a check symbol fulfilling
Ti3 = — Z?:l(l'gi_l + 3w9;) € Z1p. Hence a valid EAN is an element of the set



{[z1,...,213] € Z3; Z?Zl(wziq + 3wg;) + 213 = 0 € Z19} C Z13.

The bar code printed on goods is formed as follows: Each bar is either black or
white, and has width 1, 2, 3 or 4. Each letter is encoded by 4 bars of alternating
colors, whose widths add up to 7; see Table 2 where 0 and 1 stand for white
and black, respectively. The odd and even type codes for each letter start with
white and end with black, where for the even type codes the width patterns are
just those for the odd type codes read backwardly. The negative type code for
each letter starts with black and ends with white, using the same width pattern
as for the odd type code, which hence amounts to just reading the even type
code backwardly. In the odd type code for each letter the widths of the black
bars add up to an odd number, while in the even type code these sums are even.

An EAN is depicted as follows: There is a prefix 101, then the letters o, ..., x7
are depicted by odd and even type codes, then there is an infix 01010, then
the letters zg,...,x12 are depicted by negative type codes, and finally there
is a postfix 101. The choice of the odd and even type codes for zs,...,z7
is determined by z1; see Table 2, where — and + stand for odd and even,
respectively. Since the even type codes, that is the negative type codes read
backwardly, are disjoint from the odd type codes, this allows to read bar codes
in either direction and to swap data if necessary, or to read data in two halves.

For example, ‘4-901780-728619’ indeed yields 44+3-94+0+3-14+7+3-8+0+
3-7T4243-846+3-1=121=1= —9 € Zj9, hence this is a valid EAN. The
pattern [odd, even, odd, odd, even, even] for z; = 4 yields:

101

0001011 0100111 0011001 0111011 0001001 0100111
01010

1000100 1101100 1001000 1010000 1100110 1110100
101

(1.3) Example: The IBAN [2007]. The German general version of the
International Bank Account Number (IBAN) is formed as follows:

Words [1, To; T3, T4; T5, - - - , X125 T13, - - - , T22] € Z3g X Z3) have length 22, where
actually x1,xo are Latin letters, and we identify the Latin alphabet with Zog
by letting A — 0, B — 1, ..., Z+— 25. Here, x1,2z9;%5,...,T12;T13,...,T22 are

information symbols, where [z, 2] is the country code, for Germany being
DE — [3, 4], followed by the 8-digit bank identification number [zs, ..., 212,
and the 10-digit bank account number [zi3,...,22], where the latter is
possibly filled up by leading zeroes; the word [zs,...,x22] is also called the
Basic Bank Account Number (BBAN).

Finally, [z3,x4] are check symbols fulfilling the following condition: The con-
catenation v := x5 - - xaa (w1 + 10)(22 + 10)x324 € Z3} can be considered as a
non-negative integer having 24 decimal digits, where Zgg + 10 = {10,...,35}.
Then v is a valid IBAN if v =1 (mod 97).



Table 2: EAN bar code.

’ letter H odd \ code \ negative H even \ code H odd/even ‘
0 || 3211 | 0001101 | 1110010 || 1123 | 0100111 || — = — — ——
1 2221 | 0011001 | 1100110 || 1222 | 0110011 || — — + — ++
2] 2122 | 0010011 | 1101100 || 2122 | 0010011 || — — ++ —+
3 || 1411 | 0111101 | 1000010 | 1141 | 0100001 || — — 4+ + +—
4 || 1132 | 0100011 | 1011100 || 2311 | 0011101 || — + — — ++
5 || 1231 | 0110001 | 1001110 || 1321 | 0111001 || — + + — —+
6 || 1114 | 0101111 | 1010000 || 4111 | 0000101 || — + 4+ ——
7| 1312 | 0111011 | 1000100 || 2131 | 0010001 || — + — + —+
8 ]| 1213 | 0110111 | 1001000 || 3121 | 0001001 || — + — 4+ +—
9 || 3112 | 0001011 | 1110100 || 2113 | 0010111 || — + 4+ — +—

Hence allowing for the alphabet Zg7, containing the digits Z1¢ as a subset, the
check condition can be rephrased as (22225 z; - 10%87%) + (21 + 10) - 10* + (22 +
10) - 102 + 23 - 10 + w4 = 1 € Zgy. Thus check symbols 23,74 € Zjo can
always be found, where [z3,z4] & {[0,0],[0,1],[9,9]} for uniqueness. Letting
w = [10%4"1 € Zgz;i € {1,...,18}] € Z$5, that is

w = [56,25,51,73,17,89, 38, 62,45, 53, 15,50, 5, 49, 34, 81, 76, 27],

and z1 := 3 and 3 := 4, entailing (z1 + 10) - 10* + (25 + 10) - 10 = 62 € Zgy,
we infer that the valid IBAN can be identified with the set {[zs,...,2z22] €
72 (w3 -10 + x4) + Y00, wiira = 36 € Loy}

For example, given the bank identification number ‘390 50000 and the fictious
bank account number ‘0123456789’, we get the BBAN ‘3905 0000 0123 4567 89’.
For the latter we get Zgil w;Ti+q4 = 65 € Zgy, thus the check condition yields
x3 - 104 x4 = 68 € Zg7, so that we get the IBAN ‘DE68 3905 00000123 4567 89’.

(1.4) Parity check codes over Z,. Let ¢ > 2 be the modulus, let n € N, and
let the weights w := [wy, ..., w,] € Zy be fixed. Then v := [v1,...,2,] € Z
is called valid if vw' := Y7 | z;w; = 0 € Z.

a) We consider single errors: Let v := [21,...,2,] € Z] be valid and let v' :=
[T1,. .., 2}, ..., @] € Zy such that o} # x; for some j € {1,...,n}. Then we
have v'w" = (v/ —v)w" = () — xj)w; € Zq, hence 2 # x; is detected if and
only if x;»wj # zjw; € Zg. Thus all single errors are detected if and only if
all weights w; € Z, are chosen such that the map puy,: Zg — Zg: v — zw; is

injective, or equivalently bijective.

For y € Zy the map py: Zy — Zq: x — wy is injective if and only if y € Zj =
{z € Zg;gcd(z,q) = 1}, the group of units of Z,: Let d := ged(y,q) € N. If
d > 1 then we have 0 # 4 € Z; and £ -y = 0 = 0-y € Z,, hence p, is



not injective. Since by the Euclidean Algorithm there are Bézout coefficients
s,t € Z such that d = ys +qt € Z, if d = 1 then ys = d = 1 € Z,, thus from
zy =2’y € Z, we get © = zys = x'ys = &’ € Z,, implying that p, is injective.

For example, for the non-prime modulus ¢ = 10 used in the EAN we get
p1 = idz,, and us = (0)(1,3,9,7)(2,6,8,4)(5) € Sz,,, hence the weight tu-
ple w = [1,3,...,1,3,1] € (Z},)* allows to detect all single errors. For the
prime modulus ¢ = 11 used in the ISBN-10 we have Zj; = Z1; \ {0}, hence
again the weight tuple w = [1,...,10] € (Z3,)'° allows to detect all single er-
rors. A similar consideration for the IBAN, using the prime modulus ¢ = 97,
shows that the weight tuple for the BBAN allows to detect all single errors.

b) We consider adjacent transposition errors for n > 2: Let v := [x1,...,2,] €
Zy be valid and let v' := [x1,..., 2541, 2j, ..., 2] € Zy such that z;,1 # x; for
some j € {1,...,n—1}. Then we have v'w" = (v' —v)w"™ = (z; —zj41) (w41 —

wj) € Zg. Thus all adjacent transposition errors are detected if and only if the
weights fulfill w;y 1 —w; € Z; for all j € {1,...,n —1}.

Since for the EAN we have wj11 —w; € {2,8} C Z1g \ Z3,, for j € {1,...,12},
adjacent transposition errors are not necessarily detected. Since for the ISBN-
10 we have w;y1 —w; =1 € Zj,, for j € {1,...,9}, all adjacent transposition
errors are detected; thus in this respect the transition from ISBN-10 to ISBN-13
is not an improvement. Similarly, since for the BBAN the adjacent weights in
Zg7 are pairwise distinct, all adjacent transposition errors are detected.

(1.5) Parity check codes over arbitrary groups. a) Let G be a finite group,
let n € N, and let m;: G — G fori € {1,...,n} be fixed. Then [z1,...,z,] € G"
is called valid if 7" - -- 27» = 1. For example, letting G := Z, and 7; := fiy,,
where w; € Z, for i € {1,...,n}, we recover the parity check codes in (1.4);
here additionally the 7; are group homomorphisms.

We consider single errors: Let v := [z1,...,2,] € G™ be valid and let v/ :=
[T1,..., 2%, ..., 2,] € G" such that o # z; for some j € {1,...,n}. Let y; :=
zi' € G for i € {1,...,n}, and y; := (2})™. Then v’ is valid if and only if
Y1 Yj-1YYi+1° Yo = 1 = Y1 Yn, which by multiplying from the left by

Yt ,yj:ll, and from the right by vy, 1, .. .,yj_jl, is equivalent to (2)™ =
y;- =y; = x;j . Hence we conclude that all single errors are detected if and only
if 7; is injective, or equivalently bijective, for all j € {1,...,n}.

b) Let m; be injective for all i € {1,...,n}. We consider adjacent transpo-
sition errors for n > 2: Let v := [x1,...,2,] € G™ be valid and let v/ :=
[1,...,%j41,2j,...,2,) € G" such that ;41 # x; for some j € {1,...,n—1}.

)

Let y; :=a]" € G fori e {1,...,n} and yj :=2}}, € Gand ¢}, == a}'"" € G.
Then o' is valid if and only if y1- -y 1Yj¥j1¥jr2 - Yn = 1 = Y1+ Yn,
which by multiplying from the left by y; Lo ,yjill, and from the right by

y L. ,yj_jz, is equivalent to x}rj'rlm;rj“ =Y = Yl = g;;rj x;rfll Writ-
ing g := )’ € Gand h := 27}, € G and letting 7; := 7 'm;;1, we conclude
that all adjacent transposition errors are detected if and only if gh™ # hg™ for



Table 3: Elements of D1g.

ezl 2] | |
o[A] 1]id [0

1|D| 2|« (1,2,3,4,5)
2G| 3]a? |(1,3,52,4)
3 K| 4| |(1,4,2,53)
alL| 5|a* |(1,5,4,3,2)
5|N| 6|8 (2,5)(3,4)

61s| 7|aB |(1,5)(2,4)

71U 8| %8| (1,4)(2,3)

s|Y|| 9|a38](1,3)(4,5)

9z|10]|a*s|(1,2)(3,5)

alg#heGandje{l,...,n—1}.

(1.6) Example: Serial numbers. Let Dqg be the dihedral group of order 10,
that is the symmetry group of the plane equilateral pentagon; up to isomorphism
there are precisely two groups of order 10, the cyclic group Zi9 and the non-
abelian group D;g. Numbering the vertices of the pentagon counterclockwise,
the elements of Dqg := (o, 8) < S5 are as given in Table 3. Using the numbering
of the elements given there let 7 := (1,2,6,9,10,5,3,8)(4,7) € Sp,,- Then it
can be checked that gh” # hg” for all g # h € Dqg.

The serial numbers on the former German currency Deutsche Mark (DM) are
formed as follows: The alphabet is X := {0,...,9,4,D,G,K,L,N,S,U,Y,Z}, and
words [21,...,2Z10;211] € X! have length 11, where 21, ..., 21 are information
symbols and x11 is a check symbol. Replacing x; € X by T; € D1 as indicated
in Table 3, a word is valid if Z] - - ~§{SOE11 =1id € Dqy.

For example, for GG0184220N0 we get elements [3,3,1,2,9,5,3,3, 1,6; 1], hence
37,37°,17°,27" 07" 57" 37 37" 17" 67°:1] = [8,1,9,5,1,9,5,3,2,10;1], and
it can be checked that the product of the associated elements equals id € D1g.

(1.7) Complete maps for abelian groups. a) We briefly digress into group
theory, inasmuch the above leads to the following definition: Given a finite
abelian group G, a bijective map o: G — G is called complete, if the map
7:=(0+idg): G — G: g+ g°t! := ¢7¢ is bijective again.

It turns out that G has a complete map if either |G| is odd or G has at least
two involutions: (It is surprisingly difficult to prove this completely, so that we
only give a partial proof, encompassing the accessible pieces; see [Paige, 1947].)

Let G have a unique involution, z say, and assume that both ¢: G — G and
T := 0 +1id¢ are bijective, then pairing off the elements of G with their additive



inverses yields decg = z, and thus decg - dec P dec gotl =
dec; 9% + deG g = z+ z =0, a contradiction.

Recalling that G can be written as a direct sum of cyclic groups of prime power
order, to prove the existence of a complete map in the remaining cases we may
assume that G = Z, where ¢ is odd, or G = Zge @ Zgv or G = Zga & Loy S Lge
where a > b > ¢ > 0. If G = Z, where ¢ is odd, then both ¢ = idz, and
T = 0 +idg, = p2 are bijective; recall that 2 € Z7. Unfortunately, we are not
able to deal with the cases G = Zoa @B Zgs or G = Ziga B Zigp B Zge here. #

Anyway, we have shown that G = Z, has a complete map if and only if ¢ is odd.

b) This is related to parity check codes as follows: Given a bijective map 7: G —
G, the condition gh™ # hg™, for all g # h € G, is equivalent to g~ # h™~1, for
all g # h € G, that is 0 := 7 —idg: G — G is bijective as well.

Hence, for a parity check code over G' with respect to bijections ;, for j €
{1,...,n}, which detects all adjacent transposition errors the associated maps
oj=m; miy1 —idg, for j € {1,...,n — 1}, are complete. Conversely, given a
complete map o: G — G, we may let 7; := (0 +idg)? for j € {1,...,n}. This
shows that there is a parity check code over G, for n > 2, which detects all single
errors and all adjacent transposition errors if and only if G has a complete map.

In particular, there is no parity check code over Z;y which detects all single
errors and adjacent transposition errors; thus it is not surprising that the EAN
does not detect all adjacent transposition errors.

Moreover, if 7; = p,, where w; € Z; for i € {1,...,n}, then we get 7; =
7T;17Tj+1 = u;jl,uwjﬂ, forje{l,...,n—1}, and 7; —idz, = u;jl(,uwj+1 — ;) =
u;jlywj +1—w; is bijective if and only if 1, ,—w,; is bijective, or equivalently
wjy1 —wj € Zy, as we have already seen in (1.4).

Note that for the ISBN-10 we have 7; = p;: Z11 — Z11, for i € {1,...,10}, thus
7y =y tpgen and 7; —idz,, = g gy = py =g for j e {19}

(1.8) Complete maps for arbitrary groups. Let G be a finite group. A
bijective map o: G — G is called complete, if the map 7: G — G: g — gg7 is
bijective again. Note that, since (¢7) " 1g = (¢°)~! for g € G, we may likewise
call o complete if G — G: g — ¢%g is bijective again. Moreover, by going over
to G — G: g ¢°(19)~ we may assume that 19 =1 =17.

We are concerned with the question of characterising the groups having complete
maps. To this end, we consider the following conditions:

i) G has a complete map.

ii) There is an ordering {g1,...,9|q} of G such that g, ---g;q| = 1.

iii) We have [[ . g € [G,G] for some, and hence any ordering, of the factors.
iv) The Sylow 2-subgroups of G are either trivial or non-cyclic.

a) As for the latter three conditions, we proceed to show that ii)=-iii) and
iv)<iii). The missing implication iii)=-ii) is a special case of results by [Dénes,



Hermann, 1982] (which we are not able to present here).

ii)=iii): We have g;---g|q) = 1 € [G,G]. Since gh = hg (mod [G,G]) for
g,h € G, being an element of [G,G] is independent of the order in which the
product of the elements of G is taken.

iii)=+iv): Let [[ < g € [G, G| for some, and hence any, ordering of the elements
of G, and assume to the contrary that {1} # S < G is a cyclic Sylow 2-subgroup
of G. Then since Aut(S) is a 2-group we infer that Ng(S) = Cq(S), thus
S < Z(Ng(S)), which by Burnside’s p-complement theorem implies that G is
2-nilpotent, that is G has a normal 2-complement H < G, so that G =2 H x S.

Letting z € S be the unique involution, pairing off the elements of S with their
inverses yields [[,.gs = z. Moreover, since G/H = S is abelian, we have

[G,G] < H. Hence we get [[,eq9 = [oes [Tnen sh = ([ies s)'™ = 2171 =
z# 1 (mod H). Thus [[,cq 9 & H, hence [[ .59 &[G, G], a contradiction.

iv)=1iii): We have to show that [[ .;9 € [G,G] in some, and hence any,
ordering of the elements of G. To this end, let I(G) := {z € G\ {1};2%2 =1} be
the set of involutions of GG. Pairing off the elements of G with their inverses, we
have to show that [ ;) # € [G, G]. We are done if G has odd order, thus we
may assume that G has even order and a non-cyclic Sylow 2-subgroup S.

Next, we observe that for G-conjugate z,z’ € I(G) we have 2z’ = z 29 =
27 lg7l2g = [2,9] € [G,G], for some g € G. Now I(G) is a union of G-
conjugacy classes, where for a G-conjugacy C' C I(G) of even length we hence
have [[,c 2 € [G,G]. Thus letting I'(G) := {z € I(G); [G: Cg(z)] odd} be the
set of central involutions of &, we have to show that [[,c; () 2 € [G,G].

Letting C' C I’(G) be a G-conjugacy class, we have CNZ(S) # (). By Burnside’s
theorem saying that two normal subsets of S' are G-conjugate if and only if they
are Ng(S)-conjugate, we conclude that C' N Z(S) C I(Z(S)) is an Ng(S5)-
conjugacy class. Since S < Ng(9) centralises Z(S), we conclude that C' N Z(.S)
has odd length, so that C'\ Z(S) has even length, entailing [[,c o 7(s) # € [G, G].
Hence running through all G-conjugacy classes in I'(G), leading to a covering
of I(Z(S)), we conclude that we have to show that [[.c; (s % € [G,G].

Since Z(S) # {1} is abelian, we have I(Z(S)) U {1} = Z, for some d € N,
being the largest 2-elementary abelian subgroup of Z(S). Since there are 29!
vectors in Z¢ having entry 0 and 1, respectively, in their i-th component, for
i € {1,...,d}, the vectors in ZZ have vanishing sum if and only if d > 2. In
other words, in this case we have [[,c;((5)) 2 =1 € [G,G].

Hence we may assume that d = 1, that is Z(S) has a unique involution, z say,
and we have to show that z € [G,G]. Assume that S is abelian, then writing
S = Z(S) as a direct product of cyclic groups, we conclude that S is cyclic, a
contradiction. Hence S is non-abelian, thus [S,.S] < .S is a non-trivial normal
subgroup. Thus we have [S, S| N Z(S) # {1}, entailing z € [S,S] < [G,G]. 4

b) As for the existence of complete maps, the following is straightforward:



i)=1ii): Letting o: G — G be a complete map, we consider the cycles of the
bijection G — G: g +— (g°)~!. Picking 1 # g1 € G, for i > 1 we successively let
giv1 = (¢7)7" € G, until we get gs1 = (97)7" = gu; since g1g{ = ¢f # 1 we
have s > 2. Then we get g7 - - 97 = 91979295 -+~ 9s9¢ = 919792~ 97_19s°92 =
9197 = 1. Hence proceeding like this for all the cycles of the above bijection,
we get an ordering {gi,...,g|¢} of the elements of G such that g, ---g|q = 1.

i)=iii): Letting c: G — G be a complete map, we get ngGg = ngG gq° =
ngGg ! ngG ga = (ngG 9)2 (mOd [G7 G])) thUS ngGg =1 (Il’lOd [Ga G]) ﬁ

Actually, [Paige, 1951] has conjectured that ii)=-i), and [Hall, Paige, 1955] have
conjectured that iv)=-i), only indicating that ii) implies iii), and that iii) implies
iv). The implication iv)=-i) has an involved proof which has been completed
only recently (where we are only able to present a very rough sketch):

iv)=-i): If |G| is odd, then o := idg is complete, since the map G — G: g —
gg° = g% is a bijection again. Hence we may assume that |G| is even. Recall
that, by Burnside’s p-complement theorem, any non-abelian simple group has
non-cyclic Sylow 2-subgroups.

Firstly [Hall, Paige, 1955] showed that the alternating groups have complete
maps. Next [Dalla-Volta, Gavioli, 2001] showed that a minimal counterexample
is almost simple or has a center of even order. Then [Wilcox, 2009] showed
that a minimal counterexample is actually simple, and that simple groups of
Lie type, excluding the Tits group, have complete maps. This reduced the
problem, by the classification of finite simple groups, to the sporadic simple
groups. Now [Evans, 2009] showed that the Tits group and the sporadic simple
groups, excluding the Janko group .J4, have complete maps. Finally [Bray, 2018]
showed that J4 has complete maps. i

¢) For comparison, we return to the case of abelian groups: Let G be abelian,
let I1(G) U {1} = Z4 for some d € Ny, and let z := [ler(c) 9 € G- Recalling
that G can be written as a direct product of cyclic groups of prime power order,
we conclude that |G| is odd if d = 0, that G has a non-trivial cyclic Sylow
2-subgroup if d = 1, and that G has a non-cyclic Sylow 2-subgroup if d > 2.

Thus we have z = 1 if and only if d = 0 or d > 2. Hence, pairing off the
elements of G with their inverses yields [[ cq9 = [ljerg)9 = 2 showing
iv)=-ii). Moreover, G has precisely 2¢ — 1 involutions, by (1.7) showing iv)=-i)
(up to the unproven pieces there). i

2 Information theory

(2.1) Information. Let X be an alphabet, and let u: P(X) — Rx¢ be a
probability distribution, that is i) u(X) = 1, and ii) u(A U B) = u(A) + u(B)
for all A, B C X such that AN B = 0.

a) To model the information content of a symbol = € X, we use the frequency



of its occurrence, which is given by p. Then the information content should
be the smaller the more often it occurs. Moreover, for independent events
their information contents should add up, while the associated probabilities
multiply. Hence letting S := {a € R;0 < a < 1}, this motivates to let an
information measure be a strongly decreasing continuous map ¢t: § — R
such that ¢(ab) = t(a) + ¢(b) for all a,b € S. Then the information content
of a possible elementary event = € X, that is p(x) > 0, by abusing notation is
given as (z) := t(u(z)).

We show that information measures are unique up to normalization: Given
an information measure ¢, we consider the continuous map n: R<g = R: a —
t(exp(a)), which hence fulfills n(a + b) = w(exp(a + b)) = t(exp(a)exp(db)) =
t(exp(a)) + t(exp(b)) = n(a) +n(b) for all a,b € R<p. Letting o := —n(—1) € R,
we get n(—n) = —an for all n € Ny, and from that n(—2) = —a - 2 for
all n € Ny and m € N, hence n being continuous we infer n(a) = aa for all
a € Rcp. Thus from t(exp(a)) = n(a) = aa = aln(exp(a)), for all a € Ry,
we get t(a) = aln(a), for all ¢ € S. Since ¢ is strongly decreasing we have
a < 0. Conversely, for any o < 0 the map & — R>¢: a — «In(a) indeed is an
information measure. Hence it remains to normalize:

The information content of a binary digit from the alphabet Z,, carrying the
uniform distribution, is set to be 1, hence 1 = ¢(3) = aIn(3), that is a = —lné).

2
Thus henceforth we let «(a) = —Eggg = —logy(a) =logy(L), for all a € S.

b) The average information content or entropy of X = {x1,...,2,}, let-
ting p; := px(z;) € Rsp fori € {1,...,q}, and Z:= {i € {1,...,q},p; > 0}, is
the expected value H(X) = H(pu) := — >,z pilogy(pi) € Rxp of the informa-

tion content. Since we have lim, o+ (alogy(a)) = limaﬁoo(fl%z(a)) = 0, the
function S — Rxg: @ — —alogy(a) can be continuously extended to S U {0}.
Thus we may let H(X) = —> "7 | p;log,(p;), saying that impossible elementary
events do not contribute to the average information content.

We have H(X) = 0 if and only if all summands in the defining sum are zero,
or equivalently we have either p; = 0 or log,(p;) = 0, for all i € {1,...,q},
the latter case being equivalent to p; = 1; since Y ¢, p; = 1 this in turn is
equivalent to p; = 1 for a unique ¢ € {1,...,¢}, and p; = 0 for j # 4, that is p
is concentrated in z; for some i € {1,...,q}.

Moreover, we always have H(X) < log,(|X|), with equality if and only if X
carries the uniform distribution: We make use of the Jensen inequality for
(strictly) concave functions, which applied to the logarithm function says that
for A1,..., Ay € Ry such that >°7 |\, = 1, and a1,...,aq € Ry we have
Sl Nilogo(a;) < logy (3o, Nia;), where (by strictness) equality occurs if

and only if a; = --- = a4 Thus we get H(X) = —> ,7pilogy(pi) =
DiezPilogy(57) < logy(ier i - 5r) = 1085(Xier 1) < logy(q) = logy(1X]),
with equality if and only if p; = --- =p, = é. #

For example, we consider X := Zy = {0,1} with elementary probabilities



px(0) = p and pxr(l) = 1 — p for some 0 < p < 1. Then we get average
information content H(p) = H(p) := —plogy(p) — (1 — )10g2(1 — p). Differen-
tiating yields 8%H(p) = —logy(p) + logy(1 — p) = log, (=2 52), forall 0 < p < 1.
Since H(0) = H(1) = 0 and H(p) > 0, for all 0 < p < 1, we infer that H(p)
has a unique maximum for p = 1 — p = 3, where H(3) = 1. Thus indeed the
average information content of the symbols in Zs is maxmlized if and only if Zo
carries the uniform distribution.

The relevance of these notions is elucidated by the First Main Theorem of
information theory, Shannon’s Theorem on source coding:

(2.2) Theorem: Shannon [1948]. Let h: X — (Z3)* \ {€} be an injective
and prefix-free encoding, that is for all v € im(h) and w € (Z2)* \ {e} we have
vw & im(h). Then for the average length of the code words in h(X) we have

q

> pala) - Uh(z:) = H(X).

i=1

Proof. i) We first show the Kraft-McMillan 1nequallt [1949, 1956]: Letting
li :=1(h(x;)) €N, fori € {1,...,q}, we have .7 ;270 < 1.

In order to see this, we may assume that l; < --- <l[,. Then, for i € {1,...,q},
there are 2l~! words in (Zy)'s having h(x;) € (Z3)" as their prefix. Since h is
prefix-free we conclude that the latter sets of words are pairwise disjoint. Thus,
since there are 2« words in (Z)'s, we get > ¢_, 2l <20 thus Y77, 270 < 1.

ii) Let again p; := px(z;) € R>o for ¢ € {1,...,¢}. Then we show the Gibbs
inequality: Letting a1,...,aq € Ry such that Y7, a; = 1, then H(X) <
— >4 pilogy(a), with equality if and only if a; = p; for all i € {1,...,q}.
This is seen as follows:

Letting Z := {i € {1,...,q},p; > 0} again, applying the Jensen inequality
we get >z pi(logy(ai) —loga(pi)) = D2,c7pilogy(5h) < logy(Roerpi - 1.) =
logy (3 ez i) < logy(l) = 0, implying 371, p; log, (pi) > ZZ 1 Di logz(
Moreover, we have equality if and only if Z = {1,..., ¢} and A=...= E =:p,
in which case we have 1 =>"7 ,a; = p-Y.7_ p; = p.

iii) Finally let «; := % €Rygforie {1,...,q}, where a:= Y7 27 € Ry,
so that Y7, a; = 1. By the Kraft-McMillan inequality we have a < 1, thus
logy(a) < 0. Hence the Gibbs inequality yields H(X) < —>7 | p;log,(o;) =
— >t pilogy(271) —logy(a)) = logy () + Yo7, pili < 327, pils. f

The inequality in Shannon’s Theorem can be interpreted as follows: We consider
the set (Z2)* \ {€} of possible code words. For the set Z% of words of length
n € N, carrying the uniform distribution, which is obtained from the uniform
distribution on Zsy by choosing the symbols in the words independently, we get
p(w) = QW, for all w € Z%, thus «(w) = —logy(57) = log,(2") = n = I(w);
thus summing over Z3 also yields H(Z3) = —2" - 5% -log, (55 ) = log,(2™) = n.



Hence the left hand side of the inequality is the average information content of
the genuine code words h(X'), with respect to the uniform distribution on Z%
for all n € N, and Shannon’s Theorem says that this cannot possibly be strictly
smaller that the average information content of the original alphabet X

The lower bound given is best possible, where we may assume that H(X') > 0:
For the Huffman encoding, see Exercises (14.9) and (14.10), the average
length of code words is bounded above by H(X) + 1, so that the lower bound
is attained up to a factor of 1 + ﬁ Now, replacing & by X™, where the
symbols in words are chosen independently, so that we have H(X™) =n- H(X)
as will be shown in (2.4) below, we get a factor of 1 + #(X) — 1, for n — oo.

(2.3) Noisy channels. a) The standard model for this is the binary channel:
The data consists of elements of X' := Zs, sent with probability distribution
tx, and being distorted by the channel, so that the received elements of ) :=
Zy carry the probability distribution py, where the noise is described by the
conditional distribution py|x, thus py(j) = > icx ta (i) py)i(4), for j € Y.

The symmetric binary channel with error probability 0 < p < % is given by
py)i(i+1) = p and py|;(i) =1 —p, for i € X. In other words, pyx is given by
the transition matrix M (p) := {1 ;p 1 gp}’ entailing py = [py(0), uy(1)] =
[ (0), px(1)] - M(p) = [ (0)(1 — p) + pa(1)p, pa (0)p + px(1)(1 — p)].

In particular, the quiet binary channel is given by p = 0, that is py;(j) = dsj,
hence we have py = px; and the completely noisy binary channel is given
by p = %, that is py);(j) = % for s € X and j € Y, hence py is the uniform
distribution, independently of px.

If X carries the uniform distribution, then we have puy = [$,1]- M(p) = [3, 3],

saying that ) carries the uniform distribution as well, independently of p. Con-
. 1— _

versely, if 0 < p < %, then we have M(p)~! = ﬁ . { _pp 1 _pp} € GLo(R),

hence if Y carries the uniform distribution, then px =[5, 3] M(p)~' = [1, 3],

that is X necessarily carries the uniform distribution as well.

b) For decoding purposes we provide the transition matrix M (p) describing the
conditional probability sy as well: Bayes’s Theorem says that px;(i)uy(j) =

paxy(i,j) = px(i)uy)(j), for i € X and j € Y. Hence we have M (p)tr -

diag[py(j); 7 € V] = diag[px (i);i € X]- M(p). Assuming that py(j) # 0 for all
j € Y, this yields

N uxl(O)(lfp) - ;lw(l)p -
M(p) = ux(O)(M;%));;M( )P ;Ax((giaﬁ)ﬁ;})«( )p

px(0)p+px()(1-p)  px(0)p+px(1)(1-p)

In particular, if & carries the uniform distribution, thus Y carrying the uniform
distribution as well, then we have M (p) = M (p).



If py(j) = 0 for some j € Y, then we have p = 0 and px(j) = py(j) = 0,
entailing that x| (j) = 0 for all k € Y. Hence, if py(0) = 0 or py(1) = 0, then

M(0) = {8 ﬂ and M (0) = E 8], respectively, thus M (0) = lim,, 0+ M (p).

(2.4) Capacity. a) We still consider a noisy channel working over an alphabet
X =), with associated probability distributions px and py, respectively.

Given an elementary event j € ), the conditional distribution yy|; describes the
probability distribution on the sent symbols in X provided j is received. Then
for px; we get H(X|j) = — >, cx tx); (i) logy(px; (7)), describing the average
information content of X which upon seeing j € ) is lost due to noise. Hence
the average conditional information content or conditional entropy
HX|Y) = $ey GV H ) = =350y Sien mo (i) (1) 1ogy ()5 (7)) is
the average information content of X which is lost by transport through the
channel. Thus the capacity C(X|Y) := H(X) — H(X|)Y) is the average infor-
mation content being transported through the channel.

b) We proceed to show that i) H(X x Y) < H(X)+ H()), with equality if and
only if X and ) are independent, and ii) H(X x V) = H(X|Y) + H(Y).

Thus we have C(X|Y) = H(X) — HX|Y) = HX)+ HY) - HX xY) >0
indeed, with equality if and only if X and ) are independent. Moreover, we

have C(X|Y) = C(Y|X), saying that the capacity of the channel is independent
of the direction of information transport. It remains to show (i) and (ii):

i) We may assume that p1x (4, 7) # 0, and thus px (i) # 0 # uy(j), for all i €
A and JEY. We have H(X X y) Zze/\,’ Zjey :uXXy( a])lOgQ(:uXxy(Zv]))

arLd f(XHH(J’) == Dicx 2jey haxy (i, j)(108s (pa (i) +10gs (py(5))), from
which we get

H(X x V) — H(X) ZZ“XXy i, j) log, (MX( )Ny(J))

g paxy (i, 7)

which by Jensen’s inequality entails

) HO) < 1 ij) - Ll ()
H(X xY)—H(X) HW)“@%{%”XW 3) Mw(zg))

where the double sum on the right hand side equals >,y >~ ey pra () py (j) =

(F s 1 (0)-(X ey iy (7)) = L, thus H(X x V)~ H(X)~H(¥) < 0. Moreover,

we have equality if and only if there is m € R such that %) = m for

all i € X and j € Y, in which case we get 1 = > .y > .y px(D)uy(j) =
M- icx Djey Baxy(i,j) = 1, saying that pxxy (i, ) = px (i) py(5)-



ii) Using Bayes’s Theorem, saying that jux(;(i)uy(j) = paxy(i,7), we get

HX xY) = *Ziex Zjeyﬂé\.’xy(ivj)Ing(HXxy(iaj))
= 2icx 2ujey Py (J) (1) (loga (ny (5)) + logy(pa;(2)))
= = icx 2jey Py (J)ma; (i) 1oga (pa; (1))
= Diex Hai(E) - X iey 1y (5) loga (py ()
H(X|Y)+H(D).

¢) For the symmetric binary channel with error probability 0 < p < %, working
over the alphabet X = Zs = Y, using the transition matrix M (p) describing
py|x, we obtain H(Y|X) = —plog,(p) — (1 —p)logy(1 —p), thus the capacity is
C(p) = H(Y) - H(Y|X) = H(Y) +plogy(p) + (1 —p)logy(1 — p). In particular,
for the quiet channel we have uy = px and C(0) = H(Y) = H(X), saying that
the average information content of X is completely transported through the
channel; and for the completely noisy channel the alphabet ) carries the uniform
distribution in any case, hence we have H(Y) =1 and C(3) = 1+1logy(3) =0,
saying that no information is transported through the channel.

In general, we have 0 < H(Y) < 1, where the maximum H()) = 1 is attained
precisely for the uniform distribution on ). Hence the maximum capacity is
given as Ciax(p) = 1 + plogy(p) + (1 — p)logy(1 — p). Moreover, if 0 < p < 1
this is equivalent to X' carrying the uniform distribution, in other words if and
only if H(X) = 1, saying that the maximum capacity of the channel is attained
if and only if & has maximum average information content.

(2.5) Redundancy. The idea of error correcting channel coding, to be used
for noisy channels, is to add redundancy. This is measured as follows:

Letting X be an alphabet such that ¢ := |X|, any subset § # C C X™ is
called block code of length n € N and order m := |C| € N. Assuming the
uniform distribution on X", the relative information content of a word in C,

as compared to viewing it as an element of X", is given as the information

_ (e —logy(le])  _ logy(IC)) _ log,(m)
rate p(C) = pxn(C) = ik = “Tortae = g flry = —h - We have

0 < p(C) < 1, where p(C) = 1 if and only if C = X™, that is no redundancy is
added. Thus the larger p(C) the better C is, in terms of information transport.

For example, in parity check codes, words over X’ consisting of k € Ny informa-

tion symbols are encoded into words of length n € N by adding n — k& check
k

symbols; thus allowing for X* to start with we obtain p(X*) = logg X7 _ ke

Similarly, if X = F, is the field with ¢ elements, and C < Fy is an ]Fq?subspac%,
log,(IC) _ dime, (C)

then we have p(C) =

(2.6) Maximum likelihood decoding. a) If words are sent through a noisy
channel, they are susceptible to random errors, where we assume that errors
occurring in distinct positions in a word are independent of each other, that is



we have a channel without memory. Hence if a word is received, the question
arises how to decode it again: We again consider the binary symmetric channel
with error probability 0 < p < %, working over the alphabet X = Zs = ). We
assume that X carries the uniform distribution, or equivalently that ) carries
the uniform distribution, so that the transition matrix describing pyy is M(p).

Let @ # C C X™ be a block code of length n € N. If the word v € Y™ is received,
then it is decoded to some ¢ € C which has maximum probability to be the
word sent, that is pxn|,(c) = max{pxnj,(w) € R;w € C}, hence this is called
maximum likelihood (ML) decoding. This is turned into combinatorics:

For z = [x1,...,2,] € X" and y = [y1,...,Yn] € X™ we let d(z,y) = |{i €
{1,...,n};2; # yi}| € {0,...,n} be their Hamming distance. Since distinct
positions are considered to be independent, for all w € X™ we have pyn|,(w) =
plw) (1 —pyr—dvw) = (1—p)”(ﬁ)d(”’w). If0 < p < 1, then from 0 < <1
we infer that the function R>o — Rso:a = (75)°
p = 0, then we have piyn|,(w) = 0, . Thus we choose ¢ € C having minimum
distance to v € Y™, that is d(v,¢) = min{d(v,w) € Ng;w € C}, being called
nearest neighbor decoding. In practice, although complete decoding is
desired, if this does not determine ¢ uniquely, we revert to partial decoding
by unique nearest neighbor decoding, and mark v as an erasure.

is strictly decreasing; if

b) If ¢ € C is sent, let 0 < 7. < 1 be the probability that ¢ is not recovered, and

the expected value y(C) := ﬁ > _cec Ve is called the average error probability

of C; thus the smaller v(C) the better C is, as far as erroneous decoding is
concerned. The question whether there are good codes, in the sense of having a
large information rate and a small average error probability at the same time,
is generally answered by the Second Main Theorem of information theory,
Shannon’s Theorem on channel coding, which we proceed to prove. But
note that the proof is a pure existence proof giving no clue at all how to actually
find good codes. We need a lemma first:

(2.7) Lemma: Chernoff inequality. Let X be an alphabet with probability
distribution u, and let X1, ..., X,, for n € N, be independent random variables
with values in {0,1}, such that pu(X; = 1) = p, for 0 < p < 1. Then X :=
> iy X; is binomially distributed, that is we have u(X = d) = () -p*(1—p)" 4,
for d € {0,...,n}, and for 0 < € < 1 we have u(X > (1+ €)pn) < e~ 27",

Proof. The first assertion is a matter of counting. Next, for ¢ > 0 we have

the special case t- (X >t) = 1 (@) t0x (2)>t < D pcn (@) X (2)0x (2)>¢ <
Y wex M) X (z) = E(X) of the Markov inequality; note that here we only
use that X has non-negative values. Now, for ¢t € R and i € {1,...,n} we have

E(exp(tX;)) = u(X; =0) - exp(0) + u(X; = 1) - exp(t) = 1 + p(exp(t) — 1),

hence we obtain E(exp(tX)) = E(exp(t- Y ., Xi)) = E(I]i-, exp(tX;)) =
[T, E(exp(tX;)) = (1 + p(exp(t) — 1))", which using the convexity of the



exponential function yields F(exp(tX)) < exp((exp(t) — 1)pn). Thus we get
w(X = (1 +e)pn) = plexp(tX) = exp(t(1l + €)pn))

exp(—t(1 +€)pn) - E(exp(tX))

exp(—t(1 + €)pn + (exp(t) — 1)pn).

Letting ¢t := In(1+¢) this yields u(X > (1+€)pn) < exp(pn(e—(1—|—6) In(1+¢€))).
Finally, the Taylor expansion (1+¢€)In(1+¢€) =e+ 1 — 163+ -+ < e+ €2,
for 0 < e <1, entails (X > (1+ €)pn) < exp(—1€? pn) as asserted i

IN

(2.8) Theorem: Shannon [1948]. We still consider the symmetric binary
channel over the alphabet X = Zo = ), where X and ) carry the uniform
distribution, with error probability 0 < p < % Then for any 0 < p < 1+
plogs(p) + (1 — p)logs(1 — p) = Chax(p) and € > 0 there is a code § # C C X",

for some n € N, such that p(C) > p and v(C) < ¢

Proof. If p = 0, then we may take C = X, fulfilling p(X) = 1 and (&) = 0,
hence we may assume that p > 0. For n € N let m := 2[/"l ¢ N and I, :=
{C C X™;|C| = m}; note that |T',,| = (2n) > 0 for n > 0. Hence for C € T',, we
have p(C) = M r’m] > p. Now let Cy € T',, such that v(Cp) is minimal.
Hence v(Cp) is bounded above by the expected value Er, (v(C)), subject to codes
C € T';, being chosen according to the uniform distribution on I';,.

If some word in X" is sent, then the probability that the received word contains
precisely d € {0,...,n} errors is given by the binomial distribution B(d) =
(%) - p*(1 — p)"~?%. Thus the Chernoff inequality yields pu(8 > (1 4 a)np) <
exp(—%aznp), for any 0 < a < 1. For n € Nlet 0 < a,, < 1 such that a,, — 0

and na? — oo, for n — oo; for example we may let a, ~ ﬁ Letting

§ =0y := (1 + ay)np] yields pu(B > &) < exp(—zaZnp) < ¢, for n>> 0.

Moreover, we have L ap< l , for n — oo; hence we have 6 < 5 —1, for n>> 0.
The equation n” (d + (n— d))” > (5)d4(n — d)"~? yields (4 ) < dd(nziti)"*d’
for d € {0,...,n}. Letting Bs(v) := {w € X™;d(v,w) < 6} be the sphere or
ball with radius § around v € X", the unimodularity of binomial coefficients
yields, for n > 0,

o=t =33 () <5+ (5) < g s = g g

d=0

If C € T',,, then we decode by unique nearest neighbor decoding with respect to
0, that is, given v € Y™, if CN Bs(v) = {c} then we decode v to ¢, otherwise we
mark v as an erasure. For ¢ € C let x.: " — {0,1} be defined by x.(v) :=1 if
d(v,c) <6, and x.(v) := 0 if d(v,c) > 6. Let p.: Y™ — Ny be defined by

ICNBs(w)|+1, ifd(v,c)>4,

el = Lol + D, xelt) UiVl tia s
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thus in particular we have p.(v) = 0 if and only if C N Bs(v) = {c}.

Hence for ¢ € C we have 7. < > cyn Hyn|c(v)pe(v), Wwhere moreover we have

Zuey" Ny"|c(’0)(1 - XC(U)) = Zuey"\Bé(c) Ny"|c(’U) = M(ﬂ > 6) <, for n > 0.
Thus we get

D L TN SR SRR M ()

ceC vEY™ [c,c'|€C?, c#£c!

Hence averaging over all (3}1) many m-subsets of I',,, distinct code words being
chosen uniformly and independently, since any 2-subset of X™ is contained in
precisely (1:22) of its m-subsets, we get

1 m
Br, (v(€)) <e+ - Z > prymie(v)xe (0)-
vEY™ [c,c’|E(X™)2, c£c!
For all v € Y" fixed we have ) _yn Xc(v) = b as well as Y yn fiyn)c(v) =
ZCGX" pd(v,c)(l _ p)n—d(v,C) - ZZ:O (S’)pd(l _ p)n—d = 1. Thus we get
(m—1)b mb olpn]-n—-1_,

< B ———— —_— TSNS 1 SN
’Y(CO) — EFTI(’Y(C)) < E+ 2” _ 1 < €+ 2n < + (n)§(1 _ %)n—&

This entails bgzwfo) ) < lenlono Hlog?(n) 2logy(2) = (1—-2)logy(1—2) —
p—1—plog,(p) — (1 —p)logy(1— p) <0, for n ", 0. Hence there is > 0 such
that v(Co) — e < 27, for n > 0. il

I1

3 Block codes

(3.1) Hamming distance. a) Let X’ be an alphabet such that ¢ := |X|, and
let n € Nyg. Letting v = [x1,...,2,] € X™ and w = [y1,...,yn] € X", then
dlv,w) == |{i € {1,...,n};z; # y;}| € {0,...,n} is called their Hamming
distance; recall that we have already used this for ¢ = 2 in (2.6).

The Hamming distance defines a discrete metric on X™: We have positive
definiteness d(v,w) € Rxq, where d(v,w) = 0 if and only if v = w; we
have symmetry d(v,w) = d(w,v); and the triangle inequality holds: Letting
u:i=[21,...,25) € X", from {i € {1,...,n};x; # 2z} ={i € {1,...,n}khy; =
z # U {ie{l,...,onhy #x # 2zt Clie{l,...,nhy #zU{i€
{1,...,n}2; # vy} we get d(v,u) < d(v,w) + d(w,u).

An isometry of X" is a map ¢: X™ — X™ such that d(v,w) = d(v?,w?), for
all v, w € X™; it follows from positive definiteness that any isometry is injective,
hence is bijective. Thus the set I(X™) of all isometries of X™ forms a group,
called the isometry group of X". We determine I(X"):
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Given permutations m; € S, for all i € {1,...,n}, this yields an isometry
[71, ..., ] acting component-wise, and any permutation in S,, induces an isom-
etry by permuting the components. Hence G := I(X™) contains a subgroup

isomorphic to the semidirect product S% x Sy; thus G acts transitively on A™.

Let 0 € X be a fixed element, and let H := Stabg([0,...,0]); hence we have
[G: H] = ¢". For v = [x1,...,2,] € X" let supp(v) :={i € {1,...,n};x; # 0}
be the support of v. Hence we conclude that H acts transitively on the various
sets {v € X™; |supp(v)| = s}, for s € {0,...,n}. Now let h € H.

Let first v # w € X™ such that |supp(v)| = [supp(w)| = 1. If supp(v) = supp(w)
then from d(v",w") = d(v,w) = 1 we conclude that supp(v") = supp(w"),
while if supp(v) # supp(w) then from d(v", w") = d(v, w) = 2 we conclude that
supp(vh) # supp(w”). Hence h induces a permutation of the components of
X", and permutations within any of the components. In other words the action
of hon {v € X"; |supp(v)| = 1} is induced by an element of S%\ o, ¥ Sp.

Now let v = [x1,...,2,] € &A™ such that supp(v) = {i1,...,is}, for some
s € {1,...,n}, and let w; := [0,...,0,2;,,0,...,0], for j € {1,...,s}. Since
d(vh,w;?) = d(v,w;) = s — 1, we infer that the non-zero components of v" are
determined by the non-zero components of the various w;»’. Thus the action
of h on A" is induced by the element of S;‘(\ (03 X S, describing its action
on {v € X" |supp(v)| = 1}, entailing that H is isomorphic to a subgroup of
SQ\{O} X S,,. Hence from H < S;’é\{o} XS, <SY xS, < Gand [Sx: Sx\j03] = ¢

we conclude that G = S x S, and H = S;Lc\{o} XSy,

b) Let X' = F, be the field with g elements, let 0,, := [0,...,0] € Fy and let 1,, :=
[1,...,1] € Fy. For v = [x1,...,2,] € F} let wt(v) := d(v,0,) € {0,...,n} be
the Hamming weight of v, and let supp(v) := {i € {1,...,n};x; # 0} be the
support of v; hence we have wt(v) = [supp(v)].

An F-linear isometry of Fy is called a linear isometry, the group I,(Fy) <
GL,(Fy) of all linear isometries is called the linear isometry group of Fy.
We determine I, (F,):

We have d(v + u,w + u) = d(v,w), for all u,v,w € Fy, thus we have d(v,w) =
d(v —w,0,) = wt(v — w). Since I,,(F,) fixes 0, € Fy, we infer wt(v9) =
wt(v) for all v € Fy and g € I,(F;). Hence for the i-th unit vector e; =
[0,...,0,1,0,...,0] € Fy, where i € {1,...,n}, we have e = z;e;, where
m €S, and x; € Fy := F,\ {0}. Thus g is described by a monomial matrix
diag[z1,...,x,] - Pr € GL,(F,), where P; € GL,,(F,) is the permutation matrix
associated with 7w € S,,.

Conversely, any invertible diagonal matrix and any permutation matrix, and
thus any monomial matrix, gives rise to a linear isometry. Thus I,,(F,) <
GL,(F,) is the subgroup of monomial matrices, hence I,,(F,) = (F;)" x S,; in
particular, it acts transitively on {v € Fy; wt(v) =i}, for all i € {0,...,n}.



II 19

(3.2) Minimum distance. a) Let X be an alphabet such that ¢ := |X|, and
let @ # C C X™ be a block code of length n € N and order m := |C| € N; note
that we do not distinguish between information and check symbols. If m =1
then C is called trivial. Codes C,C’ C X" are called equivalent, if there is an
isometry g € I(X™) such that C9 = C’; the automorphism group Aut(C) of
C is the group of all isometries g € I(X™) such that C9 =C.

If C is non-trivial, then d(C) := min{d(v,w) € Njv # w € C} € {1,...,n} is
called the minimum distance of C; if C is trivial we let d(C) := oo. If d(C) = d
then C is called an (n,m,d)-code over X. We have d(X™) = 1, and equivalent
codes have the same minimum distance.

For any non-trivial (n,m,d)-code C we have the Singleton bound [1964]
log,(m) < n —d+1: We consider the map oz X™ — X"~ [y, 2] =
[Z1,..., Zn_dt1]; since for any v # w € C we have d(v,w) > d, we infer that the
restriction alc: C — X"~ is injective, thus m = |C| < ¢"~9*!. Note that in
the above argument we can choose any n—d+ 1 components instead. If we have
equality d—1 = n—log,(m), then C is called a maximum distance separable
(MDS) code; in particular, X™ is the only MDS code such that d = 1.

b) Let X = [, be the field with ¢ elements, and let C < Fy be a linear code;
specifically, if ¢ = 2 or ¢ = 3 then C is called binary and ternary, respectively.
Let k := dimp,(C) € No be the dimension of C, and let d(C) = d be its
minimum distance, then C is called an [n, k, d]-code over Fy; in particular C is
an (n, ¢*, d)-code, and the Singleton bound for k > 1 reads d — 1 < n — k.

Moreover, if C is non-trivial then wt(C) := min{wt(v) € N;0, # v € C} €
{1,...,n} is called the minimum weight of C; if C is trivial we let wt(C) := oc.
Then we have wt(C) = d, that is the minimum distance and the minimum weight
of C coincide: We may assume that C is non-trivial, that is k > 1; since wt(v) =
d(v,0,) > d for all 0,, # v € C, we have wt(C) > d; conversely, for all v # w € C
we have 0,, v —w € C and d(v,w) = d(v—w,0,,) = wt(v —w) > wt(C), hence
we have d > wt(C) as well.

Codes C,C’' < [y are called linearly equivalent, if there is an Fy-linear isome-
try g € I,(F,) such that C9 = C’; the linear automorphism group Autr,(C)
of C is the group of all F-linear isometries g € I,,(F,) such that C¢ = C. Linearly
equivalent codes have the same dimension and the same minimum weight.

(3.3) Error correction. a) Let X’ be an alphabet such that ¢ := |X|. For
n € Nand r € Ny let B.(v) := {w € X";d(v,w) < r} be the sphere or
ball with radius r around v € A™. Hence independently of v € X™ we have
B-(v)] = S [{w € Xmid(v,w) = dYf = SN () (0 - DT e N
recall that we have already used this for ¢ = 2 in (2.8).

Let C be an (n, m,d)-code over X. Then C is called (e, f)-error detecting, for
some e € {0,...,n} and f € {e,...,n}, if Bf(v) N Be(w) =0 for all v # w € C.
In particular, if f = e + 1, that is By(v) N By_1(w) = 0 for all v # w € C,
then C is called f-error detecting; and if e = f, that is B.(v) N Be(w) = 0 for
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all v # w € C, then C is called e-error correcting. Thus, if C is (e, f)-error
detecting then it is e-error correcting, and in this case it is e-error detecting.

Let C be (e, f)-error detecting. Then for u € X™ we have u € By(v), for some
v € C, if and only if u is obtained from v by at most f errors. In this case, u
has distance at least e + 1 from any v # w € C; thus it is detected whether an
error has occurred. If at most min{f, e + 1} errors have occurred, the number
of errors is detected, but if f = e+ 1 and f errors have occurred then u is not
uniquely nearest neighbor decodable, while if at most e errors have occurred,
then u is correctly decoded by unique nearest neighbor decoding.

Moreover, if C is e-error correcting then since any element of X is contained in
at most one sphere B.(v), where v € C, we have the Hamming bound [1960]
or sphere packing bound m->>;_, (7) - (¢—1)" < ¢" =|Xx"|.

b) If C is trivial, then C is n-error correcting; hence let C be non-trivial. Then
d € N is related to the error correction and detection properties of C as follows:

The code C is (e, f)-error detecting if and only if e+ f < d —1: Let e+ f be as
large as possible, that is e+ f = d—1. Assume that there are v # w € C such that
u € By(v)NBe(w) # 0, then we have d(v,w) < d(v,u)+d(u,w) < f+e=d—1,
a contradiction; hence C is (e, f)-error detecting. Conversely, let v # w € C such
that d(v, w) = d, then Byyq1(v) N Be(w) # 0 and By(v) N Beyq(w) # 0, thus C is
neither (e, f + 1)-error detecting, nor (e + 1, f)-error detecting if e < f.

In particular, C is f-error detecting if and only if 2f < d, and C is e-error
correcting if and only if 2e + 1 < d. In other words, C always is | 451 |-error

2

correcting, and if d is even then C moreover is g—error detecting; note that

|55 = SLif dis odd, but |42 = ¢ — 1if d is even.

Example. Let C := {v € Zy; vw' = 0 € Z,} be a parity check code over Z,, for

q > 2 and n > 2 and weights w € (ZZ)" Since w,, € Z, for all [Z1,...,2n-1] €
Zf}’l there is a unique z,, € Z, such that v := [z1,...,2y—1,2,] € C. Hence
the information rate of C is p(C) = logqilc‘) = logq(zn D _ =l —1- 1

Moreover, for x,,_1 # x},_; € Zq there is x], € Z, such that [x1,...,2,_1,2,] €
C as well, implying that d(C) < 2. Since w; € Z;, for all i € {1,...,n} we infer
that we have [z1,...,2i-1, %}, Tix1,...,Tyn] & C, whenever x; # z € Z,. This

says that By (v) NC = {v}, entailing that C has minimum distance d(C) = 2, and
thus is 0-error correcting and 1-error detecting.

(3.4) Covering radius. a) Let X be an alphabet such that ¢ := |X|, and
let C be an (n,m,d)-code over X. The minimum ¢ € {0,...,n} such that
X" = Uyee Be(v) is called the covering radius ¢(C) of C. Hence we have
¢(C) = 0 if and only if C = X™, and if C is trivial then ¢(C) = n. Letting C be

non-trivial, the covering radius is related to the minimum distance as follows:

If d is odd, letting e := 951 we have B.(v) N B.(w) = 0 for all v # w € C, hence
since Be(v) \ Be—1(v) # 0, we conclude that ¢(C) > e. If d is even, letting f := 4
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we have By (v)NBy_1(w) = 0 for all v # w € C, hence since By(v) \Bs_1(v) # 0,
we conclude that ¢(C) > f.

b) If ¢(C) = e := | 451], that is A" = [ cc Be(v), then C is called perfect. In
this case we have unique nearest neighbor decoding for any element of X", but
C incorrectly decodes any word containing at least e + 1 errors. In other words,
C is perfect if and only if the Hamming bound is an equality, that is we have
m-Y o (7)-(¢—1)" = ¢". Hence C is perfect with d = 1 if and only if C = X"

As for the existence of perfect codes in general, if d is even then ¢(C) > f = 4
and By(v) N By(w) # 0, for all v # w € C such that d(v,w) = d, imply that
there are no perfect codes in this case. The picture changes if d is odd, but still
perfect codes are rare; fulfilling the Hamming bound is not sufficient.

If dis odd and ¢(C) = e +1 = %L or d is even and ¢(C) = f = £, the code
C is called quasi-perfect; in this case there are elements of X which do not
allow for unique nearest neighbor decoding, and C incorrectly decodes any word
containing at least e + 2 respectively f + 1 errors, and possibly some words
containing e + 1 respectively f errors.

Example. The repetition code C := {[z,...,z] € X",z € X}, for n € N,

. . . 1 c c. . .
has information rate is p(C) = w = L. Its minimum distance is d(C) = n,
n—1

hence C is | 5= ]-error correcting, and if n is even it is §-error detecting.

In particular, if X = Fy then we have C = {0,,,1,} < FZ. Since for all v € F}
we have d(v,0,) < | 2] or d(v,1,) < | %], we get ¢(C) = 25 if n is odd, that is
C perfect, and ¢(C) = 5 if n is even, that is C quasi-perfect.

Example. Let C := ([1,0,0,0,1,1],[0,1,0,1,0,1],[0,0,1,1,1,0])r, < FS, hence
X = Fq, and the elements of C consist of the rows of the following matrix:

T 11
1.1 .1
o111 o
1 .1 1 .| €%
1 .11 .1
11 .11
11 1 |

(Actually, C is obtained from the Hamming [7,4, 3]-code, see (4.2) and (6.2), by
shortening with respect to the 4-th component, see (4.5).)

Thus we have the minimum distance d = d(C) = wt(C) = 3, that is C is a
[6, 3, 3]-code, which hence is 1-error correcting. Using ¢ = 2 and e = % =1,
the Hamming bound yields 23 - ((g) + (?)) =56 < 64 = 2%, thus C is not perfect.
Hence the covering radius is ¢(C) > e+ 1 = 2, and we show that actually

¢(C) =2 = 4L saying that C is quasi-perfect:
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Let u € FS. Since the Hamming distance is translation invariant, by adding
a suitable element of C we may assume that v = [0,0,0,,*,%]. Since the
permutation (1,2,3)(4,5,6) € Sg induces a linear isometry leaving C invariant,
we may assume that « € {0, [0,0,0,1,0,0],[0,0,0,1,1,0],[0,0,0,1,1,1]}. Now
we observe that u € Bz (v) for some v € C. i

(3.5) Theorem: Tietdvéinen, van Lint [1973]. Let C C Fy be a perfect
(n,m,2e + 1)-code, where e € N; in particular we have C # F and n > 3.

a) If e > 2, then C is equivalent to a linear code, and linearly equivalent to
i) the binary repetition [n, 1,n]-code {0,,,1,}, where n > 5 is odd;

ii) the binary Golay [23,12, 7]-code Gas, see (13.1);

iii) the ternary Golay [11,6,5]-code Gi1, see (13.2).

b) If e =1, then n = qq’“:11 for some k > 2, and m = ¢"~*. If C is linear, then

it is linearly equivalent to the Hamming [n,n — k, 3]-code Hy, see (6.1). 4§

In particular, for ¢ = 2 and k = 2 we recover the binary repetition [3,1, 3]-
code {03,13}. Actually, there are non-linear codes having the parameters of
Hamming codes, and their classification still is an open problem.

4 Linear codes

(4.1) Generator matrices. Let C <} be a linear code of length n € N over
Fy, and let k := dimg, (C) € {0,...,n}. A matrix G € F*" whose rows form an
F,-basis of C is called a generator matrix of C; hence we have C = im(G) =
{vG e Fyiv € ]Ff;}; in particular, for k = 0 we have G € IF‘?IX”, and for k = n we
may choose the identity matrix G = E, € Fy*". Then v € IF’; is encoded into
vG € Ty, and conversely w € C = im(G) < Fy is decoded by solving the system
of F-linear equations [Xi,..., X] -G = w € Fy, which since rkp, (G) = k has
a unique solution.

Since rkp, (G) = k, by Gaussian row elimination and possibly column permu-
tation G can be transformed into standard form [Ej, | A] € Fi*", where

A€ IF‘(? *(=k) Row operations leave the row space C of G invariant; and column
permutations amount to permuting the positions of symbols, thus transform C
into a linearly equivalent code. Hence in this case [z1,..., 2] € FF¥ is encoded
into [z1,..., kY1, Yn—k] € Fy, where [y1,....yn—k] = [21,...,2%] - A €
Ff;_k . Thus the first k¥ symbols can be considered as information symbols, and
the last n — k symbols as check symbols; since information and check symbols
can be distinguished like this C is called separable. Moreover, the projection
C—TFF:[z1,...,24] = [21,.. ., 2] onto the first k positions is a bijection; hence
C is called systematic on the information symbols.

(4.2) Check matrices. a) Let F, be the field with ¢ elements. For n € N
let (-,-): Fp x Fy — Fo: [[1,... 0], Y1, 0]l = @ y™ = 320 @y be
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the standard F,-bilinear form on Fy. This form is symmetric and non-
degenerate, and we have (vM,w) = (v,wM™) for all v,w € F} and M € F}*".

For a code C < F7, the orthogonal space ct = {v ¢ Fy;(v,w) = 0 €
F, for all w € C} < with respect to the standard FFy-bilinear form is called
the associated dual code. Letting k := dimg (C) € {0,...,n}, we have
dimg, (C+) = n — k. Moreover, we have C < (C*+)*, and from dimg, ((C+)*+) =
n—(n—k) =k = dimg,(C) we get (C+)= = C. If C < C* then C is called
weakly self-dual, and if C = C then C is called self-dual; in the latter case
we have n — k = dimg, (C+) = dimg, (C) = k, thus n = 2k is even.

b) If G € IF’;X" is a generator matrix of C, then we have Ct = {v € Fy; Gv'r =

0€Fi*'} ={veFloG" =0 e FF}. Hence if H € FU" 9% is a generator
matrix of C*, then C = (C*)* = {v € F;0H™ = 0 € F)~*} = ker(H™) < F.
Thus H is called a check matrix of C, and instead of using a generator matrix
the code C can also be defined by a check matrix. In particular, for £ = n we have

H € F)*", and for k = 0 we may choose the identity matrix H = E, € F}*".

If G = [E | Al € FF*" is in standard form, then H = [-A" | E,_;] €
F(gnfk) “™ is a generator matrix of C1, also being called a standard check matrix
for C: We have rkg (H) = n — k, and HG" = [-A" | E,_;] - {fg] =

AV By 4 By - A =0 € FTRE

Duality interferes with linear equivalence nicely inasmuch a code C' < Fy is
linearly equivalent to C if and only if its dual (C’)* is linearly equivalent to C*:
It suffices to show one direction. If C’ is linearly equivalent to C, then there is
M € I,,(F,) such that ' = C-M. Then we have C'-(HM )" = C-MM'H' =
{0}. Thus HM~% ¢ Fén_k)xn, having rank rkp, (HM~*") = n — k, is a check
matrix for C’, entailing that (C’)*, having HM~'" as a generator matrix, is
linearly equivalent to C, which has H as a generator matrix.

Example. Let the binary Hamming code H < F} be given by the following
generator matrix G € Fg”, or equivalently its standard form G’,

.11 1 1 1 . . .11
o111 . 1. 1 1
G=1y 1 11 | ad G:= 1 11 .
1111111 C11 011

..o .11 11 101 101
H=1]. 11 . . 11 and H:=|1 . 1 1 1 .
1 .1 .1 . 1 1 1 1 1

We have k = dimp,(H) = 4, that is m = |H| = 2% = 16. From inspecting
the elements of H, as given by the rows of the matrices below, or from (4.3)
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below, we get d = d(H) = 3, thus H is a [7,4,3]-code. Moreover, we have
d—1
m-3.% (1) =16 (1+7) =128 = 27 = [F}, thus by the Hamming bound we

K2

conclude that H is perfect; see also (6.2).

1 Sl
1111 1 11
1 .11 1.1 .1 .1
S11 1 1 .11 .1
1 1.1 11 11
1.1 .1 11 .1 1
11 . .11 111 :
L1111 ] 11111 1 1]

(4.3) Theorem. Let C < [} be a non-trivial [n, k,d]-code, let F, C F be a
field extension, and let H € F("~k)X" be a generalized check matrix of C,
that is C = ker(H") NF} is a subfield subcode of ker(H") < F™; note that
we do not require that H has full F-rank. Then any (d—1)-subset of columns of
H is F4-linearly independent, and there is some Fg4-linearly dependent d-subset
of columns of H.

In particular, for F' = F; the matrix H is just a check matrix of C, inasmuch
the condition rkg, (H) = n — dimg, (ker(H"™)) = n — k is fulfilled automatically;
thus we recover the Singleton bound d — 1 < rkg, (H) = n — k for linear codes.

Proof. Let d’ € N such that any (d' — 1)-subset of columns of H is F-linearly
independent, while there is some F,-linearly dependent d’-subset of columns of
H. Let d’ > 2, and let 0 # v € F} such that wt(v) < d'—1. Hence vH™ € F"~F
is a non-trivial F-linear combination of at most d’ — 1 rows of H'. Since the
latter are F-linearly independent we have vH™ # 0, hence v ¢ C, implying that
d > d'. Conversely, for d’ > 1, picking an Fg-linearly dependent d’-subset of
columns of H, there is 0 # v € F? such that wt(v) < d’ and vH™ =0 € F"*,
thus we have v € C, implying that d < d'. 1

(4.4) Syndrome decoding. Let C < I}/, where n € N, be given by a check

matrix H € Fé"_k)xn7 where k := dimg, (C). Then for v € F let vH" € IF‘;“’C
be the syndrome of v with respect to H.

We consider the quotient F,-vector space Fy /C, whose elements 7 := v+ C =
{v+w e Fy;w e C} € Fy/C, for v € Fy, are called the cosets with respect
to C. Since C = ker(H") < F} and rkg,(H) = n — k, by the homomorphism
theorem we have F7! /C = F7' /ker(H™) = im(H") = F}~* as F,-vector spaces.
Thus the syndromes are in natural bijection with the cosets with respect to C,
in particular there are [F7 /C| = [Fz~%| = ¢"~* syndromes.

To decode a possibly erroneous vector v € Fy, we proceed as follows: Let

w € C be the codeword sent, and let u := v —w € Fy be the associated error
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vector, thus we have d(v,w) = wt(u). Moreover, for the syndromes we have
vH™ = (w+ u)H" = uH" € F)~*, that is we have v = u € F'/C. Hence
v is uniquely nearest neighbor decodable if and only if the coset v +C C Fy
possesses a unique element u € Fy' of minimum weight, and in this case v € Fy
is decoded to v —u € Fy.

The elements of the coset v+C C F having minimum weight are called the coset
leaders of v € Fy /C. In general coset leaders are not unique. Still, the zero
vector 0, € Fy always is the unique coset leader of the coset 0, € Fy /C; and if C
is e-error correcting, for some e € {0,...,n}, and the coset v+C C [ possesses
an element u € Fy of weight wt(u) < e, then u is the unique coset leader of
7 € F?/C. In practice, coset leaders for all syndromes in im(H"™) = F2~* are
computed once and stored into a table, so that then coset leaders are found
by computing syndromes and subsequent table lookup. Finding coset leaders
algorithmically, being called the decoding problem for linear codes, is an
NP-hard problem; hence the aim is to find codes having fast decoding algorithms.

Example: Parity check codes. a) Let C = {v € F};vw' =0 € F,} <Fp
be defined by the check matrix 0 # H := [w] = [wy, ..., w,] € F}, where up to
linear equivalence we may assume that w,, = 1, that is H is in standard form,;
hence we have k = dimg, (C) = n — 1. Thus the standard generator matrix is

given as G := [E,_1 | y"] € Fén_l)xn, where y == —[wy,...,w,1] € Fp~1.
Hence [z1,...,2,-1] € E’;_l is encoded into [x1,...,Tn_1;— Z?:_ll rw;] € Fy,
and for v = [1,...,2,] € F} we get the syndrome vH"™ = 7" | z;w; € Fy.

From (4.3) we get d(C) € {1,2}, where for n > 2 we have d(C) = 2 if and only
ifw; #0 foralli € {1,...,n}.

b) In particular, for ¢ = 2 and w = 1,, € F3, any [z1,...,2,-1] € ]F§71 is
encoded into [x1,...,Zp_1; E?:_ll x;] € F%, which indeed amounts to adding
a parity check symbol; and v = [z1,...,2,] € F? has syndrome vHY =

St @; € Fa, hence we have v € C if and only if wt(v) € Ny is even, thus C is
called the binary even-weight code of length n. For n > 2 we have d(C) = 2,
thus C is a binary [n,n — 1, 2]-code. Indeed, it is the unique one: Any such code
has a check matrix in F5 without zero entries, thus being equal to 1,,.

Since any v € Fy has distance at most 1 from an element of C, the covering
radius equals ¢(C) =1 = %C), thus C is quasi-perfect. We have F§ = (0 +C) U
(v+4C), where v € F¥ is any vector such that wt(v) is odd, corresponding to the
syndromes 0 € Fy and 1 € Fy, respectively; thus any vector of weight 1 is a coset
leader of the coset F§ \ C, which is not uniquely nearest neighbor decodable.

Example: Repetition codes. a) Let C be given by the standard generator
matrix G := [1,,] € F}, hence we have k = dimg,(C) = 1 and d(C) = n. Thus

the standard check matrix is H := [-1¥_, | E, 1] € an_l)xn. Then z € Fy is
encoded into [, ..., z] € Fy, and for v = [z1,...,3,] € F} we get the syndrome

VHY = |19 — 21, ..., 2 — 2] € FP7L
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b) In particular, for ¢ = 2 we have C = {0,, 1,,} < F%; recall that C is perfect if
n is odd, and quasi-perfect if n is even. The repetition code is the unique binary
[n, 1, n]-code; it is weakly self-dual if and only if (1,,,1,,) = 0, which holds if and
only if n is even. The generator matrix G = [1,,] € F¥ is a check matrix of the
even-weight code of length n, hence the latter coincides with C*.

Any v = [z1,...,2,] € F} has syndrome [zy + z1,...,2, + 21] € F3~'; and
the coset affording syndrome w € Fy ! equals [0 | w] + C C F%, where wt([0 |
w]) = wt(w) and wt([0 | w] + 1,) = n — wt(w). Thus, given v, computing its
syndrome and finding coset leaders yields the following decoding algorithm:

For n odd, coset leaders are uniquely given as [0 | w] if wt(w) < 251 =: e, and
[0 | w]+ 1, if wt(w) > 2L = e+ 1; in both cases the coset leaders have weight
at most e. Thus if wt(v) < e and x; = 0, then v has syndrome [za,...,x,],
and is decoded to v + [0 | za,...,x,] = Op; if 1 = 1, then v has syndrome
[2+1,...,2, +1], and is decoded to v+ ([0 | 2 +1,..., 2, + 1]+ 1,) = 0,; if
wt(v) > e+ 1 and 1 =0, then v is decoded to v+ ([0 | z2,...,2,]+ 1) = 1y;
if z1 =1, then v is decoded to v + [0 | z2 +1,...,2, + 1] = 1,,.

For n even, coset leaders are uniquely given as [0 | w] if wt(w) < § —1 =:e,
and [0 | w]+1, if wt(w) > § 41 = e+ 2, where in both cases the coset leaders
have weight at most e, but for wt(w) = & = e+ 1 we have wt([0 | w]) = wt([0 |
w]+1,) = wt(w), in which case coset leaders are not unique. Thus if wt(v) < e
and x; = 0, then v is decoded to v 4 [0 | x2,...,2n] = 0,; if 1 = 1, then v
is decoded to v + ([0 | 22+ 1,..., 2y + 1] + 1,,) = 0,; if wt(v) > e+ 2 and
x1 = 0, then v is decoded to v + ([0 | z2,...,2,] + 1) = 1,5 if &1 = 1, then v
is decoded to v+ [0 | @2+ 1,...,2, + 1] = 1,; but if wt(v) = e + 1 then v is
not uniquely nearest neighbor decodable.

(4.5) Modifying codes. Let C be an [n, k,d]-code over F,, with generator
matrix G € F,**"™ and check matrix H € IFSI""“)X”.

a) i) Puncturing by deleting the n-th component, for n > 2, yields the code
C* = {[z1,...,xn 1] € F}7 5 [xy,...,2,] € C} < F27'. Using the Fy-linear
map Fy — F7 =12 [21,...,2,] = [21,. .., 2,_1], having kernel ([0,...,0,1])r, <
Fy, shows that k —1 < k® := dimg, (C*) < k. If d > 2, or z,, = 0 for all
[€1,...,2,] € C, then k* = k, amounting to deleting a check symbol. Moreover,
if C* is non-trivial, then for its minimum distance we have d — 1 < d* < d; in
particular, if z,, = 0 for all [z1,...,2,] € C, then d* = d.

ii) Extending by adding a check symbol yields C = {[z1, ..., Zn, Tnt1] €
Fptts [z, 0] €C, Srtle =0} < F7+1. Hence C has check matrix H :=
{ H |0 ] c ]Fén+1—k)x(n+1)

1 I , thus in any case we have k= dimp, (CA) =k.

If C is non-trivial, then C has minimum distance d < d < d+ 1: Since any
(d — 1)-subset of columns of H is F-linearly independent, distinguishing the
cases whether or not the last column of H is involved, we conclude that any
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(d—1)-subset of columns of His F,-linearly independent as well; and since there
is an [Fg-linearly dependent d-subset of columns of H, there is an F,-linearly

dependent (d + 1)-subset of columns of H.

In particular, for ¢ = 2 the additional condition corresponding to the row 1,1
in H amounts to wt(v) € Ny even, for all v € C; hence if C is non-trivial then d
is even, implying d = d + 1 for d odd, and d = d for d even.

Puncturing the extended code C < Fp+! we recover ©)° = {[x1,...,zn] €
Fyiloe, .o 2o, Tnga] € Ch = {[z1,...,zn] € Fy;[21,... 2] €C} =C < Fy.

b) i) Expurgating by throwing away certain codewords yields the code C’ :=
{[z1,...,2n] € C; 31 2y = 0} < C < F. Hence for the minimum distance of
C’ we have d’ > d. Moreover, we have k —1 < k' := dimp, (C") < k. If ¥’ = k-1

H n— n . . .
then C’ has check matrix H' := i € IE‘((I kt1)x ; in particular, if 1,, € C

then we have 1,, ¢ C’ if and only if ged(q,n) = 1, thus in this case ¥’ = k — 1.
In particular, for ¢ = 2 we have C' := {v € C;wt(v) € Ny even} < C, being
called the even-weight subcode of C; hence if C’ is non-trivial then d’ is even,
and we have k' = k — 1 if and only if C contains elements of odd weight.

ii) Augmenting by adding certain codewords yields C = (C,1.)r, < Fy.

Hence for the minimum distance of (Z we have d < d. Moreover, we have
k <k :=dimg, (C) < k+1. We have k = k + 1 if and only if 1,, € C; in this

165 } € Fik+xn.

case C has generator matrix G:= [

In particular, for ¢ = 2 we have C:=CuU (1,+C) < F%, consisting of the elements
of C and their complements. If C is non-trivial, since wt(1,,+v) = n—wt(v) for

all v € F}, we get d = min{d, n— D}, where D := max{wt(v) € No; 1, # v € C};
if 1,, € C we have 1,, + C = C and thus D = n — d and d = d anyway.

If 1, € C, then augmenting the expurgated code C' < C < Ty yields ¢’ < @ =

(C', 1n)r, < C, hence (C') = C if ged(¢q,n) = 1, and (C') = C’ if ged(g,n) > 1.
Moreover, if ged(g,n) > 1, then we have <1n>]/Fq = (1,)F,, and thus expurgating

the augmented code C < [y yields ) = (c, Lo)p, = (€', 1n)p, = @

c) i) Shortening by taking a cross section, for n > 2, is the concatena-
tion of m-expurgation and subsequent puncturing, yielding the code C° :=
{[x1,. .. xn-1] € Fg_l;[xl,...,a:n] € Cx, =0} = (CM)* < Fg_l, where
C™ = {[x1,...,2,] € C;z,, = 0} < [Fy. For the minimum distance of C° we
have d° > d. Moreover, we have k —1 < k° := dimp, (C°) < k. We have
k° = k — 1 if and only if C") < C, that is if and only if there is [z1,...,2,] € C
such that x,, # 0; in this case C° has check matrix H° € F{"®*"™Y ghtained
from H by deleting column n, amounting to deleting an information symbol.

ii) Lengthening is the concatenation of augmentation and subsequent exten-
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sion, yielding C < IF;‘“. For the minimum distance of C we have d < d + 1.

Moreover, we have k < ko= dimp, (C~) < k+ 1. We have k=Fk+1if and only
if C < C, that is 1,, ¢ C, amounting to adding an information symbol.

Thus, shortening the extended code C < F7+1 yields ©€)° = {[x1,..., 2] €
FZ, [xla---7xn+l] S axn-l—l = 0} = {[.Tl,./.\.7.’l,'n] S CvZ?:lei = O} = Cla in
particular, shortening the lengthened code C < Fp+1 yields (€)° = (C).

5 Bounds for codes

(5.1) Theorem: Plotkin bound [1960]. Let C be a non-trivial (n, m, d)-code
over an alphabet X such that ¢ := |X|. Then we have m - (d —n - %) <d.

In particular, if we have equality then d(v,w) = d for all v # w € C, that is C is
an equidistant code. Note that the above inequality is fulfilled for all m € N
whenever % < %, hence giving no obstruction at all in this case.

Proof. We compute two estimates of A=}  cco 2, d(v,w) € N. Firstly,
since d(v,w) > d for all v # w € C, we get A > m(m — 1)d.

Secondly, letting X = {x1,..., 24}, let m;; € Ny be the number of occurrences of
the symbol z;, for i € {1,...,q}, in position j € {1,...,n} of the various words
in C. Hence we have >_7_, m;; = m, and the Cauchy-Schwarz inequality, applied
to the tuples [m;;;i € {1,...,¢}] € R? and 1, € R, yields m? = (}_7_, m;;)? <
ey, mfj, thus Y7, mfj > %2. Now, there are m;; words in C having entry z;
at position j, and m — m;; words having a different entry there. This accounts

for all contributions to A, hence we get A = Y0 37 my;(m — my;) =
-1

Z?:l(mz - i m?j) < E?:1 m?(1 — %) =nm®- qT-

Thus we get m(m — 1)d < A < nm? - q;—l, entailing (m — 1)d < nm - q;—l. In

particular, equality implies that A = m(m — 1)d, thus C is equidistant. #

(5.2) Theorem: Griesmer bound [1960]. a) If C < F} is an [n, k, d]-code
such that k > 2, there is an [n—d, k—1, d*]-code C* < Fg_d such that d* > f%].
b) If C <Fy is a non-trivial [n, k, d]-code, then we have Z]:OI (4] <n.

i=0 | ¢

Proof. a) We use the Helgert-Stinaff construction [1973]: Let G € F}*"
be a generator matrix of C. Up to linear equivalence we may assume that

G = [ éf* Og:d }, where G** € F((Ik_l)Xd and G* € ng_l)x("_d); note that

the Singleton bound yields d < n. We show that the residual code C* < Fg_d
generated by the rows of G* is an [n — d, k — 1, d*]-code such that d* > (%W:
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We first show that rkr (G*) = k — 1: Assume to the contrary that rky, (G*) <

w On—d :| c

k —2, then up to row operations may assume that [G** | G*] = [ ” "

ng_l)xn, for some w € Fg. fw=z-14€ IFg for some x € IFZ then we have

rkr, (G) < k, a contradiction; otherwise we have 0 # [w — x - 14,0, _4] € C for
all x € Fy, but wt(w — x - 14) < d for some « € Fy, a contradiction as well.

We show that the minimum weight wt(C*) € N is bounded below by [g]: Let
0# v eC* andlet [w | v] € C for some w € FZ. Then for some z € F, there
are at least [g] entries of w equal to z, hence wt(w —z - 14) < d — (%}. Since
0# [w—x-14 | v] €C has weight at least d, we conclude that wt(v) > f%].

b) This now follows by induction on k, the case k = 1 being trivial: For k > 2
we have n —d > Y05, thus n > [0] + S0 (o1 = X5 (6]

We have a couple of immediate comments: Firstly, the Griesmer bound for
linear codes improves the (non—linear) Plotkin bound: The former entails n >

d - Zl o q —d 1 =d-%. :71 , or equivalently ng® - q;—l > d(q¢* - 1),
that is d > ¢*(d —n - —) Whlch is the Plotkin bound.
Secondly, if C is an MDS code such that & > 2, then the Griesmer bound

entails d < ¢, showing that the minimum distance of MDS codes is severely
restricted: Assume to the contrary that d > ¢, then we have n > Zf;ol [%] >

d+2+zl ) 1_d+2+(k—2):d+k:n+1,acontradiction.

(5.3) Theorem: Gilbert bound [1952]. a) Let X be an alphabet such that

= |X|, and let n,m,d € N such that 2 < m < ¢". If m - |Bs_1(-)] =
m- Zf;ol (M) - (@—1)" < ¢", there is an (n,m,d’)-code over X such that d’ > d.
b) Let n, k,d € N such that k < n. If |Ba_1(0,)] = S0— (7)-(g—1)" < g» 1,
then there is an [n, k, d’]-code over F, such that d’ > d,

Proof. a) We construct a suitable code successively, starting from a singleton
set C C X™; recall that C has infinite minimum distance. As long as |C| < m we
have |C| - |Bg—1(-)| < ¢" = |&X™"|, hence J,cc Ba-1(v) C X™ is a proper subset
of X™. Thus there is w € X™ having distance at least d from all elements of C.
Hence, since C has minimum distance at least d, this also holds for C U {w}.

b) The assumption implies that d < n. If k = 1 then the repetition [n, 1, n]-code
is as desired; hence we may assume that k£ > 2. Then by induction there is an
[n,k —1,d']-code C < F? such that d’ > d. Since ¢"' - |Bg_1(0,)| < ¢", we
conclude that (J, e Ba—1(v) C Fy is a proper subset of Fy. Thus there is w € Fy
having distance at least d from all elements of C. Hence we have wt(w) > d,
and aw € Fy has the same distance properties from C, for all a € F;. Thus
we have C N (w)r, = {0}, and we let C* := C @ (w)r, < Fy. Hence we have
dimg, (C*) = k, and d(aw +v,bw+v") = d((a —b)w,v' —v) > d, for all a,b € F,
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and v,v’ € C such that a # b or v # v/, entails that C* has minimum distance
at least d, saying that C* is as desired. i

(5.4) Theorem: Gilbert-Varshamov bound [1952, 1957]. Let n,k,d € N
such that £ < n. If |Bg_2(0,—1)| = 25;02 ("7 - (g —1)" < ¢"*, where we let

B_1(05,—1) := 0, then there is an [n, k, d']-code over F, such that d’ > d.

Proof. The assumption implies that d < n, and we may assume that d > 2. For
k = n, the above inequality is fulfilled if and only if d = 1, hence we may assume
that k& < n. We construct an F,-generating set B,, := {v1,...,v,} C ]Fg_k such
that any (d — 1)-subset of B,, is F,-linearly independent; then [vi", ..., v¥] €
Fén_k)xn is the check matrix of a code as desired. We proceed by induction to
find subsets By,—p C Bp_p41 € --- € Bj C --- C B, of cardinality |B;| = j,
where By, = {v1,...,0n—} C ]Fg_k is an Fy-basis. For j € {n—k,...,n—1},
the number of vectors in IE‘Z"C being F,-linear combinations of at most d — 2
. d—2 (j ; d—2 (n—1 ; _
elements of B; is at most >r_ o (1) - (¢ —1)* < X5 (")) - (¢ —1)° < q"k,
hence there is v;41 € Fi ™% such that any (d — 1)-subset of B := B; U {vj41}
is Fg-linearly independent. #

We again have an immediate comment, saying that the Gilbert-Varshamov
bound for linear codes improves the linear Gilbert bound: Given the inequality
Z?:_Ol (M) -(q—1)" < ¢"~**1, the latter ensures the existence of an [n, k, d']-code
such that d’ > d, while the former even ensures the existence of an [n+1, k, d"]-
code C such that d” > d + 1, which indeed is an improvement, inasmuch, since
d’ > d+1 > 2, the punctured code C* < F}' has F,-dimension k& and has

minimum distance at least d” —1 > d.

(5.5) Optimal codes. Let F,; be the field with ¢ elements, being kept fixed.
For n,d € N such that d < n let

K,(n,d) := max{k € N; there is an [n, k, d']-Code over F, such that d’ > d};

note that the existence of repetition [n, 1, n]-codes entails that Ky(n,d) < n is
well-defined. In particular, for d = 1 the [n, n, 1]-code Fy shows that K,(n,1) =
n; for d = n the Singleton bound implies k < 1, showing that K4(n,n) = 1.

We have K,(n,d) = max{k € N;there is an [n, k, d]-Code over F,}, as well as
Ky(n,d+1) < Ky(n,d): Let C be an [n, k,d + 1]-code, where we may assume
that there is [z1,...,2,] € C such that z,, # 0 and having minimal weight
d+ 1 > 2. Then the punctured code C* < IE‘Z*1 is an [n — 1, k, d]-code. Hence
adding an n-th component consisting of zeroes only we get the [n,k,d]-code
{[z1,- - 2n-1,0] € FY;[21,. .., 20—1] € C*} < FY, proving both assertions.

Upper bounds on k > 1 for an [n, k, d]-code over F, to possibly exist, thus upper
bounds on Kg4(n,d) are, where (i)—(iii) also hold for non-linear codes:

d—1 )
i) Singleton bound k < n—d+1, ii) Hamming bound Z}:?J (M) -(q=1)" < ¢"F,
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iii) Plotkin bound ¢*(d —n - q;—l) < d, iv) Griesmer bound Zf;ol (q—’ﬂ < n.

Lower bounds on k for an [n, k, d']-code over Fy such that d’ > d to exist, that
is lower bounds on K, (n,d) are, where (v) also holds for non-linear codes:

v) Gilbert bound Z?:_ol (M) -(g—1)" < ¢"*, vi) linear Gilbert bound Zf:_ol WK
(g—1)" < ¢"*'7%, vii) Gilbert-Varshamov bound 37 (") - (¢ — 1)* < ¢" .

K3

A code C < Fy such that d(C) = d and dimg,(C) = K4(n,d) is called optimal.
Thus any linear code fulfilling one of the upper bounds mentioned is optimal,
for example MDS codes and perfect codes are so, but for these classes of codes
d is severely restricted. Actually, K,(n,d) is not at all known precisely, and
improving the bounds for K,(n, d), aiming at determining K,(n, d) affirmatively,
and finding and classifying optimal codes continue to be major problems of
combinatorial coding theory.

Example. For ¢ =2 and n = 13 and d = 5 we get the following:

i) The Singleton bound yields k < 9; ii) the Hamming bound yields 2!3—% >

Z?:o (**) = 92, that is k < 6; iv) the Griesmer bound yields Zi:ol [2]

54+34241+141+--<13, that is k < 6.
iii) Since 5 < %, the Plotkin bound does not yield immediately. But, noting
that we may assume that & > 4 by the lower bounds to follow, if we first
extend a binary [13,k,5]-code to a [14,k, 6]-code, and then shorten it three
times to obtain a [11,k — 3, 6]-code (and possibly puncturing and adding zero
components), then the Plotkin bound yields 2=3(6 — L) <6, that is k < 6.

Assume that there is a binary [13, 6, 5]-code. Then by the Helgert-Stinaff con-
struction there is a residual [8,5,d]-code, where d > 3. Now the Hamming

d—1
bound 9 = ZLO (8) < ZE:?J (8.) < 2875 = § yields a contradiction. Hence

there is no binary [2137 6, 5]-code, le that k < 5.

Conversely, v) the Gilbert bound yields 2'3—% > E?:o (*?) = 1093, that is
k > 2; vi) the linear Gilbert bound yields 2'4~% > 1093, that is k& > 3; vii) the
Gilbert-Varshamov bound yields 213% > Z?:o (?) = 299, that is k > 4.

We finally show that a binary [13,5,5]-code exists: In view of the Helgert-
Stinaff construction we begin with a binary [8, 4, 4]-code, namely the (self-dual)
extended Hamming code C* := H3 < F5, which has generator and check
matrices as follows; see also (6.2), and (4.2) where (H3)® = Hz < F5 is given:

o111 1. .. 1111
e |11 1 R U T DR B
=l D1 =1y 1 1 1
111111 1|1 1 1111111

As any 3-subset of columns of H* is Fa-linearly independent, we conclude that
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indeed d(C*) = 4. Now let C < F}? be the code generated by

1 1.1 1 1|
1 .. 1111

G:= r .. 1111 . € Fyx1s,
1 E T B
11111111

We show that d(C) = 5: Let 0 # v = [/ | v"] € C, where v/ € F} and
v" € F§. If v’ = 0, then we have v" = 1g, hence wt(v) = 8; if v" = 0, then
we have v/ = 15, hence wt(v) = 5; if both v' # 0 and v” # 0, then we have
wt(v) = wt(v') + wt(v”’) > 1+4=5.

Hence we conclude that K5(13,5) = 5. We note that there is a (unique opti-
mal non-linear) binary (13,25, 5)-code, which via shortening is related to the
(optimal non-linear) binary Nadler (12,25, 5)-code. 1

(5.6) Asymptotic bounds. We consider the question how good codes might
be asymptotically for n > 0. Since the error correction capabilities of a non-
trivial [n,k,d]-code C < Fy, which are governed by its minimum distance d,
should grow proportionally with respect to its length n, we let §(C) := % <1
be the relative minimum distance of C; recall that p(C) = % < 1 is the

information rate of C.

For 0 < § <1 we let 14(6) := limsup,,_, . L - K4(n, [6n]), that is

kq(d) = limsup (max {S € R; there is an [n, k, d]-code such that % > 5})
n— oo

Since we may assume that d = [dn], this amounts to saying that 0 < k4(6) < 1
is largest such that there is a sequence of codes of unbounded length whose
relative minimum distance is approaches § from above, and whose information
rate tends towards kq(6).

Hence k4(9) is decreasing, where for 6 = 0 from Ky(n,1) = n we get £4(0) = 1,
while for § =1 from K,(n,n) = 1 we get r4(1) = 0. Again, the bounds (i)—(iv)
above provide upper bounds for x4(d), while (v)—(vii) give lower bounds for
kq(6), but in general £4(d) is not known. We proceed to derive the associated
asymptotic bounds explicitly; they are depicted for ¢ = 2 in Table 4.

(5.7) Linear bounds. Let C < Fy be a non-trivial [n, k, d]-code, and 0 < § < 1.

Theorem: Asymptotic Singleton bound. We have £,(6) <1 —6.

Proof. The Singleton bound says that p(C) = £ < 1+ 1-45(0).
e

141 _4d_—
Hence, given 0 < § < 1, whenever 6(C) > § we have p(C) <1+ % — 4. Thus for
n — 0o we get ky(6) <1—14. i
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Next, we consider the Plotkin bound, yielding the asymptotic result to fol-
low, which actually supersedes the asymptotic Singleton bound. The Griesmer
bound, although for specific cases often being better than the Plotkin bound,
yields the same asymptotic bound; indeed, asymptotically there is no loss in
applying the estimate used to show in the first place that the Griesmer bound
implies the Plotkin bound.

Theorem: Asymptotic Plotkin bound. We have k,(d) = 0 for ‘%1 <6<,
andﬂq(5)§1—q_%-§for0§5§%.

Proof. We may assume that 6 ¢ {0, q%l}. Let first %1 < § < 6(C). The
Plotkin bound ¢*(d — n - q%ql) < d can be written as ¢f(< — 1) < 4 iy

q n’
6(66)(% This entails ¢" <3

implying that p(C) = £ — 0, for n — oo, hence kq(8) = 0.

~—

other words ¢* < thus k& is bounded above,

q1a
q

Let now 0 < ¢ < §(C) < q%l, and we may assume that d > 2. Letting
n' = Lq(qd_ll)j weget 1 <n/ < 7{1(;:11) < "(dd_l) <nandd—n' ; =d— q%ql
LQ(d 1)J >d—1 ‘I(qd 11) = 1. Shortening n—n' times we get an [n , k', d']-code
Where K >k— (n n') and d’ > d. Hence there also is an [n/, &/, d]-code, which
by the Plotkin bound fulfills qk < - n, =) < d. Thus we have ¢* < ¢¥ ¢ <

dqn n’ ,hence k <n—n +]0gq(d)’ thus p(C) = % < 1—”——{— L logq(d) We have

- n

lim,, 00 %’ = lim, % : L%J = qTq]_ limy, 00 % = ﬁ lim,, o, 6(C) =
—4 .4, recall that we may assume that 6(C) — 4. Since + -log,(d) — 0 anyway,
from this we infer that r4(5) <1 — 47 - 6. i

(5.8) Bounds based on sphere packing. a) In order to proceed, we need
a few preparations: Let ¢ € R such that ¢ > 1. For 0 < a < q%ql =1- % let
Hy(a) == alog,(¢—1)—alog,(a) —(l—a) log, (1 —a); since lim, g+ Hy(a) = 0
we extend H,(a) continuously for a =20 by letting H,(0) := 0. We have

Hy(3) = 4= 2 ‘log, (g — 1) — 4 -log, (44) — Llog,(3) = 1.
Differentiatmg yields {TH (« ) log,(q — 1) + logq( —2), for 0 < a < qu.
Hence we have %H () = 0if and only if {2~ = q 1, or equivalently o = %1.

Since %Hq(a) [is strictly decreasing, such that 3 9 H,(a) = oo, for a — 0T, we
conclude that B%Hq(a) >0foral0<a< %17 implying that H,(«) is strictly

increasing and strictly concave for 0 < o < q;—l.

Note that for ¢ = 2 we recover the conditional entropy H(Y|X) = —plog,(p) —
(1—-p)logy(1 —p) = Ha(p) of a symmetric binary channel with error probability
0<p< 1 . Actually, H,(p) is the conditional entropy of a symmetric g-ary
channel Wlth error probability 0 < p < 2=, for which reason H, is also called
the associated entropy function.
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Lemma. Let 0 < 6 < %1, and let [d,, € N;n € N] be a sequence of integers
such that %" — 0, for n — co. Then we have

d'll

% '1qu(|Bdn(On)|) = % ’ Iqu (Z (?) (g - 1)1> — Hgy(6), for n — oo.

=0

Proof. Let 0 <i<j gn-%l. Then we have (})-(¢—1)" < () -(¢—1)7: The

assertion is equivalent to []/_ R . EZ Z;, < (g—1)?~% The factors of

the product are increasing with s 1ncreasmg, hence the left hand side is bounded
above by ( )7~ Now, from j < n- q L we getj—i—j(q 1) =jg <n(g—1) <

n+1 7
(n+1)(¢ — 1), implying j < (n+1— j)(q —1), thus —4— < ¢ — 1. Hence we

conclude that the left hand side indeed is bounded above by (g — 1)~

This yields (7)-(q—1)7 < 1o (7)-(g—1)" < (5+1)- (¢ ) (q—1) for] <n-2=1L
In particular, this applies to j := d,, for n>> 0. Since 1 - -log,(n- q ) — 0, for
n — oo, it suffices to show that L, := 1 ~logq((;’) (g —1)7) = Hy(9).

nle™

To this end, note that Stirling’s formula lim,, .. e = 1 implies that
n! = (2)"-v2mn - (1 +o(1)), for n — oo, where o(1): N — R fulfills o(1) — 0,
for n — oo. Thus we get log, (n!) = (n+3)log,(n) —nlog,(e)+log,(v2m)+o(1).

=

Recalling that 7 = d,,, we have j — oo, for n — oco; and since n —j > n - ; we
also have n — j — oo, for n — co. Thus we obtain logq((?) (g—=1)) = (n+
3108, () 41108, ()~ (n—3-+ 1) log, (n3) 4108, 01)log, (V%) +o{1).
This entails Ln = logq( n)— logq( n)—"-2-log, (% 1-n)+ 44 logq(q 1)+o(1) =
- 1ogq(7) -l logq("nj)—l— i -log,(q—1)+o(1). Slnce — ¢, for n — oo,
this yields L,, — (510g (¢g—1)— 6logq(6) (1—4)log,(1 6) = Hq(é). i
b) Now let C < Fy be a non-trivial [n, k, d]-code, and 0 < 6 < 1.

Theorem: Asymptotic Hamming bound. We have k() <1 — Hq(%).

Proof. We may assume that 0 < ¢ < 1. Since for a > 0 we have 2-[§] < [a ]—i—l

we may weaken the COHdlthH d > [on] by just assuming that d > 2- ]'g n) —

The Hamming bound ¢* ‘BLd 1 (0p)] < g7 ylelds k < n—log,(|B 4 1J(O )]) S
108, (1Brg.ny_1 (0a)]), that s p(C) = £ < 1— L -log,(|Byg.ug_ (0n)]). Since

%-(f%-n]—l)%%,fern%oo, we get kg(8) <1 — Hy(3). 1

Finally, we provide an asymptotic lower bound, which is based on the Gilbert-
Varshamov bound. The weaker estimates given by the Gilbert and linear Gilbert
bounds yield the same asymptotic bound; indeed, the estimates used in the proof
given below show that essentially the Gilbert bound is used.
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Table 4: Asymptotic bounds for ¢ = 2.

Theorem: Asymptotic Gilbert-Varshamov bound. For 0 < § < q;—l we
have k4(0) > 1 — H,(9).

Proof. We may assume that 0 < § < % and that d := [dn] > 2. Let k € N

be maximal such that |Bs_2(0,,_1)| < ¢" %, then the Gilbert-Varshamov bound

k+1 "

there exists an [n, k, d]-code C. By maximality we have ¢ and

> q
= |Ba—2(0n—1)|’
thus p(C) = & — L — L 4 L. 1og (¢") > 2= — L. log, (|By—2(0,-1)]) >

1
2=l — L .Jog,(|B4(0,)]). Since 4§, for n — oo, we get rq(8) > 1— Hy(0). 4

n

(5.9) Remark. a) We mention a few further, better asymptotic bounds:

i) The asymptotic Elias-Bassalygo bound [1967], being based on an im-
provement of the strategy used to prove the Plotkin bound, says that for

0 <6< %wehave kq(6) < 1—Hq(q;—1— q%ql~(q%ql—5)); for ¢ = 2

we get ko(6) < 1 — Ha(3(1 — +/1—25)). This improves the Hamming and
Plotkin bounds, and was the best asymptotic upper bound at that time.

For ¢ = 2 (and 0.15 ~ §g < ¢) the latter is superseded by the asymptotic
McEliece-Rodemich-Rumsey-Welch bound [1977], based on the linear
programming bound [Delsarte, 1973], saying that for 0 < § < % we have

rq(8) < Ha(

ii) On the other side, the asymptotic Gilbert-Varshamov bound was long con-
sidered to be the best possible asymptotic lower bound. But using algebraic-
geometric codes, which in turn are based on the idea of Goppa codes [1981],
Tsfasman-Vladut-Zink [1982] provided a series of linear codes over F2, where
p > 7, which exceed the asymptotic Gilbert-Varshamov bound. These are still

%f d(1 — ¢)), and being the best asymptotic upper bound known.
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the asymptotically best codes known.

b) Finally, a similar approach works for non-linear codes: Let X be a fixed
alphabet such that ¢ := |X|. For n,d € N such that d < n let

M (n,d) := max{m € N; there is an (n,m,d’)-Code over X such that d’' > d},
and for 0 < 6 <1 let p(6) := limsup,,_,, + -log,(M(n, [dn])), that is

log, (m)

d
w1(6) = lim sup (max{ € R; there is (n, m, d)-code such that - > 6})

n—roo

Since the Singleton, Hamming, Plotkin and Gilbert bounds are all non-linear
bounds, the asymptotic bounds given above also hold for non-linear codes. Sim-
ilarly, the Elias-Bassalygo and McEliece-Rodemich-Rumsey-Welch bounds hold
for non-linear codes.

6 Hamming codes

(6.1) Hamming codes [1950]. Let P*~!(F,) := {(v)r, < F};0 # v € Fr}

q —

be the (k — 1)-dimensional projective space over F,, where k£ > 2, and let

n:=|P*1(F,)| = q::11 > 3. Let Hj € FA*™ having columns being in bijection
with Pkfl(]Fq); note that Hj is unique up to linear equivalence. Thus we have
rkr, (Hy) = k, and any 2-set of columns of Hj, is Fg-linearly independent, while

there are Fy-linearly dependent 3-sets of columns.

Let the Hamming code H;, < Fj be defined by having check matrix Hj,, hence
being unique up to linear equivalence. Thus Hy, is an [n,n — k, 3]-code, which

since ¢" %Y1, (1) - (g— 1)1 = ¢" F(1+n(g—1) = ¢" F(1+(g—1)- L) =

q"kqF = q" is perfect; see also (3.5).

Conversely, any [n, n—k, 3]-code C is linearly equivalent to Hy: Let H € F’;X" be
a check matrix of C, then any 2-set of columns of H is F,-linearly independent,
that is the columns of H generate pairwise distinct 1-dimensional subspaces of
F*, and hence the n = [P*~*(F,)| columns are in bijection with P*~!(F,).

We may choose the columns of Hy, € IF’;X" according to the g-ary representation
of the integers in {1,..., q*— 1} having 1 as their highest digit. This allows for a
fast decoding algorithm: Since Hj has minimum distance 3, the (g—1)-n = ¢*—1
vectors in Fy of weight 1 belong to pairwise distinct non-trivial cosets of Hy.
Since there are ¢"~ ("% —1 = ¢¥ —1 such cosets, this induces a bijection between
the vectors of weight 1 and the non-trivial cosets. Thus the non-trivial coset
leaders are precisely the vectors zey, ..., ze, € Fy, where x € Fj and e; € Fy is
the i-th unit vector, for i € {1,...,n}. Now given v = w+we; € Fy \ Hy,, where
w € Hy, the associated syndrome is vH}" = ze; H[* € IF’;, that is the transpose
of the z-fold of the i-th column of Hj, which can be translated into the g-ary
representation of the i-th integer with highest digit 1 and the scalar z, revealing
both the position of the error and saying how to correct it.
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(6.2) Binary Hamming codes. Keeping the notation of (6.1), let ¢ := 2.
Ordering the columns of Hj € IF’QCX”, where £ > 2 and n = 2F — 1, according
to the binary representation of i € {1,...,n}, letting H; := [1] € F3**, we
recursively get

e R I T k
Otr H — 2 2 c ]FkXQ :
Ok | Hi] { 034 ‘ Hy—1 ‘ 054 ‘ Hy—1 ?
11 .. . 1 1 11
for example, we get Hy = [1 1] and H3=|. 1 1 . . 1 1].
’ 1 .1 . 1 1

Note that Hs is a [3, 1, 3]-code, hence is the repetition code, and that the [7,4, 3]-
code Hs has been considered in (4.2); moreover, the [6, 3, 3]-code obtained by
shortening Hs3 with respect to the 4-th component has been considered in (3.4).

For k > 2, all rows of Hj have weight 2k=1 " which is even, hence we have
1, € Hy; in particular we have Hjy = Hy. For k > 3 we get HkH,Er =0€ IFSX]“,
that is Hj- < Hy: Letting Hy, = [wq,...,wg] € F’;X", using the standard Fa-
bilinear form we get (w;,w;) = wt(w;) = 281 =0 € Fy for all i € {1,...,k},
as well as (wy,w;) =272 =0¢€ F, and (wi, wj) =0 € Fy for j >i>2.

We apply the modifications described in (4.5), see Table 5:

i) Extending Hy < F% yields the extended Hamming code Hy < Fp*t, an
[n+1,n—k,4]-code, and puncturing Hr yields (ﬁ@’ = Hj, again; note that H,
is a [4,1, 4]-code, hence is the repetition code. For k > 3, since (1,41, 1n+1) =
0 € Fy and (1,41, [w; | 0]) = wt(w;) = 0 € Fo for all ¢ € {1,...,k}, the
associated check matrix H, € FSF>*0 ) pafils B A = 0 e B <R
that is (H)~ < Hj. In particular, since dim((Hs)t) = 4 = dim(#s), we
conclude that (Hz)t = Hs is a self-dual [8,4, 4]-code.

ii) Expurgating H;, < F% yields the even-weight Hamming code H) < F3.
Since 1,, € Hy, and n is odd, we conclude that #}, is an [n,n — k — 1,d']-code,
where d’ > 3, and augmenting H; yields @/;c) = Hj, again. While H} < F3 is
the trivial code, for k > 3 we have d’ = 4:

Since d’ > 3 is even, it suffices to show that d’ < 4: We choose an Fs-linearly
dependent 4-subset of columns of Hy, such that all its 3-subsets are Fs-linearly
independent; for example we may take the following and extend by zeroes below:

1

—_
— =

1
Summing up these columns yields 0 € Fg“. Hence summing up the associated
columns of Hj,, whose last row consists of 1,,, yields 0 € ngH)Xl, saying that
H}. has an Fy-linearly dependent 4-subset of columns. i
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Table 5: Modified binary Hamming and simplex codes.
Hi < dualise R

extend shorten extend shorten

augment augment

Sk

expurgate expurgate

iii) Shortening H), < Ft! yields (H;)° = H,, < F5 again, and lengthening

—

H;. < F% yields @_’k/) =H, < Fo+ again.

(6.3) Simplex codes. a) For k > 2 and n := % let H, € FF*™ be as
in (6.1). Then the code Sy := ’ch‘ < Fy having Hy as a generator matrix is
called the associated simplex code. We show that all 0 # v € S have weight
wt(v) = ¢*~1; in particular Sy, is an equidistant [n, k, ¢*~!]-code:

Let {v1,...,vx} C Sk be the Fy-basis given by the rows of Hy. Then there is
0 # [z1,..., 2] € IF’; such that v = Zle r;v; € Fy. The j-th entry of v, for

Jj€{l,...,n}, is zero if and only if 0 = (v,e;) = Zle x; (v, ;). This amounts
to saying that [(vi,e;),..., (vk, ;)] € F’; is an element of U := ([x1, ... ,a:kbfq <
Fk. Now [(v1,€;),..., (vk,€;)]" coincides with the j-th column of Hy, hence
dimp, (U) = k — 1 shows that there are precisely qk(;_ll_ L such columns. Thus we
k—1_ k_ k—1_ _
hauvewt(v):n—’5’(1711:‘?(1711_‘1(1711:q’€ 1 i
k—1pgt—?! k=1 j—i— k-1 4 k1 - k1
Note that >, [f—1=3_," =4 = L= and " ("' - =

q;—l) = ¢*~! show that S, fulfills the Griesmer bound and the Plotkin bound,

respectively; recall that the latter also implies that Sy is an equidistant code.
b) Conversely, any [n, k,¢*~!]-code C < [y is linearly equivalent to Sy: Let
dt € N be the minimum distance of Ct < Fy. We show that d+ > 3; then
since dimg, (C*+) = n — k and any [n,n — k, 3]-code is perfect, that is fulfills the
Hamming bound, we conclude that d*+ = 3, and hence C* is linearly equivalent
to the Hamming code H;, = Sit:

To this end, in turn, let H € ]FE]”"“)X” be a check matrix of C, hence H is a

generator matrix of C*+ < [y . Firstly, assume that d* =1, then we may assume

that [0,...,0,1] € Ct < F”. Thus any word in C has zero n-th entry, implyin
) ) ) q y y? p y g

that the shortened code C° is an [n—1, k, ¢*!]-code. Hence the Griesmer bound
k—1

. k—1 _ -
implies n —1> 3" [qq—l = qqfll = n, a contradiction.
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Secondly, assume that d+ = 2, then we may assume that [0,...,0,1,1] € C*+ <
Fy. Thus any word in C is of the form [#,..., %, —x,2] € Fy, for some = € Fy,
implying that any word in the shortened code C° has zero (n — 1)-st entry, thus
the doubly shortened code C°° is an [n— 2, k°°, d°°]-code, where k—1 < k°° < k

and d°° > ¢*~!. Hence the Griesmer bound implies n — 2 > Zf;z_l[d;o] >

koo _1 qk—l . qk_qk—koo . qk—koo_l L. .
Yico [TW =4=I1— =n-%1"_—— >n-—1, acontradiction again.  {

(6.4) Binary simplex codes and Reed-Muller codes. a) Keeping the no-
tation of (6.3), let ¢ := 2, hence for k > 2 we have n = 2¥ — 1, thus S is a
[2F — 1, k,2F"1-code. For example, the elements of Sy = ([0,1,1],[1,0,1])p, =
{03,[0,1,1],[1,0,1],[1,1,0]} < F3 can be seen as the vertices of a tetrahedron
inscribed into a cube; note that S is the even-weight [3, 2, 2]-code.

We apply the modifications described in (4.5), see Table 5: Since all elements
of Sy, have even weight, we get Sj, = Sy, and Sy, = {[v,0] € F4 ;v € Si}.

i) Dualizing the even-weight Hamming code #], yields a code which has Hj, :=

Hy,
.
augmented simplex code. Since for all 0 # v € Sj, we have wt(v) = 28! and
wt(L, +v) =n — 281 = 25=1 _ 1 we conclude that Sj, has minimum distance
2k=1 _ 1, thus is a [2¥ — 1,k + 1,21 — 1]-code.

} € Fékﬂ)xn as a generator matrix, thus (H})t = Sy < Fy is the

Moreover, expurgating Sy yields (Sp) = (Sk U (1, + S))’ = Sk again. In
particular, for k = 2 we infer that Sy is a [3, 3, 1]-code, thus Sy = F3; for k = 3
we get the Hamming [7, 4, 3]-code Ss = Hs.

Note that 3o[25 ] = (257 — 1) + 14+ L7/ [2F 717 — 3] = 281 4
S K2 9i — ok=14 (2k=1 _1) = 2% _ 1 shows that Sy, fulfills the Griesmer bound;
but since (2871 — 1) — (2¥ — 1) - 3 = —1 the Plotkin bound does not yield.

ii) Dualizing the extended Hamming code ﬁk yields the Reed-Muller code

Y A tr
Ri = (’Hk)l‘ < IFS"H with generator matrix Hy = { Il—lk 01]“ ] S ]ngﬂ)x("ﬂ).
Hence Ry = S, , is obtained by extending gk, that is by lengthening Sy; note
that in particular 1ox € Rg. Since Ry extends Sk, it has minimum distance
2F=1 thus Ry, is a [2%, k + 1,25 1]-code.

Moreover, shortening R, yields RS = (§k)° = (gk)’ = &, again. In particular,
for k = 2 we infer that Ro is the even-weight [4, 3, 2]-code, while for k = 3 we
get the extended Hamming [8,4, 4]-code R3 = H3 = Hs.

Note that Zf:o( 7 =1+ Zi:ol 2t = 2% shows that R, fulfills the Griesmer
bound; but since 2F~1 — 2% . % = 0 the Plotkin bound does not yield.

~

iii) The punctured Reed-Muller code is R} = (Sk)* = Si again, and

2k—1
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extending R} yields @ = gk = R again.

b) Conversely, any binary [2¥, k + 1,2~ !-code C is linearly equivalent to Ry:
We proceed by induction on k > 1, letting Ry := F3 be the unique [2, 2, 1]-code.

Let & > 2. Since C fulfills the Griesmer bound, it cannot possibly possess a zero
component, hence the shortened code C° is a [2"' — 1, k,d°]-code, where d° >
2F=1. Since any [2* — 1,k, 2" 1]-code fulfills the Griesmer bound, we conclude
that d° = 2F~1, thus we may assume that C° = S;. Note that this also shows
that shortening with respect to any component yields a code linearly equivalent
to the simplex code, implying that any word in C\{0yx, 1o } has weight 2F~1. We
show that 19« € C; then we have C = ((C/O\), lok)r, = §k +{lok_1)r, = gk = Ry:
lok—1 | Ogr—1
* O;Cr G*

Cc* < thl be the residual [2¥71, k, d*]-code generated by G* € IF’;XQ}@A, where

dF > 221 — 9k=2 Since any [28—1 K, 2=2]-code fulfills the Griesmer bound, we
conclude that d* = 2¥~2, and thus we may assume by induction that C* = Ry_1;
note that for k¥ = 2 we indeed see that C* is a [2,2,1]-code. Hence we have
lgr-1 € C*, and thus C contains a word of the form [« | 0 | Llok—1] + [lor—1 |
Ogk-1] = [* | 1 | 156-1], which has weight at least 2*~! 4 1, hence equals 1.

Let G = { ] € ngﬂ)wk be a generator matrix of C, and let

The Reed-Muller codes Ry are Hadamard codes, being defined by Hadamard
matrices of Sylvester type, see Exercise (15.28), and thus have a particularly
fast decoding algorithm (outperforming the general one for higher order Reed-

Muller codes, which are discussed below). Together with their large relative
2kt 1

minimum distance 0(Ry) = “5— = 5 this outweighs their low information rate
p(Ry) = k;;l7 making them suitable for very noisy channels.

For example, the [32,6,16]-code R5 was used in the ‘Mariner’ expeditions to
planet Mars [1969-1976]: The 6 information symbols are used to encode picture
data based on dots on a grey-scale with 26 = 64 steps, where Rs has a low
information rate of p(Rs) = 55 ~ 0.2, but is able to correct [15-1] =7 errors.
(6.5) Higher order Reed-Muller codes. Reed-Muller codes are merely the
first ones in the series of binary higher order Reed-Muller codes [1954],
which in turn belong to the class of geometric codes, being based on finite
geometries, having a rich algebraic structure, and having a fast decoding algo-
rithm, being called multistep majority decoding. Moreover, higher order
Reed-Muller codes have been generalized to codes over arbitrary finite fields.

a) Let first F, be the field with ¢ elements, let C’ be an [n, k', d']-code and C” be
an [n, k", d"]-code over Fy, and let C := C'xC" := {[v | v+w] e F2"v e C',w e
C"} <F2" be their Plotkin sum. Then C is a [2n, k' + k", min{2d’, d" }]-code:
The F,-linear map C' & C" — C: [v,w] — [v | v+ w] being injective, we get
dimp,(C) = k' 4+ k”. We turn to the minimum distance d = d(C): If both C’
and C” are trivial then C is trivial as well, and we have min{oco, 00} = 0o = d;
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if C" is non-trivial and C” is trivial, then we have C = {[v | v] € Fi*;v € C'}
and min{2d’,00} = 2d’ = d; if C’ is trivial and C” is non-trivial, then we have
C=A{[0 | w] € FZ*;w € C"} and min{oo,d”} = d" = d.

Thus let both ¢’ and C” be non-trivial, and let 0 # u := [v | v+ w] € C, where
veCC andw e . Ifw = 0then wt(u) = 2-wt(v) > 2d’, and equality is attained
for v # 0 of minimum weight; if v = 0 then wt(u) = wt(w) > d”, and equality
is attained for w # 0 of minimum weight. Hence letting both v # 0 and w # 0,
then using wt(v) > |supp(v) N supp(w)| we get wt(u) = wt(v) + wt(v + w) >
wt(v) + (wt(v) + wt(w) — 2 - [supp(v) Nsupp(w)|) > wt(w) > d". i

b) We are now prepared to define the Reed-Muller code RLT) <F %k of order
r € Ny, where k € Ny such that & > 7, recursively as follows:

For k € Ny let R,(CO) = {0r, 15} < F2" be the repetition [2¥,1,2F]-code,
and let R,(fk) = F%k be the [2%,2% 1]-code; in particular we have R(()O) = Ty,
while 7'\’,50) = {02,132} < F3 and Rgl) = F3. Then, recursing over k > 2, for
re{l,... k—1}let RV =R xRV <FF ' @FF T = FF

Then ’Rg) is a 28,57 (%), 25 "]-code: We have dimg, (’Réo)) =1= () and
dimFQ(Rék)) =2F = Zf:o (If), and for k > 2 and r € {1,...,k — 1} we get
dimg, (R}”) = dimg, (R}, + dime, (R)") = S50, (1) + S5 () =
L+ S + () = 1+ 5 (4) = T (). Moreover, we have
d(R,(CO)) = 2% and d(R,(gk)) =1, and for k > 2 and r € {1,...,k — 1} we obtain
AR = min{2- d(R{",), d(RU M)} = min{2 - 26-7—1 2k—r} — gk, i

The Reed-Muller codes considered in (6.4) are indeed linearly equivalent to

the first order Reed-Muller codes: We have Rgl) = F3 = Ry, and Rg) is a
[2F k + 1,2 1]-code, thus is linearly equivalent to Ry, for k > 2.

(6.6) Boolean functions. a) We present an alternative construction of higher
order Reed-Muller codes: A function p: F5 — F3 is called a Boolean function
in k € Ny variables. Identifying x = [z1, ..., 7] € F5 with the integer Zle x; -
2i=1 € {0,...,2% — 1}, where we silently lift the elements of Fy to Zy C Z, and
ordering the elements of F5 accordingly, p can be identified with an element

of ]F%k by listing the values it assumes. Moreover, identifying the values 0 and
1 with the Boolean values false and true, the Boolean operations exor, and, or
and not can be translated into the operations p + q, pq, p + q¢ + pq and 15x + p,
respectively, where p, q € F%k and products are taken pointwise.

For i € {1,...,k} let p;: F5 — Fy be the projection onto the i-th component,
thus we have p; = [0,1,...,0,1] € F%k, p2 =10,0,1,1,...,0,0,1,1] € F%k, and
so forth up to pr = [0,...,0,1,...,1] € F%k For T C {1,...,k} let pr :=
[Liczpi € ]F%k, where py := 1ok, and |Z| € {0, ..., k} is called the degree of pz.
Since the function pz: F5 — Fy only depends on |Z| variables, for Z # {1,...,k}
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the vector pz € ]F%k has even weight, while pry 3 =1[0,...,0,1] € ]F%k

Then, using the disjunctive normal form of Boolean logic, any Boolean function
can be written as a sum ZIC{l .k} 4ZPT, where az € Fy and pz := [[;c.zpi €
F%k, letting pg := 1ox. Since there are precisely 22" = |F%k| sums of this shape,
we deduce that these are pairwise distinct, thus {pz € F%k;l C{l,....k}} is
an Fs-basis of the space of Boolean functions in k variables.

For example, for k& = 3 let p := [0,0,0,1,1,0,0,0] € F§, having value 1 at
positions {3,4} C {0,...,7}, which hence corresponds to the Boolean func-

tion assuming the value true if and only if the variables assume the values
[true, true, false] or [false, false, true]. This translates into p = p1p2(1+p3)+ (14

P1) (14+p2)ps = pg1,2) +P(1,2,3) +P3+FP{1,3) +Pf2,3) +P{1,2,3) = P3+P{1,2}+Pf1,31+
P{2,33- Indeed, we have p3 = [0,0,0,0,1,1,1,1] and p 93 = [0,0,0,1,0,0,0, 1]
and pg137 = [0,0,0,0,0,1,0,1] and pra 3y = [0,0,0,0,0,0,1,1], thus we get
P3 + P12y P13 + P23y =10,0,0,1,1,0,0,0] =

b) Now let 7 € {0,...,k}, and let C\") := (pr € FZ";|Z| < r)p, < FZ" be the
linear code spanned by the Boolean functlons in k variables of degree at most 7.

In particular, we immediately see that dimp, (C,(CT)) =Y ( ), but We have no

clue about the minimum distance of C,(:). Anyway, we show that Ck = R;cr):

We have €\ = (1p)r, = R\, and dimg,(C{”) = S5, (¥) = 2* implies
that C,(Ck) = F%k = R,(Sk). For k > 2and r € {1,...,k— 1}, any p € C,(CT) can
be written as p = Zzg{l,..i,k},ll\gr aIPT = Y kg7 OIPT + Pk * Xper GIPT\ (K} -
Then the first sum Zkgz azpz can be identified with v € R,(Ql < F%kil, which
embeds into ]F%k as [v | v]. The second sum ), 7 azpz\(x} can be identified
with w € R,(f__ll) < F%k_l7 so that p; - w embeds into F%k as [0gx—1 | w]. Thus
we conclude that indeed C,({T) = ’R(r) X R(T 1) R,(:).

¢) This allows to read off further properties of R,(:): By construction we have
(1or)p, = R(O) < R(l) <. < R(kfl) < R(k) 2" for k € Ny; in particular
we observe that 1ox € ’R ) for all k >r > 0. Moreover since R( U has an -

basis consisting of vectors of even weight, and Zi:o (k) = 2% — 1, we conclude

that RI(Ck*U is the even-weight [2% 2F — 1,2]-code, for k > 1. Finally, noting
that ('R(k))l = (FQk)l = {0}, for k£ > r > 0 we have (,R](Cr))i _ R}(ﬂkfr—l):

Let p € R ) and q € ’R(k "~ Then, since p? = p; for i € {1,...,k}, we

conclude that pg € F% has degree at most r+(k—r—1) = k—1, thus pq € R,(ck_l).
Since the latter is the even-weight code, we infer (p,q) = wt(pg) = 0 (mod 2).
This shows that R(k_r_l) < (R(T))J‘ Since dim[p2 (Rg)) + dimp, (R;ck_T_l)) =
k—r— 1 k—r—1 T k
Yo (X5 () = X (D205 (1) = X () +200 (1) =
Zf 0 ( ) = 2% = dimp, (Fz ) we conclude that R(k T < (R(T)) i
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In particular, from (Rgckfl))L = R,(CO) = (1gk)p, for k > 1, we recover the fact
that Rgc*l) = ({1ax)p,)* < F%k is the even-weight code. More interestingly,
from (731(;672))L = R,(cl), the latter being linearly equivalent to Ry, we conclude
that ’Rgﬂd) is linearly equivalent to (Ry)* = ﬁk, the extended Hamming code;

recall that Zi:g (]f) = 2F — k —1 entails that R,(Ckﬁ) is a [2%,2F — k — 1, 4]-code.

7 Weight enumerators

(7.1) Weight enumerators. Let X be an alphabet and let C C X™ be a code.
For i € Ny let w; = w;(C) := [{v € C;wt(v) = i}| € Ng. Hence we have wg < 1,
and w; = 0 for i € {1,...,wt(C) — 1}, as well as wyy ) > 1, and w; = 0 for
i>n+1,and > w; = |C|.

Let {X,Y} be indeterminates. The homogeneous generating function
Ac == Sl jw XY = 3 XV Ynwtv) e C[X,Y] associated with
the sequence [wg,wsy,...,w,] is called the (Hamming) weight enumera-
tor of C. Hence A¢ is homogeneous of total degree n and has non-negative
rational integers as its coefficients. By dehomogenizing, that is specializ-

ing X — X and Y — 1, we obtain the (ordinary) generating function
Ac(X,1) =Y jw X =3, o XV € CX].

Example. For the trivial code C := {0, } <Fy we get Ac =Y. For the code
Ct =T weget Acr =30 o (1) (g — 1) X'Y"" = (Y + (¢ — 1)X)". Thus we
have A¢ (X,Y) = Ac(Y — X, Y 4 (¢ — 1)X), in accordance with (7.2) below.
For the binary repetition code C := {0,, 1, } < Fy we get Ac = Y"+X". For the
binary even-weight code C+ = (F%)" < F3 we get Ap. = EE& (5) X2y n=2i =
LS ()XY S () ()XY = L (04 X) T (- X)),
thus Aer (X,Y) = 3+ Ac(Y — X,Y + X)), in accordance with (7.2) below.

(7.2) Theorem: MacWilliams [1963]. Let C < F} be a linear code such that
k := dimg, (C) € N, and let C+ < F be its dual. Then for the associated weight
enumerators we have ¢* - A¢1 (X,Y) = Ac(Y — X,Y + (¢ — 1)X) € C[X,Y].

In particular, if C = C* is self-dual, then for the weight enumerators we have

Ac(X,Y) = AC(Y\;aX, W) € C[X,Y]; recall that in this case k = 3.

Proof. i) Let x: F, — C* := C\ {0} be a character of F,, that is a group
homomorphism from the additive group (Fy,+) to the multiplicative group
(C*,-); note that there always is the trivial character 1: F, — C*: a — 1.
Let V' be a C-vector space, and let w: Fj — V be a map. Then the map
Xo: Fg = Viv— Zweng X({(v, w))w(w) is called the discrete Fourier trans-
form or Hadamard transform of w with respect to y. We show that for any

character x # 1 we have > o xw(v) = ¢+ 3 cor w(w):
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For the left hand side we obtain ) - xw(v) = D>, ce D wern X((v, w))w(w) =

2weet 2avee X0 0))w (W) + 30 epmcr ovee X((v; w))w(w) € V, where since
x((v,w)) = x(0) = 1 € C* the first summand evaluates to |C|->_ o w(w) € V,
which coincides with the right hand side of the above equation. Hence we have
to show that the second summand vanishes:

Given w € FJ\C*, the map C — Fy: v — (v, w) is F¢-linear and non-zero, hence
surjective, and thus for any a € F, we have |{v € C; (v,w) = a}| = |£‘CI| =gk L.
Thus the second summand evaluates to ¢* ! - (Zaqu x(a)) - (Y pecr w(w)) €
V, hence it suffices to show that }_,cp x(a) =0 € C: Since x # 1, there is
b € Fy such that x(b) # 1; then we have x(b) - >_ cp X(a) = 3 cp, X(a+b) =
> aer, X(a), implying (x(b) — 1)) - 3= 5 Xx(a) =0 € C.

ii) Let now V := C[X,Y],, < C[X,Y] be the C-vector space of all homogeneous
polynomials of total degree n, including the zero polynomial, and let w: Fy —
C[X,Y]n: v = XWHOYn=wt®)  Moreover, let §: F, — {0,1} be defined by
4(0) =0, and d(a) = 1 for a # 0. Thus for any character x # 1 the associated
discrete Fourier transform is given as, where v = [x1,...,2,] € Fy,

X (V) = e x((v,w)) X WH@)ynowi(w)
- Z[yl,».-,yn]ew X my) X 2= ) y 2ima (10 (wa))
- Z[yl,-..,yn]emg (H?:l X(xiyi)Xé(yi)Yl_‘s(yi))
= I (Zae]pq x(a:ci)X‘;(a)Ylfé(a)).
If z; = 0 then x(ax;) = x(0) = 1 € C* shows that the associated factor equals
Yuer, XYL =y 4 (g = 1)X € V. If 2; # 0 then, using 3,5 x(a) =
0 € C again, the associated factor evaluates as Zaemq y(az;) Xo@y1=6(a) —
Y 4 (Caer: x(a20) - X =Y+ (Syep x(@) - X =Y —x(0)- X =Y~ X € V.
Thus we get xw(v) = (Y — X))V + (¢ - 1)X)" ) e V.

In conclusion we have ¢* - Aci (X,Y) = ¢F - Y corw(w) = 3 coxw(v) =
SecY = X)MHO(Y 4+ (¢ = X)) = Ae(Y = X, Y + (¢ —1)X) e V. ¢

Example. For k > 2, the simplex code Sk < Fy is an equidistant [n, k, " 1-

gF-1
code, where n := L - =L hence As, = YT +(¢F—1)x" Ty T " e C[X, Y]
Thus for the associated Hamming code Hj, = S we get Ay, (X,Y) = % -

As, (Y = X,Y + (¢ — 1)X) € C[X, Y]. !

In particular, for ¢ = 2 we have n = 2¥—1, and hence As, = Y"—i—nXLHY eali<
C[X, Y], which yields Ay, = 25 - (Y +X)" +n(Y — X)"F (Y + X)*7). De—
homogenizing, that is specializing X — X and Y + 1, yields Y7, w;(Hy) X" =
gy (X,1) = =15 - (14 X)" + (1 — X) ™ (1 + X)) € C[X].
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For example we have Ay, (X,1) = 1+ X3, showing again that H, is the binary
repetition code, and A, (X,1) = 1+ 7X3 + 7X% + X7 and Ay, (X,1) =
1+ 35X +105X% 4 168X° + 280X6 + 435X7 + 435X8 + 280X° + 168X 10 +
105X + 3512 + X185,

I11

8 Cyclic codes

(8.1) Cyclic codes. Let C < Fy be a linear code of length n € N over F,.
If for all [cg,...,cn—1] € C we have [c,—1,C0,-..,Cn_2] € C as well, that is if
P,... n) € Autp,(C), then C is called cyclic.

Example. The repetition code C := {[c, ..., c] € Fy;c € F;} and the associated
dual code, the parity check code C* := {[cg,...,cn_1] € Fys Z?:_Ol ¢; = 0}, are
cyclic; note that in both cases the full symmetric group S, is a subgroup of
Autg, (C). A generator matrix of C is given as G := [1,...,1] € Fy, and a
generator matrix of Ct, that is a check matrix of C, is given as

H:=|: D | e Fpmxn,
1 -1

Example. The binary Hamming code H < F7, whose elements are given in
(4.2), is not cyclic, but applying P(3.4)(5,7,6) € In(IFy) yields the linearly equiva-
lent code C < F3, whose elements are given by the rows of the following matrices,
which hence is cyclic:

[ : l (11 1 1]
11 . 1 111 1
11 .1 1.1 11
11 .1 1. 111

11 .1 1. 111
1. . .11, 1. 1 .11
A T 11 . 1.1
T R O T 1 11 1 11|

Moreover, a generator matrix G € Fg” and a check matrix H € ng? of C are
11 .1 . . .
1 1 .1

. 1 . ..
G'_..ll.l.andH'_'l

11 .1
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(8.2) Cyclic codes as ideals. a) Let F,[X] be the polynomial ring over F, in

the indeterminate X. For 0 # f = Z?:o c; X' € Fy[X], where d € Ny and ¢; €
F, such that ¢4 # 0, let deg(f) := d denote its degree and let le(f) := ¢4 denote
its leading coefficient; if le(f) = 1 then f is called monic. Moreover, F,[X] is an
F,-algebra, and an Euclidean ring with respect to polynomial division, hence in
particular is a principal ideal domain.

F,[X] be the principal ideal

Forn e Nlet (X" —1) ={(X"-1)-f; f € F, [ 13

generated by X" —1 € F[X], let ~: Fy[X] — F [X]: f+> f:= f+ (X" —1) be
the natural epimorphism of F,-algebras, where Fq X] :=F,[X]/(X™ —1) is the
associated quotient F,-algebra.

Then polynomial division shows that Fy[X] = F,[X]<, ® (X™ — 1) as F -vector
spaces, where Fy[X].,, = {f € F [X]\ {0};deg(f) < n} U {0} < F,[X]
is the F,-subspace of all polynomials of degree less than n, including the zero

polynomial. Hence Fy[X],, is a set of representatives of the cosets in F,[X], and
T Fy[X]<n — Fy[X] is an F -isomorphism. Since {X°,..., X"~ 1} C F [X],
is an F,-basis, we conclude that {YO, X" 1} C F,[X] is an F,-basis, in
particular we have dimg_(F,[X]<,) = dim]F (m) =n.

Let v: Fy — Fy[X]<n: [cos---scn1] = Zl o ¢iX*, that is we consider the
elements of Fy as coefficient Vectors of polynomlals in IE‘q [X]<n with respect to
the above Fy-basis, and let 7 := “ov: Fp — Fy[X]: [co, ..., cn1] > Z?:_Ol X'

thus both v and ¥ are F;-isomorphisms.

Multiplication by X acts on F,[X] as fOHOWS' Given v := [co, oo Cna] € FY, we
have 7(v) - X = (X0 ¢ X') - X = Y1) ¢ Xi+l = ¢, X Z? e X' =
7(w) € Fy[X], where w :=

P,y € In(F7) on F is transported to multiplication with X on Fy[X].

b) Hence a code C < F} can be identified via v with the Fg-subspace v(C) <
F,[X]<n, and via 7 with the F,-subspace 7(C) < F,[X]. Moreover, C is cyclic if
and only if 7(C) < F,[X] is invariant under multiplying with X, or equivalently
under multiplying with F,[X], that is if and only if 7(C) < F,[X] is an ideal.
In this case, the preimage v(C) + (X" — 1) C F,[X] of 7(C) C F,[X] with
respect to ~ is an ideal of F[X]. Since F,[X] is a principal ideal domain, there
is a generator polynomial g € F[X], unique up to scalar multiples, such that
(9) = v(C) + (X™ — 1) < F,[X], in particular implying (g) = ¥(C). Moreover,
from (X" —1) C (¢9) <F,[X] we infer that g | X™ — 1; see Table 6.

[cn—1,C0,---,Cn—2] € Fy. Thus the action of

Conversely, any polynomial g € F,[X] such that g | X™ — 1 yields an ideal
(X™—1) C (g)<F,[X], hence via 7 we get an ideal (g) <IF,[X], which in turn can
be identified with a cyclic code. Thus we conclude that the cyclic codes C < Fy
are in bijective correspondence with the monic divisors g of X™ —1 € F [X].

Thus, if C < Fy is cyclic with generator polynomial g € F, [X], then for v € Fy
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Table 6: Cyclic codes.

Fy[X] — F,[X]

{0} ——{0}

we have v € C if and only if g | v(v) € Fy[X]. Moreover, if C is non-trivial
then we have g € v(C) < Fy[X]<p, thus ¢ is given as ged(v(C)), or likewise as
a non-zero polynomial of smallest degree in v(C). Hence if C" < Fp is cyclic
with generator polynomial ¢’ € Fy[X], then we have C’ < C if and only if
g | ¢'s in particular C +C" € Fy and CNC’ € Fy have generator polynomial
ged(g,¢') € Fo[X] and lem(g, ¢') € Fy[X], respectively.

Example. For g = 1 € F,[X] we get (1) = F,[X], thus C = F}; while g =

q’

X" —1€F,[X] yields (X7 — 1) = {0} SF,[X], thus C = {0} < F.

The repetition code C := ([1,. .., 1])r, < Fy corresponds to (g) = (g)r, IF,[X],
where g := v([1,...,1]) = Z;:Ol Xt = % € F,[X] is the associated monic
generator polynomial.

We consider the parity check code C*+ = {[co, ..., cn_1] € F7; Z:-:Ol ¢ =0} <
F?: For f:= Y1~y ¢;X' € Fy[X] we have 7" ¢; = 0 if and only if f(1) =0,
which holds if and only if X —1 | f. Hence C corresponds to (h) < F,[X],
where h :=v([-1,1,0,...,0]) = X—1 € F,[X] is the associated monic generator
polynomial; note that we have gh = X™ — 1 in accordance with (8.3) below.

Example. The non-zero elements of the Hamming code H < F%, up to the
linear equivalence applied in (8.1), consist of the cyclic shifts of [1,1,0,1,0,0,0]
and of [1,0,1,1,1,0,0], together with 17. Hence v([1,1,0,1,0,0,0]) = X3 +
X + 1 € F3[X] is the non-zero polynomial of smallest degree in v(H). Thus H
corresponds to 7(H) = (g) <F5[X] with generator polynomial g := X3+ X +1 €
Fo[X]; note that X7 +1 = (X + 1)(X?+ X + 1)(X3 + X2 +1) € Fy[X].
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In accordance with (8.3) below this can also be read off from the generator
matrix of H given above; see also (9.4). Moreover, we have the check polynomial

hi= X5 = (X 4+1)(XP + X2 +1) = X+ X2+ X +1 € Fo[X], hence H* has
generator polynomial h* := X% + X3 + X2 4 1 € F,[X], as can also been seen
from the check matrix of H given above.

(8.3) Theorem. Let C < Fy be a cyclic code with generator polynomial g =
¥ L giX' € Fy[X] of degree k := deg(g) € {0,...,n}. Let h = 37" h; X €
F,[X] such that X™ — 1 = gh € F,[X]; hence we have deg(h) =n — k.

a) Then we have dimp,(C) = n — k, and a generator matrix of C is given as

g0 91 --. 9k .
-9 .-+ Gk—1 Yk

go -+ YGk-1 Yk
b) The dual code C*+ < [y is cyclic as well, and is generated by the reversed
polynomial h* := Xdee(h) . p(X~1) = Z?;Ok hy—k—i X" € Fy[X] associated

with h; hence h is called a check polynomial of C. Thus a generator matrix
of C*, that is a check matrix of C, is given as

B hn-g1 ... ho .
Pt oo b1 ho

H:=| : D | e FRxm
byt ... h1 hg

Note that, by reversing the order of the columns, the cyclic codes generated by
h and h* are linearly equivalent.

Proof. a) For any v € C we have 7(v) = gf € F,[X] for some f € F,[X].
Let f = gh +r € F,[X], where ¢,r € F,[X] such that r = 0 or deg(r) <
deg(h) = n — k. Then we have v(v) — gf = v(v) —g(¢gh + 1) = v(v) — gr —
(X" —1)q € (X" — 1) <F,[X], which implies 7(v) = gr € Fy[X]. Thus since
dimy, (C) = dimp,_((g)) = dimg, (F,[X]) —dimg, (F,[X]/(g)) = n—k we conclude
that {g,9X,... ,gynfkfl} C (g) = v(C) is an F,-basis, which consists of the
images under 7 of the rows of G.

b) Note first that, since evaluation of polynomials is a monoid homomorphism,
and by additivity of polynomial degrees, we have a*b* = (ab)* € F,[X], for any
0 # a,b € F,[X]. Now, from gh = X™ — 1 we conclude that hy # 0, hence we
have deg(h*) = n—k, and from g*h* = (gh)* = (X" —-1)* =1-X" € F,[X], we
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infer that A* | X™ —1 € F,[X]. Hence H is a generator matrix of a cyclic code
with generator polynomial h*, having dimension rkg, (H) = k = dimg, (C*).
Thus it suffices to show that the rows of H are orthogonal to the rows of G:

For i € {1,...,n — k} the i-th row of G is v; :=[0,...,0,490,...,9%,0,...,0] €
[y, where go is the i-th entry, and for j € {1,...,k} the j-th row if H is
wj = 1[0,...,0,hp_,...,ho,0,...,0] € F, where h,,_j is the j-th entry. Thus
letting ¢; :=0forl > kand [ < 0, and h; ;=0 for ] >n—k and [ < 0, we
have (v, w;) = Y11 gi—ihn—k+j—1 € Fq. Since 1 —4 < 0 and n — i > k, and
(n—k+j)—1>n—kand (n—k+j)—n <0, the latter sum equals the
coefficient of X ("=k+) =i in gh = X"—1 € F,[X]. Since 1 <n—k+j—i <n—1,
from that we conclude (v;, w;) = 0. 1

(8.4) Cyclic redundancy check (CRC) codes [Peterson, 1961]. Let

C < Fy be cyclic with generator polynomial g = Zf:o i X" € Fy[X] of de-

gree deg(g) = k and associated generator matrix G € Fg”fk)xn. Since g # 0

the matrix G can be transformed by Gaussian row elimination to [A | E,_i] €

]F((In—k)xn ]F((In_k)Xk

, for some A € ; this does not affect the cyclicity of C.

Using the generator matrix [A | E,_g], a word v = [ag,...,an_k—1] € IF‘Z"C
is encoded into w = [by,...,bx—1;00; .., ank—1] € F}, where we have to find
[bo, ... ,br—1] € FF: We have v(w) = v(lbo, ..., be-1]) + X" - v(v) € F[X].
Polynomial division yields X*-v(v) = Z:,:Okfl a; Xk = qg+r, for q,r € F [X]
such that » = 0 or deg(r) < deg(g) = k. Since w € C we have g | v(w) =
(gg+7)+ (Ef:_ol b; X%, thus r + Ei:ol b; X" = 0. Hence v([bo, ...,bx_1]) is the
remainder of the shifted polynomial —X* - v(v) upon polynomial division by g.
Error detection, which is the typical application, runs as follows: Given w € Fy,
we have w € C if and only if g | v(w) € F,[X]. Again polynomial division yields
v(w) = gg+r, for q,r € F,[X] such that r = 0 or deg(r) < deg(g) = k. Hence we

have w € C if and only if r = 0, and in this case w = [bg, ..., bg—1;bk, ..., bp_1] €
C is decoded to [bg,...,bn—1] € FZ*’“. We discuss a few types of errors:
i) A burst error of length [ € {0,...,n} is an error vector u = [cg,...,Cn—1] €

[y, such that ¢; # 0 only if i € {j,...,j +1— 1} C Zy,, for some j € Z,.

Then C detects all burst errors of length | < k; in particular, if & > 1 all single
errors are detected: We may assume that v = [0,...,0,¢q,...,¢-1,0,...,0] €
[y, where cg occurs at position j € {1,...,n}, then v(u) = Xi—1. Ei;é X' e
F,[X], hence from ged(g, X) = 1 and deg(g) = k we infer g { v(u), thus u & C.

ii) We show that we have C = C’ < F}, the latter denoting the expurgated
code, if and only if X —1 | g € F,[X]: We have C = C’ if and only if for all
w = [bo, ..., by_1] € C we have v(w)(1) = (X0, bi X)) (1) = S0 b = 0, that
is X —1 | v(w) for all w € C, in other words (g) = v(C) C (X — 1) IF [X].

In particular, for ¢ = 2 we have X + 1 | g € F»[X] if and only if C is an even-
weight code. In this case, if u = [¢g,...,cn—1] € F} is an error vector of odd
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weight, then we have v(u)(1) = Z?;Ol ¢i = wt(u) Z0 (mod 2), hence g t v(u),
saying that C detects all errors of odd weight.

iii) Letting g = 2, for a double error occurring in positions ¢ < j € {1,...,n},
we have the error vector u = e;+e; € F3, hence v(u) = X*71(X7714+1) € Fo[X].
Thus, since ged(g, X) =1 and 1 < j—i < n—1, all double errors are detected if
and only if g ¥ X™ +1 for all m € {1,...,n — 1}, that is if and only if g has an
n-primitive divisor; recall that an irreducible polynomial f € F,[X] such that
flX*=1,but f4X™—1forallme{l,...,n— 1}, is called n-primitive.

Example. Actually, CRC codes over 5 are used throughout information tech-
nology. In particular, polynomial division over 5 is extremely fast, on a machine
level just consisting of bit shifts and exor commands.

For example, this is used in the Universal Serial Bus (USB) [>1996] data
transmission standard: The ‘CRC-5-USB’ polynomial X° + X2 + 1 € Fy[X] is
used to add k = 5 check bits to ‘token’ packets consisting of 11 information bits,
making up a code of length 16, that is 2 Bytes. The polynomial X° 4+ X2 +1 €
Fo[X] is irreducible, hence splits in Fys = F35 and thus divides X3! +1 € F5[X],
and since 31 is a prime it is 31-primitive, entailing n = 31. Thus the code used
actually used is a 15-fold shortened cyclic code; note that the encoding and
decoding algorithms are not affected by shortening.

Similarly, for ‘data’ packets, having length up to 1023 Bytes, that is up to 8184
bits, the ‘CRC-16-USB’ polynomial X 16+ X1+ X241 = (X +1)(XP+X+1) €
Fo[X] is used. The polynomial X'5 + X + 1 € Fy[X] is the lexicographically
smallest irreducible polynomial of degree 15, hence splits in Fo1s = F39765 and
thus divides X32767 + 1 € F5[X], actually it is 32767-primitive, where 215 — 1 =
32767 =7 -31- 151, entailing n = 32767. Thus the code used actually used is a
24583-fold shortened cyclic (even-weight) code.

(8.5) Example: The RWTH-ID [Bunsen, J.M., 2007]. Identity manage-
ment is a task which all large organizations dealing with many customers are
faced with. The aim is to associate an identity number with any customer, in
order to uniquely identify them. It should have the following properties: The
set of available numbers should be large enough; the number should not convey
any further information about the customer in question; the number should be
easy to remember to human beings; and it should be possible to detect simple
transmission errors.

To create identity numbers, an alphabet X consisting of 32 alpha-numerical
symbols, decimal digits and capital Latin letters, is used; in order to avoid
mixing up symbols, the letters I, J, 0 and V, resembling 1, 0 and U, respectively,
are not allowed. Thus using 5 information symbols, we obtain a set of |X|> =
325 = 33554432 ~ 3-107 words over X, to which we add a single check symbol,
yielding identity numbers being words of length 6. To ease remembering identity
numbers, these are written as two words of length three each, connected by a
hyphen, for example SL8-BRX.
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By source coding, X is encoded into the elements of F3 as given in Table 7.
Thus we get a linear binary code D < F3° of length 6 - 5 = 30 and dimension
dimp, (D) = 5 -5 = 25. To ease practical implementation, and to achieve the
desired error detection properties, namely to be able to detect single errors and
adjacent transposition errors, we aim at choosing D related to a cyclic code.

To this end, we look for a suitable cyclic code C < F3 of length n > 30 and
dimension dimg, (C) = n—5, then D < F3° such that dimg, (D) = 25 is obtained
by (n — 30)-fold shortening; recall that the encoding and decoding algorithms
are not affected by shortening. Thus we look for a suitable generator polynomial
g € F2[X] of degree k := deg(g) = 5, dividing the polynomial X" + 1 € Fy[X].
We consider the relevant error types:

A single error yields a burst error of length 5, hence any such error is detected by
any cyclic code with the above parameters. Moreover, an adjacent transposition

error yields an error vector u = [0,...,0;¢o,...,¢4;C0,...,¢4;0,...,0] € FZ,
where [co, . .., c4] € F5. Hence we have v(u) = X7 (X5 +1)- Z?:o ;X' e FylX],
where the leftmost ¢y occurs in entry j € {0,...,n — 1}. Hence all adjacent

transposition errors are detected if and only if g 1 v(u) for all error vectors as
above. This in turn holds if and only if ged(g, X® + 1) = 1; note that we have
the factorization X° +1 = (X + 1)(X* + X3 + X2+ X + 1) € Fo[X].

Since ged(g, X) = 1 = ged(g, X + 1) we conclude that g cannot possibly have a
linear factor, thus either g is the product of two irreducible polynomials of degree
2 and 3, respectively, or g is irreducible of degree 5. Now X2 + X + 1 € F5[X]
is the unique irreducible polynomial of degree 2, and X3 + X + 1 € F[X] and
X3 + X2 +1 € Fo[X] are those of degree 3, hence leading to the candidate
polynomials (X2 + X +1)(X3+ X +1) = X5+ X*+1and (X% + X +1)(X3 +
X2 +1) = X%+ X + 1, which both split in Fyiem(z.3) = Fgs = Fey.

Moreover, as further candidates there are the six irreducible polynomials of
degree 5, which split in Fos = F35. Indeed, for n := 31 = 2% — 1 we find that

X341l = (X+1)-(XP+X24+1)- (X5 +X341)
(XX X2 X+ (XX X2 X+ 1)
(XX X+ X 41 (X + X+ X3+ X2+ 1) € Fao[X].

Thus either of the irreducible polynomials of degree 5 is a suitable generator
polynomial; since 31 is a prime all of them are 31-primitive. For the RWTH-ID
the ‘CRC-5-USB’ polynomial g := X5 + X2 + 1 € F5[X] is used; let C < F3! be
the associated cyclic code and D := C° < F3P.

For example, for L8BRX from Table 7 we get

h = (

X

X100 (X + X34+ X1
X% . (1+X)

X2O (

++ 4+
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Table 7: The alphabet of the RWTH-ID.

0 | 00000 8 | 01000 G | 10000 R | 11000
1] 00001 9 | 01001 H | 10001 S | 11001
2 | 00010 A | 01010 K | 10010 T | 11010
3| 00011 B | 01011 L | 10011 U | 11011
4 | 00100 c | 01100 M | 10100 W | 11100
5 | 00101 D | 01101 N | 10101 X | 11101
6 | 00110 E | 01110 P | 10110 Y | 11110
7 | 00111 F | 01111 Q| 10111 Z | 11111

where polynomial division of X®-h by g yields the remainder 1+ X +X* € Fy[X],
which belongs to the symbol S, saying that SL8-BRX is a valid identity number.

9 BCH codes

(9.1) Roots of unity. Let F, be the field with ¢ elements, and let n € N
such that ged(g,n) = 1. We consider the polynomial X™ — 1 € F,[X]. Since
n # 0 € F, we have ged(Z (X" — 1), X" — 1) = ged(nX" "1, X" —1) =1 €
F,[X], implying that X" —1 € F,[X] is square-free, that is a product of pairwise
distinct monic irreducible polynomials.

We aim at describing its factorization more precisely: Let F, C F be the alge-
braic closure of F,. Since X" — 1 € F[X] still is square-free, we conclude that
it splits into pairwise distinct linear factors, thus letting V,, := V(X" — 1) C F
be its set of zeroes, we have [V,| =n and X" —1=][., (X —() € F[X].

Since whenever (,(’ € V,, we also have (~!¢’ € V,, we conclude that V), is
a finite subgroup of F*, hence by Artin’s Theorem is cyclic. Thus there is a
primitive n-th root of unity (, € V,, that is an element of multiplicative
order n, so that V,, = {(} € Fiic Z,}. Hence we have a group isomorphism
Zp — Vn:i = (., the left hand side being an additive group. Moreover,
i ¢F has order min{j e N;¢(¥ =1 €F } = min{j € N;n | ij} = Td(y I
particular ¢! € V, is a primitive n-th root of unity if and only if i € Z.

Let F,(¢,) C T be the field generated by ¢,, over F,. Then F,((,) is the splitting
field of X™ —1, hence F, C F,((,) is a Galois extension. Thus its automorphism
group I' := Autg,(Fy(¢,)) has finite order || = [Fy(¢y): Fy] := dimp, (Fy(¢n)),
hence [Fy(Cn)| = [Fg|Fa(6n): Fal = ¢ITl that is Fy(¢n) = Fyiry € F.

The group T is cyclic, generated by the Frobenius automorphism ¢, : F,(¢,) —
Fy(¢n): @ = af, having order |¢,| = min{i € N;¢} = idg, )} = min{i €
N;¢? = (,} = min{i € N;¢' =1 € Z,}. Thus |I'| = |¢,| coincides with the
order of ¢ € Z} . Identifying V,, with Z,, the group I' acts by the multiplication
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map @q: Ly — Ly i — iq, the I'-orbits in Z,, being called cyclotomic cosets.

The monic divisors g | X" —1 € F,((,)[X] are uniquely determined by their sets
of zeroes V(g) € Vi as g = [[cey () (X — ) € Fq(Ga)[X]. Since Fixp, (¢, (') =
F,, we have g € F,[X] if and only if V(g) is a union of I'-orbits. Thus the monic
irreducible divisors of X™ — 1 € F,[X], being called cyclotomic polynomials
over F,, are given by the I'-orbits on V,, as p; := HCG(C;)F(X — () € F,[X].

The polynomial u; € F,[X] is the minimum polynomial of ¢} € F,((,) over
F,, hence we have [F,(Ch): F,] = deg() = [(¢i)1] | IT] = [Fy(Gn): FyJ. Thus
we have equality deg(p;) = |I'| if and only if Fy(¢},) = F4(¢y); in particular
this holds whenever (! is a primitive n-th root of unity, that is i € Z*. Note
that ' acts semi-regularly on the set of primitive n-th roots of unity, but not

necessarily regularly, that is not necessarily transitively.

Example. For ¢ := 2 and n := 7 we find that 2 € Z3 has order 3, thus
Fy(¢7) = Fg and ¢ € Autp,(Fg) has order 3. The T'-orbits on V; are V; =
{1} U {¢i;i € O’} U {¢i € O} C Fg, where the associated cyclotomic cosets
are O’ := {1,2,4} and O’ := {3,5,6}, thus X"+1=(X+1) [Lieo(X+)-
[Licon (X + &) = popipz = (X +1) - (XP + X +1) - (X* + X? +1) € Fs[X],
where the latter are irreducible in Fo[X]; note that here we do not specify which
of the factors has the chosen primitive 7-th root of unity (7 as a zero.

(9-2) Zeroes of cyclic codes. a) Let C < Fy, where ged(q,n) = 1, be the
cyclic code with monic generator polynomial g € Fy[X] of degree k € {0,...,n}.
Let V(C) := V(g) C V,, be the set of zeroes of C; hence |V(C)| = deg(g) = k.
Recall that the monic divisors of X™ — 1 are in bijection with the I'-invariant

subsets of V,,, where I' := Autg,_(Fy((n)).

Hence any subset V C V,, whose smallest I'-invariant superset equals V(C), that
is V(C) = Ucev (I €V, is called a defining set of C, and C is called the code
associated with V; in particular, V(C) is the unique maximal defining set of C.
For v € Fy we have v € C if and only if g | v(v) € Fy[X]. Since g € Fy(¢,)[X]
is square-free, this is equivalent to V(C) C V(v(v)) C F, where F is the algebraic
closure of F,; note that V(v(v)) NV, is I'-invariant. By taking I'-orbits, this in
turn is equivalent to ¥V C V(v(v)) for any defining set V of C; that is we have
C ={[co,.--,cn-1] € IFZ;Z;L:—Ol ¢;i¢" =0 € Fy(¢,) for all ¢ € V}. Moreover, we
recover V(C) as V(C) = ,ec V(v(v)) CF.

b) We determine V(C*) C V, for the dual code C+ < F}': Letting h € Fy[X]
such that gh = X" — 1 € Fy[X], we have h = []ocy, \yc)(X — () € Fo(Ga)[X],
thus we get 7" = ey \vie)(X — OF = [leev, ey (=€) - (X = ¢7) €
F,(¢,)[X], from which we infer V(C*) = V(h*) = {C € V,.;; ("L € V(C)}.

(9-3) Theorem. a) Let C < Fy, where ged(q,n) = 1, be the cyclic code
with set of zeroes V(C) = {¢(%,...,{%} C V,, where {ai,...,a;} C Z, and
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[V(C)| =k € {0,...,n}. Then the Delsarte matrix [1975]

1 Cal C2a1 o 'r(Ln_l)al
_ 1o¢oe (e L (M

H=HY(QC) = ];=], 7 .| EF (G
1o¢on oo gl

is a generalized check matrix of C, that is we have C = ker(H" ) NF7. Moreover,
if V C V(C) is a defining set of C, then we have C = ker(H(V)") NFy.

b) If V(C) contains a consecutive set {¢%, (¢t ... ,Cﬁ+(572)b}, where a € Z,
and b € ZF and § € {1,...,n + 1}, then C has minimum distance d(C) > 4.

Note that for § = 1 the consecutive set is empty, and we trivially have d(C) > J;
and that for 6 = n+1 we have V(C) = V,,, implying C = {0}, thus d(C) = oo > 0.

Proof. a) The submatrix of H consisting of the first & columns is a Vander-
monde matrix associated with the pairwise distinct roots of unity {¢2*, ..., (%},
hence is invertible. Thus we infer rkg_(¢,)(H) = k, hence dimg, (¢, )(ker(H")) =
n — k, which implies dimg, (ker(H*) NF) < n — k; note that whenever S C !
then Gaussian elimination shows that dimg, ((S)r,) = dimr,_ (¢, )((S)r,c,))-
Since dimp,(C) = n — k it suffices to show that C < ker(H"™): Let g =
K gXi = [Teeviey(X =€) € Fy(Cn)[X] be the monic generator polynomial
of C. For the i-th row v; = [0,...,0,90,-.,9x,0,...,0] € Fy of the genera-
tor matrix of C associated with g, where i € {1,...,n — k}, and the j-th row
wj € Fg(G,)™ of H, where j € {1,...,k}, we get (v;,w;) = Zfzo ng(zHl_l)aj =
i—1)a; k a; i—1)a; a; r
WY S (G = G g(Gr) = 0 € Fy(Ga), hence vy € ker(H'™).
Finally, for any row w € Fy((,)" of H there is a row u € F¢((,)" of H(V) such
that w = u? = gof](u), for some i € Ny, where ¢, € I' is applied component-
wise. Since for v € Fy we have v? = v, we from (v, w) = (v,ud’) = (v, u?) =
(v,w)?" € Fy(¢n) infer that v € ker(H'™)NF? if and only if v € ker(H (V)")NF2.

b) Since b € Z! we conclude that ¢4 € V), is a primitive n-th root of unity

as well. Letting ¢ := ab™! € Z,,, we observe that {CZ,CS“‘I”...@ZH&Q)Z’} =
{(Cﬁ)ca (Cﬁ)c+17 cee (C,b,)c'*“s_z}. Hence we may assume that b = 1.

We consider the rows of H corresponding to the consecutive set, that is the
matrix H({C2,...,¢¢7072}) € Fy((,)®~ 1>, and show that any (§ — 1)-subset
of its columns is Fy((,,)-linearly independent. Note that, although the argument
given below is valid for all § € {1,...,n+1}, we may assume that § € {1,n+1},
so that in order to apply (4.3) we may moreover assume that C # {0}, where it
would be sufficient to show [Fy-linear independence only. Now:
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Picking columns {j1,...,755-1} C {1,...,n} yields the square matrix
Q(lh—l)a o 7(13'5—171)a
C(jl_l)(a+1) C(ja_lfl)(aJrl)
H:i=1|" R € Fy(Gn) 0~ Dx0-),
D=2 D)

Hence we have

1 . 1
(i1 Jo-1—1
H=| " : - diaglci e, .., (=11,
<7(1j1—1)(5—2) o Cr(ljaflfl)(‘S*Q)
where the left hand factor is a Vandermonde matrix associated with the pairwise
distinct roots of unity {¢Z11,...,¢2*~* "'}, thus is invertible. 1

(9.4) Example: Hamming codes. We show that, generically, Hamming
codes are linearly equivalent to cyclic codes: Let F, be the field with g elements,
let k& > 2 such that ged(k,g—1) =1, and let n := %; note that ged(g,n) =1,
and that the condition on k always holds for ¢ = 2. Let C < Fy be the cyclic
code with defining set {¢,}, that is V(C) = (¢,)T' € V,, in other words having
g = p1 € Fy[X] as a generator polynomial. Then C is an [n,n — k, 3]-code, thus
is linearly equivalent to the Hamming code Hy < Fy:

We show that the order of ¢ € Z? equals k: We have n | ¢* — 1, hence the

order in question divides k; and assuming that q:_—11 =n | ¢ — 1 for some
le€{l,...,k—1}, then we have ¢*—1 | (¢—1)(¢'—=1) = ¢"*'—¢' —q+1, thus ¢* <
¢* —2¢+2 < ¢* — 2, a contradiction. This implies (Cn)" = {Cny €9, ..., 2"},

or equivalently deg(u1) = k, implying that dimg, (C) = n — k.

We show that C has minimum distance d(C) = 3: Since any [n,n — k, 3]-code
is perfect, that is fulfills the Hamming bound, we have d(C) < 3. Moreover,

V(C) contains the consecutive set {(,, (2} of length 2 and step size ¢ — 1. Now
n= qqk__ll = Zi:ol ¢' =k (mod ¢ — 1) implies ged(n,q — 1) = ged(k,q— 1) = 1,
hence we have ¢ — 1 € Z?, entailing d(C) > 3. i

(9.5) BCH-Codes [Bose, Ray-Chaudhuri, 1960; Hocquenghem, 1959].
a) A cyclic code C < Fy, where ged(g,n) = 1, associated with a (genuinely)
consecutive set {¢%,...,(2T072} C V), of length § — 1, where a € Z, and § €
{1,...,n + 1}, is called a BCH code of designed distance §. Note that
C might be a BCH code with respect to consecutive sets of varying lengths, or
varying step sizes amounting to changing the chosen primitive n-th root of unity;
the largest designed distance occurring is called the Bose distance. Hence for

the minimum distance of C we have the BCH bound d(C) > ¢.
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If n = ¢/l — 1, that is the multiplicative group F,((,)* = IE‘;F, is generated by
the primitive element (,, = (,irj_;, then C is called primitive. If a = 1, that
is the consecutive set considered is {(p,...,¢27 '}, then C is called a narrow
sense BCH code. In particular, in the narrow sense, for § = 1 we get V(C) = 0,
thus C = Fy; for 6 = n + 1 we get V(C) = V,, thus C = {0}; and for § = n we

get V(C) = {Cn, .., (P 1 =V \ {1} = V()g(n__l1 ), thus C is the repetition code.

b) We comment on the parameters of BCH codes. Firstly, we consider the

dimension of BCH codes: We have n — dimg_(C) = [V(C)| = |Uf=_02(§ﬁ+i)r| <

(0 —1)-|'|, hence in general we have dimg, (C) > n—(6—1)-|I'|. More specially,

if ¢ =2 and C is a narrow sense BCH code, then from p; = ug; € Fo[X], for all
: S

i € L, we get V(C) = UPZ1(¢)T = UL2 (¢21-1)T € V,,, which yields the better

estimate dimp, (C) > n — L%J -

Secondly, we consider the minimum distance of BCH codes, which in general
might be strictly larger than the Bose distance. But we have Peterson’s The-
orem [1967], saying that if C is a narrow sense BCH code of designed distance
0 | m, then C actually has minimum distance 4:

Let n = 1§, where I € N. Then we have X" — 1 = (X! — 1) - Y0} Xl
F,[X]. Since ¢! # 1 € Fy(¢n), for all i € {1,...,6 — 1}, we conclude that
{Cor o, 7N V(X! = 1) = ). Thus we have {C,...,¢571} C V(30— X,
which implies that V(C) = Uf;f(g;)r C V(Zf;& X)) = V(v(v)), where v :=
Zf;é eq = [1,0,...,0; ...5 1,0,...,0] € F; hence v € C, having weight §.

Example. For ¢ =2 and n = 2% — 1, where k € {2,3,4}, we get the following:
We have X3 +1 = pops = (X +1)(X?+X+1) € Fo[X] and X" +1 = po-papiz =
(X +1)- (X3+ X +1)(X?+ X2+ 1) € Fo[X]; see (9.1). Moreover, we have
XV +1 = popsps-papr = (X +1)(XP+X+1)(X X+ X2+ X +1)- (X + X+
D(X*+X%+1) € Fo[X], where pi5 = [ (5,101 (X —(i5) = [Tieq1,2) (X —¢5) and
M3 = Hie{g,a,g,lz}(X—Cfs) = Hie{1,2,3,4}(X—§§) and py = Hie{1,2,4,8}(X—G5)
and p7 = Hi€{7,11,13,14} (X —G5) = Hie{1,2,4,8} (X = Gi5)-

Hence we have the associated narrow sense primitive binary BCH codes C as
given in Table 8, where we indicate the Bose distance d, the monic generator
polynomial g € Fo[X], the union O of cyclotomic cosets associated with V(C),
the dimension dimg,(C) = n — deg(g) = n — |O|, and the minimum distance
d. Note that in all cases given we observe that 6 = d: Except for [k,d] €
{[3,3],[4,7]} this is explained by Peterson’s Theorem, while the named cases
are covered by (10.3) below; alternatively, for [k, §] = [3, 3] we recall that any
binary [7,4, 3]-code already fulfills the Hamming bound; see (9.4).

(9.6) Reed-Solomon codes [1954]. a) We consider the first case of primitive
BCH codes, that is n := ¢ — 1. We have F; = ((;-1), hence [Fy((;-1): F,] =1,
thus T is trivial, and X9 ! — 1 = H;‘I:_OQ(X — (1) € Fg[X]. A primitive BCH
code C < F?~! is called a Reed-Solomon code. Thus V(C) coincides with the
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Table 8: Narrow sense primitive binary BCH codes.

5] g Olam]a] L9l O|dim| d]
1] 1| 0] 3|1 ! ! o Tl
3 | {24 4] 3
3 m [ {12} 1| 3

4 [ o ZS 01| oo 7 H1p3 {1336} 1 7
8 | pap3pio L 0] o0

[ 6] g ] O]dim]| d]

1 1 0| 15| 1

3 " {1,2,4,8} | 11| 3

5 {13 (1,2,3,4,6,8,9,12} | 7| 5

7 s | {1,2,3,4,5,6,8,9,10,12} | 5| 7

15 L1 3 s 7 {1,...,14} 1|15

16 | pu1pspis por fio L5 0] o0

defining consecutive set V := {(J_4, ..., ‘”5 = 11~{Cq,1,..., 3:11} CFy,

where a € Z,—1 and ¢ € {1,...,q} is the d681gned dlstance of C.

Thus we have k := dimp, (C) = (¢ —1) — (6 —1) = ¢ — J. Hence if £ > 1, that is
0 < g, then from the Singleton and BCH bounds we get 6 — 1= (¢ —1) — k >
d—1>6—1, where d := d(C) € N is the minimum distance of C, showing that
d = ¢, implying that C is an MDS [¢ — 1, ¢ — 4, §]-code.

We describe a fast encoding procedure for C: We observe first that V'L =
V(CH) =F \V = {1 €Fs3i € Zg1 \ (ma—{0,...,0 = 2})} = {(;_, €
Fri € (—a+{1,...,¢ — 6}) € Zg_1}; in particular Ct is a Reed-Solomon
code again. Hence the (conventional) check matrix H(V1) = [Céi:la)(j_l)]ij €

ng_é)x(q_l) of C*+ < F2~1 is a generator matrix of C:

1 1 1 ... 1
L O o |
2 4 2(g—2 —a)(i—
H(Vl) _ 1 q—1 q—1 e Cq71 . dlag([c;(ila)(j 1)}]_)
' S 2(q—0—1 —2)(g—6—1
1 Cq 1 Cq(_q1 ) Céq—1 )(q )
Thus for v := [ag, . . .,aq—s—1] € FI~° the associated codeword v-H (V*) € Fi~*

is given as follows: Letting w; := [C(:a)(jfl)]i

the j-th column of H(V1), for j € {1,...,q — 1}, we get Zf:_g A;Wj 41 =
Sy ey e = et (CJ 1)”‘1 9 = (X97(v))(¢;Z7)- Hence
we have v - H(VY) = [(X979%(v))(¢)])]; € FI~!, where the latter is obtained

€ Fg_‘s be the transpose of
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by evaluating the polynomial X9~%v(v) € IF,[X] at all places in F}.

In particular, for narrow sense Reed-Solomon codes, that is ¢ = 1, we obtain
C = {w@)(1),v(v)(¢-1); -, v()((Z)] € Fi~lv € FI°} < FI~1, being
obtained by evaluating all polynomials in Fy[X]<,—s at all places in Fg-

b) Generalizing this idea leads to generalized Reed-Solomon codes, which
in turn belong to the class of algebro-geometric codes, as follows:

Letting n be arbitrary and k € {1,...,n}, we choose pairwise distinct elements
a:=[ay,...,an] CFy, and a vector v := [vy,...,v,] € Fy such that wt(v) =n,
and then let GRS (v, v) == {[vif(1),...,vnf(an)] € Fy; f € Fy[X]<r} < Fp.
In particular, narrow sense Reed-Solomon codes are given by n := ¢ — 1 and
k:=qg—¢dand o =[1,(4_1,... ,42:12] and v = 14_1.

Hence for C := GRS (c, v) we have dimp, (C) < k. Moreover, since any 0 # f €
F,[X]<k has at most k — 1 zeroes in Fy, we infer that d(C) > n—k+1. Thus by
the Singleton bound we have n—k > n —dimg_(C) > d(C) —1 > n—k, implying
equality throughout, so that C is an MDS [n, k,n — k + 1]-code.

¢) Finally, in order to prepare the application below, we observe the following:
Let n € N be arbitrary, and let C < Fy be an MDS [n, k, d]-code, where k > 2.
Then for the associated shortened [n—1, k°, d°]-code C° < IFZ;_l we have k—1 <
k° < k and d < d°. The Singleton bound for C° yields n—k = (n—1)—(k—1) >
(n—1)—k°>d°—1>d— 1. Hence the Singleton bound n — k = d — 1 being
sharp for C yields equality throughout, thus k° = k — 1 and d° = d, so that C°
is an MDS [n — 1,k — 1, d]-code as well.

Thus, starting with a Reed-Solomon [¢ — 1, ¢ — 0, §]-code, successive shortening
yields MDS [¢ — i, (¢ — i) — (0 — 1), §]-codes, for i € {1,...,q—d}. For example,
for ¢ := 28 = 256 and n = 255 and designed distance § = 5, starting with the
narrow sense Reed-Solomon [255, 251, 5]-code, thus having generator polynomial
H?:1(X_C§55) € Fas6[X], we get the 2-error correcting [32, 28, 5]- and [28, 24, 5]-
codes over Fy56 being used in the following application:

(9.7) Example: The Audio Compact Disc [1982]. The Red Book Stan-
dard, nowadays called DIN EN 60908, for the compact disc digital audio
(CD-DA) system has been developed by the companies ‘Sony’ and ‘Philips’.

The amplitude of the analog audio data is sampled at a frequency of 44.1 kHz.
By the Nyquist-Shannon Theorem frequencies up to half of the sampling
frequency can be encoded and decoded, thus here up to ~ 22 kHz. To prevent
producing moire artifacts, the analog signal has to run through a low pass
(anti-aliasing) filter before digitalization.

The analog signal is encoded using 16-bit pulse code modulation (PCM).
Hence using 28 = 256 symbols instead of only the symbols 0 and 1, that is Bytes
instead of bits, a stereo audio signal sample needs 4 Byte. Thus digitalization
produces 4-44100 BX*¢ = 176400 22 = 1411200 ™*. Given the running time of
74min, this yields a total of 74 - 60 - 176400 Byte = 783216000 Byte ~ 783 MB.
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Now 6 samples form a word of 24 Byte = 192 bit, being called a frame. These
are encoded using a cross-interleaved Reed-Solomon code (CIRC), which
essentially works as follows: First, using an outer [28,24,5]-code C3, which
is shortened from the narrow sense Reed-Solomon [255, 251, 5]-code over Fasg,
words of length 24 are encoded into words of length 28. Then an interleaver
with offset four is applied: Codewords [z;1,...,ziy] € [y, for i € Z, are written
diagonally into a matrix and are read out column-wise, as the following scheme
with offset one shows:

i1 Ti41,1
ce Ti2 Ti4+1,2

Tin Ti+l,n

Next, an inner [32, 28, 5]-code C;, again shortened from the narrow sense Reed-
Solomon [255, 251, 5]-code over Fas6, encodes words of length 28 into words of
length 32. Finally, a further Byte is added containing subchannel informa-
tion, yielding words of total length 33.

The idea of this encoding scheme is as follows: The code C; has minimum
distance 5, hence is 2-error correcting, where single C1 errors are corrected,
while words with two errors (typically) are marked as erasures. The resulting
words of length 28 are de-interleaved, leading to a distribution of erasures, called
C2 errors. The code C; has minimum distance 5 as well, thus is able to correct
four erased positions in any word. Hence, given g € N consecutive erasures,
that is columns of the above scheme, due to offset four any diagonally written
word is affected in at most [§] known positions. Thus burst errors, which for
example result from surface scratches, with a loss of up to 16 words can be
corrected this way. Still remaining CU errors are treated by interpolation,
and finally oversampling is applied against aliasing.

The data is stored as a spiral track of pits moulded into a polycarbonate layer.
The pits are 100nm deep, 500nm wide, and at least 850nm long; the regions
between pits are called lands. The data is read by a 780nm solid state laser,
where a pit-land or a land-pit change is read as a 1, and 0 otherwise.

This technique requires that between two read 1’s there must be at least two
and at most ten read 0’s. This is achieved by eight-to-fourteen modulation
(EFM), where each Byte, that is each 8-bit word, is replaced by a 14-bit word,
using table lookup. Then a suitable 3-bit merging word is added between two
14-bit words. Finally, a 3 Byte synchronization word is added, together with
another 3-bit merging word. The synchronization word does not occur elsewhere
in the bit stream, hence can be used to detect the beginning of a frame.

Hence a frame consists of (33 - (14 + 3) + (24 + 3)) bit = 588 bit, which

amounts to an information rate of % = }1—8 ~ 0.33, hence a bit rate of % .

1411200 2 = 4321800 2 = 540225 2X° and a total of 74- 60 - 540225 Byte =

S

2398599000 Byte ~ 2.4 GB. Moreover, a burst error of 16 words of length
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32 Byte is contained in 16 - 588 bit = 9408 bit, since a bit needs some 300nm of
track length, this amounts to some 9408 - 300nm = 2822400nm ~ 2.8mm.

10 Minimum distance of BCH codes

We have already seen that the BCH bound for the minimum distance of a BCH
code is not necessarily sharp. We now proceed into two opposite directions:
Firstly, we improve on the idea behind the BCH bound in order to obtain better
bounds. Secondly, in the narrow sense primitive case, we provide sufficient
criteria ensuring that the BCH bound is actually sharp.

(10.1) Van-Lint-Wilson bound [1986]. We need a definition first: Letting
A = [a5]i; € F*" and B = [birslir; € F*", where n € N and 7,5 € N, let
Ax B = [aijbyjli—1)stir; € Fp* ", where i € {1,...,7} and i' € {1,...,s}.
Note that A * B in general does not have full rank, even if A and B have.

Theorem. Let v € C := ker((A* B)") <Fy, and let Ay € F*! and B €

F(SIX 171 he the submatrices of A and B , respectively, consisting of the columns in
J :=supp(v) € {1,...,n}. Then we have rkr, (A7) +rkp, (Bs) < |T| = wt(v).

Proof. Let v = [z1,...,x,], where we may assume that 7 = {1,...,n}, that
isx; #0forall j € {1,...,n}. Letting B’ := B - diag[x1, ..., zy] = [birjz;lirj €
Fs*", we have rky, (B) = rkg,(B’) € No. Moreover, the condition v- (A B)" =
[Z?Zl ijbirj ;) (i—1)s+ir = 0 € F}® can be rewritten as A- B'"" = 0 € F;**. In
other words, the row space of A is contained in the orthogonal space of the row
space of B’, hence we have rkr, (A) < n — kg, (B') = n — kg, (B). i

Corollary. If for all ) # Z C {1,...,n} such that |Z| < d — 1, for some d € N,
we have rky, (Az) +rkp, (Bz) > |Z]|, then C has minimum distance at least d.

(10.2) Theorem: Roos bound [1983]. For n € N let V' C V,, C Fy((,),
where ged(g,n) = 1, be a consecutive set of length 6—1, where § € {2,...,n+1}.
Moreover, let @ # V" C V,, be any subset such that there is a consecutive subset
of V,, containing V" and having length [V"/|+¢ —2. Then the cyclic code C < Fy
associated with V :=V’-V” CV,, has minimum distance at least 6 — 1 + |V"'|;
note that we recover the BCH bound from V" = {1}.

Proof. Since the matrices H(V') * H(V") € Fy(C,)IVTIV'DX" and H(V) €
Fq(Ca)Y1*™ have the same set of rows, we have C = ker(H(V)"™) NF! =
ker((H(V') * H(V"))") NF}. We aim at applying the van-Lint-Wilson bound:

For § # Z C {1,...,n}, by the BCH bound we have rkg, ,)(H(V")z) = |Z|
if [Z| <0 — 1, and thus rkg ) (H(V')z) > 6 — 1 if |Z| > 4. Since we always
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have rkg,_(¢,)(H(V")z) > 1, we get tkg,_ (¢, (H(V')z) +1kg, () (HV")z) > |Z] if
|Z| <6 — 1. This settles the case |V”| = 1. Hence let now [V”| > 2 and |Z| > ¢:

Let V' C W C V, be a consecutive set, again by the BCH bound yielding
tky, ¢, ) (HW)z) > |Z] if |Z| < [W|. Since deleting the rows of H(W) corre-
sponding to W\ V" yields H(V"), we infer rkg,_(c\(H(V")z) > |Z| — W[+ V"]
if |Z| < [W|. This yields rkg, ) (H(V')z) + tkr, (¢, (H(V")z) > 6 — 1+ |Z] -
W]+ [V"| if § < |Z| < |[W)|. Here, the right hand side exceeds |Z| if and only
if 0 <|Z|] < W] <|V'|+d —2, in which case C has minimum distance at least
|Z| + 1. Now the assertion follows from choosing |Z| = |W|=|V"|+J§ —2.

Corollary: Hartmann, Tzeng [1972]. Let V' C V), be a consecutive set of
length § — 1, where § € {2,...,n+ 1}, and let § # V" C V), be a generalized
consecutive set of some step size in Z7 such that [V”| < n+2—¢. Then the cyclic
code associated with V := 1’ - V" has minimum distance at least 6 — 1 + [V"|.

Proof. The set V" can be extended to a consecutive set with the same stpe
size and having length [V"| + ¢ — 2. Recall that the rank estimates for Delsarte
matrices also hold for generalized consecutive sets. i

Example. Let ¢ := 2 and n := 35. Then 2 € Z3; has order 12, and the
cyclotomic cosets are given as

{0} U {5,10,20} U {15,25,30} U {7,14, 21,28}
U {1,2,4,8,9,11,16,18,22,23, 29, 32}
U {3,6,12,13,17,19,24, 26,27, 31, 33, 34}.

Let C < 35 be the cyclic code associated with g := py uspr € Fo[X]. Hence V(C)
is given by {1,2,4,5,7,8,9, 10,11, 14, 16, 18, 20, 21, 22, 23, 28, 29, 32} C Zss, thus
for the minimum distance of C the BCH bound yields d(C) > 6.

But C is also associated with O := {7,8,9,10,11} U {20,21,22,23}, which
letting @' := {7,8,9,10} and O” := {0,1, 13} can be written as O = O’ + 0" C
Zs3s. In order to apply the Roos bound with § = 5, entailing d(C) > §—1+|0"| =
7, we have to embed O” in a consecutive set of length |O”| +§ — 2 = 6: Since
3 € Zj45 we conclude that (35 € V35 is a primitive 35-th root of unity as well;
recall that the rank estimates of check matrices associated with consecutive sets
do not depend on a particular choice of a primitive root of unity. Thus we
indeed get 3- 0" ={0,3,4} C{0,...,5} C Zss.

To show conversely that d(C) < 7, we choose u; := X2 + X1 + X104+ X8
X5+ X4+ X3 + X? +1 € Fo[X], which entails pz = X2 + X190+ X% + X8 +
X'+ X4+ X2+ X +1,aswellas s = X2+ X + 1 and py5 = X2+ X2 + 1,
while g7 = X* 4+ X? + X2 + X + 1 anyway. This yields g = puypspr = X +
XV 4 XM X184 X124 X104+ X9 4 X7+ X6 + X? 4 1. It turns out that
g | fr=XB4 X0 XM XU 4 X7+ X +1, or equivalently f((35) = f((35) =
f(¢3) = 0. Hence f € Fo[X] corresponds to a codeword of weight 7. i
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Example. Let ¢ := 2 and n := 127 = 27 — 1. Then 2 € Z},, has order 7, and
the cyclotomic cosets are given as

{0} U{1,2,4,8,16,32,64} U {3,6,12,24,48,65,96}
U {5, 10,20, 33,40,66,80} U {7,14, 28, 56,67,97, 112}
U {9,17,18,34,36,68,72} U {11, 22, 44,49, 69, 88,98}
U {13, 26, 35,52, 70,81,104} U {15, 30,60, 71,99, 113,120}
U {19,25,38,50,73,76,100} U {21,37,41,42, 74, 82, 84}
U {23,46,57,75,92,101, 114} U {27, 51, 54, 77,89, 102, 108}
U {29,39,58,78,83,105,116} U {31,62,79,103, 115,121, 124}
U {43,45,53,85,86,90,106} U {47,61,87,94,107,117, 122}
U {55,59,91,93,109,110, 118} U {63,95, 111,119,123, 125,126}.

Let C*+ < F}27 be the narrow sense primitive BCH code with designed distance
11. Hence C' is associated both with {1,3,5,7,9} C {1,...,10}, thus V(C™)
has cardinality 35 and is given by

O+ :={ 1,2,3,4,5,6,7,8,9,10,12,14,16,17, 18, 20, 24, 28, 32,
33,34,36,40,48, 56, 64, 65, 66, 67, 68, 72,80,96,97,112  } C Z1o7.

Let C := (C1t)*t < Fi?7. Hence V(C) is given by O := Zy97 \ (—O1), that is

O={ 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14;
16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29;
32,33, 34,35, 36,37, 38, 39, 40, 41, 42, 43, 44, 45, 46;
48,49,50, 51,52, 53,54; 56,57, 58; 64,65,66,67, 68,69, 70;
72,73,74,75,76,77,78; 80,81, 82,83,84,85,86; 88,89, 90;
92; 96,97,98; 100,101, 102; 104,105,106; 108; 112; 114; 116 }.

Thus C has minimal defining set Q := {0,1,3,5,7,9,11, 13,19, 21, 23,27, 29, 43},
where V(C) has cardinality 92. This implies O+ C O, thus C < C* is weakly
self-dual. We proceed to determine the minimum distance d of C:

i) The BCH bound yields d > 16 and the Singleton bound yields d < 127 —92 +
1 = 36. Moreover, we show that d is divisible by 4:

To this end, we consider the localization Fo[X*!] := Fyo[X]xy C Fo(X), and
let ~: Fo[X+'] — FolX] := Fo[X]/ (X" — 1) = @y, F2[X]/(X — (i57) be
the extension of the natural epimorphism, where the latter isomorphism results
from the Chinese Remainder Theorem. Now, from O+ C O we get OU (—(’)) =
O U (Zya7 \ OF) = Zay, thus for any i € Ziar we have g(Clyr)g(Coy) = 0,
entailing that g(X)g(X—1) =0 € Fo[X].

It suffices to show that for any v = [ag,...,a126] € C we have 4 | wt(v) =: s:
Let f :=v(v) = 3,20 a; X’ € F5[X], then f(X~1) = 3:%0 a; X7 € Fy[X+!],
From g | f € F3[X] we infer that f(X)f(X~1) = 113:60<2j62127 akﬂ»aj)yk =
0 € F2[X], Thus for all k& € Z127 we have Zjezm ag+ja; = 0 € Fy. In other
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words, letting J := supp(v) C Zio7, this says that |{[i,j] € J%i = j + k}|
is even. For k = 0 this yields that |J| = s is even. Since 127 is odd, for
k # 0 we have —k # k € Zia7, hence 4 | |{[i,j] € J?i € {j + k}}|, and thus
4| |{[i,4] € T%i # j}| = s* — s = s(s — 1), implying that 4 | s.

ii) We aim at applying the Roos bound with 6 = 15: Letting O’ := {0,...,13}
and 0" := {0,1,16,32,33} we get O’ + 0" = {0,...,14} U {16,...,29} U
{32,...,46} C O, hence C is associated with O’ + O”. Moreover, since 8 € Zjy7
we conclude that (£, € Vio7 is a primitive 127-th root of unity as well. Thus
from 8- 0" ={0,1,2,8,10} C {0,...,17} C Zy27, where 18 = |0”| + 0 — 2, the
Roos bound yields d > § — 1 + |0”| = 19. Hence we get d > 20.

iii) We aim at applying the van-Lint-Wilson bound: Let P’ := {16,...,29} U
{32,...,44} C O and P" := {0, —16, —15}. Then we get P'+P" = {0,...,14} U
{16,...,29} U {32,...,44} C O'+ 0" C O, hence C is associated with P’ +P".

We consider the check matrix H(P') € F3' *'*7: Since the set {16,...,29} and
{16,...,44} are consecutive of length 14 and 29, respectively, for § # Z C
{1,...,127} we get tkg (¢, (H(P")z) > |Z] if |Z| < 14, and rkg, (¢, (H(P')z) >
14 if |Z| = 15, and tke, (¢, ) (H(P)z) > |Z| — 2 if 16 < |T| < 29.

2if 3 < |Z] < 7, and kg (¢ (H(P")z) > |Z] =6 if 8 < |Z] < 9, an
kg, (¢, (H(P")z) = 3 if |Z| > 10; note that [{—1,...,7}\ {-1,0,7}| = 6.

Thus we have rkg, (¢, (H(P")z) + tkr,(c,)(H(P")z) > |Z| whenever |Z| < 29,
hence the van-Lint-Wilson bound yields d > 30. Hence we get d > 32.

iv) Finally, to show conversely that d < 32, we choose 1 := X +X+1 € Fo[X],
and thus fix all the polynomials u; € Fo[X] for ¢ € Z1a7. Then the generator
polynomial g := [[;co pti € F2[X] of C turns out to be

g = X4 X4 X504 X504 x5 4 x84 x84 X804
X4 X704 X4 X754 X7 XOT 4 X 4 X024
X60+X58+X56+X53+X52+X51 +X49+X48—‘r
X47—|—X46+X45—|—X43+X39—|—X38+X36+X35+
X34+X32+X28+X24+X23+X19+X18+X17+
X104 x4 X104 X604 X414 X34+ X +1.

Letting f € F5[X] to be given as

f = ng+X98+X97+X96+X94+X87+X83+X79+
X78+X75—|—X72+X69—|—X62+X61 +X59—|—X57—|-
X56+X54—|—X51 +X49—|—X48+X45—|—X42—|—X28—|—
X204 X%+ X2 4 X4 X+ X104 X 41,

it turns out that g | f, or equivalently f(¢i,,) = 0 for all i € Q. Hence f
corresponds to a codeword of weight 32. #
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(10.3) Theorem. Let n := ¢° — 1, for some s € N, and C < F} be a narrow
sense primitive BCH code of designed distance § = ¢'—1, for some t € {1,...,s}.
Then C has minimum distance 4.

Proof. We show that C contains an element of weight §:

i) Since ¢ € Z has order s, we have |I'| = s, from which we infer that ¢ =
{Cn,C9,...,CT7"} C V,. Hence the elements {Cn,(?,...,¢4" '} are pairwise
distinct, implying the invertibility of the associated Vandermonde matrix

L G G
v 1 ¢ .. (t=1)g
A= [Cy(zj_l)qlil]ij =|. . € Fy(¢n)™ "
1o¢a L e
n n
Hence the system of linear equations [Xy,..., X;—1]- A = —[1, <g‘, e ff_l)qt]

has a unique solution [ag,...,a;_1] € Fy(C,). Let f:= X7 + S a; X9 €
F,(¢n)[X] be the associated g-linearized polynomial of degree ¢'; note that
we have f(az +y) = af(x) + f(y) € Fy((y), for all z,y € Fy(¢,) and a € F,,.
By construction we have (¢7)?" + Zj;éai(gg)qi =0, for all j € {0,...,t —1},
hence V := {1,(p, ..., (71} CV(f) CF consists of zeroes of f. Moreover, V C
Fq(¢n) is Fy-linearly independent: Let [bo, . . . ,bt,.l] € F! such that Zj;é bl =
0 € Fy(Cn), thus from b7 = b; we get Z;;E b;¢i7 =0, for all i € {0,...,t — 1},
that is A - [bo,...,bi—1]" =0 € Fy(¢,)™!, implying that [bg, ..., b—1] = 0.
Thus letting V := (V)r, < Fq((n) we have |V| = ¢', and from f being F,-linear
we infer that V' C V(f) counsists of zeroes of f, implying that V' = V(f), hence
f splits over Fy(Cn) as f = [].c (X —¢) € Fo(G)[X].

ii) We need an auxiliary construction: Let X := {Xi,...,X,,} be indeter-

minates, where m € N. For k € {0,...,m} let e, € Fy[X] be the associ-

ated elementary symmetric polynomial of degree k, for example e,, o = 1 and
em1 = g Xi and emo = D01 cipicy, XXy and ey = X1+ Xy, and for
k € Nlet pyp := > 1o, XF € F,[X] be the associated power sum polynomial.

Letting  := [[[",(1 — X:X) = X0 o(~1)en ;X7 € Fy[X][X] C Fy((X, X)),

we have &-h = >t (1) jem X771, and the product rule yields

axh = -2k (Xj Tl mp gy (- XiX)>
= —h-35 1—))((2)(
= —h- Z;nzl (Zkzo Xf+1Xk>
= —h- Zkzopm,k+1Xk,

implying > 1% (—1)" e, ; X! = (Z;nzo(—l)jem,ijj) (Yks1 pmp X1 €
Fy[X][[X]]. Thus we get the Newton identities > ., (=1)'"'em i jpm,; =
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iem i fori € {1,...,m}, as well as Zj (1) ey, jpmj =0fori>m+1;

the former can also be written as (—1)" " 'py,; = iem; + Z ( ) em,i—jPm,;-

iii) Now let m := ¢'. Evaluating e, € F,[x], for i € {0,...,m}, at the
elements of V' C F, (), we get f = X + PO O(JLZ = HCEV(X —c) =
St o(=1)" emm—j(V)X7 € Fy(Cn)[X]. This implies that em,i(V) # 0 pos-
sibly only for i = m — ¢’, where j € {0,...,t}. Since ¢ | m, we thus have
iem (V) = 0 for all i € {0,...,m — 2}. Evaluating p,,; € F,[X] at the ele-
ments of V' as well, from the Newton identities we by induction on ¢ € N get
2 cev\{0} =3 ey =pmi(V)=0,forallie{1,...,m—2}.

Since |[F,(¢n)*| = ¢° — 1 = n, the map Z, — F,(¢,)*: i — ¢ is a bijection.
Let v = [zo,...,2n_1] € {0,1}" C F} be such that V' \ {0} = {¢} € F4(Cn)si €

ZLn,x; = 1}. Then we have wt(v) = |V| —1=m—1=4, and we get V( )(Cj) =
Ziezmxi:1(<7]z)z = Z'LEZn I1—1(Cn) = Zcev\{o} =0, for j e {1,. — 1},
which since C is associated with {C,,...,¢3~'} C V, implies that v € C i

(10.4) Corollary. Let C < Fy be a narrow sense primitive BCH code of de-
signed distance § € {1,...,n}. Then C has minimum distance at most ¢gd — 1.

Proof. Let n = ¢° — 1, and let t € {1,...,s} such that ¢~! < 6 < ¢ — 1.

Since C is associated with {C,,...,¢2~'}, it contains the code associated with
{Cny- -, Cgt_g}. Since the latter has minimum distance ¢ — 1, the minimum
distance of C is bounded above by ¢! — 1 =¢q- ¢! —1< ¢ — 1. i

Finally, we just mention the following theorem, whose proof requires further
tools we do not have at our disposal here:

(10.5) Theorem. Let C be a non-trivial narrow sense primitive binary BCH
code. Then the minimum distance of C is odd. i

11 Quadratic residue codes

(11.1) Quadratic residues. We collect a few number theoretic facts.

a) Let p be an odd prime. Then by Artin’s Theorem Zj is a cyclic group of
even order p — 1. Hence the set of squares Q,, := {i? € Z* i € Ly} < Zy is the
unique subgroup of Z of index 2, and consists of the elements of Z, of order
dividing %. Let N, := Z; \ @, be the set of non-squares in Z; hence we
have |Qp| = [Nj| = p%l~

For i € Z; let the Legendre symbol be defined as ) =1ifi € Q,, and

(1) = —1if i € N,. Hence for i,j € Z} we have Z;) = ( ) (%), thus

p
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(5) 2Ly — {£1} is a group homomorphism with kernel Q,. Moreover, we

extend (;) to Z \ Z,, via the natural epimorphism Z — Z,,.

Lemma. (‘71) = (—1)%1, that is (_?1) =1lif and only if p=1 (mod 4).

Proof. From X? — 1 = (X — 1)(X + 1) € Z,[X] we infer that —1 € Z is the
unique primitive second root of unity. Hence —1 € Zy is a square if and only if

Zy has an element of order 4, which by Artin’s Theorem is equivalent to p = 1
p—1

(mod 4), the latter in turn being equivalent to (—1)z = 1. i

b) Now let ¢ # p be a prime. Then, by Dirichlet’s Theorem on primes in an

arithmetic progression, given p there are infinitely many ¢ such that (%) =1.

The Quadratic Reciprocity Law [Gauss, 1796], says that i) (%) (g) =

(-1) whenever ¢ is odd, that is (%) = (ﬁ) except p,q = —1 (mod 4),
2_

and ii) (%) = (—1)%%", that is (1%) = 1if and only if p = £1 (mod 8).

(p—1)(g—1)
P

q

Consequently, given ¢ there are infinitely many p such that (%) =1.

c) Let still p be an odd prime, and let ¢ # p be a prime. Then for the associated

Gaussian sum, being defined as v, 1= ) (é) C; € Fy(¢p), we have:

i€y
Lemma. i) We have 'yf) = (%) -p € Fy, in particular v, # 0.
ii) If (%) =1, then we have v, € F,.

Proot. W = 3 (5) ()57 = () s (2) 6
Since multiplication with j € Zj induces the bijection Z; — Z7: i — 1j we
= i\ A(i—1)j -1 i) ~i—1)j ;
get 712, = (?1) 'Zi,jeZZ (jT) P = (7) . Zi,jez; (;) » . Using
Eiez;; (%) = 0 we get 7, = (%)'Ziezg ( (%)'Zjezp(@i)_l)j)- From X*—-1 =
(X —1)- 3777 X' € F,[X] we conclude that Yjez, (¢)? =0 whenever i € Z;,
-1

hence in the above outer sum only the case i = 1 remains, yielding 'yg = (7> -p.

ii) Recalling that Autr, (F,((p)) = (@q), we show that v = v, € Fg((,): We
Ng N .

have v =3, ;. (%) Gl = icpe (%) ¢p7; note that for ¢ = 2 we have (%) =

1 € Fy. From (%) = (é) we get y] = Zz‘eZ; (%‘1) C;)q = Ziez; (%) C; = -
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Note that in the latter case it depends on the chosen minimum polynomial
w1 € Fy[X] of ¢, which square root of ( ) p € F, equals v, € F,,.

(11.2) Quadratic residue codes. a) Let p be an odd prime, and let ¢ # p

be a prime such that (%) = 1. Since <%) = ( ) for all « € Z;,, we conclude

that both {¢} € Fq((p);i € Qp} and {¢} € Fo(¢p);i € Ny} are T-invariant,
where I' := Autg, (F¢((p)). Hence letting p, == [[;cq, (X = ;) € Fq(¢p)[X] and
Np 1= Hie/\fp (X =) € Fy(¢p)[X], we infer that both pp and 1, have coefficients
in F,. Thus we get p,n, = HieZ* (X—-¢) = = P70 X € F,[X], hence
(X =1) - ppmp =XP—1.

This gives rise to the following quadratic residue (QR) codes: Let QF <
FI and NP < L be the cyclic codes having generator polynomial p, and 7,

respectively. Hence we have dimg, (QP) = dimp, (N?) = p — el — il

Moreover, let (QP)" < F2 and (N?)" < F? be the associated expurgated codes,
that is having generator polynomials (X — 1) - p, and (X — ) 7p, respectively;
recall that for v = [ag,... ap 1] € F? the condition SPla; =0 € Fyis
equivalent to v(v)(1) = (Zz 0 & X)(1 ) =0, that is X — 1 | v(v) € F [X].
Hence we have dimg, ((QF)) = dimg, (NV?)") = p — 3% = 251,

2 2
b) For C? € {QP, NP}, the associated extended quadratic residue code
s defined 05 O = {1 0) € B3l sty € O = -

A al} for e € {&1}; note that the choices yield hnearly equivalent codes.

The reason for twisting the original definition of an extended code will become

clear in (11.5) below. In particular, for q = 2 we have CP = {lao, .., ap-1,000] €
5t [ao, ..., ap_1] € CPLan + ZL o a; = 0} anyway, for ¢ = 3 we still may
choose e such that C? := {[ag,...,ap—1,000] € Fg“; [ag,...,ap—1] € CP, a0 +

Zl o @; = 0}, so that in both cases we recover the conventional extended code.

(11.3) Example. For ¢ := 2 and p := 7 we find that 2 € Z% has order 3 = 751
thus Fy((7) = Fg and @9 € T' := Auty, (Fs) has order 3. Moreover, we conclude
that 2 € Qz, that is (2) = 1. Hence the I'-orbits on V7 are V7 = {1} U {¢;i €
Q7} U {¢i € N7}, where Q7 := {1,2,4} and N7 := {3,5,6}.

Thus we have X" +1 = (X +1)-[[;c 0. (X+¢7) [Lien; (X +67) = popips € Fs[X].
Actually, we have X +1 = (X +1)-¢'¢g"” € Fo[X], where ¢’ := X3+ X+1 € Fy[X]
and ¢ := X3+ X2+ 1 € Fo[X], hence the latter are both irreducible; see (9.1).

Let C < F} be the cyclic code generated by ¢'; since (¢')* = g¢” the code
generated by ¢” is linearly equivalent to C. Hence the even-weight subcode
C’ < C has generator polynomial (X +1) ¢’ = X*+ X3 + X2 + 1. Moreover, C
has check polynomial h := (X +1)-g” = X*+ X2+ X +1, thus C* has generator
polynomial h* = (X +1)* - (¢")* = (X + 1) - ¢/, showing that C+ =’ < C.
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Choosing a primitive 7-th root of unity {7 € F§ having minimum polynomial ¢,
we conclude that C is a QR code of type Q; the code generated by g then is
the associated QR code of type N. Moreover, extending yields C < F§.

The code C has defining set {(7}, so that by (9.4) taking ¢ := 2 and k := 3
there, we conclude that C is linearly equivalent to the Hamming [7,4, 3]-code
Hs. Thus C’ is linearly equivalent to the even-weight Hamming [7, 3, 4]-code Hj,
and C is linearly equivalent to the self-dual extended Hamming [8, 4, 4]-code 7:23.
(In view of (11.5) below the duality properties of these codes are not surprising.)

(11.4) Theorem. Let p be an odd prime, and ¢ # p a prime such that (%) =1.

a) Then QP and NP are linearly equivalent, and so are (QP) and (N?)’, as well
as are @p and /V P with either choice of e.

b) Let v € QP \ (QP)’. Then for d := wt(v) € N we have the square root
bound d? > p. Moreover, if p= —1 (mod 4) then we have d> —d + 1 > p; and
if p=—1 (mod 8) and ¢ = 2 then we have d = 3 (mod 4).

Proof. a) Let j € NV,. Then from (%) = (%) (%) =— (1%), for all i € Zy, we
conclude that the bijection 7: Z, — Z,: i — 4j interchanges the sets Q, and
N, while 0 is kept fixed. We consider the linear isometry induced by letting 7

permute the components of IF{Z’:

For v := [ao,.j.,ap_l] € Fij we get v™ = [amil;i € Zp) € F}, that is v(v™) =
Eiezp Qir1 X" = Ziez,, a; X' = Ziezp a; X", where exponents are taken in

Z,, that is we are computing in F,[X] = F,[X]/(XP — 1). Since evaluation
at a p-th root of unity factors through F,[X], for k € Z, we get v(v™)((F) =
Sien, @it = Yien, 0 = v(©)(CH) € Fy(Gy), thus & € V(w(v™)) if and
only if ¢}/ € V(v(v)). Hence we have v € QP if and only if v™ € N?.

Finally, since the linear equivalence between QP and NP is induced by a permu-
tation of components, it induces a linear equivalence between (QP) and (NP)’
and a linear equivalence between QP and NP.

b) We have p, | v(v) € F,[X], but (X —1) t v(v). Recalling the equality
v(u™)(¢h) = v(v)(¢7) for all k € Zy, we get 1, | v(v™), but (X —1) { v(v™).
Hence we have Zf;ol Xt = pynp | v()v(v™), but XP —1 = (X — 1) pmp 1
v(v)v(v™). Let w € F? be the vector associated with v(v)v(v™) € Fy[X]. Then

we have w # 0, and since -P~) X7 generates the repetition subcode of F? we
conclude that w = [a, ..., a] for some 0 # a € F,, hence wt(w) = p.

Now for v(v)v(v™) we get d? products of non-zero coefficients of v(v) and v(v™),
respectively. Hence v(v)v(v™) has at most d? non-zero coefficients, thus d? > p.

If p=—1 (mod 4), that is (%) = —1, then we may take j = —1, thus7: Z,, —
Zy: i — —i. Then d of the above products belong to the constant coefficient of
v(v)v(v™), hence the latter has at most d*> — d + 1 non-zero coefficients.
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Finally, if addionally ¢ = 2 then d is odd. Hence d — 1 of the products belonging
to the constant, that is O-th, coefficient cancel. Moreover, if two products belong-
ing to the i-th coefficient of v/(v)v(v™) cancel, where i € Z7, then there are two
products belonging to the (—i)-th coefficient canceling as well. Hence cancella-
tion for these coefficients occurs in quadruples. Thus we get d> —d+1=p= —1
(mod 4), thus d(d — 1) = 2 (mod 4), which implies d = 3 (mod 4). il

(11.5) Theorem. Let p be an odd prime, and ¢ # p a prime such that (%) =1.

a) If p = —1 (mod 4), then we have (QP)+ = (QP)’, as well as (@p)J— = Qor
with either choice of e. ~ R

b) If p=1 (mod 4), then we have (QP)* = (NP)’, as well as (QP)+ = NP with
opposite choices of e.

Proof. i) We first consider (QF)~: Recall that QP has generator polynomial
pp- Now we have p; = Hier(X - C;)* = Hiegp(_C;)(X - C;Z) € Fo(¢p)[X]-
Moreover, we have <i> = (i) <i> for all i € Z7*.

P P P

P
Hence if p = —1 (mod 4), then (_?l) = — (%) implies HiEQp(X — () =
HieNp (X —¢) = mp, thus pf ~ n, € Fg[X]. Now (QP)* has generator polyno-
mial (X —1)* -5 ~ (X — 1) - pp, so that (QF) = (QF)".

Ifp=1 (mod 4), then (%) = (1%) implies HieQP(X*Q;i) =[Lico, (X—¢) =

pp, thus pi ~ p, and hence n; ~ n,. Now (QP)* has generator polynomial

(X —1)* - ~ (X = 1) - 1p, so that (QP)+ = (NP)".

i) We now consider (C?)L, where C? € {QP, N?}: Let G € IF;TlXp be a

generator matrix of (C?)". For the vector 1, € F? we have v(1,) = S XE =

ppilp € Fq[X], entailing that 1, € CP. But since X —1 { v(1,) we have 1, € (C?)".
/

Hence we recover CP by augmenting (CP)’ again, thus G := eF,? Pis

1

P
a generator matrix of C*. Now, for [ag,...,ap—1] € (CP)’ we have Zf;ol a; =0,
hence we get [ag, ..., a,—1,0] € CP, and for 1, € C? we get v:=[1,...,1,ey,] €
o ~ G| 0%, 2Ly (p+1) . . 5
CP. Hence G := - F,* is a generator matrix of CP.

Ly | ew

If p = —1 (mod 4), then we have (QP,(QF)') = {0} and (v,v) = p+~. =
(1 + (%)) -p =0 € F,. This shows that Or < (QP)L, hence diqu(@p) =
inl = dimyq((@p)l) entails equality.

If p = 1 (mod 4), then we still have (QP, (N?)) = {0}, but now we get
(Lo o)y [Lye oy 1, —epp]) = p— 22 = (1 - (—71)) .p=0¢F, This
shows that OP < (./\7 P)L with opposite choices of €, hence dim]pq(@p) = % =
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dimg, (NP)L) entails equality. t

For the next result we already need the Gleason-Prange Theorem (12.4) to be
proven below, which in particular says that the linear automorphism group of
an extended QR code induces a transitive group of component permutations.

(11.6) Proposition. Let p be an odd prime, and ¢ # p be a prime such that
(%) = 1. Then we have d((QP)") = d(QP)+1; in particular, the assertions of the

square root bound (11.4) hold for d(QP). Moreover, we have d(@”) =d(QP)+1.

Proof. Let v = [ag,...,ap—1] € (QP) such that wt(v) = d((QP)"). Then we
have v := [ag,...,a,-1,0] € OP, hence by (12.4) there is w = [bo,....bp_1] €
Qr \ (QP) such that @ := [by,...,bp—1,b0] € OF, where wt(@) = wt(?) and
boo # 0. Since wt(w) = wt(w) — 1 = wt(0) — 1 = wt(v) — 1 = d((QP)") — 1 we
conclude that d(QF) < d((QP)')—1<p—1.

Conversely, let v = [ag, ..., ap—1] € QP such that wt(v) = d(QP) < p—1, and let
U= lag,...,ap_1, 0] € Qr. Again by (12.4) there is w = [by, . . ., bp—1] € (QP)
such that @ := [by,...,bp—1,0] € 0P, where wt(?) = wt(@). Since wt(w) =
wt(w) = wt(0) < wt(v) +1 = d(QP)+ 1 we conclude that d((QP)") < d(QP) + 1.

The second assertion follows from recalling that for v = [ao,...,ap—1] € QF and
[ag, ..., ap—1,0c0] € QP we have as, = 0 if and only if v € (QP)’. i

12 Automorphisms of quadratic residue codes

(12.1) Automorphisms of codes. a) We need an additional general piece of
notation: Given a linear code C <y, let A(C) := Auty, (C) < I,(F,) = (F;)" x
Sy be its linear automorphism group. Then let P(C) := A(C)/(A(C) N (F;)") =
AC) ()" /(F:)" < In(Fy)/(Fz)™ = S, be the group of component permuta-
tions induced by A(C), and let —: A(C) — P(C) be the natural epimorphism.

By linearity we always have F} - £, < A(C) N (F;)", for the trivial code we have
A({0})N(F;)™ = (Fy)", and for ¢ = 2 we have A(C)N (F3)" = {1} anyway. The
question arises how A(C) N (F;)™ < A(C) looks like in general.

b) More can be said if C < Fy is a non-trivial cyclic code such that ged(g,n) = 1:
(The argument to follow was indicated to me by my student C. Kirch [2022].)

Let g = Zf:o X" € Fy[X] be a generator polynomial of C, having degree
k € {0,...,n — 1}, and let supp(g) := supp(r~'(g)) C Z, be the support
of g; note that 0 € supp(g). Moreover, let (supp(g)) = () < Z,, where
7 := ged(supp(g) U {n}) € Z,, greatest common divisors being taken in Z.

Let D := diaglao, . ..,a,—1] € A(C)N(F;)". Then, conjugating with the permu-
tation (0,...,n — 1) € A(C), we have diag[a;+1,-..,an-1,00,-..,a;] € A(C) as
well, for ¢ € Z,,. Now let 4,4’ € Z,, such that i — i’ € supp(g) C Z,. In order to
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show that a; = a;, by cyclicity we may assume that ¢/ = 0, hence i € supp(g);
transporting the action of D to Fy[X]<,, we have gD = Zf:o a;9; X" € v(C),
that is g | gD, entailing gD ~ g € F,[X], implying that ap = a;. This shows
that the diagonal entries of D are constant along the cosets of vZ,, in Z,.
Conversely, if D := diaglag,...,an—1] € (F;)" having diagonal entries being
constant along the cosets of vZ, in Z,. We consider the F,-basis {Xig €
Fy[X]<n;j € {0,...,n —k —1}} C v(C). Then we have (X7¢)D € v(C), that
is g | (X7g)D, and since X7 | (X7g)D we infer that (X7g)D ~ X7g € F,[X],
entailing D € A(C). Hence we have A(C) N (F;)" & (F;)%n: v%0) = (Cy_1)7; in
particular, we have A(C) N (F)" =F; - B, if and only if v = 1.

(12.2) Automorphisms of quadratic residue codes. a) Let p be an odd
prime, and let ¢ # p be a prime such that (%) = 1. Since the cyclic QR
codes QP < ¥ and (or) < [F2 have prime length p and non-constant generator
polynomials of degree 1’2;1 and %, respectively, in both cases we have v = 1,
entailing A(QP) N (F;)? = A((QP)') N (F;)? = F; - E}, thus consisting of the
non-zero scalar matrices only.

For the extended QR code or < IFZ+1 we get: If D := diaglag,...,ap—1,000] €
A(OP) N (F;)P*t, then since (OP)* = QP we have diag[ag, . . L ap_1] € A(QP),
thus the latter is a scalar matrix, which by the extension condition implies that
D is a scalar matrix as well; in other words we have A(QP)N(F;)P™! =F;-Epyq.
b) We show that any automorphism a € A(QP) < I,(F,) extends to an
automorphism @ € A(QP) < I,11(F,); in other words we have A(QP) =
Stab 4 g, (([0p | 1])g,) and P(QF) = Stabp, g, (c0):

Let firstly p = —1 (mod 4). Then we have (QP)+ = (QP)', so that a restricts
to an automorphism of (QF)’. Moreover, we have QP = (QP)' & (1,)p,, thus
a(1l,) = a-1, +w for some a € F; and w € (QP)". Now we have or={[v|0e
Frttio € (QP)'} @ (1, | evpl)r,. Hence letting @ € I,,41(F,) be the monomial
map given as &([v | ¢]) == [a(v) | ac] € FP*! for v € F? and ¢ € F,, we have
afo | 0) = [a(v) | 0] € Q7 for v € (Q)', and &([1, | exp]) = [a(1y) | aeyy] =
a-[1, | eyp]+[w | 0] € QP. Thus & € A(QP) is an automorphism extending .
Let secondly p =1 (mod 4). Then we have (QP)* = (N?)’. so that « yields an
automorphism of (N?)’. Moreover, we have N7 = (N?)' ® (1,)r,, thus a(1,) =
a-1p+w for some a € F} and w € (N?)". Now we have N7 = {[v | 0] € Fotliv e
NPY}Y @ ([1, | —€vp])E,, where we use the opposite choice of € € {£1}. Hence
letting & € I,41(F,) be the monomial map given as &([v | ¢]) := [a(v) | ac] €
F2+1 for v € F? and ¢ € Fy, we have a([v | 0]) = [a(v) | 0] € NP for v € (J\/'i)’,
and a([l, | —ep]) = [a(lp) | —aey] = a-[l, | —ep] +[w | 0] € NP
Thus @ € A(NP) is an automorphism extending «, which hence yields an an
automorphism of QP = (AN?)*+. t
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(12.3) Lemma. Let p be an odd prime and ¢ # p be a prime such that (%) =1.
a) The map o: IF{I’+1 — ]F{I’“: (a0, -+ ap—1,a00) F> [bo, ..., bp_1,bs] given by
b; == (_Zl) a_;— fori e Z;, while bg := —¢ (_71) Qoo and by, := —eay, induces
a linear automorphism of OF, that is we have o € A(QP).

b) We have o € SL,1(F,) such that o2 = (%) ~idgp+1. Moreover, we have

tr(c) = 0 if p = —1 (mod 4), and tr(c) = 2 (%) if p =1 (mod 4), where
G- € F, denotes a primitive 4-th root of unity.

Proof. a) For any vector v := [ag, ..., ap_1, aoo] € Fot! we write w := o (v) =

(b0 -+, bp—1,bs0] € qu’“. Let o = Z'LGZ asz , for j € Z,, be the discrete
Fourier transform of v, leaving out a,. Using Zkezp §p =0, for i € Z, we
get the inverse transform } ., ;G = >okez, @k X jez, ((k g 7y = pa;.
Since o is a monoAmial Fq—linea£ map, we have o € I,,11(F,). HeAnce we have to
show that if v € QP then w € QP as well. Being an element of QF is equivalent

to saying that a; = 0 for all j € Q,,, and acc = % . Ziezp a; = 67;;)040.
i) We show that 3., bi = % -boo: For the right hand side, using v, = (_71) P,

we get pr “boo = —Yp (71) ag. We turn to the left hand side:

—;1
Let 5 := Zzez* i = Ziez* (T) a—j-1 = Zzez* < )al = % : Zjezp(aj
Y icz %) ¢, "7). Since for j = 0 we get ZZEZ* (7) = 0 in the inner sum, we
infer 8 = % (%) : ZjeZ;(aj . Ziez;; (’7’) ¢, "). Since aj = 0 for all j € Q,
we get B = 7?1 (771) : Zjez;(aj : ZiEZ; (%) CJU) = 7szp (%) : ZjEZ; Qs

Since 3-,c; o = pag and ey,00 = pas we obtain § = 7;‘7 (_71) - (pag —
ag) = (‘Tl) * (=700 + €aso). From this we finally get }-,c; bi = bo + f =

(%) (—€aoo — Vo + €aoc) = —Yp ( ) ag, as desired.

ii) We show that the discrete Fourier transform of w fulfills §; = 0 for j €
Qp: For ¢ € Z, the inverse transform yields pa, = ap + ZkeZ* akgp_ik =

% C O + Zkez* arCy *. This yields 8; = by + Zzez* b( - (771) oo +
Ziez; (%) tLrle = €y + £ o where y = Zi,kez;, (%) ak(,’,frlﬂj
and z := — (%) + % : Zz‘eZ* (‘fl) (). Since j € Q, we obtain x (‘71) =
—14 5 Yiez; (5) G =1+ Yiens (%) (I =—1+2=0.

We have y = (_71) 'ZkeZ;(ZieZ; (’” )C’“ +id) (p) ai. For k € Q, we
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have a3, = 0. We proceed to show that the inner sum » . ;. (’“%) Cj’,fi_l+ij
P
vanishes whenever k € N, entailing y = 0: To this end, let 7: Loy = Lz i %
Hence we have 72 = idZ;. Assume that 7 has a fixed point, i say, then we have
i = 1& ¢ 7% thus jk = i? € Q,, a contradiction. Hence the permutation
7 v j P p

7 consists of 2-cycles only, where we have (%) = (’“%) = (g) (%) =

— (1) = — (1) (l) = — (%) From this, running through the various cycles

p p p

of m, we obtain ZiGZ* (szjl> C};;rlw‘j — EiEZ* (W(;j)> C;j+ﬂ(ij) —0.

b) Recall that —i~' = i € Z3 if and only if i € {+(4} € Z3. Hence, if

p = —1 (mod 4), that is (%) = —1, then det(c) = det(+ [01 (1)])‘)31 =1

and tr(c) = 0 and o2 = —idgp+1. If p =1 (mod 4), that is (_71 = 1, then
2 0 1 .
det(0) = (%) - det(+ L 0]) — 1 and tr(0) = 2 (%) and 0% = idgy1.

(12.4) Theorem: Gleason, Prange. Let p be an odd prime, and let ¢ # p be
a prime such that (%) = 1. Then the group P(QF) < Sp+1 contains a subgroup

isomorphic to PSLy(F,), with respect to its natural action on P!(F,).

Proof. i) We first exhibit a certain subgroup of Sp41: Let S := SLy(F,) be
the special linear group of degree 2 over F,. We have S = (s,¢,7) (as will be
shown below), where s := {_01 (1)} and t := Ll) ﬂ, and r = diag[e,c7!],
where F% = (c); hence (¢?) = Q).

We have Z(S) = {£Fa}, giving rise to the natural epimorphism —: S —
S/Z(S) = S := PSLy(F,), where the latter is the associated projective spe-
cial linear group, having order ip(p — 1)(p + 1). Now, S acts naturally on the
projective space P1(F,) = {zo,...,Tp—1,To0}, Where z; := ([1,i])g, for i € Z),
and z = ([0,1])r,. This induces a faithful action of S of degree p + 1, hence
an embedding of S into Sy .

<[1,’L] t> <[1,Z+1]>Fq = Ti+1 for

More precisely, we have z;t = ([1,4])r, -t =
-t = (0, 1] t)r, = ([0, 1]>]pq = Z; in other words

i € Zyp, and zoot = ([0, 1])r,

t € S induces the p-cycle (0,...,p—1) € St

We have z;r = ([1,4])r, -7 = ([1,i] - r)p, = ([c ic ), = ([1,ic 2]>]Fq = Z;o-2
fori € Zy, and xor = ([0, 1])r, -7 = ([0, 1] -7)r, = ([0, c™ g F, = ([0, 1])r, = Too;
in other words 7 € S induces the permutation (1 c 2., (e 3, 0) €
Sp+1 of order p—, permuting the square and non-squares in Fy, respectively.
We have z;s = ([1,i])r, - s = ([1,4] - 8)r, = ([~ )r, = (1, —i ), = 2

for i € Zy*, while zgs = ([1,0])r, - s = ([1,0] - s)r, = ([0,1])r,) = T and
Toos = ([0,1])r, -5 = ([0, 1] -s)r, = ([~1,0])r,) = ([1,0])r,) = o; in other words
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5 € S induces the involution (0,00)(1,=1)(2, 5t) -+ € Sp41. Note that z; is a
fixed point if and only if i = —1 € Z,, saying that 5 has fixed points if and
only if p=1 (mod 4), in which case these are {+(4} C Z.

Hence S acts transitively on P!(FF,), where Stabg () consists of the matrices
having [0,1] € F2 as an eigenvector, thus Stabs(zs) = B := () x (r) < S,
the subgroup of upper tringular matrices. Since ¢ € B we conclude that B acts
transitively on {zo,...,z,_1}, saying that S acts 2-fold transitively on P (F,,).
In particular, S acts primitively, so that B < S is maximal subgroup, implying
that S = (B,s) = (s,t,7).

ii) We consider the Fy-linear map 7: F&+! — FP*! induced by the permutation
(0,...,p — 1) € Sp41 of the components. Since for [ag,...,ap—1] € OF we
have [ap—1,a0,...,ap—2] € QP as well, and the extension condition is trivially
fulfilled, we conclude that 7 induces a linear automorphism of @p , that is we
have 7 € A(QP), inducing 7 = (0,...,p — 1) € P(QP) < 8,41, fixing oo.

Next, we consider the Fg-linear map p: IF’q’H — F{I’H induced by the permu-
tation (1,¢72,...,¢*) (¢!, ¢73,...,¢) € Sp41. Hence for [ag,...,a,_1] € F?
we have v(p([ao,...,ap-1])) = ao + Zig%; Qo2 X' = ag + ZEZ; a; X" ¢
F,[X]. Thus for [ag,...,a,—1] € QF and k € Q,, noting that kc* € Q, as
well, we get v(p([ao, . .., ap-1]))(CF) = ao + sl ai(g“}’jcz)i = 0, implying that
p(lao, .- ,ap—1]) € Q,. Since the extension condition is trivially fulfilled, we con-
clude that p induces a linear automorphism of @p, that is we have p € A(@p ), in-
ducing p= (1,¢72,...,¢3)(c7t,c3,...,c) € P(@p) < Sp41, fixing both {0, oo}

Finally, by (12.3) we have o € A(QP), inducing the permutation in & € P(QF) <
Sp+1 given by i+ —i~1 for i € Zy, interchanging {0, 00}. Thus identifying the
points of P! (Fp) with the standard [Fy-basis of ]Fs“7 and comparing with the na-
trual action of S = (s, t,7) on P(F,), we conclude that we get an isomorphism

S =~ (5,7,p) < P(QP), mapping s — @, { — T, T — . #

Actually, it turns out that, up to three exceptions, we have P(@p) = S; in this
case we have P(QP) = Stabg(co) = B of order £p(p — 1). The exceptions are
as follows [Knapp, Schmid, 1980]:

i) [¢.p] = [2,7], in which case we have A(QP) = P(QF) = AGL3(F,) = C3 x
SLS(]FQ) = Cg X PSLQ(]F7), hence A(Qp) = P(Qp) = Cg bl (07 X Cg), see (113),
ii) [q,p] = [2, 23], see (13.1); iii) [q,p] = [3, 11], see (13.2).

(12.5) Remark. We consider the group A := (0,7, p) < A(@p) N SLp41(Fy):
For ¢ = 2 we have A = A =~ S anyway, so that we may assume that ¢ # 2. By
the matrices given we conclude that A is a subgroup of the group {£1}P*1 xS, 1
of signed permutations. In particular, the representation of A considered lifts
to a representation A: A — SL,41(Z), we have A = A(A) independently of ¢,
and we have AN (F})PT < {£1}P*!. Since A(QP) N (F2)Ptt = Fi - Eppq, we
conclude that AN (F})P*t! < {+E,;1} =: Z, a cyclic group of order 2.
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Since A/(AN(F})P*!) = A = S we conclude that either A =S, or A is a central
extension of shape A = Z.S. In the latter case, since the Schur multiplier of S
is cyclic of order 2, we either have a split extension A = Z x S or a non-split
extension A = Z.S, where in the non-split case for p > 5, since then S is perfect,
we necessarily have A = S, being the unique Schur representation group.

i) If p =1 (mod 4), then 0 € A has order 2. Since S does not possess non-
central involutions, this entails A = S or A = Z x S, where S = [A, A], and
Z = Z(A) in the latter case. To decide which of these cases occurs, we determine
the character x of A, using the ordinary character table of S, see [4, Ch.12.5]:

If Z < A, then we have x|z = 1, the non-trivial character of Z, so that
in this case we have x = 1, ® x|g. We proceed to determine x|g, where
S has the following irreducible characters, subscripts denoting degrees: the
trivial character X1, the Stemberg character Xp» two (algebraically conjugate)
characters Xpﬂ, as well as T characters x;,_; for certain i € Z,,, and 23>

characters xp 41 for certain j € Z,_1.

We show that 1 is not a constituent of x|g: Since 7 has odd order p, we have
7 € S, and Fixge+1 (1) = {[a,...,a,b] € Q°T';a,b € Q}. Moreover, one of the
elements {£o} of order 2 belongs to S. Now [a,...,a,b] = (£o)([a,...,a,b]) =
+[—eb, ..., (}%) a,...,—ea], where i € Z = Q, U N, implies a = b = 0. Thus
we have Fixgs+1(S) < Fixge+1 ({0, 7)) = {0}.

We show that x|g is reducible: Assume to the contrary that x|g = X; 4y for
some j € Z,_1. One of the elements {+p} of order pT_l belongs to the conjugacy
class of S contalmng 7, where r = diag[c,c™1] € S has order p — 1. We have
Xp+1( r)=¢ 4+ Cpfl, where (,—1 € C is a primitive (p — 1)-st root of unity.
Now x(p) = 2 entails that ng);l = C;jl € {+1}, implying pT_l | 7, which is an
invalid parameter, a contradiction.

Thus, taking character degrees into account, and recalling that x is rational,

c

we conclude that y|g = xLi1 + Xpts - Since (5> = —1 we have Xp+1( )= -1,
2 2

hence x(p) = 2 says that —p € S, thus A = Z x S. We note that one of the

elements {£o} of order 2 belongs to the conjugacy class of S containing s, where

s € S has order 4, so that Xp+1( )= (%), hence x(o) =2 (%) entails o € S.

ii) If p = —1 (mod 4), then o € A has order 4, while @ € A has order 2. This
entails A = Z.5, hence for p # 3 we get A = S, while an explicit check shows
that A = S for p = 3 as well.

We determine the character x of A: Since Z acts as —FEj,41, we only consider
the faithful irreducible characters of S, which are as follows, subscripts denoting
degrees: two (algebraically conJugate) characters xp 1 as well as LH characters

Xp , for certain i € Zy4q, and 2= 3 characters Xp 1 for certain j € Zp_1.
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We show that y is reducible: Assume to the contrary that y = x; 1 for some

J € Zp—1. The element p of order % belongs to the conjugacy class of S

containing r* = diag[c?, ¢~?]. We have x7 ., (r*) = (}_, +(, 7, , where (e €C
2 2

is a primitive B gl—th root of unity. Now x(p) = 2 entails that Cf,;l = 1, implying

2
1 . . . . . c .
P== | j, which is an invalid parameter, a contradiction.

Thus, taking character degrees into account, and recalling that x is rational, we
conclude that x = X@ + X;i. We note that the element o of order 4 belongs
2 2

to the conjugacy class of S containing s, where indeed Xﬁl (s)=x(c)=0. ¢
2

13 Golay codes

(13.1) Example: Binary Golay codes [1949]. Let ¢ := 2 and p := 23.
We find that 2 € Z35 has order 11 = 21 thus Fo((a3) = Fou and o €
I' := Autp,(F2(¢23)) has order 11. Moreover, we conclude that 2 € Qas,
that is (&) = 1. Hence the T-orbits on Va3 are Vog = {1} U {(is;i €
Qo3} U {Ciyi € Nas}, where Qa3 = {1,2,3,4,6,8,9,12,13,16, 18} and Nog =
{5,7,10,11,14, 15,17, 19, 20, 21, 22}.

Thus we have X* +1 = (X +1)-[[;c0,, (X +C3) [ Tienn, (X +C33) = popps €
Fo(C23)[X]. Actually we have X23 +1 = (X + 1) - g'g” € F3[X], where ¢’ :=
XU+ X9+ X"+ X6+ X+ X +1€F,[X]and ¢" := X1 + X104+ X6 4 X5+
X%+ X2 + 1 € Fo[X], hence the latter are both irreducible.

Let the binary Golay code Go3 < F23 be the cyclic code generated by ¢, the
associated generator matrix G € F32*?* being given in Table 9; since (¢')* = ¢
the code generated by g¢” is linearly equivalent to G3. Hence the even-weight
subcode Ghs < Goz has generator polynomial (X +1)-¢' = X2 + X1 4+ X104
X9+ X8+ X5+ X2 +1. Moreover, Go3 has check polynomial h := (X +1)-¢" =
X124 X104 X7+ X% + X3+ X2+ X + 1, thus Ga5 has generator polynomial
h* = (X +1)*- (¢")* = (X +1) - ¢, showing that G55 = Gls; the associated
check matrix H € F3'*? is also given in Table 9.

Choosing a primitive 23-rd root of unity over Fy having minimum polynomial
g', we conclude that Ga3 is a QR code of type Q; the code generated by g”
then is the associated QR code of type N. Hence we again conclude that
Gz = Gha < Goz. Moreover, extending yields the extended binary Golay
code Goy := 623 < F3%; by puncturing Go4 again we recover G3, = @\23)' = Go3.
We conclude that 92%1 = Go4, that is Goy is self-dual.

We determine minimum distances: The code Go3 can be considered as a narrow
sense BCH code with irreducible generator polynomial p; = ¢’ and associated
cyclotomic coset Qs3, hence has Bose distance § = 5, so that the BCH bound
yields d(Ga3) > 5. The square root bound yields d(Ga3) > [v/23] = 5 as well, but
additionally d(Ga3) = 3 (mod 4), hence d(Ga3) > 7. Now the Hamming bound
228711570 (%) =212 (14234253 + 1771) = 212 . 211 = 223 is fulfilled for

i=0 \ ¢
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e :=3 = 551, showing that d(Go3) = 7. Hence Gos is a perfect [23,12, 7]-code,
Ghs is a [23,11, 8]-code, and Gay is a quasi-perfect [24, 12, 8]-code. i

Using the square root bound can be avoided by making use of the following
observation: Let C < Ct < F3 be a weakly self-dual code. Since for any
v,w € FY we have supp(v + w) = (supp(v) \ supp(w)) U (supp(w) \ supp(v)),
we get wt(v 4+ w) = wt(v) + wt(w) — 2 - |supp(v) Nsupp(w)|. Moreover, we have
(v,w) = |supp(v) N supp(w)| € Fy. Hence if v,w € C such that 4 | wt(v) and
4 | wt(w), since |[supp(v) Nsupp(w)| is even we have 4 | wt(v + w) as well.

Now the generator polynomial of G5 shows that G55 has an Fa-basis consisting
of vectors of weight 8. Thus the extended code Goy = QAQ;), also has an Fy-basis
consisting of vectors of weight 8. Thus we have 4 | wt(v) for all v € Gay, that
is Gay is 4-divisible, hence we have 4 | d(Ga4). Since d(G3,) = d(Ga3) > 5 this
implies d(Ga4) > 8, thus d(Ga3) > 7. i

It can be shown that Gos is the unique binary [24,12,8]-code, up to linear
equivalence; its linear automorphism group A(Gas) = P(Gaa) < Io4(F3) & Soy is
isomorphic to the largest sporadic simple Mathieu group Ms4, having order
244823040 ~ 2.4 - 108.

Moreover, it can be shown that G is the unique binary [23, 12, 7]-code, up to
linear equivalence. Its linear automorphism group A(Gas) = P(Ga3) < Io3(Fg) =
Sa3, coinciding with Stabpg,,)(c0) and thus having index 24 in P(G24), is iso-
morphic to the second largest sporadic simple Mathieu group M>3, having
order 10200960 ~ 1.0 - 107.

Finally, we mention that the binary Golay codes are intimately related to
Steiner systems, in particular the Witt systems, occurring in algebraic com-
binatorics; see Exercises (16.25) and (16.26), where we give a brief indication.

(13.2) Example: Ternary Golay codes [1949]. Let ¢ := 3 and p := 11.
We find that 3 € Z}; has order 5 = -1 thus F3((11) = Fss and @3 € I :=

Autp, (F5(¢11)) has order 5. Moreover, we conclude that 3 € Qy1, that is (&) =

1. Hence the T-orbits on Vi1 are Vi3 = {1} U {¢i};4 € Qu1} U {¢iy;i € Nua},
where Q11 := {1, 3,4,5,9} and N7y := {2,6,7,8,10},

Thus we have X' —1 = (X — 1)‘1_[1‘69'11()(*({1)'HieNu(X*Cﬁ) = Hop1p2 €
F3(¢11)[X]. Actually we have X! —1 = (X — 1) - ¢'¢” € F3[X], where ¢’ :=
X — X3+ X?2—-X—1€F;3)X]and ¢" := X°+ X* — X3+ X% -1 € F3]X],
hence the latter are both irreducible.

Let the ternary Golay code G;; < Fi! be the cyclic code generated by ¢’ €
F3[X], the associated generator matrix G € F$*' being given in Table 10;
since (¢')* = —g” the code generated by ¢” is linearly equivalent to Gy;. Hence
G, < G11 has generator polynomial (X —1)-¢' = X6 — X° - X4 - X34+ X2 +1.
Moreover, Gi; has check polynomial h := (X—1)-¢” = X+ X* - X3-X2-X+1,
thus Gij has generator polynomial h* = (X —1)* - (¢")* = (X — 1) - ¢/, showing
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Table 9: Generator and check matrices for Gas.

r: » . . . 1 1 1 . 1 . 1 . . . . . . . . . . .
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
L 1 1 1 1 1 1 1 |
M1 1 1 . 11 1 1 1 . T
1 1 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 .1 1.1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 1 1 1 1 1
1 1 . 1 1 1 1 1 1
1 1 . 1 1 1 1 1 1

L 1 .1 1 1 1 1 1 1|

that Gij = Gj};; the associated check matrix H € F3*!! is given in Table 10.

Choosing a primitive 11-th root of unity over F3 having minimum polynomial
g', we conclude that Gi; is a QR code of type Q; the code generated by g”
then is the associated QR code of type N. Hence we again conclude that
Gii = G4, < Gi1. Moreover, extending yields the extended ternary Golay
code G5 := 311 < Fi%; by puncturing Gi2 again we recover Gfy = (311)' =G1;.
We conclude that Gi5 = Gio, that is Gi5 is self-dual.

We determine minimum distances: The code G171 can be considered as a (wide
sense) BCH code with irreducible generator polynomial ;11 = ¢’ and associated
cyclotomic coset Q11, hence has Bose distance § = 4, so that the BCH bound
yields d(G11) > 4. The square root bound yields d(G1;) > [V11] = 4.

We now make use of the following observation: Let C < ct < F% be a weakly
self-dual code. Now for any v = [a1,...,a,] € F} we have (v,0) = > 1"  a? =
|[supp(v)| = wt(v) € F3. Hence for v € C we have 3 | wt(v).

Thus we have 3 | wt(v) for v € Gi9, that is Gi2 is 3-divisible, hence 3 | d(Gi12).
Since d(Gy,) = d(G11) > 4 this implies that d(Gi2) > 6, and thus d(Gi1) > 5.
Now the Hamming bound 3'"'=5-3°%_ (1})-2 = 36-(1+11-2455-4) = 36.35 = 311
is fulfilled for e := 2 = 551 showing d(G11) = 5. Hence Gy, is a perfect [11, 6, 5]-
code, G1; is an [11,5,6]-code, and G2 is a quasi-perfect [12,6, 6]-code. 1
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Table 10: Generator and check matrices for Gy1.

2.2 1 2 . 1 .
2 21 2 . 1 .
. 2 21 2 . 1 . 6x11
= 2 2 1 2 .1 < Fs
2 21 2 . 1
I 2 2 1 2 1]
[ 1 12221 . 1
1 12221 . . .
H:= 1. 12221 . . |ert
1 .12 2 21
I 1 122 2 1|

It can be shown that Gy is the unique ternary [12, 6, 6)-code, up to linear equiva-
lence; its linear automorphism group A(Gi2) < I12(F3) =2 {+1}12 x84 is isomor-
phic to the non-split two-fold central extension 2.M75 of the second smallest spo-
radic simple Mathieu group M2, having order 95040; hence P(G11) & M.

Moreover, it can be shown that Gi; is the unique ternary [11,6,5]-code, up to
linear equivalence. Its linear automorphism group A(Gi1) < I11(F3) & {+1}11 %
S11, coinciding with Stab4(g,,)({[0,...,0,1])r,) and thus having index 12 in
A(G12), is isomorphic to the direct product 2 x Mjy, where My is the smallest
sporadic simple Mathieu group, having order 7920; hence P(G11) = M.

(13.3) Example: Football pool ‘13er-Wette’. To describe the outcome of
a soccer match, we identify ‘home team wins’ with 1, ‘guest team wins’ with
2, and ‘draw’ with 0. Hence the outcome of n € N matches can be considered
as an element of Fy. Now the task is to bet on the outcome of these matches,
and the more guesses are correct the higher the reward is. The football pool
currently in use in Germany is based on n = 13; in the years 1969-2004 it was
based on n = 11, and in Austria n = 12 is used.

e According to the German ‘Lotto’ company, it is realistic to assume that 10°
gamblers participate. Betting on a certain outcome actually costs 0.50€ , hence
there are 500 000€ at stake. From this 60% are handed back to the winners,
who have at least 10 correct guesses, according to the schedule below. Assuming
independent and uniformly distributed guesses we get the following winning
probabilities and quotas, where the latter are obtained from the total rewards
by dividing through the associated expected number of winners; these figures
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indeed fit nicely to the officially published quotas:

’ hits \ % \ reward /€ | probability - 313 \ winners \ quota/€ ‘

13 [ 21| 105000 1 0.63 | 167403.91
12 | 12 60000 | 2-(}) = 26| 1631| 3679.21
11 |12 60000 [ 22- () = 312| 195.69 306.60
10 | 15 75000 | 23 (V) = 2288 | 1435.09 52.26

To facilitate analysis, we assume that a single bet on a certain outcome costs
1€ . This yields the following figures, with reward rates pl, probablhtles i and

quotas g; := ﬁl entailing an expected reward rate of ZZ o i = Zl obi =%

Li] pi] a/37] pi - 3% |

21 21
01 100 100 1

3 1.3 13y _
| 5| 335 | 2 (1) 26

13

20 2| x| 20 () = 312

3 1.3 |93, (13
3| 26 | 288 20| 2 (3) = 2288

e To launch a systematic attack, we look for codes having not too many ele-
ments and small covering radius. Thus the best candidates are perfect e-error
correcting codes of length n, for some e € Ny. In this case, the Hamming bound
implies that |Be(0,)] = Y7 1B:i(0n) \ Bi—1(0n)] = Y5 () - 2* is a 3-power.
For n = 13 we get the following cardinalities:

e 0 1 2 3 4 5 6 7
|B.(013)] [ 1 27 339 2627 14067 55251 165075 384723
e 8 9 10 11 12 13

|B(013)] || 714195 1080275 1373139 1532883 1586131 1594323

Hence, not surprisingly, next to the trivial code and all of Fi3, we only find the
case e = 1, into which the 1-error correcting perfect ternary Hamming [13, 10, 3]-

code H3 fits; note that indeed the projective space P?(F3) has % 13
elements. Thus with 3'9 = 59049 bets, out of a total of 3'3 = 1594323, it is
possible to guess at least 13 — 1 = 12 of the outcomes correctly. More precisely,
assuming again that outcomes are independent and uniformly distributed, we

get the following winning probabilities:

Given an outcome v € F33, we have to count the codewords w € Hz such that
d(v,w) = wt(v — w) = 4, for i € {0,...,3}, which amounts to counting the
elements of the coset v + Hz € Fi3/H; having weight i. Averaging over the
319710 = 3% cosets, yields an expected reward of g5 - 3, cp1s /7, (327w e

v Hawi(w) = iH-q:) = g S 6 (Soerns g, [ € vHas wilw) = i) =
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3 ) 3 3
3% im0 @i - H{w € F3wt(w) = i} = 3%3 Do @i (ni - 31%) = 310" > io Pi-
Since we have to place 3'° bets, we get an expected reward rate of Zf:o pi = %,
which is precisely as good as random guessing. Note that this is independent of

the choice of the reward rates p;, and that we have not used that #Hj3 is perfect.

e Another strategy, using expert knowledge, is as follows: If the outcome of two
matches is for sure, then we may puncture with respect to these components,
and end up in Fil. For n = 11 we get the following cardinalities:

e 0o 1 2 3 4 5 6
[B.(01)] |1 23 243 1563 6843 21627 51195

e 7 8 9 10 11
|Be(011)] || 93435 135675 163835 175099 177147

Hence, next to the trivial code and all of Fi!, we only find the case e = 2, into
which the 2-error correcting perfect ternary Golay [11, 6, 5]-code Gy fits. Thus
with 3% = 729 bets, out of a total of 3'' = 177147 next to the above expert
knowledge, it is possible to guess at least 13 —2 = 11 of the outcomes correctly.

More precisely, assuming that the unsure outcomes are independent and uni-
formly distributed, and assuming independent and uniformly distributed guesses
we get the following winning probabilities p:

i p | @/3%] ;- 3" ‘
0| 25 % 1
B 42w = o
NI I P
3| o0 | oo || 2% (4) = 1320

’ 11
We get an expected reward rate of Z?:o whq; = Z?:o % p; = 32 'Z?:o % Pi =
32 (po+ % ‘p1+ % P2+ % p3) = 32. % = % ~ 4.34. Hence this is a sensible
winning strategy, only depending on expert knowledge, but not on using a code.

Using the code Gi1, averaging over the 31176 = 35 cosets in Fi!/G;; yields an
3 .
expected reward of 3% . Zveml/gn (Zi:o {w € v+ Gi1;wt(w) = i} - qi) =
3 , 3 3
35 ico @i [{w € Fyhwi(w) =i} = 55 - Yoi_ g ai - (i - 3") = 3% 320 wiai-
Since we have to place 3% bets, we get an expected reward rate of Z?:o g,
which is precisely as good as random guessing.
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IV

14 Exercises to Part I (in German)

(14.1) Aufgabe: Quellencodierung.
Alice kann vier verschiedene Nachrichten senden:

00: ‘Die Borse ist sehr fest.” 11: ‘Sollen wir verkaufen?’
01: ‘Die Kurse fallen.’ 10: ‘Helft uns gegensteuern!’

Diese werden jeweils durch zwei Bits wie angegeben codiert. Bob empfingt die
Dauernachricht ...001100110011 ... Welche Nachrichten will Alice schicken?

(14.2) Aufgabe: Arithmetischer Priifzeichencode.
Es sei C := {[z1,...,210] € Z}%; 312 iy = 0 € Z1y} < Z19 der Code des ISBN-
10-Standards. Kann C Zwillingsfehler und Sprungzwillingsfehler erkennen?

(14.3) Aufgabe: Geometrischer Priifzeichencode.

Fiir a € Zy; sei Cq := {[z1,...,210] € Z%?;Zgl alz; =0 € Z11} < Z39. Man
untersuche, in Abhéngigkeit von a, wann C, Einzelfehler, Drehfehler, Zwillings-
fehler und Sprungzwillingsfehler erkennen kann.

(14.4) Aufgabe: Kontonummern-Code.

a) Fir z € Ny sei Q(x) € Ny die Quersumme von z beziiglich der Dezimal-
darstellung. Man zeige: Fait man Zjo als Teilmenge von Ny auf, so erhalt man
eine Bijektion Z19 — Z19: x — Q(2x).

b) Ein haufig verwendeter Priifzeichencode bei der Bildung von Kontonummern
ist C := {[$17~-~7$2n] S Z%S;Z?:l(Q(QS(}Qi,l) + .’I?Qi) =0ce€ ZIO} - Z%87 fiir
n € N. Kann C Einzelfehler und Drehfehler erkennen?

(14.5) Aufgabe: International Bank Account Number.

Man betrachte die giiltige IBAN ‘DE68 39050000 0123 4567 89’. Angenommen,
an der fiihrenden Stelle der Kontonummer wird statt ‘0 eine ‘9’ eingetippt, so
dafl die BBAN nun ‘39050000 9123 4567 89’ lautet. Welche moglichen weiteren
Tippfehler gibt es, so dafl eine so entstehende doppelt fehlerhafte BBAN nicht
anhand der Priifzeichen ‘DE68’ erkannt werden kann?

(14.6) Aufgabe: Priifzeichencodes iiber Gruppen.

Man betrachte einen Priifzeichencode iiber der endlichen Gruppe G, beziiglich
der bijektiven Abbildungen 7;: G — G, fir i € {1,...,n} und n € N. Welche
Bedingungen miissen die Abbildungen 7; jeweils erfiillen, damit Zwillingsfehler
und Sprungzwillingsfehler erkannt werden?
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(14.7) Aufgabe: Priifzeichencodes iiber Diedergruppen.

Fiir n > 2 seien Do, := {(a,b;a™ = 1,b> = 1,b~'ab = a~!) die Diedergruppe
der Ordnung 2n, und 7: Dy,, — Ds,, gegeben durch a’ — a~*~! und a’b — a’b,
fir i € {0,...,n—1}. Man zeige: Die Abbildung 7 ist wohldefiniert und bijektiv.
Ist n ungerade, so gilt gh” # hg" fiir alle g # h € Day,.

(14.8) Aufgabe: Fast-vollstindige Abbildungen.
Es seien G = Z,,, wobei n := 2% fiir ein @ € N, und 0: G — G gegeben durch

c:0—m—=1l—rm+1l—---—m-1—=2m—-1~0,
wobei m := 2. (Dann ist ¢ bijektiv.) Fiir die Abbildung 7:=0 +idg: G — G

zeige man: E2s.gelten 7(G) = G\{m—1}und 7' ({n—1}) = {n—1,n—1-[21}.

(14.9) Aufgabe: Huffman-Codierung.

Zur (optimalen) bindren Quellencodierung kann man folgenden rekursiven Al-
gorithmus benutzen: Es seien X = {z1,...,x,} ein Alphabet mit Wahrschein-
lichkeitsverteilung p, und p := p(xg) fir & € {1,...,q}. Weiter seien j #
i € {l,...,¢q} mit p; = min{py,...,pe} und p; = min({p1,...,pe} \ {pi})-
Dann werden z; — 0 und z; — 1 codiert. Nun benutzt man das Alphabet
X' = ({z1,..., 2} \{zi,2;}) U {xi;}, mit unverinderten Wahrscheinlichkeiten
fur xy, fir k € {1,...,¢} \ {4, 7}, und Wahrscheinlichkeit p;; := p; + p; fiir 2,
um rekursiv Préifixe zu den bereits gefundenen Codierungen zu bestimmen.

a) Man zeige: Die obige Huffman-Codierung ergibt eine injektive Funktion
h: X — (Z3)*\ {€}, und der Code h(X) C (Z2)* ist préfix-frei. Auflerdem zeige
man: Fiir die mittlere Wortlénge gilt > 7_, p; - [(h(z;)) < H(X) + 1.

b) Nun trage X die Gleichverteilung, und es sei k := |log,(q)| € N. Man zeige:
Die zugehorige Huffman-Codierung besteht aus Wortern der Lange k und k+1,
und hat die mittlere Wortlange k& + 2 — 2]\% Was passiert im Falle ¢ = 2F?
Was féllt beim Vergleich mit H(X) auf?

c) Etwa erhilt man fiir das Alphabet Z, mit den angegebenen Wahrschein-
lichkeiten die folgende Huffman-Codierung;:

Li] i [ (Z2)" ]
01040

1] 03] 11
2|02 | 101
310.1 | 100

Man bestimme die Entropie H(Z4) und die mittlere Wortlénge »,, pi-l(h(i))
der zugehorigen Huffman-Codierung. AufBlerdem betrachte man das Alphabet
73, wobei die beiden Positionen unabhiingig seien, und bestimme ebenso H (Z3),
die zugehorige Huffman-Codierung und ihre mittlere Wortlange. Was fallt auf?
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(14.10) Aufgabe: Huffman-Codierung in GAP.

a) Man schreibe ein GAP-Programm zur Berechnung der Huffman-Codierung
des Alphabets X := {a,...,z} beziiglich der angegebenen relativen Haufigkeiten
der Buchstaben in der englischen Sprache. Man bestimme die Entropie H(X')
und die mittlere Wortldnge der zugehorigen Huffman-Codierung.

2] 5] [ [Zm] 0]
a| 0]0.082 n| 13]0.067
b| 10015 o| 140.075
c| 20028 p| 15 0.019
d| 30043 q| 16 0.001
e| 40127 r| 170.060
£ 50022 s| 18]0.063
g| 60020 t| 19 |0.091
h| 70061 u| 20 |0.028
i| 810070 v| 210.010
j| 910002 w| 220.023
x| 10 |0.008 x| 230.001
1| 11 0.040 v | 24 0.020
m| 120.024 z| 250.001

b) Man schreibe ein GAP-Programm, mit dem man aus der Huffman-Codierung
eines Texts den urspriingichen Text zuriickgewinnt.

¢) Man codiere und decodiere damit den folgenden Text aus 314 Buchstaben,
wobei Leerzeichen und Satzzeichen ignoriert werden konnen. Wieviele Bit hat
die Huffman-Codierung dieses Texts?

the almond tree was in a tentative blossom, the days were
longer, often ending with magnificent evenings of corrugated
pink skies, the hunting season was over, with hounds and guns
put away for six months, the vineyards were busy again,

as the well organized farmers treated their vines, and the
more lackadaisical neighbors hurried to do the pruning they
should have done in november

(14.11) Aufgabe: Symmetrischer bindrer Kanal.
Man bestimme die maximale Kapazitdt eines symmetrischen bindren Kanals
mit Fehlerwahrscheinlichkeit % <p<l.

(14.12) Aufgabe: ML-Decodierung.

Man betrachte einen symmetrischen bindren Kanal mit Fehlerwahrscheinlichkeit
0<p< %; typische Werte sind etwa p = 107¢ fiir e € {1,2,3}. Uber diesen
Kanal sollen die Worter in F3 iibertragen werden, wobei Gleichverteilung auf
F3 angenommen und ML-Decodierung verwendet werde.

a) Wie groB ist die Fehlerwahrscheinlichkeit +(F3), wenn die Worter ohne Re-
dundanz, also mit Informationsrate p(IF3) = 1, gesendet werden?
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b) Nun werde der Code Cy < F§ mit Generatormatrix Gy := [E3 | F3] € F3*°,
also mit Informationsrate p(Cy) = %, verwendet. Wie grof} ist die Fehler-
wahrscheinlichkeit v(Cp)?

c) SchlieBlich werde der Code C < F§ mit Generatormatrix

1 . . .11
G=|. 1 .1 1| € F3*S,
111
also ebenfalls mit Informationsrate p(Co) = %, verwendet. Wie grof ist nun die
Fehlerwahrscheinlichkeit (C)?

Hinweis. Man betrachte die Kugeln B,.(c) C F$, fiir ¢ € C und r € {0, 1,2}.

(14.13) Aufgabe: ML-Decodierung.

Zur Dateniibertragung durch einen symmetrischen bindren Kanal mit Fehler-
wahrscheinlichkeit 0 < p < 1 werde ein (7,2*,3)-Code C (etwa ein Hamming-
Code) verwendet, wobei Gleichverteilung auf C angenommen und MIL-Deco-
dierung verwendet werde. Man bestimme die Fehlerwahrscheinlichkeit v(C).

15 Exercises to Part II (in German)

(15.1) Aufgabe: Hamming-Abstand.

a) Es seien n € N und v, w € F§ mit d := d(v,w) € Ny. Fiir r, s € Ny betrachte
man A = {u € F};d(v,u) = r,d(w,u) = s}, und es sei t :== “L=2_ Man zeige:
Ist t € Z, so ist A =0; ist t € Z, so ist |A| = (f) . (Z:f)

b) Es seien n € N und v, w, z,y € F} mit paarweisem Abstand d € N. Man
zeige: Der Abstand d ist gerade; und es gibt genau ein u € F% mit d(v,u) =

d(w,u) = d(z,u) = 4. Gilt notwendig auch d(y,u) = ?

(15.2) Aufgabe: Ausléschungen.

Es sei C ein nicht-trivialer Block-Code. Geht bei der Dateniibertragung ein
Eintrag eines Wortes verloren, so wird er als Ausloschung markiert; dies ist
also ein Fehler mit bekannter Position. Fiir e,g € Ny zeige man: Der Code C
kann genau dann gleichzeitig e Fehler und g Ausléschungen korrigieren, wenn
2¢+g+1<d(C) gilt.

(15.3) Aufgabe: Minimaldistanz.

Es sei C ein bindrer Code der Lénge n € N und Minimaldistanz d > 3. Man
zeige: Es gilt |C| < %; und ist n gerade, so gilt |C] < nz—_:Q Kann die Schranke
auch fiir n ungerade verbessert werden?

Hinweis. Man zihle {[v,w] € C x F};d(v,w) = 2} mittels Double-Counting.
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(15.4) Aufgabe: Nichtlineare Codes.

a) Aus Singleton-, Hamming- und Plotkin-Schranke folgere man: Fiir einen
binéren (6,9, d)-Code gilt d < 3. Man gebe einen binéren (6,9,2)-Code an.

b) Man zeige Es gibt keinen binéren (6,9, 3)-Code.

(15.5) Aufgabe: Parameter fiir Codes.
Fiir n € N betrachte man einen (n,¢"~2,3)-Code iiber einem Alphabet mit ¢
Elementen. Man zeige: Es gilt n < ¢® 4+ ¢ + 1.

(15.6) Aufgabe: Perfekte Codes.
Es sei C C F4 ein perfekter Code mit Minimaldistanz 7. Man zeige: Es ist
n € {7,23}. Man bestimme C fiir den Fall n = 7.

(15.7) Aufgabe: Hamming-Schranke.

Man zeige: Die Parameter ¢ := 2, n := 90, m := 27® und d := 5 erfiillen die
Hamming-Schranke, aber es gibt keinen binéren (n, m, d)-Code.

Hinweis. Ist C C F} solch ein Code, so betrachte man A := {v = [x1,...,2,] €
Fhizy = 29 = 1,wt(v) = 3} und B := {w = [y1,...,Yn] € C;v1 = y2 =
1, wt(w) = 5}, und zéhle {[v,w] € A x B;vw"™ = 1} mittels Double-Counting.

(15.8) Aufgabe: Selbstduale Codes.

a) Es sei C < F} ein Code mit Kontrollmatrix H = [A | E, ] € F,gn*k)Xk in
Standardform, wobei k = dimg, (C) und A € FS* ¥ Man zeige: Der Code C
ist genau dann selbstdual, wenn 2k = n und AAY = —F,,_; gelten.

b) Es sei p € N eine Primzahl. Man gebe selbstduale F,-lineare Codes der
Langen n =4 und n = 8 an.

Hinweis zu b). Man unterscheide die Félle p = 2 sowie p = £1 (mod 4).

(15.9) Aufgabe: Gewichtssumme.
EsseiC < IFZI’ ein Code mit k := dimp, (C) > 1, so daB eine Generatormatrix fiir
C keine Nullspalte enthalte. Man zeige: Es gilt Y, .o wt(v) = n(q — 1)¢*~*.

(15.10) Aufgabe: Systematische Codes.

Es sei C < FZ ein Code mit Generatormatrix G € IE‘ZX”. Man zeige: Eine k-
elementige Teilmenge von Spalten von G ist genau dann F-linear unabhéngig,
wenn C systematisch auf den zugehorigen Komponenten ist.

(15.11) Aufgabe: MDS-Codes und Dualitit.

Es sei C < Fy ein nicht-trivialer [n, k, d]-Code. Man zeige die Aquivalenz der
folgenden Aussagen: i) C ist ein MDS-Code. ii) C* ist ein MDS-Code.

iii) C ist systematisch auf allen k-elementigen Teilmengen von Komponenten.
iv) In jeder Generatormatrix fiir C sind alle k-elementigen Teilmengen von Spal-
ten Fg-linear unabhingig.



I\Y 87

v) In jeder Kontrollmatrix fiir C sind alle (n — k)-elementigen Teilmengen von
Spalten F,-linear unabhéngig.

(15.12) Aufgabe: Syndrom-Decodierung.
Man betrachte den Hamming-Code H < F%, der durch die folgende Generator-
matrix definiert wird:

1. . .11

P R T i

G=1"" 1 11 |€K"
1111

Man bestimme Syndrome, zugehdrige Nebenklassenfiithrer und decodiere
i) [1,1,0,0,1,1,0), ii)[1,1,1,0,1,1,0], iii)[1,1,1,1,1,1,0].

(15.13) Aufgabe: Syndrom-Decodierung.
Es sei C < F7 der durch die folgende Generatormatrix definierte Code:

T . . . 1 . 1
o 1 1 1 4T
G:= . 11 e F5™".
1 1 1

Man bestimme Syndrome, zugehorige Nebenklassenfiihrer und decodiere
i) [1,1,0,1,0,1,1], ii)][0,1,1,0,1,1,1], iii)[0,1,1,1,0,0,0].

(15.14) Aufgabe: Eindeutige Decodierbarkeit.
Es sei C < IF%O der durch die folgende Generatormatrix definierte Code:

S S |
B
G=1|. . 1 . . 1 .1 . .|eFy>"
1.1 1 .
1111

Man zeige: Alle Vektoren in F1° sind eindeutig decodierbar. Man bestimme
Minimaldistanz und Uberdeckungsradius von C.

(15.15) Aufgabe: Aquidistante Codes.
Es sei C C Fi6 ein binirer Code mit wt(v) = 6 und d(v,w) = 8 fiir alle v # w €
C. Man zeige: Es gilt |C| < 16. Gibt es einen solchen Code mit |C| = 167

(15.16) Aufgabe: Griesmer-Schranke.

a) Man zeige: Die Parameter ¢ := 3, n := 14, k := 4 und d := 9 erfiillen die
Griesmer-Schranke, aber es gibt keinen terniren [14, 4, 9]-Code.

b) Man zeige: Die Parameter ¢ := 2, n := 15, k := 8 und d := 5 erfiillen die
Griesmer-Schranke, aber es gibt keinen binéren [15, 8, 5]-Code.

Hinweis. Man betrachte jeweils den residualen Code.
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(15.17) Aufgabe: Optimale Codes.
Fiir n,d € N sei Kz(n,d) := max{k € N; es gibt einen binéren [n, k, d]-Code}.
Man zeige, dal Ks(n,2d — 1) = Ko(n+1,2d) und Ka(n+1,d) < Ky(n,d) + 1.

(15.18) Aufgabe: Best-Code.

Ziel ist es, zu zeigen, dafl optimale nicht-lineare Codes besser sein konnen als
optimale lineare Codes, aber dafl es schwierig sein kann, solche zu finden:

a) Man zeige: Fiir einen binéren [10, k, 4]-Code gilt k¥ < 5. Man gebe einen
binéren [10, 5,4]-Code an; also gilt K5(10,4) = 5.

b) Es sei Cy < F1 der von [G | G] € F3*'? erzeugte Code, wobei

I
G:=|. 1 . 1 1| eFy®.
11

Es seien v := [1,0,0,0,0; 0,0,1,0,0] € F° und 7 := (1,2,3,4,5)(6,7,8,9,10) €
S10, sowie C := (v + C){™ C F1° der nicht-lineare Best-Code [1978]. Man
zeige: C ist ein (10, 40,4)-Code. (Man kann zeigen, dafi C optimal ist.)

(15.19) Aufgabe: Erweiterte Codes.
Es seien C; und Cy die durch die folgenden Generatormatrizen G; bzw. Go
definierten terniren Codes:

I R S I o2 o
G := |: 11 1:| S IF3 und Gg := 1 9 9 S ]F3 .
Man bestimme die Minimaldistanz von C; und Cs sowie von 51 und 52.

(15.20) Aufgabe: Modifikation von Codes.

Man wende die Konstruktionen Punktierung, Erweiterung, Bereinigung, Aug-
mentierung, Verkiirzung und Verlangerung auf die bindren Priifzeichen- und
Wiederholungscodes an, und bestimme die Parameter der so erhaltenen Codes.

(15.21) Aufgabe: Schwach selbstduale binidre Codes.

Es sei C < F3 ein schwach selbstdualer Code.

a) Man zeige: Es ist C = C’, wobei C’ < F% den bereinigten Code bezeichne. Es
gilt genau dann 4 | wt(v) fiir alle v € C, wenn dies fiir eine Fy-Basis von C gilt.
Ist n ungerade, so ist 4 | wt(v) fiir alle v € C.

b) Es sei C ein [n, 251, d]-Code, fir n € N ungerade. Man zeige: Es gilt
C<Ct= 5, wobei C < F% den augmentierten Code bezeichne.

c) Es sei C selbstdual. Man zeige: Es gilt C = C+ = C.

(15.22) Aufgabe: Gerades Gewicht.
Man zeige: Gibt es einen bindren (n, m,d)-Code mit d € N gerade, so gibt es
auch einen binéren (n, m, d)-Code, dessen Elemente alle gerades Gewicht haben.
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(15.23) Aufgabe: Summen und Produkte von Codes.

Es seien C ein nicht-trivialer [n, k, d]-Code, sowie C’ ein nicht-trivialer [n’, k', d']-
Code iiber Fy, mit Generatormatrizen G € FF*™ bzw. G’ € F’;,X"l. Man zeige
die folgenden Aussagen, und untersuche, was jeweils passiert, wenn man andere
Generatormatrizen wéhlt: ,

a) Ist k = K/, so erzeugen die Zeilen der Matrix [G | G'] € ng(mrn) einen
[n+n', k,d"]-Code mit d’ > d+d’; er wird Verkettung von C und C’ genannt.

b) Die Zeilen der Matrix g F{rHr)x(ntn’)

é, erzeugen einen [n+n', k+
k', min{d, d'}]-Code; er wird direkte Summe von C und C’ genannt.

c) Die Menge der Matrizen in F;*™ , deren Spalten bzw. Zeilen Elemente von
C baw. C' sind, ist ein [nn’, kK, dd']-Code, der G ® G € FY*)* ) als Gener-

atormatrix besitzt; er wird direktes Produkt von C und C’ genannt.

(15.24) Aufgabe: Produktcodes.

Es sei C < ngw das direkte Produkt der erweiterten bindren Hamming-Codes
ﬁg und ﬁ4; also ist C ein [128, 44, 16]-Code und 7-fehlerkorrigierend. In der Tat
hat C aber viel bessere Fehlerkorrektureigenschaften:

Angenommen, bei der Ubertragung eines Codeworts geschehen Fehler genau in
den 14 (zufallig ausgewihlten, dem Empfanger nicht bekannten) Positionen

[2,7,19,24,27,32,45,51,53, 76, 82,86, 96, 121];

dabei werden die Eintrage der Matrizen zeilenweise durchnumeriert. Man zeige,
daf} das empfangene Wort eindeutig decodiert werden kann.

(15.25) Aufgabe: Punktierter Simplex-Code.
Durch Punktieren konstruiere man aus dem binéren [31,5, 16]-Simplex-Code
einen [21,5,10]-Code. Wie verhilt er sich zur Griesmer-Schranke?

(15.26) Aufgabe: Hamming- und Simplex-Codes.

Fir £ > 2 seien Hy und Sy die zugehorigen Hamming- bzw. Simplex-Codes
iiber F,. Wie verhalten sich jeweils die Informationsrate und die relative Mini-
maldistanz dieser Codes fiir kK — 00?

(15.27) Aufgabe: Erweiterte Hamming-Codes.
Es seien k > 2 und C ein binirer [2%,2% —k — 1,4]-Code. Man zeige: C ist linear
dquivalent zum erweiterten Hamming-Code Hy.

(15.28) Aufgabe: Hadamard-Codes.

a) Eine Matrix H € R"*" fiir n € N, die Eintrige in {£1} hat und HH" = nE,
erfiillt, heift Hadamard-Matrix; falls zudem die Eintrége in der ersten Zeile
und Spalte samtlich positiv sind, so heiit H normalisiert.
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Man zeige: Ist H € R"*" eine Hadamard-Matrix mit n > 3, so ist n = 0
(mod 4). Auflerdem zeige man: Sind H € R"*™ und H' € R" *" Hadamard-
Matrizen, so ist H ® H' € R(mn)x(nmn') ehenfalls eine Hadamard-Matrix.

b) Ersetzt man in einer normalisierten Hadamard-Matrix H € R"*"™ den Ein-
trag 1 bzw. —1 durch 0 € Fy bzw. 1 € Fy, so erhilt man die zugehorige binare
Hadamard-Matrix. Die Zeilen der bindren Matrizen zu H und —H bilden
den zugehorigen bindren Hadamard-Code A. Verkiirzt man A beziiglich der
ersten Komponente, so erhdlt man den verkiirzten Hadamard-Code A°.

Man zeige: A ist ein (n,2n, 5)-Code, und A° ist ein (n—1,n, 5)-Code. Was ist
ihr Uberdeckungsradius? Wie verhalten sie sich zur Plotkin-Schranke?

1 1
1 -1
, fir ¥ € N. Man zeige: HSM eine normalisierte Hadamard-Matrix; sie
wird auch Sylvester-Matrix genannt.

c) Nun seien Hy = HS' := [ } € R22 ynd HY* ™ = HE* @ H, €

RQk x 2k

Weiter zeige man: Die zugehorigen Codes Aj und Aj sind linear; also ist Ay
ein [2% k + 1,2871-Code, und A ist ein [2% — 1, k, 27 1]-Code. Daraus folgere
man: Fiir k > 2 ist Ay, linear dquivalent zum Reed-Muller-Code Ry, und A3 ist
linear dquivalent zum Simplex-Code Si. Welche Codes erhélt man fiir £ < 37

d) Man zeige, dafl die folgende Matrix eine Hadamard-Matrix ist. Sind die
zugehorigen binaren Hadamard- und verkiirzten Hadamard-Codes linear?

1 1 1 1 1 1 1 1 1 1 1
-1 -1 1 -1 -1 -1 1 1 1 -1 1
1 -1 -1 1 -1 -1 -1 1 1 1 -1
-1 1 -1 -1 1 -1 -1 -1 1 1 1

1 -1 1 -1 -1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 1 -1 -1 -1 1
1 1 -1 1 -1 -1 1 -1 -1 -1
-1 1 1 1 -1 1 -1 -1 1 -1 -1
-1 -1 1 1 1 -1 1 -1 -1 1 -1
-1 -1 -1 1 1 1 -1 1 -1 -1 1
1 -1 -1 -1 1 1 1 -1 1 -1 -1
-1 1 -1 -1 -1 1 1 1 -1 1 -1

c R12><12

e T T T o T o T S G e e S S Y
—_

(15.29) Aufgabe: Gewichtsverteilungen.

Es sei C < F§ mit Gewichtsverteilung A¢ € C[X,Y].

a) Man gebe die Gewichtsverteilungen des erweiterten Codes CA, des bereinigten
Codes C’ und des augmentierten Codes C an.

b) Ein f € C[X] mit f* = f heiit Palindrom. Man gebe eine notwendige und
hinreichende Bedingung dafiir an, dafi A¢(X, 1) € C[X] ein Palindrom ist.

(15.30) Aufgabe: Selbstduale bindre Codes.
a) Fiir einen selbstdualen binéren [16, 8, d]-Code zeige man: Es gilt d € {2,4,6}.
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b) Fiir d € {2,4} gebe man jeweils einen selbstdualen bindren [16, 8, d]-Code
zusammen mit seiner Gewichtsverteilung an.

c) Man gebe die Gewichtsverteilung eines selbstdualen binéren [16, 8, 6]-Codes
an. Gibt es solch einen Code?

Hinweis zu a). Man benutze die Griesmer-Schranke.

(15.31) Aufgabe: Gewichtsverteilungen bindrer Hamming-Codes.

a) Es seien k > 2 und n := 28 — 1, und Ay, = Y1 w; XY™ € C[X,Y]
die Gewichtsverteilung des bindren Hamming-Codes Hy. Man zeige: Die Koef-
fizienten erfiillen fiir ¢ > 2 die Rekursion tw; + w;—1 + (n — i + 2)w;—o = (ifl),
mit Anfangsbedingung wy =1 und w; = 0. R

b) Man bestimme die Gewichtsverteilungen der Codes #Hj, und #j,.

¢) Man bestimme die Gewichtsverteilungen der Reed-Muller-Codes Ry, und R7.

(15.32) Aufgabe: Gewichtsverteilungen von MDS-Codes.

Es sei C < ]FZ; ein MDS-Code der Dimension &k € N mit Gewichtsverteilung
w; = |{v € C;wt(v) = i}| € Ny, fiir i € {0,...,n}.

a) Man zeige: Es gilt wg = 1, sowie w; = 0 fiir ¢ € {1,...,n — k}, und fiir
i €40,k =1} gilt wy ;= X2 H=1)77 (1) (1) (657 — 1).

b) Fiir £ > 2 folgere man daraus: Es gilt n < ¢+ k — 1.

Hinweis zu a). Essei Cz := {[z1,...,2,] €C;z; =0 fur allei € T} < C, fiir
Z C{1,...,n}. Man bestimme [{[Z,v];|Z] = j,v € Cz \ {0}}| mittels Double-
Counting, fir j € {0,...,k —1}.

16 Exercises to Part IIT (in German)

(16.1) Aufgabe: Verallgemeinerte zyklische Codes.
Es seien n € N und 0 # a € F;. Ein Code C < Fy heifit a-zyklisch, falls mit
[0, ..., Zn_1] € C auch stets [ax,_1, g, ..., Tn_2] € C ist.

Man gebe eine Korrespondenz von der Menge der a-zyklischen Codes der Linge
n zu den Idealen in einem geeigneten Quotienten des Polynomrings F,[X] an.
Man zeige weiter: Mit C,C" < [y sind stets auch C + = Fy und C N = Fy
a-zyklisch; man gebe jeweils ein Generatorpolynom an.

(16.2) Aufgabe: Modifikation zyklischer Codes.

Es sei C < Fy ein zyklischer Code mit Generatorpolynom g € Fq[X]. Welche
der Konstruktionen Punktierung, Erweiterung, Bereinigung, Augmentierung,
Verkiirzung und Verlangerung ergeben wieder einen zyklischen Code? In diesen
Féllen gebe man jeweils ein Generatorpolynom an.

(16.3) Aufgabe: Konstruktion zyklischer Codes.
Es seien C < Fy und C’ < F" nicht-triviale zyklische Codes mit Generatorpoly-
nomen g € F,[X] bzw. ¢’ € F,[X].
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a) Es sei ggT(n,n’) = 1. Man zeige: Das direkte Produkt von € und C’ ist
ebenfalls zyklisch; man gebe ein Generatorpolynom an.

b) Es seien ¢ := 2 und n = n’ ungerade, und es gelte g | ¢’. Man zeige: Die
Plotkin-Summe von C und C’ ist linear dquivalent zu einem zyklischen Code mit
Generatorpolynom gg’ € Fo[X].

(16.4) Aufgabe: CRC-Codes.

Man schreibe GAP-Programme zur CRC-Codierung und -Decodierung. Welche
Eingabedaten miissen zur Verfiigung gestellt werden? Was ist die Ausgabe?
Welche Konsistenztests sollten gemacht werden?

Man wende die Programme auf den CRC-Code H < F3 mit Generatorpolynom
X3+ X +1 € Fo[X] an: Man codiere die Vektoren

i) [0,0,0,1], i) [0,0,1,1], iii) [0,1,1,1], iv) [1,1,1,1],
und bestimme, welche der folgenden Vektoren in H liegen:

i) [1,1,0,0,1,1,0], ii)[0,1,0,1,1,1,0], iii)[1,0,0,0,1,0,1].

(16.5) Aufgabe: RWTH-ID.

Man schreibe GAP-Programme zur Erzeugung und Verifikation von RWTH-IDs,
unter Verwendung der Programme aus Aufgabe (16.4), des Generatorpolynoms
X5+ X2 +1 € Fo[X] und der Quellencodierung in Tabelle 7.

(16.6) Aufgabe: Kreisteilungspolynome.

Es seien F, der Kérper mit ¢ Elementen und n € N.

a) Es sei m € N. Man zeige: Es ist genau dann X™ — 1 ein Teiler von X" —1 €
F,[X], wenn m ein Teiler von n ist.

b) Es seien p die Charakteristik von F, und F ein algebraischer Abschluf von F,.
Wie héngen die Faktorisierungen von X?" —1 und X" — 1 € Fy[X] zusammen?
Wie hiingen die Nullstellenmengen V(X?" — 1) und V(X" — 1) C F zusammen?

(16.7) Aufgabe: Klassifikation zyklischer Codes.

a) Man bestimme alle zyklischen binéren Codes der Lange n € {1, ..., 32} durch
Angabe jeweils eines Generatorpolynoms. Auflerdem bestimme man jeweils die
zugehorige Nullstellenmenge.

b) Man untersuche diese Codes hinsichtlich Dualitdt und mengentheoretischer
Inklusion. Fiir n < 10 gebe man jeweils auch die Minimaldistanz an.

(16.8) Aufgabe: Reversible Codes.

Ein zyklischer Code C < Fj mit Generatorpolynom g € F,[X] heifit reversibel,
falls mit [zg,...,2n—1] € C stets auch [x,,_1,...,20] € C ist.

a) Man zeige die Aquivalenz der folgenden Aussagen: i) C ist reversibel. ii) Es
gilt g* = ag € F,[X] fiir ein a € F,. iii) Mit ¢ € V(g) ist stets auch (=1 € V(g).
b) Nun seien ged(g,n) = 1 und —1 € Z¥ eine g-Potenz. Man zeige: Jeder
zyklische Code C < F’; ist reversibel.
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(16.9) Aufgabe: Hamming-Codes als zyklische Codes.

Fir k£ > 2 sei Hy < Fy der zugehorige Hamming-Code, wobei n := qqk%ll. Ist

‘Hy, auch fiir ggT(k,q — 1) > 1 linear dquivalent zu einem zyklischen Code?

(16.10) Aufgabe: Zyklische bindre Codes gerader Linge.

Fiir & > 3 sei Hy < F} der zugehorige Hamming-Code, wobei n := 2F — 1.
Man zeige: Der bereinigte verkiirzte Code (H2)" < F5 ™! ist linear dquivalent
zu einem zyklischen [n — 1,n — k — 2,4]-Code.

Hinweis. Man betrachte die Plotkin-Summe von 7—[;_1 mit einem Even-Weight-
Code.

(16.11) Aufgabe: Simplex-Codes.

Firk >2undn:=2F—1sei S < F5 der zughedrige bindre Simplex-Code, der
definiert ist als der Dualcode des bindren Hamming-Codes Hj, < F5. Man zeige:
Der Code Sy ist linear equivalent zu einem zyklischen Code. Man bestimme

die Nullstellenmenge V(Sk), und gebe damit neue Beweise fiir die Aussagen
dimg, (Sy,) = k und d(Sy,) = 2F~! an.

(16.12) Aufgabe: BCH-Codes.
Es sei C < Fj ein BCH-Code. Ist der duale Code Ct ebenfalls ein BCH-Code?

(16.13) Aufgabe: Bose-Distanz von BCH-Codes.
Man gebe einen nicht-trivialen BCH-Code C im engeren Sinne mit Bose-Distanz
0 und Minimaldistanz d(C) > § an.

Hinweis. Man betrachte nicht-primitive Codes.

(16.14) Aufgabe: Dimension bindrer BCH-Codes.

Es sei C < F3 ein primitiver BCH-Code im engeren Sinne der Léinge n :=
2k — 1, fiir k > 1, und Entwurfsdistanz § mit [$] < 2[51-1, Man zeige: Es gilt
dimg, (C) =n — [$] - k.

(16.15) Aufgabe: Binidre BCH-Codes.
Man bestimme die Dimensionen der primitiven bindren BCH-Codes im engeren
Sinne der Lange 31.

(16.16) Aufgabe: Terndre BCH-Codes.
Man bestimme die maximale Dimension eines primitiven terndren BCH-Codes
der Lange 26 und der Entwurfsdistanz 5.

(16.17) Aufgabe: Reed-Solomon-Codes.
a) EsseiC < ]Fg’1 ein Reed-Solomon-Code. Man zeige: Ist 1 ¢ V(C), so ist der

erweiterte Code C < IFZ ein MDS-Code.
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b) Es sei C < F}} ein primitiver BCH-Code. Man zeige: Es gibt einen endlichen
Kérper Fy C F und einen Reed-Solomon-Code D < F™, so dafi C = DNFy gilt.

(16.18) Aufgabe: Roos-Schranke.

Es seien n := 2¥ — 1, fiir ein k > 3, und C < F¥ ein zyklischer Code. Man zeige:
a) Ist {¢,, 3} C V(C), so hat C hat Minimaldistanz d > 4.

b) Ist {¢,, ¢, 1} € V(C), so hat C hat Minimaldistanz d > 5, und der bereinigte

n

Code €’ < Fy hat Minimaldistanz d’ > 6.

(16.19) Aufgabe: van-Lint-Wilson-Schranke.

a) Es seien n := 2% 4 1, fiir ein k& > 1, und C < F¥ der zyklische Code zu {(,}.
Man zeige: Der Code C ist reversibel und hat Minimaldistanz d > 5.

b) Es sei C < F3! der zyklische Code zu {(31, (3, (4, }. Man zeige: Der Code C
hat Minimaldistanz d > 7. Gilt Gleichheit?

(16.20) Aufgabe: QR-Codes.
a) Man bestimme die Minimaldistanz des bindren QR-Codes der Lange 47.
b) Man bestimme alle perfekten 1-fehler-korrigierenden QR-Codes.

(16.21) Aufgabe: Erweiterte QR-Codes.
Man gebe jeweils einen selbstdualen bindren [32, 16, 8]-Code und einen selbst-
dualen bindren [48, 24, 12]-Code an.

(16.22) Aufgabe: Wiege-Problem.

Gegeben seien n > 3 Miinzen, unter denen sich héchstens eine Falschung mit zu
kleinem oder zu groflem Gewicht befinde. Wieviele unabhangige Wagungen
mit einer Balkenwaage werden benoétigt, um die moglicherweise vorhandene
gefilschte Miinze zu finden?

Hinweis. Man betrachte die Félle n = ‘3%1 fur k > 2.

(16.23) Aufgabe: Golay-Codes.
Fiir den erweiterten terndren Golay-Code G5 < IE"},P und den erweiterten bindren
Golay-Code Gay < F3* bestimme man die zugehdrigen residualen Codes.

(16.24) Aufgabe: Gewichtsverteilungen der Golay-Codes.
Man bestimme die Gewichtsverteilungen der ternaren Golay-Codes G11 und G2,
sowie der bindren Golay-Codes Go3 und Goy.

(16.25) Aufgabe: Steiner-Systeme.

Ein Steiner-System S(¢, k,v), wobei ¢, k,v € N mit ¢t < k < v, ist eine Menge
P der Kardinalitat v, die Punkte genannt werden, zusammen mit einer Menge
B von k-elementigen Teilmengen von P, die Blécke genannt werden, so dafl
jede t-elementige Menge von Punkten in genau einem Block enthalten ist.
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a) Man zeige: Fiir s € {0,...,t} ist jede s- elementige Menge von Punkten in

genau A € N Blocken enthalten wobei Ay - ( 3) = (7; S) Daraus folgere man:

Die Anzahl b = |B| € N der Blocke ist gegeben durch b - ( ) = (}); jeder Punkt
gehort zu genau r € N Blocken, wobei bk = vr; und fir ¢t = 2 gilt r(k—1) = v—1.

b) Man zeige: Gibt es ein Steiner-System S(t, k,v) mit ¢ > 2, so gibt es auch
ein Steiner-System S(t — 1,k — 1,v — 1).

Steiner-Systeme mit ¢ = 1 oder ¢ = k sind uninteressant (warum?), und solche
mit ¢ = 2 sind leicht zu finden, wie wir sogleich sehen werden. Das ist viel
schwieriger fir ¢ > 3, und vermutlich gibt es gar keine fir kK > ¢ > 6. Unten
werden wir sehen, daf} es sporadische Steiner-Systeme mit ¢ = 4 und ¢ = 5 gibt.

b) Es sei A? (IE‘ ) := F?2 die affine Ebene iiber F,, dabei heiBen die Teilmengen
w+(v)r, C F2, wobei v w € F2 mit v # 0, affine Geraden. Man zeige: AQ(IF )
bildet Zusammen mit den afﬁnen Geraden ein Steiner-System S(2, ¢, ¢?); man
bestimme die Parameter Ay, b und r.

c) Es sei P*(F,) := {(v)r, < F3;0 # v € F3} die projektive Ebene iiber Fy;
dabei heiflen die Teilrdume (v, w}F < F3, Wobel (v)r, # (w)r, € P?(Fy), pro-
jektive Geraden. Man zeige: P2( 7) blldet zusammen mit den projektiven
Geraden ein Steiner-System S(2,q+1, q2 +¢+1); man bestimme die Parameter
As, bund 7. AuBerdem stelle man Fano-Ebene P?(FFy) graphisch dar.

(16.26) Aufgabe: Codes und Steiner-Systeme.

Der Zusammenhang zwischen bindren Codes und Steiner-Systemen wird wie
folgt hergestellt: Es sei C < F% ein [n, k,d]-Code mit d € N, und fir P :=
{1,...,n} sei B := {supp(v) C P;v € C, wt(v) = d} die Menge der Tréger der
Codeworter minimalen positiven Gewichts.

a) Man zeige: Der Code C < F% ist genau dann perfekt mit d = 2e + 1,
wenn B die Menge der Blocke eines Steiner-Systems S(e + 1,2e + 1,n) bildet.
In diesem Falle fiihrt der erweiterte Code C < F;H zu einem Steiner-System
S(e+2,2e+2,n+1). Wie hdngen diese Steiner-Systeme zusammen?

b) Daraus folgere man: Der Hamming-Code Hy und der erweiterte Code 7—Alk,
fiir k > 2, fiihren zu Steiner-Systemen S(2,3,2% —1) bzw. S(3,4,2%). Der Golay-
Code Go3 und der erweiterte Code Gy fiihren zu Steiner-Systemen S(4,7,23)
bzw. S(5,8,24); diese werden auch Witt-Systeme genannt.

c) Daraus bestimme man erneut die Gewichtsverteilung von Gaoy.
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