
Cryptography

Universität Wuppertal, SS 2018

Universität Braunschweig, WS 2007

Universität Siegen, WS 2005

Universität Duisburg-Essen, SS 2004

Jürgen Müller

Contents

I Classical cryptography 1

1 Basic cryptographical notions . 1
2 Basic mathematical notions . 4
3 Substitution ciphers . 8
4 Block ciphers . 12
5 Affine ciphers . 17
6 Stream ciphers . 23
7 Perfect security . 26

II Public key cryptography 28

8 The RSA cryptosystem . 29
9 Attacking the RSA cryptosystem . 34
10 The Rabin cryptosystem . 40
11 The ElGamal cryptosystem . 42
12 Knapsack cryptosystems . 45
13 The Imai-Matsumoto cryptosystem . 47

III Integer arithmetic 51

14 Computational complexity . 52
15 Integer arithmetic . 56
16 Primality testing . 60
17 Factorisation . 64

IV Authentication 70

18 One-way functions . 70
19 Hash functions . 72
20 Message authentication . 76
21 Signatures . 78
22 Undeniable signatures . 84
23 Identification . 88
24 Interactive proof systems . 96

V Exercises 100

25 Exercises for Part I . 100
26 Exercises for Part II . 106
27 Exercises for Part III . 111
28 Exercises for Part IV . 115
29 References . 120

I Classical cryptography 1

I Classical cryptography

1 Basic cryptographical notions

(1.1) Cryptographic goals. Cryptography is the study of mathematical
techniques related to information security. Basic objectives are as follows:

a) Confidentiality, privacy or secrecy: Keeping information private to those
who are authorised to see it. • Ownership: A means to provide an entity with
the legal right to use or transfer a resource to others. • Anonymity: Conceal-
ing the identity of an identity involved to some process. • Access control:
Restricting access to resources to privileged entities. • Authorisation: Con-
veyance to another entity of official sanction to do or be something. • Receipt:
Acknowledgement that information has been received. • Confirmation: Ac-
knowledgement that services have been provided.

b) Data integrity: Ensuring information has not been altered by unauthorised
or unknown means. • Certification: Endorsement of information by a trusted
authority. • Validation: A means to provide timeliness of authorisation to
use or manipulate information or resources. • Time stamping: Recording the
time of creation or existence of information.

c) Authentication: • Identification or entity authentication: Corrobora-
tion of the identity of an entity; for example, a person, a computer terminal,
a credit card. • Message authentication or data origin authentication:
Corroborating the source of information. • Signature: A means to bind in-
formation to an entity. • Witnessing: Verifying the creation or existence of
information by an entity other than the creator. • Non-repudiation: Prevent-
ing the denial of previous commitments or actions. • Revocation: Retraction
of certification or authorisation.

d) Practical aspects: • Level of security: The number of operations needed
to defeat an information security objective. • Functionality: Effective com-
binations of tools to meet various information security objectives. • Perfor-
mance: Efficiency of a cryptographical tools; for exmaple, the number of bits an
encryption algorithm can encrypt per time unit. • Ease of implementation:
Software and hardware complexity.

(1.2) Cryptosystems. a) A cryptosystem or cipher [P, C,K, E ,D] is a tu-
ple,a where the plaintexts P, the ciphertexts C and the keys K are finite
sets, and where E = {Ee : P → C; e ∈ K} and D = {Dd : C → P; d ∈ K} are
encryption and decryption functions, respectively, such that for all e ∈ K
there is d ∈ K such that EeDd = idP .

The idea is to keep information private to communication partners, Alice and
Bob say, who communicate through an insecure channel, where data might be
caught by an opponent, Oscar say. Hence plaintexts are first encrypted by Bob,
then sent through the channel, and are decrypted again by Alice. Thus in prac-

I Classical cryptography 2

tice, given the keys, encryption and decryption functions should be efficiently
computable.

It should be difficult for Oscar to determine plaintexts from ciphertexts without
knowing the keys used. Since by Kerckhoff’s principle the cryptosystem used
is assumed to be public, it should also be difficult for Oscar to determine the
keys employed.

For a given encryption key e ∈ K there might be several suitable decryption
keys d ∈ K. Anyway, from EeDd = idP we conclude that Ee is injective, which
makes sense since otherwise unique decryption would be impossible. Similarly,
any (useful) decryption function Dd is surjective. Hence in the case P = C
encryption functions and (useful) decryption functions are permutations.

b) If, given an encryption key e ∈ K, a suitable decryption key d ∈ K can
be assumed to be equal to e, or if d can be easily computed from e, then the
cryptosystem is called symmetric or a private-key cryptosystem. In this
case Alice and Bob first have to exchange the keys securely, by applying a key
management technique.

If a suitable decryption key d cannot be computed easily from e, then the cryp-
tosystem is called asymmetric and can be used as a public-key cryptosys-
tem: To receive messages Alice publishes e ∈ K, which Bob uses to encrypt
messages, but Alice keeps the suitable decryption keys d ∈ K private. In this
case no secure key exchange is necessary.

(1.3) Cryptanalysis. The possibility to determine plaintexts from ciphertexts,
without finding the keys employed, is called protocol failure. The possibility
to determine the keys employed is called to breaking the cryptosystem. Basic
attacks are as follows; according to the varying capabilities Oscar might have
the former two are called passive and the latter two are called active attacks:

a) In a ciphertext-only attack Oscar only knows a ciphertexts. For example,
it might be based on a statistical analysis of the plaintext language.

For example, we might use exhaustive search: Oscar decrypts the ciphertext
with all possible keys, and finds the correct plaintext amongst those few which
make sense. How large a set of keys might be to be susceptible to exhaustive
search, depends on the computing power available.

For example, the DES is based on 256 ∼ 7 · 1016 keys, which nowadays is
completely searchable in a couple of days of CPU time. The AES allows for
various sets of keys, of size 2128 ∼ 3 · 1038, or 2192 ∼ 3 · 1057, or 2256 ∼ 1077. As
a rule of thumb, in practice sets of keys should not have less than 2128 elements.

b) In a known-plaintext attack Oscar knows plaintext-ciphertext pairs. For
example, many letters end with sincerely yours, and Oscar might easily in-
tercept the corresponding ciphertext.

c) In a chosen-plaintext attack Oscar is able to encrypt plaintexts of his
choice, enabling him to obtain plaintext-ciphertext pairs. For example, this is

I Classical cryptography 3

always possible in a public-key cryptosystem.

d) In a chosen-ciphertext attack Oscar has the possibility to decrypt cipher-
texts of his choice, without knowing the decryption key. Depending on whether
Oscar chooses ciphertexts according to ciphertexts observed or not, the attack
is called adaptive or indifferent.

For example, in public-key cryptosystems used in identification protocols the
following is possible: Bob wants to convince himself that he is communicating
with Alice, by sending her an encrypted random plaintext as a challenge, which
Alice decrypts using her private key, and then returns the plaintext to Bob. The
opponent Oscar might impersonate Bob and send ciphertexts of his choice to
Alice.

(1.4) Security. There are various measures of the security of a cryptosystem,
from the most stringent to the weakest security level, and of course depending
on the kind of attack launched:

a) Perfect or unconditional security. Assuming Oscar has unlimited compu-
tational resources, it is impossible to collect any information about plaintexts;
the notion of information is made precise in information theory, using ideas
from stochastics. Semantic security refers to the possibility to collect infor-
mation about plaintexts using algorithms running in expected polynomial time.

b) Computational or complexity-theoretical security. Given a model of
computing, Oscar is allowed to launch attacks using polynomial time algorithms,
in terms of the input size of the cryptosystem, and asymptotic worst case anal-
ysis is carried out. Hence care is needed if the theoretical analysis is intended
to have practical significance, for example if the average case or at least certain
cases are substantially easier than the worst case, or if computations possible in
the model in practice are unfeasible.

c) Provable security. In a reduction process it is shown that algorithmically
forcing a protocol failure or breaking the cryptosystem is at least as difficult as
algorithmically solving another problem. Hence the security of the cryptosystem
depends on the actual difficulty of the reference problem.

d) Practical security. The best known algorithms leading to a protocol failure
or breaking the cryptosystem need an amount of computing time which by a
sufficient margin exceeds the computational resources Oscar might have. This
depends on the state of the art of algorithms and machinery.

For example, the number of words of length 64 over the binary alphabet is
264 = 18 446 744 073 709 551 616 ∼ 1.8 · 1019, while a year has 365 · 24 · 3600 =
31 536 000 ∼ 3 · 107 seconds, hence a CPU having a clock frequency of 3 GHz =
3 · 109 Hz performs 94 608 000 000 000 000 ∼ 9.5 · 1016 clock cycles per year.

e) Heuristic security. This encompasses any variety of arguments that forc-
ing a protocol failure or breaking the cryptosystem needs a prohibitively large

I Classical cryptography 4

amount of practical computational resources; for example, the longer the cryp-
tosystem is in use and is investigated the higher its heuristic security becomes.

(1.5) Signatures. Being used to authenticate the sender of a message, signa-
tures behave differently from conventional signatures, in the following respects:

a) Since no conventional hard copy of the message is signed, the signature has
to be explicitly bound to the message. This is achieved by using the message in
the verification process. Alternatively, we the message can also be incorporated
into the signature, from which the former can then be recovered.

b) Conventional signatures are verified by authorised identities only, by com-
paring the signature with a known private authentic one. Since the verification
algorithm is considered to be public, everyone is able to verify a signature, hence
it has to be made sure that forgeries are easy to find. Another possibility is to
require the sender of a message to participate in the verification process.

c) Copies of a conventional message can be distinguished from the original
message. Since message-signature pairs are identical to their copies, it has to
be made sure that a valid pair can only be used once. This can also be achieved
by requiring the sender of a message to participate in the verification process.

d) Since a sender could later on deny his signature, a possibility is needed
to prove that a signature actually is a forgery, possibly under participation of
the sender; then the disavowing sender could just be asked to prove that the
signature is non-valid.

e) If a signed message serves as a legal document, the signature scheme must
also be secure in the future. In this respect security precautions for signature
schemes have to higher than those for cryptosystems.

2 Basic mathematical notions

(2.1) Symmetric groups. a) Let SX := {π : X → X;π bijective}, where X
is a set, together with composition of maps be the symmetric group on X;
the elements of SX are called permutations. In particular, for X = {1, . . . , n}
where n ∈ N0 we let Sn := S{1,...,n}; hence for n = 0 we have S0 = {id∅}.
For n ∈ N0 we have |Sn| = n!, as is seen by induction: For n = 0 we have
|S0| = 1. For n ≥ 1 and π ∈ Sn we have nπ = m for some m ∈ {1, . . . , n}, hence
π : {1, . . . , n− 1} → {1, . . . , n} \ {m} is a bijection. There are n possibilities to
choose m, hence there are n · |Sn−1| = n · (n− 1)! = n! possibilities for π.

E. g. for n = 1 we have id{1}, for n = 2 we have id{1,2} and π : 1 7→ 2, 2 7→ 1,
and for n = 3 we have the following permutations, where in the second line we
record the images of the elements in the first line:[

1 2 3
2 3 1

]
,

[
1 2 3
3 2 1

]
,

[
1 2 3
1 3 2

]
,

[
1 2 3
3 1 2

]
,

[
1 2 3
1 2 3

]
,

[
1 2 3
2 1 3

]
.

I Classical cryptography 5

Due to bijectivity, any permutation in Sn can be written as a product of disjoint
cycles, where the cycles occurring are uniquely determined up to reordering
and rotating. Hence to describe permutations we use cycle notation, where
1-cycles are left out: E. g. we have S1 = {()}, and S2 = {(), (1, 2)}, and S3 =
{(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.
While S1 and S2 are commutative, we from (1, 2, 3) · (1, 2) = (2, 3) 6= (1, 3) =
(1, 2) · (1, 2, 3) deduce that Sn is not commutative for n ≥ 3. Inverses are
given by reading cycles backwardly: E. g. we have (1, 2, 3)−1 = (1, 3, 2) and
(1, 3, 2)−1 = (1, 2, 3), while the other elements of S3 are their own inverses.

b) For k ≥ 2 we have (a1, a2, . . . , ak) = (a1, a2)(a1, a3) · · · (a1, ak), which is a
product of k − 1 transpositions, i. e. 2-cycles. Hence any cycle and thus
any permutation is a product of transpositions. This representation is not
necessarily unique, not even the number of transpositions is; e. g. we have
(1, 2, 3) = (1, 2)(1, 3) = (1, 3)(2, 3) = (1, 2)(2, 3)(1, 3)(1, 2) ∈ S3. For n ∈ N
we only have the following: If π = τ1 · · · τs ∈ Sn is a product of r ∈ N disjoint
cycles, where the τi ∈ Sn are transpositions and s ∈ N0, then s ≡ n−r (mod 2):

We proceed by induction on s ∈ N0: For s = 0 we have π = () and r = n.
For s > 0 let τs = (i, j) ∈ Sn and σ := τ1 · · · τs−1 ∈ Sn. Let σ be a product
of r′ ∈ N disjoint cycles, by induction we have s − 1 ≡ n − r′ (mod 2). If
i, j occur in the same cycle of σ, then π = στs = (. . .)(i, . . . , k, j, l, . . .)(i, j) =
(. . .)(i, . . . , k)(j, l, . . .). Hence π is a product of r = r′ + 1 disjoint cycles, and
n− r ≡ n− r′− 1 ≡ s− 2 ≡ s (mod 2). If i, j occur in distinct cycles of σ, then
we have π = στs = (. . .)(i, . . . , k)(j, . . . , l)(i, j) = (. . .)(i . . . k, j, . . . , l). Hence π
is a product of r = r′ − 1 disjoint cycles, and n− r ≡ n− r′ + 1 ≡ s (mod 2).]

Thus the sign map sgn: Sn → {±1} : π = τ1 · · · τs 7→ (−1)s is a group homo-
morphism. The elements in sgn−1(1) ⊆ Sn and sgn−1(−1) ⊆ Sn are called even
and odd permutations, respectively.

(2.2) Residue class rings. a) Let n ∈ N be a modulus. For x ∈ Z let x :=
{y ∈ Z;n | x − y} = {y ∈ Z; y ≡ x (mod n)} ⊆ Z be the associated residue
class, and let Z/nZ := {x ⊆ Z;x ∈ Z}. This induces an equivalence relation
on Z, hence Z is the disjoint union of the distinct residue classes. Quotient
and remainder shows that each residue class contains precisely one element
from Zn := {0, . . . , n− 1}, hence Zn is a set of representatives of the residue
classes, given by the bijection Zn → Z/nZ : x 7→ x. Thus all the following
considerations can be transported from Z/nZ to Zn.

Addition and multiplication on Z induce operations on Z/nZ by x+ y := x+ y
and x · y := xy. Using the properties of the addition on Z we conclude that the
addition on Z/nZ is associative, commutative, has the neutral element 0, and
has additive inverses −x = −x, for x ∈ Z; thus Z/nZ is a commutative additive
group. Similarly, the multiplication on Z/nZ is associative, commutative, and
has the neutral element 1; thus Z/nZ is a commutative multiplicative monoid.
Finally, distributivity holds as well; thus Z/nZ is a commutative ring, being

I Classical cryptography 6

called the associated residue class ring.

b) An element x ∈ Z/nZ is called a unit, if there is y ∈ Z/nZ such that
xy = 1 ∈ Z/nZ. The set of units (Z/nZ)∗ is a commutative multiplicative
group, being called the group of units or the group of prime residues. In
particular the inverse x−1 = y ∈ (Z/nZ)∗ of x ∈ (Z/nZ)∗ is unique, and Z/nZ
is a field if and only if (Z/nZ)∗ = (Z/nZ) \ {0}.
For x ∈ Z/nZ we have x ∈ (Z/nZ)∗ if and only if gcd(x, n) = 1: If x ∈ (Z/nZ)∗,
then xy = 1 implies that there are s, t ∈ Z such that sxy + tn = 1, hence
gcd(x, n) = 1; conversely, if gcd(x, n) = 1 then there are Bézout coefficients
s, t ∈ Z such that sx + tn = 1, which implies sx = 1. Thus inverses can be
computed by the Euclidean algorithm; and Z/nZ is a field if and only if n is
a prime, in this case we also write Fn := Z/nZ.

c) The function ϕ : N→ N : n 7→ |(Z/nZ)∗| is called Euler’s totient function.
Letting p ∈ N be a prime and a ∈ N, then we have |(Z/paZ)\ (Z/paZ)∗| = |{x ∈
{0, . . . , pa − 1}; gcd(x, pa) 6= 1}| = |{x ∈ {0, . . . , pa − 1}; p | x}| = |{px;x ∈
{0, . . . , pa−1}| = pa−1, and thus ϕ(pa) = pa − pa−1 = pa−1(p − 1). This allows
us to evaluate ϕ in general, since ϕ is a number theoretic function, i. e.
whenever m,n ∈ N are such that ggT(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n):

The set (Z/mZ) × (Z/nZ) can be equipped with componentwise addition and
multiplication, and thus becomes a commutative ring. We have the Chinese
remainder theorem saying that α : Z/mnZ→ (Z/mZ)×(Z/nZ) : x+mnZ 7→
[x + mZ, x + nZ] is a ring isomorphism: The map α is a well-defined ring
homomorphism, having kernel ker(α) = {x+mnZ;x+mZ = 0 +mZ, x+nZ =
0 + nZ} = {x+mnZ;m | x, n | x} = {x+mnZ;mn | x} = {0 +mnZ}, thus
is injective, and since |Zmn| = mn = |Zm × Zn| it is bijective. Thus we have a
group isomorphism α : (Z/mnZ)∗ → (Z/mZ)∗ × (Z/nZ)∗.]

The Chinese remainder theorem is constructive: The Euclidean algorithm yields
s, t ∈ Z such that sm + tn = 1. For given y + mZ ∈ Z/mZ and z + nZ ∈
Z/nZ we let x + mnZ := (1 − sm)y + (1 − tn)z + mnZ ∈ Z/mnZ, and get
α(x + mnZ) = [(1 − sm)y + (1 − tn)z + mZ, (1 − sm)y + (1 − tn)z + nZ] =
[(1− sm)y + smz +mZ, tny + (1− tn)z + nZ] = [y +mZ, z + nZ].

(2.3) Integral domains. a) Let R 6= {0} be a commutative ring. An element
0 6= a ∈ R is called a zero-divisor if there is 0 6= b ∈ R such that ab = 0. If
R does not contain zero-divisors it is called an integral domain. E. g. since
a unit is not a zero-divisor, any field K is an integral domain; Z is an integral
domain; the polynomial ring K[X] is an integral domain.

b) Let R be an integral domain. Then a ∈ R is called a divisor of b ∈ R,
and b is called a multiple of a, if there is c ∈ R such that ac = b; we write
a | b. Elements a, b ∈ R are called associate, if there is a unit u ∈ R∗ such
that a = bu ∈ R; we write a ∼ b.
Let ∅ 6= S ⊆ R be a subset. Then b ∈ R such that b | a for all a ∈ S is called a

I Classical cryptography 7

common divisor of S. If moreover for any common divisor c ∈ R of S we have
c | b, then b ∈ R is called a greatest common divisor of S. Let gcd(S) ⊆ R
be the set of all greatest common divisors of S; greatest common divisors are
pairwise associate, but do not necessarily exist. Elements a, b ∈ R such that
gcd(a, b) = R∗ are called coprime.

Let 0 6= a ∈ R\R∗. Then a is called irreducible or indecomposable, if a = bc
implies b ∈ R∗ or c ∈ R∗ for all b, c ∈ R. Moreover, a is called a prime, if a | bc
implies a | b or a | c for all b, c ∈ R. If a is a prime, then it is irreducible: Let
a = bc for some b, c ∈ R, where we may assume a | b, then b = ad for some
d ∈ R, hence a = acd implies a(1− cd) = 0, and thus cd = 1, i. e. c ∈ R∗.
R is called factorial or Gaussian, if any 0 6= a ∈ R can be written uniquely, up
to reordering and taking associates, in the form a = u ·

∏r
i=1 pi ∈ R, where the

pi ∈ R are irreducible, r ∈ N0 and u ∈ R∗. Collecting with respect to associate

classes we write a = u ·
∏
i∈I p

νi(f)
i , where the pi ∈ R are pairwise non-associate

and irreducible, νi(a) ∈ N0 are the associated multiplicities, I is a finite index
set and u ∈ R∗. If νi(a) ≤ 1 for all i ∈ I, then a is called squarefree. Given

0 6= a, b ∈ R then gcd(a, b) = R∗ ·
∏
i∈I p

min{νi(a),νi(b)}
i .

If R is factorial, then an irreducible element a ∈ R is a prime: Let 0 6= b, c ∈ R
such that a | bc. Hence there is a′ ∈ R such that aa′ = bc = u ·

∏
i∈I p

νi(b)+νi(c)
i .

Since a is irreducible, uniqueness of factorisation implies a ∼ pi for some i ∈ I
such that νi(b) + νi(c) > 0, hence a | b or a | c.
c) An integral domain R is called Euclidean, if it has a degree function
δ : R \ {0} → N0 having the following property: For all a, b ∈ R such that
b 6= 0 there are q, r ∈ R, called quotient and remainder respectively, such
that a = qb+ r where r = 0 or δ(r) < δ(b).

E. g. a field K is Euclidean with respect to the degree function K \ {0} →
N0 : x 7→ 0; and Z with respect to Z\{0} → N0 : z 7→ |z|; and K[X] with respect
to K[X] \ {0} → N0 : f 7→ deg(f). All these additionally fulfil δ(a) ≤ δ(ab) for
all 0 6= a, b ∈ R, and δ(a) < δ(ab) if moreover b 6∈ R∗.
If R is Euclidean, then it is factorial, hence for any a, b ∈ R there is r ∈
gcd(a, b) ⊆ R. Moreover, r can be computed by the Euclidean algorithm,
together with Bézout coefficients s, t ∈ R such that r = sa+ tb.

(2.4) Alphabets. a) A finite set X 6= ∅ is called an alphabet, its elements are
called letters or symbols, and |X | ∈ N is called its length. A finite sequence
w consisting of n ∈ N letters is called a word over X of length l(w) = n. The
empty sequence ε is called the empty word, and we let l(ε) := 0.

Let Xn be the set of all words of length n ∈ N0, let X≤m :=
∐
n∈{0,...,m} Xn and

X≥m :=
∐
n∈N,n≥m Xn for m ∈ N0, and let X ∗ :=

∐
n∈N0

Xn. For v, w ∈ X ∗ let
vw ∈ X ∗ be their concatenation. We have l(vw) = l(v)+l(w) and vε = εv = v
and (uv)w = u(vw), for u, v, w ∈ X ∗. Hence X ∗ is a monoid, the free monoid
over X . A subset L ⊆ X ∗ is called a (formal) language.

I Classical cryptography 8

b) To encrypt and decrypt plain English texts, say, we use the alphabet Xlatin =
{a, . . . , z} of Latin letters. These letters are encoded into and decoded from
the alphabet Z26 := {0, . . . , 25} as follows:

a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

In computer science, the binary alphabet Z2 := {0, 1} of length 2 is used. For
interchange of written texts the ASCII alphabet of length 128, being encoded
into and decoded from Z128 := {0, . . . , 127}, is used, see [2, Tbl.3.2].

3 Substitution ciphers

(3.1) Substitution ciphers. A cryptosystem such that P = C = X , where
X is an alphabet, is called a substitution or monoalphabetic cipher over
X . Most generally we let K := SX be the symmetric group on X , and let
the encryption and decryption functions associated with π ∈ SX be defined as
Eπ : X → X : v → vπ and Dπ : X → X : v → vπ−1. Thus we have EπDπ = idX ,
hence substitution ciphers are symmetric cryptosystems.

We have |K| = |SX | = |X |!, hence exhaustive search attacks are not feasible:
For example, for |X | = 26 we get |SX | = 26! ∼ 4 ·1026 ∼ 288. But it is inefficient
to store and evaluate arbitrary permutations in SX . Thus we might restrict to
suitable subsets of permutations in SX , an extreme case being the following:

(3.2) Shift ciphers. A shift cipher is given as follows: Let P = C = K := Zn,
where n ∈ N, and for k ∈ Zn let Ek : Zn → Zn : x 7→ x + k and Dk : Zn →
Zn : x 7→ x − k. We have EkDk = idZn ; for example, the Caesar cipher is
reported to be the case k = 3. A shift cipher can be interpreted as a substitution
cipher, where K = {(0, 1, . . . , n− 1)k ∈ SZn ; k ∈ Zn}.
For example, let n = 26, and encoding Xlatin into Z26, the word cryptography is
encoded letter by letter into the plaintext [2, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7, 24],
using k = 11 yields the ciphertext [13, 2, 9, 0, 4, 25, 17, 2, 11, 0, 18, 9], which is
decoded into ncjaezrclasj. To find the key k used, we launch a ciphertext-
only attack by exhaustive search, running through all possible keys, and indeed
recover k = 11 as the only sensible solution, see Table 1.

(3.3) Breaking substitution ciphers. We describe a ciphertext-only attack
using statistical properties of the plaintext language, here English:

Table 2 gives the probability pi, for i ∈ Z26, of occurrence of the various letters in
Xlatin, Thus e occurs most often, with probability 0.127, and [t,a,o,i,n,s,h,r]

I Classical cryptography 9

Table 1: Breaking a shift cipher.

k Dk([13, 2, 9, 0, 4, 25, 17, 2, 11, 0, 18, 9])

0 13 2 9 0 4 25 17 2 11 0 18 9 ncjaezrclasj

1 12 1 8 25 3 24 16 1 10 25 17 8 mbizdyqbkzri

2 11 0 7 24 2 23 15 0 9 24 16 7 lahycxpajyqh

3 10 25 6 23 1 22 14 25 8 23 15 6 kzgxbwozixpg

4 9 24 5 22 0 21 13 24 7 22 14 5 jyfwavnyhwof

5 8 23 4 21 25 20 12 23 6 21 13 4 ixevzumxgvne

6 7 22 3 20 24 19 11 22 5 20 12 3 hwduytlwfumd

7 6 21 2 19 23 18 10 21 4 19 11 2 gvctxskvetlc

8 5 20 1 18 22 17 9 20 3 18 10 1 fubswrjudskb

9 4 19 0 17 21 16 8 19 2 17 9 0 etarvqitcrja

10 3 18 25 16 20 15 7 18 1 16 8 25 dszquphsbqiz

11 2 17 24 15 19 14 6 17 0 15 7 24 cryptography

12 1 16 23 14 18 13 5 16 25 14 6 23 bqxosnfqzogx

13 0 15 22 13 17 12 4 15 24 13 5 22 apwnrmepynfw

14 25 14 21 12 16 11 3 14 23 12 4 21 zovmqldoxmev

15 24 13 20 11 15 10 2 13 22 11 3 20 ynulpkcnwldu

16 23 12 19 10 14 9 1 12 21 10 2 19 xmtkojbmvkct

17 22 11 18 9 13 8 0 11 20 9 1 18 wlsjnialujbs

18 21 10 17 8 12 7 25 10 19 8 0 17 vkrimhzktiar

19 20 9 16 7 11 6 24 9 18 7 25 16 ujqhlgyjshzq

20 19 8 15 6 10 5 23 8 17 6 24 15 tipgkfxirgyp

21 18 7 14 5 9 4 22 7 16 5 23 14 shofjewhqfxo

22 17 6 13 4 8 3 21 6 15 4 22 13 rgneidvgpewn

23 16 5 12 3 7 2 20 5 14 3 21 12 qfmdhcufodvm

24 15 4 11 2 6 1 19 4 13 2 20 11 pelcgbtencul

25 14 3 10 1 5 0 18 3 12 1 19 10 odkbfasdmbtk

have probability between 0.091 and 0.060 in decreasing order, while the other let-
ters have probability at most 0.043. The most frequent pairs and triples ordered
with respect to decreasing probability are [th,he,in,er,an,re,ed,on,es,st,
en,at,to,nt,ha,nd,ou,ea,ng,as,or,ti,is,et,it,ar,te,se,hi,of] as well
as [the,ing,and], respectively.

E. g. we consider the following ciphertext of length 168, and try to find the key
π ∈ SXlatin

used and to determine the plaintext:

yifqfmzrwqfyvecfmdzpcvmrzwnmdzvejbtxcddumj

ndifefmdzcdmqzkceyfcjmyrncwjcszrexchzunmxz

nzucdrjxyysmrtmeyifzwdyvzvyfzumrzcrwnzdzjj

xzwgchsmrnmdhncmfqchzjmxjzwiejyucfwdjnzdir

The frequency of occurrence of the various letters is given in Table 3. Since
z occurs much more often than any other ciphertext letter, we conjecture that

I Classical cryptography 10

Table 2: Probability of letters.

Xlatin Z26 pi

a 0 0.082
b 1 0.015
c 2 0.028
d 3 0.043
e 4 0.127
f 5 0.022
g 6 0.020
h 7 0.061
i 8 0.070
j 9 0.002
k 10 0.008
l 11 0.040
m 12 0.024

Xlatin Z26 pi

n 13 0.067
o 14 0.075
p 15 0.019
q 16 0.001
r 17 0.060
s 18 0.063
t 19 0.091
u 20 0.028
v 21 0.010
w 22 0.023
x 23 0.001
y 24 0.020
z 25 0.001

Dπ(z) = e. Since the eight ciphertext letters occurring most often, that is
at least nine times each, in decreasing order are {m, c, d, f, j, r, y, n},
we conjecture that the latter decrypt to {t, a, o, i, n, s, h, r}. Since
zw occurs four times, and w is rare, we conjecture that Dπ(w) = d. Since rw

occurs twice, and r is frequent, we conjecture that Dπ(r) = n. Since nz occurs
three times, while zn occurs only once, and n is frequent, we conjecture that
Dπ(n) = h. Hence we have:

C z w r n

P e d n h

......end.........e....nedh..e............

h.......e....e.........nh.d...en....e.h..e

he...n......n......ed...e...e..ne.ndhe.e..

.ed.....nh...h......e....ed.......d..he..n

Since c is frequent, the plaintext word ne.ndhe leads to conjecture Dπ(c) =
a. Since m is frequent, using mr, which occurs four times, we conjecture that
Dπ(m) ∈ {a, i, o} is a vowel, and since cm occurs once, where ai is much more
likely than ao, we conjecture that Dπ(m) = i. Hence we have:

C z w r n c m

P e d n h a i

.....iend.....a.i.e.a.inedhi.e......a...i.

h.....i.ea.i.e.a...a.i.nhad.a.en..a.e.hi.e

he.a.n.....in.i....ed...e...e.ineandhe.e..

.ed.a..inhi..hai..a.e.i..ed.....a.d..he..n

I Classical cryptography 11

Table 3: Frequency of letters.

Xlatin frequency

a 0
b 1
c 15
d 13
e 7
f 11
g 1
h 4
i 5
j 11
k 1
l 0
m 16

Xlatin frequency

n 9
o 0
p 1
q 4
r 10
s 3
t 2
u 5
v 5
w 8
x 6
y 10
z 20

From the frequent letters, we have Eπ(o) ∈ {d, f, j, y} left. If Eπ(o) 6= y,
then one of the ciphertexts cdm, cfm, cjm, which do occur, leads to a triple
of vowels, which is unlikely. Hence we conjecture Dπ(y) = o. Thus from the
frequent letters we have Dπ(d) ∈ {t, s, r} left. Since nmd occurs twice, we
conjecture that Dπ(d) = s. Since f is frequent, and the the plaintext word
.hai. could be completed to chair, this leads to the conjecture Dπ(f) = r and
Dπ(h) = c. Since j is the last remaining frequent letter, this implies Dπ(j) = t.
Hence we have:

C z w r n c m y d f h j

P e d n h a i o s r c t

o.r.riend.ro..arise.a.inedhise..t...ass.it

hs.r.riseasi.e.a.orationhadta.en..ace.hi.e

he.asnt.oo.in.i.o.redso.e.ore.ineandhesett

.ed.ac.inhischair.aceti.ted..to.ardsthes.n

Now a fraction of 127
168 ∼ 0.76 of all ciphertext letters has been decrypted. It is

thus easy to complete the plaintext, and to determine the key π ∈ SXlatin
, up to

those letters which do not occur at all in the plaintext:

our friend from paris examined his empty glass wit

h surprise as if evaporation had taken place while

he wasnt looking i poured some more wine and he sett

led back in his chair face tilted up towards the sun

I Classical cryptography 12

4 Block ciphers

(4.1) Block ciphers. A cryptosystem such that P = C = X l, where X is
an alphabet and l ∈ N, is called a block or polyalphabetic cipher over X
of block length l; a block cipher of block length 1 is a substitution cipher.
Most generally we let K := SX l be the symmetric group on X l, and let the
encryption and decryption functions associated with π ∈ SX l be defined as
Eπ : X l → X l : v → vπ and Dπ : X l → X l : v → vπ−1. Thus we have EπDπ =
idX l , hence block ciphers are symmetric cryptosystems.

We have |K| = |SX l | = (|X |l)!, hence exhaustive search attacks are not feasible.
But it is inefficient to store and evaluate arbitrary permutations in SX l . Thus
we restrict to suitable subsets of permutations in SX l :

(4.2) Permutation ciphers. A permutation cipher is a block cipher over
X of block length l, where K := Sl and where for π ∈ Sl we let Eπ : X l →
X l : [v1, . . . , vl] 7→ [v1π−1 , . . . , vlπ−1] as well as Dπ : X l → X l : [v1, . . . , vl] 7→
[v1π, . . . , vlπ]. Thus encryption and decryption only permutes the positions of
the letters in a block, and we have |K| = |Sn| = l!.

E. g. let X = Z26 and l = 6, as well as π := (1, 3)(2, 6, 4, 5) ∈ S6, and
thus π−1 = (1, 3)(2, 5, 4, 6) ∈ S6. Hence the word she sells sea shells by

the sea shore is cut into blocks of length 6, yielding shesel lsseas hellsb

ythese ashore. This is encoded block by block into plaintext in Z6
26 and ci-

phertext in Z6
26 is obtained as follows:

v Eπ(v)

shesel [18, 7, 4, 18, 4, 11] [4, 4, 18, 11, 18, 7] eeslsh

lsseas [11, 18, 18, 4, 0, 18] [18, 0, 11, 18, 4, 18] salses

hellsb [7, 4, 11, 11, 18, 1] [11, 18, 7, 1, 11, 4] lshble

ythese [24, 19, 7, 4, 18, 4] [7, 18, 24, 4, 4, 19] hsyeet

ashore [0, 18, 7, 14, 17, 4] [7, 17, 0, 4, 14, 18] hraeos

(4.3) Operation modes of block ciphers. To explain the operation modes
of block ciphers used in practice, we consider a block cipher over the alphabet
X := Z2 = {0, 1} of block length l. Recall that there are (2l)! keys, of which l!
are bit permutations, amongst which l are circular right bit shifts.

a) The electronic codebook mode (ECB) is the most basic one: Plaintexts
are just cut into blocks of length l, and encrypted and decrypted block by block;
if necessary random letters are added to obtain a word of length divisible by l.
Since equal plaintext blocks have equal encryptions, the allows for ciphertext-
only attacks using statistical properties of the plaintext language.

For example, for block length l := 4, and using the key π := (1, 2, 3, 4) ∈ S4 in
a permutation cipher, that is a circular right bit shift, the plaintext word 0001

0100 1010 yields the ciphertext word 1000 0010 0101.

I Classical cryptography 13

b) In cipherblock chaining mode (CBC) encryption of a block also depends
on previous ciphertext blocks. Thus this avoids the weakness of the ECB mode
mentioned above, and actually allows for using it for message authentication.

In order to proceed, we define an addition +: Z2 ×Z2 → Z2 and (for later use)
a multiplication · : Z2 × Z2 → Z2 on Z2 as follows; note that by identifying 0
and 1 with false and true, respectively, these amount to the logical exclusive or
(xor) and and operations, respectively:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Now let π ∈ SZl2 be a key, and let w0 ∈ Zl2 be an initialisation vector, which

can be made public. Given a sequence of plaintext blocks [v1, v2, . . .] ⊆ Zl2, we
recursively obtain the associated sequence of ciphertext blocks [w1, w2, . . .] ⊆ Zl2
as wi := Eπ(vi ⊕ wi−1), for i ∈ N, where addition ⊕ of vectors is performed
entrywise. To decrypt, let vi := Dπ(wi)⊕wi−1, for i ∈ N, where we indeed have
Dπ(Eπ(vi ⊕ wi−1))⊕ wi−1 = vi ⊕ wi−1 ⊕ wi−1 = vi.

Hence both encryption and decryption need xor operations, and an application
of a permutation, where the former computationally are fast operations, while
the latter is expensive. Since decryption has to take place completely after
encryption, this protocol might be too slow in real-time applications in which
messages have to be decrypted while receiving them.

For example, still letting l := 4, using the key π := (1, 2, 3, 4) ∈ S4 in a permu-
tation cipher, and using the initialisation vector w0 := [1, 0, 1, 0], the plaintext
word 0001 0100 1010 yields the ciphertext word 1101 1100 0011, where en-
cryption and decryption are given as follows:

i vi vi ⊕ wi−1 wi

0 [1, 0, 1, 0]
1 [0, 0, 0, 1] [1, 0, 1, 1] [1, 1, 0, 1]
2 [0, 1, 0, 0] [1, 0, 0, 1] [1, 1, 0, 0]
3 [1, 0, 1, 0] [0, 1, 1, 0] [0, 0, 1, 1]

c) To circumvent the above-mentioned weaknesses, keystreams are used as an
auxiliary tool. To describe how this is done, we need a few preparations first:

We may view the vector v = [xk−1, . . . , x0] ∈ Zk2 as the binary represen-

tation of the integer v̂ :=
∑k−1
i=0 xi · 2i ∈ Z2k := {0, . . . , 2k − 1}. Hence for

any l ∈ {0, . . . , k} we have (v̂ mod 2l) =
∑l−1
i=0 xi · 2i ∈ Z2l , saying that the

binary representation of (v̂ mod 2l) consists of the l lower bits (v mod 2l) :=

[xl−1, . . . , x0] ∈ Zl2 of v. Similarly, we have (v̂ ÷ 2l) := b v̂
2l
c =

∑k−1
i=l xi · 2i−l =∑k−l−1

i=0 xi+l · 2i ∈ Z2k−l , saying that the binary representation of (v̂ mod 2l)

consists of the k − l upper bits (v ÷ 2l) := [xk−1, . . . , xl] ∈ Zl−k2 of v. Finally,

I Classical cryptography 14

for any l ∈ N0 we have v̂ · 2l =
∑k−1
i=0 xi · 2i+l ∈ Z2k+l , saying that the binary

representation of v̂ · 2l is given by (v · 2l) := [xk−1, . . . , x0, 0, . . . , 0] ∈ Zk+l2 ,
obtained by an l-fold left bit shift from v. Note that cutting out bits and bit
shifts are computationally fast operations.

Now, in output feedback mode (OFB) an auxiliary block cipher of block
length k is used. We choose a key π ∈ SZk2 and an initialisation vector z̃0 ∈
Zk2 , giving rise to a keystream [z̃1, z̃2 . . .] ⊆ Zk2 . Genuine encryption takes
place on blocks of length l ≤ k, where for a given sequence of plaintext blocks
[v1, v2, . . .] ⊆ Zl2 we recursively obtain the associated sequence of ciphertext
blocks [w1, w2, . . .] ⊆ Zl2 as follows:

For i ∈ N let z̃i := Eπ(z̃i−1) ∈ Zk2 , and then let wi := vi ⊕ (z̃i ÷ 2k−l) ∈ Zl2. To
decrypt, for i ∈ N let z̃i := Eπ(z̃i−1) ∈ Zk2 , and then let vi := wi ⊕ (z̃i ÷ 2k−l) ∈
Zl2. Indeed, noting that the sequence [z̃1, z̃2, . . .] is independent of ciphertext
blocks, for i ∈ N we get wi ⊕ (z̃i ÷ 2k−l) = vi ⊕ (z̃i ÷ 2k−l)⊕ (z̃i ÷ 2k−l) = vi.

In particular, for k = l, we have an initialisation vector z0 ∈ Zl2, giving rise to the
keystream [z1, z2 . . .] defined by zi := Eπ(zi−1) for i ∈ N, and thus encryption
reads vi := wi ⊕ zi, and decryption reads wi := vi ⊕ zi, for i ∈ N.

Both encryption and decryption need xor operations, cutting out bits and bit
shifts, and an application of a permutation, where the former bit manipulations
computationally are fast operations, while the latter is expensive. Moreover,
since z̃i = Eπ(z̃i−1) is independent of ciphertext blocks, the expensive part of
decryption can be computed independently from any encryption going on. But
ciphertext blocks only depend on their position in the sequence of blocks, but
not on earlier ciphertext blocks, possibly making them easy to manipulate.

For example, letting k := 4, using the key π := (1, 2, 3, 4) ∈ S4 in a permutation
cipher, and using the initialisation vector z̃0 := [1, 0, 1, 0], the plaintext word
000 101 001 010, grouped into blocks of length l := 3, yields the ciphertext
word 010 000 011 111, encryption and decryption being given as follows:

i z̃i z̃i ÷ 2 vi wi

0 [1, 0, 1, 0]
1 [0, 1, 0, 1] [0, 1, 0] [0, 0, 0] [0, 1, 0]
2 [1, 0, 1, 0] [1, 0, 1] [1, 0, 1] [0, 0, 0]
3 [0, 1, 0, 1] [0, 1, 0] [0, 0, 1] [0, 1, 1]
4 [1, 0, 1, 0] [1, 0, 1] [0, 1, 0] [1, 1, 1]

Letting l := 4 instead, the plaintext word 0001 0100 1010 yields the ciphertext
word 0100 1110 1111, where encryption and decryption are given as follows:

i zi vi wi

0 [1, 0, 1, 0]
1 [0, 1, 0, 1] [0, 0, 0, 1] [0, 1, 0, 0]
2 [1, 0, 1, 0] [0, 1, 0, 0] [1, 1, 1, 0]
3 [0, 1, 0, 1] [1, 0, 1, 0] [1, 1, 1, 1]

I Classical cryptography 15

d) In cipher feedback mode (CFB) we again consider an auxiliary block
cipher of block length k. We choose a key π ∈ SZk2 and an initialisation vector

z̃0 ∈ Zk2 , now giving rise to an asynchronous keystream [z̃1, z̃2 . . .] ⊆ Zk2 ,
which also depends on genuine ciphertexts. Genuine encryption then takes
place on blocks of length l ≤ k, where for a given sequence of plaintext blocks
[v1, v2, . . .] ⊆ Zl2 we recursively obtain the associated sequence of ciphertext
blocks [w1, w2, . . .] ⊆ Zl2 as follows:

For i ∈ N let wi := vi⊕
(
Eπ(z̃i−1)÷2k−l

)
∈ Zl2 and z̃i :=

(
(z̃i−1 mod 2k−l)·2l

)
⊕

wi ∈ Zk2 ; note that z̃i is just the concatenation of (ṽi−1 mod 2k−l) ∈ Zk−l2 and
wi ∈ Zl2. To decrypt, for i ∈ N let vi := wi ⊕

(
Eπ(z̃i−1)÷ 2k−l

)
∈ Zl2 and z̃i :=(

(ṽi−1 mod 2k−l) · 2l
)
⊕ wi ∈ Zk2 . Indeed, noting that the sequence [z̃1, z̃2, . . .]

only depends on the ciphertext blocks [w1, w2, . . .], and thus is the same for the
encryption and decryption processes, for i ∈ N we get wi⊕

(
Eπ(z̃i−1)÷ 2k−l

)
=

vi ⊕
(
Eπ(z̃i−1)÷ 2k−l

)
⊕
(
Eπ(z̃i−1)÷ 2k−l

)
= vi.

In particular, for k = l we get z̃i = wi for i ∈ N, hence in particular we just have
an initialisation vector w0 ∈ Zl2, and thus encryption reads wi := vi⊕Eπ(wi−1),
and decryption reads vi := wi ⊕ Eπ(wi−1), for i ∈ N.

Hence still both encryption and decryption need xor operations, cutting out bits
and bit shifts, and an application of a permutation, where the former bit manip-
ulations computationally are fast operations, while the latter is expensive. But
z̃i−1 only depends on wi−1, thus Eπ(z̃i−1) can be computed without knowing
the ciphertext block wi to be decrypted, hence the expensive part of decryption
can already be done while encryption of vi still is under way. Moreover, the
smaller l ≤ k is, the more often encryption and decryption have to be used,
but the faster single blocks are transmitted, thus the choice of l is a trade-off
between the encryption and decyption speed, that is essentially the application
of a permutation, and transmission capacity.

For example, still letting k := 4, using the key π := (1, 2, 3, 4) ∈ S4 in a permu-
tation cipher, and using the initialisation vector ṽ0 := [1, 0, 1, 0], the plaintext
word 000 101 001 010, grouped into blocks of length l := 3, yields the cipher-
text word 010 101 100 001, encryption and decryption being given as follows:

i ṽi Eπ(ṽi−1) · ÷ 2 vi wi

0 [1, 0, 1, 0]
1 [0, 0, 1, 0] [0, 1, 0, 1] [0, 1, 0] [0, 0, 0] [0, 1, 0]
2 [0, 1, 0, 1] [0, 0, 0, 1] [0, 0, 0] [1, 0, 1] [1, 0, 1]
3 [1, 1, 0, 0] [1, 0, 1, 0] [1, 0, 1] [0, 0, 1] [1, 0, 0]
4 [0, 0, 0, 1] [0, 1, 1, 0] [0, 1, 1] [0, 1, 0] [0, 0, 1]

Letting l := 4 instead, the plaintext word 0001 0100 1010 yields the ciphertext

I Classical cryptography 16

word 0100 0110 1001, where encryption and decryption are given as follows:

i Eπ(wi−1) vi wi

0 [1, 0, 1, 0]
1 [0, 1, 0, 1] [0, 0, 0, 1] [0, 1, 0, 0]
2 [0, 0, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0]
3 [0, 0, 1, 1] [1, 0, 1, 0] [1, 0, 0, 1]

(4.4) Remark. Block ciphers play a major role in practice, where actually
iterated block ciphers are used:

a) Being given a block cipher over the alphabet X := Z2 = {0, 1} of block length
l ∈ N, we obtain a Feistel cipher of round number r ∈ N and block length
2l as follows: Depending on the key of the Feistel cipher chosen, let [e1, . . . , er]
be a key schedule, that is a sequence of r keys of the underlying block cipher.
To encrypt, a plaintext in X 2l is viewed as a concatenation [v0, w0] ∈ (X l)2,
allowing for recursively letting [vi, wi] := [wi−1, vi−1 ⊕ Eei(wi−1)] ∈ (X l)2, for
i ∈ {1, . . . , r}, where the associated ciphertext is [vr, wr]. Hence, given [vr, wr],
decryption is performed by letting backwardly [vi−1, wi−1] := [wi ⊕Eei(vi), vi];
note that the decryption functions of the underlying block cipher are not needed.

The Data Encryption Standard (DES) [1977] uses a Feistel cipher of block
length 64 and round number 16, where the set of keys has cardinality 256 ∼
7 · 1016. We spare the details of how the key schedule is determined from
the chosen key of the Feistel cipher, and how the encryption functions of the
underlying block cipher are actually defined; see [12, Ch.3.5] and [2, Ch.5], We
just note that, in contrast to the rounds of the Feistel cipher, and apart from the
linear process of adding a round key, the encryption functions are non-linear,
thought of being close to random permutations.

Various kinds of attacks against DES are known: Apart from the known-
plaintext linear cryptanalysis, see [12, Ch.3.3], and the chosen-plaintext dif-
ferential cryptanalysis [Biham-Shamir, 1991], see [12, Ch.3.4], the most suc-
cessful one is the exhaustive search attack using the specially tailored ‘DES
Cracker’ machine, which using distributed computing allows to break DES in a
few hours. Still, DES continues to be useful as soon as multiple encryption is
used. This is based on the fact the permutations induced by the 256 keys do not
form a subgroup of S264 , but the subgroup thus generated is reported to have
order at least 102499.

b) The Advanced Encryption Standard (AES) [2001] uses the so-called
Rijndael cipher over the alphabet X := Z2 = {0, 1} of block length 128,
where various sets of keys of cardinality 2128 ∼ 3 · 1038 and 2192 ∼ 3 · 1057 and
2256 ∼ 1077 are allowed, and where depending on the latter the round number
equals 10 and 12 and 14, respectively.

Again we spare the details of how the key schedule is determined from the key
chosen, and how the encryption functions of the underlying block cipher are

I Classical cryptography 17

actually defined; see [12, Ch.3.6] and [2, Ch.6]. But we note that, in contrast to
the underlying block cipher of DES, the encryption functions of AES are more
algebraic. More precisely, a plaintext in X 128 is viewed as a concatenation in
(X 8)16, that is a sequence of length 16 consisting of 8-bit sequences. Hence AES
can be seen as being based on a block cipher of block length 8, and thus from
the practical side is Byte-oriented. Moreover, X 8 is identified with the finite
field F256 of order 28 = 256, given by F256

∼= Z2[T]/(T 8 + T 4 + T 3 + T + 1).
Hence, apart from the linear process of adding a round key, the non-linear pieces
of encryption are partly described in terms of the arithmetic of F256.

5 Affine ciphers

(5.1) Determinants and affine maps. a) Let R be a commutative ring. For
n ∈ N let Rn be the set of n-tuples of elements of R, written as rows. Let
Rn×n be the ring of (n × n)-matrices over R, with usual matrix addition and
multiplication and usual scalar multiplication.

For A = [aij]ij ∈ Rn×n let det(A) :=
∑
π∈Sn sgn(π) ·

∏n
i=1 ai,iπ ∈ R be the

determinant of A, where sgn: Sn → {±1} is the sign homomorphism. The
determinant map is R-multilinear and alternating, that det(En) = 1, where
En ∈ Rn×n is the identity matrix, and that the row and column expansion
formulae and the product rule hold.

For i, j ∈ {1, . . . , n} let Aij ∈ R(n−1)×(n−1) be the matrix obtained from A by
deleting the i-th row and the j-th column, where for n = 1 we let A11 := [] ∈
R0×0. Then det(Aij) ∈ R is called the [i, j]-th minor of A, where for n = 1 we
let det(A11) = det([]) := 1 ∈ R. Let adj(A) := [(−1)i+j · det(Aji)]ij ∈ Rn×n
be the adjoint matrix associated with A. Then we have the adjointness
theorem A · adj(A) = adj(A) ·A = det(A) · En:

For i ∈ {1, . . . , n} let ai = [ai1, . . . , ain] ∈ Rn be the i-th row of A, and let ei ∈
Rn be the i-th unit vector. Thus for i, k ∈ {1, . . . , n} we have (A · adj(A))ik =∑n
j=1 aij · (−1)j+k · det(Akj) =

∑n
j=1 aij · det(a1, . . . , ak−1, ej , ak+1, . . . , an) =

det(a1, . . . , ak−1,
∑n
j=1 aijej , ak+1, . . . , an) = det(a1, . . . , ak−1, ai, ak+1, . . . , an).

Thus (A · adj(A))ik = det(A) · δik, showing A · adj(A) = det(A) · En. From
Atr · adj(Atr) = det(Atr) ·En, using det(Atr) = det(A) and adj(Atr) = adj(A)tr,
we also get adj(A) ·A = det(A) · En.]

Thus A ∈ Rn×n is invertible, i. e. there are B,B′ ∈ Rn×n such that AB =
B′A = En, if and only if det(A) ∈ R∗, where R∗ is the group of units of
R: From AB = En we get det(A) det(B) = det(AB) = det(En) = 1, hence
det(A) ∈ R∗, and the converse follows from the adjointness theorem. The set of
invertible (n×n)-matrices over R is a multiplicative group GLn(R) = (Rn×n)∗,
being called the general linear group of size n over R; in particular we have
GL1(R) = R∗. The inverse A−1 = B = B′ ∈ GLn(R) of A ∈ GLn(R) is unique
and given as A−1 = det(A)−1 · adj(A).

b) Given A ∈ Rn×n and b ∈ Rn, the map ϕA,b : Rn → Rn : v 7→ vA + b is

I Classical cryptography 18

called an affine R-linear map; for b = 0 we get the R-linear map ϕA,0 =
ϕA : Rn → Rn : v 7→ vA. The map ϕA,b : Rn → Rn is a bijection if and only
if A ∈ GLn(R); in this case its inverse is given as ϕA−1,−bA−1 : Rn → Rn, thus
also is affine R-linear:

If A ∈ GLn(R) then vϕA,bϕA−1,−bA−1 = (vA+ b)ϕA−1,−bA−1 = (vA+ b)A−1 −
bA−1 = v and vϕA−1,−bA−1ϕA,b = (vA−1− bA−1)ϕA,b = (vA−1− bA−1)A+ b =
v, for all v ∈ Rn. Conversely, if ϕA,b is a bijection, then since by the above
ϕEn,−b is a bijection, the R-linear map ϕA = ϕA,bϕEn,−b is a bijection as well,
and since ϕA is R-linear we have A ∈ GLn(R) and ϕ−1A = ϕA−1 .]

(5.2) Affine ciphers. Let n ∈ N and R := Zn. A block cipher over R of
block length l ∈ N is called an affine cipher, if the set of keys is given as
K := GLl(R)×Rl, and the encryption and decryption functions associated with
[A, b] ∈ K are the affine R-linear maps EA,b = ϕA,b : Rl → Rl : v 7→ vA+ b and
DA,b = ϕ−1A,b = ϕA−1,−bA−1 : Rl → Rl : v 7→ (v − b)A−1, respectively. Hence
affine ciphers are symmetric cryptosystems.

For A = El we in particular obtain the Vigenère cipher [1553], whose set of
keys is K := Rl, and whose encryption and decryption functions for b ∈ Rl are
the translations Eb = ϕEl,b : Rl → Rl : v 7→ v + b and Db = ϕEl,−b : Rl →
Rl : v 7→ v − b, respectively. Hence |K| = |R|l = nl; for l = 1 we recover the
shift cipher.

For b = 0 we in particular obtain the Hill cipher [1929], whose set of keys is
K := GLl(R), and whose encryption and decryption functions for A ∈ GLl(R)
are the R-linear maps EA = ϕA,0 : Rl → Rl : v 7→ vA and DA = ϕA−1,0 : Rl →
Rl : v 7→ vA−1, respectively. Hence the Hill cipher is the most general R-linear
cipher, and we have |K| = |GLl(R)|; we recover the permutation cipher with
key π ∈ Sl by using the permutation matrix Aπ := [δj,iπ]ij ∈ Rl×l; we have
A−1π = Aπ−1 = Atr

π ∈ GLl(R).

(5.3) Breaking affine ciphers. Ciphertext-only attacks against general affine
ciphers might be difficult, but they are vulnerable to known-plaintext attacks:

We first consider a Hill cipher, and assume we have l plaintext-ciphertext pairs
[v1, w1], . . . , [vl, wl] ∈ Rl × Rl, thus wi = viA ∈ Rl, where A ∈ K. Letting
M := [v1, . . . , vl] ∈ Rl×l and W := [w1, . . . , wl] ∈ Rl×l be the matrices whose
rows consist of the vi ∈ Rl and wi ∈ Rl, respectively, we thus have W = MA.
Additionally assuming that M ∈ GLl(R) we get A = M−1W ∈ Rl×l; if M is
not invertible more plaintext-ciphertext pairs must be collected.

In the case of an arbitrary affine cipher, assume we have l+1 plaintext-ciphertext
pairs [v0, w0], . . . , [vl, wl] ∈ Rl × Rl. Then we have wi = viA + b ∈ Rl, where
[A, b] ∈ K. Letting M := [v1−v0, . . . , vl−v0] ∈ Rl×l and W := [w1−w0, . . . , wl−
w0] ∈ Rl×l be the matrices whose rows consist of vi−v0 ∈ Rl and wi−w0 ∈ Rl,
respectively, we thus have W = MA. Additionally assuming that M ∈ GLl(R)
we get A = M−1W ∈ Rl×l; if M is not invertible more plaintext-ciphertext

I Classical cryptography 19

Table 4: Frequency of letters.

Xlatin frequency

a 2
b 1
c 0
d 7
e 5
f 4
g 0
h 5
i 0
j 0
k 5
l 2
m 2

Xlatin frequency

n 1
o 1
p 2
q 0
r 8
s 3
t 0
u 2
v 4
w 0
x 2
y 1
z 0

pairs must be collected. From knowing A we get b = wi − viA ∈ Rl anyway.

i) For example, we consider a Hill cipher over R := Z26 with block length l = 3,
and we assume we know the following plaintext-ciphertext pair:

conversation 7→ alspuplauung

This yields [v1, . . . , v4] = [[18, 20, 1], [18, 19, 8], [19, 20, 19], [8, 14, 13]] ⊆ Z3
26 and

[w1, . . . , w4] = [[0, 11, 18], [15, 20, 15], [11, 0, 20], [20, 13, 6]] ⊆ Z3
26. Letting M :=

[v1, . . . , v3] ∈ Z3×3
26 and W := [w1, . . . , w3] ∈ Z3×3

26 we get det(M) = 25 ∈ Z∗26,
hence M ∈ GL3(Z26), and thus

A := M−1W =

7 22 15
8 15 22
1 6 18

 ·
 0 11 18

15 20 15
11 0 20

 =

 1 23 2
25 24 3
2 1 0

 ∈ Z3×3
26 ,

where indeed det(A) = 11 ∈ Z∗26, hence A ∈ GL3(Z26). Note that for M ′ :=
[v1, v3, v4] ∈ Z3×3

26 we get det(M ′) = 22 ∈ Z26 \ Z∗26, implying that M ′ 6∈
GL3(Z26), so that we cannot use M ′ for this attack.

ii) For example, in the substitution cipher case l = 1, where hence K = R∗×R,
this method even allows for a ciphertext-only attack. Let R = Z26 and consider
the following ciphertext of length 57:

fmxvedkaphferbndkrxrsrefmorudsdkdvshvufedkaprkdlyevlrhhrh

We try to find the key [a, b] ∈ K used and to determine the plaintext, again using
statistical properties of the plaintext language. The frequency of occurrence of
the various letters is given in Table 4. The most frequent ciphertext letters are

I Classical cryptography 20

r and {d, e, h, k}. We conjecture that the most frequent plaintext letters
are e, t, and hence that Ea,b(e) = r and Ea,b(t) ∈ {d, e, h, k}. This yields
Ea,b(4) = 4a+ b = 17 ∈ Z26 and Ea,b(19) = 19a+ b ∈ {3, 4, 7, 10} ⊆ Z26. Hence
we have 15a ∈ {12, 13, 16, 19} ⊆ Z26, and since indeed 15 ∈ Z∗26 we conclude
a ∈ 15−1 · {12, 13, 16, 19} = 7 · {12, 13, 16, 19} = {6, 13, 8, 3} ⊆ Z26. For these
cases we only have 3 ∈ Z∗26. Thus conjecturing a = 3 ∈ Z26 yields b = 5 ∈ Z26,
and trying D3,5 : Z26 → Z26 : x 7→ (x− 5) · 3−1 = 9x+ 7 indeed yields:

algorithms are quite general definitions of arithmetic processes

(5.4) Breaking Vigenère ciphers. We show a ciphertext-only attack, where
we first aim to determe the block length l. We present two variants to do this:

i) The Kasiski-Babbage test [1863, 1854] is based on the fact that plaintext
words are encrypted to the same ciphertext words if their positions differ by a
multiple of l. Hence we look for ciphertext words of a fixed not too small length
occurring more than once, and conjecture that l divides the greatest common
divisor of their mutual distances; this is feasible for arbitrary block lengths.

ii) We consider the index of coincidence [Friedman, 1920]: If letters are
uniformly distributed, the probability that picking two letters uniformly and
independently yields one and the same letter equals

∑
i∈Z26

1
262 = 1

26 ∼ 0.0385;

using the probability distribution u := 1
26 ·[1, . . . , 1] ∈ R26, this can be rephrased

as computing the standard scalar product 〈u, u〉 = 1
26 . In the same vein, letting

p := [p0, . . . , p25] ∈ R26, where pi, for i ∈ Z26, is the probability of occurrence of
letters in plaintexts as given in Table 2, the above probability becomes 〈p, p〉 =∑
i∈Z26

p2i = 65601
106 ∼ 0.0656; this number does not change under substitution.

Note that, since 〈u, p〉 = 1
26 ·

∑
i∈Z26

pi = 1
26 , the Cauchy-Schwarz inequality

〈u, p〉2 ≤ 〈u, u〉 · 〈p, p〉 implies 〈p, p〉 ≥ 1
26 , with equality if and only if p = u.

A word w of length l(w) is interpreted as the outcome of picking l(w) letters
uniformly and independently. Letting fi(w) ∈ {0, . . . , l(w)} be the frequency

of occurrence of the letter i ∈ Z26, there are
∑
i∈Z26

(
fi(w)

2

)
unordered pairs of

equal letters, amongst all
(
l(w)
2

)
unordered pairs. Hence the index of coin-

cidence I(w) := 1

(l(w)
2)
·
∑
i∈Z26

(
fi(w)

2

)
= 1

l(w)(l(w)−1) ·
∑
i∈Z26

fi(w)(fi(w) − 1)

approximates the above probability 〈p, p〉.
To apply this, let v = [v1, v2, . . .] ⊆ Z26 be a ciphertext. Then for k ∈ N and
j ∈ {1, . . . , k} we consider the word wj := [vj , vj+k, vj+2k, . . .] ⊆ Z26. Hence if
the block length l divides k, all letters in wj are shifted by the same element
bj ∈ Z26, hence we expect I(wj) ∼ 〈p, p〉 ∼ 0.0656. If l does not divide k,
then each letter in wj can be considered to be shifted by a random element of
Z26, thus the letters in wj should be uniformly distributed, hence we expect
I(wj) ∼ 〈u, u〉 ∼ 0.0385. The numbers I(wj) are computed successively for
increasing values of k ∈ N; hence this is feasible only for small block lengths.

iii) Having a conjecture for the block length l, we aim to find the key used, that
is the translation b = [b1, . . . , bl] ∈ Zl26:

I Classical cryptography 21

Table 5: Kasiski-Babbage test.

word positions

tui [19, 20, 8] 167, 237, 277, 287
chr [2, 7, 17] 1, 36
voa [21, 14, 0] 6, 161
atb [0, 19, 1] 14, 124
mnn [12, 13, 13] 20, 55
nng [13, 13, 6] 21, 76
tce [19, 2, 4] 95, 220
ceq [2, 4, 16] 96, 221
tbo [19, 1, 14] 120, 125
xan [23, 0, 13] 194, 224
axa [0, 23, 0] 163, 179

Let π ∈ SZ26
be any permutation, and let pπ := [p0π−1 , . . . , p25·π−1] ∈ R26 be the

accordingly substituted probability distribution. Then we have 〈pπ, pπ〉 = 〈p, p〉,
and hence the Cauchy-Schwarz inequality 〈p, pπ〉2 ≤ 〈p, p〉 · 〈pπ, pπ〉 implies∑
i∈Z26

pipiπ−1 = 〈p, pπ〉 ≤ 〈p, p〉, with equality if and only if pπ = p, that is π
leaves the subsets of Z26 consisting of letters with equal probability fixed.

Now let pm be the probability distribution obtained by the permutation induced
by shifting with m ∈ Z26. Applying m 6= 0 can be considered as a random
non-trivial shift, hence we expect that 〈p, pm〉 is independent of the choice of
m 6= 0. Thus from

∑
m∈Z26

〈p, pm〉 = 〈p,
∑
m∈Z26

pm〉 = 〈p, [1, . . . , 1]〉 = 1 we get

〈p, pm〉 ∼ 1
25 (1− 〈p, p〉) ∼ 0.0374.

As far as the permutation induced by shifting with bj is concerned, we observe

that the probability pi−bj is approximated by
fi(wj)
l(wj)

, for i ∈ Z26. Thus varying

m ∈ Z26, the sum Im(wj) := 1
l(wj)

·
∑
i∈Z26

pifi+m(wj) should be maximal for

m = bj , in which case we expect Im(wj) ∼ 〈p, pbj−m〉 = 〈p, p〉 ∼ 0.0656. If
m 6= bj , then the letters in wj can be considered to be shifted by a random
element in Z26 \ {0}, hence we expect Im(wj) ∼ 1

25 (1 − 〈p, p〉) ∼ 0.0374. The
numbers Im(wj) are computed for all m ∈ Z26, which amounts to 26 · l checks,
instead of 26l inecessary for an exhaustive search.

E. g. we consider the following ciphertext of length 314:

chreevoahmaeratbiaemnngemrvrfexsfsfchrhthsjik

nlbrznrbjmnnrrwrntabchzezwismvnngionnvrzbosgh

arhktceqtbwkfobnsglxquaxbwgfitboaatboiikfigla

xuahljnqknwscymjwncyxrfmqvoaxabtuiornrctadfax

aeoylhatebwafxanwrpexrtegrzrhyjrzikbteitceqxa

niezbwefegmtuifxrrptlknhtrsvgtunrmzqbbvlquevb

ndgswxtuiiauamgptuirbhbyemhnzxmoaibwnbzxvbrv

I Classical cryptography 22

Table 6: Index of coincidence.

k j I(wj) ∼
1 1 0.0463
2 1 0.0476
2 2 0.0482
3 1 0.0491
3 2 0.0447
3 3 0.0424
4 1 0.0458
4 2 0.0448
4 3 0.0500
4 4 0.0476
5 1 0.0742
5 2 0.0630
5 3 0.0742
5 4 0.0625
5 5 0.0635

k j I(wj) ∼
6 1 0.0385
6 2 0.0493
6 3 0.0468
6 4 0.0649
6 5 0.0505
6 6 0.0483
7 1 0.0495
7 2 0.0505
7 3 0.0545
7 4 0.0515
7 5 0.0495
7 6 0.0444
7 7 0.0423
8 1 0.0538
8 2 0.0474
8 3 0.0661
8 4 0.0567
8 5 0.0445
8 6 0.0526
8 7 0.0567
8 8 0.0432

k j I(wj) ∼
9 1 0.0706
9 2 0.0403
9 3 0.0319
9 4 0.0454
9 5 0.0319
9 6 0.0286
9 7 0.0437
9 8 0.0403
9 9 0.0321

10 1 0.0625
10 2 0.0726
10 3 0.0706
10 4 0.0484
10 5 0.0731
10 6 0.0774
10 7 0.0538
10 8 0.0710
10 9 0.0989
10 10 0.0559

We look for words of length 3 occurring more than once, and collect their po-
sitions as given in Table 5. From this we conjecture l = 5. Similarly, for
k ∈ {1, . . . , 6} we compute the indices of coincidence I(w1), . . . , I(wk) as given
in Table 6, and again we are led to the conjecture l = 5. Finally, for all wj and
m ∈ Z26 we compute Im(wj) as given in Table 7. This yields the conjecture
b = [9, 0, 13, 4, 19] ∈ Z6

26 which decodes to janet. Indeed we get:

the almond tree was in a tentative blossom the days wer

e longer often ending with magnificent evenings of co

rrugated pink skies the hunting season was over with h

ounds and guns put away for six months the vineyards we

re busy again as the well organized farmers treated th

eir vines and the more lackadaisical neighbors hurri

ed to do the pruning they should have done in november

I Classical cryptography 23

Table 7: Shifts.

j Im(wj) ∼
1 0.0338 0.0304 0.0347 0.0365 0.0364 0.0429 0.0301 0.0303 0.0464

0.0716 0.0376 0.0267 0.0306 0.0493 0.0369 0.0370 0.0311 0.0309
0.0350 0.0458 0.0465 0.0371 0.0429 0.0404 0.0415 0.0372

2 0.0623 0.0394 0.0316 0.0414 0.0388 0.0352 0.0444 0.0370 0.0291
0.0409 0.0435 0.0363 0.0323 0.0479 0.0432 0.0412 0.0376 0.0350
0.0305 0.0352 0.0388 0.0365 0.0417 0.0293 0.0249 0.0457

3 0.0476 0.0426 0.0407 0.0361 0.0327 0.0338 0.0372 0.0327 0.0327

0.0441 0.0308 0.0269 0.0481 0.0696 0.0430 0.0329 0.0323 0.0427
0.0353 0.0361 0.0308 0.0287 0.0348 0.0410 0.0462 0.0401

4 0.0509 0.0344 0.0312 0.0340 0.0630 0.0339 0.0370 0.0376 0.0435
0.0267 0.0330 0.0372 0.0362 0.0355 0.0347 0.0443 0.0407 0.0456
0.0306 0.0444 0.0424 0.0417 0.0377 0.0382 0.0330 0.0323

5 0.0443 0.0402 0.0320 0.0269 0.0362 0.0402 0.0448 0.0360 0.0505
0.0335 0.0341 0.0380 0.0451 0.0383 0.0335 0.0429 0.0333 0.0331

0.0365 0.0607 0.0348 0.0345 0.0327 0.0501 0.0333 0.0345

6 Stream ciphers

(6.1) Stream ciphers. A symmetric cryptosystem [P, C,K, E ,D] together with
a keystream generator S = {Si; i ∈ N}, consisting of maps Si : K×Ci−1 → K,
is called a stream cipher. A stream cipher is called synchronous, if the maps
Si only depend on K, otherwise it is called asynchronous.

In the synchronous case, for a seed key k0 ∈ K let ki := Si(k0) ∈ K, for i ∈ N,
be the associated keystream. A keystream is called periodic of period l ∈ N,
if for all seed keys k0 ∈ K we have ki+l = ki ∈ K, for i ∈ N0.

The idea is, starting with a seed k0 ∈ K, to vary the key Si(k0, [p1, . . . , pi−1]) ∈ K
used for each plaintext pi ∈ P encrypted, possibly depending on the earlier plain-
texts [p1, . . . , pi−1] ∈ Pi−1. The idea of synchronous ciphers is that Alice and
Bob are able to compute the keystream simultaneously, while for asynchronous
ciphers Alice has to receive and decrypt earlier ciphertexts first.

E. g. any conventional cryptosystem can be considered as a synchronous stream
cipher with constant keystream ki = k0 ∈ K, for i ∈ N. E. g. the operation
modes ECB and OFB of block ciphers over Z2 are synchronous stream ciphers,
where the former has a constant keystream, while CBC and CFB are asyn-
chronous stream ciphers. E. g. the Vigenère cipher over R of block length
l ∈ N can be considered as a synchronous stream cipher of period l ∈ N, where
P = C = R: For a key b = [b1, . . . , bl] ∈ Rl let ki = bi for i ∈ {1, . . . , l}, and
ki := ki−l for i ≥ l+ 1. This indicates that synchronous stream ciphers of short
periods are vulnerable to ciphertext-only attacks using the Kasiski-Babbage test

I Classical cryptography 24

or coincidence indices.

(6.2) Autokey ciphers. The autokey cipher is the asynchronous stream
cipher given as follows: Let P = C = K = Zn, where n ∈ N, and for k ∈ Zn
let Ek : Zn → Zn : x 7→ x + k and Dk : Zn → Zn : x 7→ x− k be the encryption
and decryption functions of the shift cipher. For a seed k0 ∈ Zn, the keystream
generator is defined as k1 = S1(k0) := k0 ∈ Zn, and ki = Si(k0, [c1, . . . , ci−1]) :=
Dki−1

(ci−1) = pi−1 ∈ Zn for i ≥ 2,

E. g. for n = 26 the plaintext rendezvous gives [17, 4, 13, 3, 4, 25, 21, 14, 20, 18],
and the keystream associated with k0 = 8 is [8, 17, 4, 13, 3, 4, 25, 21, 14, 20]. This
yields [25, 21, 17, 16, 7, 3, 20, 9, 8, 12], thus the ciphertext is zvrqhdujim.

(6.3) LFSR-based stream ciphers. a) In practice, stream ciphers are often
realized over the finite field F2 = Z2. Hence more generally we let P = C = K :=
Fq be the finite field with q elements; thus q might be any prime power, but
typically we consider the case Fp = Zp, where p is a prime. For k ∈ Fq let again
Ek : Fq → Fq : x 7→ x+k and Dk : Fq → Fq : x 7→ x−k. This becomes a periodic
synchronous stream cipher by using a linear recurrence of degree d ∈ N; in
practice these are realized by linear feedback shift registers (LFSR):

Let γ := [c0, . . . , cd−1] ∈ Fdq be fixed. For a seed κ := [k1, . . . , kd] ∈ Fdq let the

keystream be defined by ki :=
∑d−1
j=0 cjki−d+j = [ki−d, . . . , ki−1] · γtr ∈ Fq for

i ≥ d + 1. Hence we may assume that c0 6= 0 ∈ Fq, since otherwise we have a
linear recurrence of degree d− 1. For the seed κ = 0 ∈ Fdq we get ki = 0 for all
i ∈ N, and thus the identity as encryption and decryption functions, hence the
interesting case is κ 6= 0.

For i ≥ d+ 1 we have [ki−d+1, . . . , ki] = [ki−d, . . . , ki−1] · Cγ ∈ Fdq , where

Cγ :=

0 · · · c0
1 0 · · · c1
0 1 0 · · · c2
...

. . .
. . .

...
1 0 cd−2

0 · · · 1 cd−1

∈ Fd×dq

is the (transposed of the) companion matrix of the generating polynomial

pγ := Xd −
∑d−1
j=0 cjX

j ∈ Fq[X]. Hence we have det(Cγ) = (−1)d−1 · c0 ∈ Fq,
thus the assumption c0 6= 0 amounts to saying that Cγ is invertible, and hence
the associated Fq-linear map Fdq → Fdq : κ 7→ κ · Cγ is bijective. Thus for any

κ ∈ Fdq the keystream is periodic, the seed κ = 0 being a fixed point; note that

since |Fdq | = qd is finite, in the case c0 = 0 the keystream still is finally periodic.

b) To determine periods, we first determine the characteristic and minimum
polynomials of Cγ : For the unit vector e1 := [1, 0, . . . , 0] ∈ Fdq , the sequence

[Ciγ ·etr1 ; i ∈ {0, . . . , d−1}] = [etr1 , e
tr
2 , . . . , e

tr
d] ⊆ Fd×1q is Fq-linearly independent,

I Classical cryptography 25

while Cdγ · etr1 = Cγ · etrd =
∑d
j=1 cj−1e

tr
j ∈ Fd×1q . This implies that the minimum

polynomial of etr1 ∈ Fd×1q with respect to Cγ equals µCγ ,etr1 = pγ ∈ Fq[X].
Since µCγ ,etr1 divides the minimum polynomial µCγ ∈ Fq[X] of Cγ , and by
the Cayley-Hamilton Theorem the latter divides the characteristic polynomial
χCγ := det(X ·Ed −Cγ) ∈ Fq[X], which in turn has degree d, we conclude that
χCγ = µCγ = µCγ ,etr1 = pγ ∈ Fq[X].

Thus for the minimum polynomial µCγ ,κ ∈ Fq[X] of κ ∈ Fdq with respect to Cγ
we have µCγ ,κ | pγ ∈ Fq[X]. Hence we may assume that µCγ ,κ = pγ , otherwise
we use µCγ ,κ instead as a generating polynomial of smaller degree; if pγ is
irreducible, then for any κ 6= 0 we have µCγ ,κ = pγ anyway. Now the period of
κ is given as l ∈ N minimal such that κ ·Clγ = κ, that is κ · (Clγ −Ed) = 0, thus

the period of κ is given as l ∈ N minimal such that pγ | X l − 1 ∈ Fq[X].

Since |Fdq \ {0}| = qd − 1, the best possible case is l = qd − 1, in other words all
κ 6= 0 are in one and the same Cγ-orbit. Actually, there always is an irreducible
polynomial pγ of degree d yielding period qd − 1:

The finite field Fqd can be considered as an Fq-vector space of Fq-dimension d.
Thus for any a ∈ Fqd we have an associated Fq-linear map â : Fqd → Fqd : x 7→
xa. Then µa := µâ ∈ Fq[X] is called the minimum polynomial of a ∈ Fqd over
Fq. Hence it follows from Fqd being an integral domain that µa is irreducible.
Moreover, if µa | X l−1, then we have al = 1 ∈ F∗qd . Now by Artin’s Theorem,

see (8.3), there is a primitive root ρ ∈ F∗qd , that is l = qd − 1 is minimal such

that ρl = 1, implying that µρ ∈ Fq[X] has the desired properties.]

c) This leads to the following known-plaintext attack, aiming at finding the
degree d and the vector γ ∈ Fdq : Let [vi, wi] ∈ Fq × Fq for i ∈ {1, . . . , 2n} be
plaintext-ciphertext pairs, where n ∈ N. Then we have ki = wi − vi ∈ Fq, and
we let

Mn :=

k1 k2 · · · kn
k2 k3 · · · kn+1

...
...

...
kn kn+1 · · · k2n−1

 ∈ Fn×nq .

For n ≥ d = deg(pγ) there is a matrix Pn,d = [Ed; γ, ∗, . . . , ∗] ∈ Fn×dq , for

suitable rows ‘∗’ in Fdq , such that Mn = Pn,d ·Md ·P tr
n,d, implying that rk(Mn) =

rk(Md). Moreover, we have Md = [κ, κ · Cγ , . . . , κ · Cd−1γ] ∈ Fd×dq , hence from
pγ = µCγ ,κ we infer that rk(Md) = d. Thus we find d conjecturally by computing
rk(Mn) for increasing values of n ∈ N. Finally, we have γ·Md = [kd+1, . . . , k2d] ∈
Fdq , and since Md is invertible we get γ = [kd+1, . . . , k2d] ·M−1d ∈ Fdq .

For example, let d := 4 and γ := [1, 1, 0, 0] ∈ F4
2, thus pγ = X4 + X + 1 ∈

F2[X]. Since X2 + X + 1 ∈ F2[X] is the only irreducible polynomial of degree
2, we have the factorisations X3 + 1 = (X + 1)(X2 + X + 1) ∈ F2[X] and
X5 + 1 = (X + 1)(X4 + X3 + X2 + X + 1) ∈ F2[X], and finally X15 + 1 =
(X+1)(X2+X+1)(X4+X3+X2+X+1) ·(X4+X+1)(X4+X3+1) ∈ F2[X].

I Classical cryptography 26

Thus pγ ∈ F2[X] is irreducible, and we have pγ | X15 + 1, but pγ - Xk + 1 for
all proper divisors k of 15.

Hence for κ := [1, 0, 1, 0] ∈ F4
2 the associated keystream of period 15 is given as

[1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1; 1, 0, 1, 0, . . .] ⊆ F2. Using the initial elements
of the keystream, we for n ∈ N get rk(Mn) as [1, 2, 2, 4, 4, 4, 4, . . .], and indeed
[1, 1, 1, 1] ·M−14 = [1, 1, 0, 0] = γ ∈ F4

2, where

M7 =

1 0 1 0 1 1 1
0 1 0 1 1 1 1
1 0 1 1 1 1 0
0 1 1 1 1 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 1
1 1 0 0 0 1 0

and M−14 =

1 1 0 1
1 1 1 0
0 1 0 1
1 0 1 0

 .

7 Perfect security

(7.1) Probability spaces. a) Let X 6= ∅ be a finite set, called the sample
space. The subsets of X are called events, the elements of X are called ele-
mentary events, the subset ∅ ⊆ X is called the null event, and X ⊆ X is
called the certain event. Two events A,B ⊆ X such that A∩B = ∅ are called
mutually exclusive.

Let Pot(X) be the power set of X, i. e. the set of all events. Then a map
µ = µX : Pot(X) → R≥0 is called a probability distribution or measure
on X, if i) µ(X) = 1, and ii) µ(A ∪ B) = µ(A) + µ(B) whenever A,B ⊆ X
such that A ∩B = ∅. The set X together with the probability distribution µ is
called a probability space or measure space. Given an event A ⊆ X, then
µ(A) ∈ R≥0 is called its probability or its measure; for x ∈ X we also write
µ(x) := µ({x}).
For A ⊆ X we have µ(X\A) = µ(X)−µ(A) = 1−µ(A), in particular µ(∅) = 1−
µ(X) = 0. Since X is finite, for A =

∐
x∈A{x} ⊆ X we have µ(A) =

∑
x∈A µ(x),

implying monotonicity µ(A) ≤ µ(B) for A ⊆ B ⊆ X, in particular 0 ≤ µ(A) ≤
1. Moreover, µ is uniquely determined by the µ(x) for all elementary events
x ∈ X; conversely, given µ(x) ∈ R≥0 for all x ∈ X, this extends to a probability
distribution on X if and only if

∑
x∈X µ(x) = 1. E. g. µ : X → R≥0 : x 7→ 1

|X|
is called the uniform distribution; we refer to it by making random choices.

b) Given probability spaces X and Y , then X ×Y becomes a probability space
by giving joint probabilities µX×Y (x, y) ∈ R≥0 such that µX×Y (x, Y) =∑
y∈Y µX×Y (x, y) = µX(x) and µX×Y (X, y) =

∑
x∈X µX×Y (x, y) = µY (y), for

x ∈ X and y ∈ Y . Hence µX and µY can be recovered from µX×Y , and for x ∈ X
such that µX(x) = 0, or y ∈ Y such that µY (y) = 0, we have µX×Y (x, y) = 0.
E. g. X×Y becomes a probability space by letting µX×Y (x, y) := µX(x)µY (y),
for x ∈ X and y ∈ Y ; in this case µX and µY are called independent.

I Classical cryptography 27

The conditional probability for the occurrence of an event A ⊆ X, pro-
vided an event B ⊆ Y such that µY (B) > 0 has already occurred, is given

as µX(A|B) := µX×Y (A×B)
µX×Y (X×B) = µX×Y (A×B)

µY (B) ∈ R≥0. Then µX(· |B), where

still µY (B) > 0, again is a probability distribution: We have µX(A|B) =∑
x∈A µX(x|B) as well as

∑
x∈X µX(x|B) = 1

µY (B) ·
∑
x∈X µX×Y ({x} × B) =

1
µY (B) ·

∑
x∈X

∑
y∈B µX×Y (x, y) = 1

µY (B) ·
∑
y∈B µY (y) = 1.

Since µX(A) = 0 implies µX×Y (A× Y) = 0, we in this case have µX(A|B) = 0.
If µY (B) = 0 then µX×Y (X × B) = 0, hence in this case we for completeness
let µX(A|B) := 0, for A ⊆ X, which of course is not a probability distribution.
Anyway, this yields Bayes’s Theorem: For all A ⊆ X and B ⊆ Y we have
µX(A|B)µY (B) = µX×Y (A×B) = µY (B|A)µX(A).

In particular, for x ∈ X and y ∈ Y we have µX×Y (x, y) = µX(x|y)µY (y). Thus
µX and µY are independent if and only if µX(x|y) = µX(x) for all x ∈ X and
y ∈ Y such that µY (y) > 0.

(7.2) Randomised cryptosystems. Let [P, C,K, E ,D] be a cryptosystem,
and let µP and µK be probability distributions on P and K, respectively. Typ-
ically, µP is determined by properties of the plaintext language, while µK is
specified by the particular protocol used. To use the cryptosystem as a ran-
domised cryptosystem, we assume that for each plaintext encrypted a new
key is chosen, according to µK, where we assume that the probability distribu-
tions µP and µK are independent.

We have an induced probability distribution µC on C, where for x ∈ P and
y ∈ C we have µC(y) = µP×K({[x, k] ∈ P × K;Ek(x) = y}) and µP×C(x, y) =
µP(x)µK({k ∈ K;Ek(x) = y}|x) = µP×K(x, {k ∈ K;Ek(x) = y}). Then µC is a
probability distribution, and µP×C is a joint probability distribution associated
with µP and µC : We have µP×C(x, C) =

∑
y∈C µP×K(x, {k ∈ K;Ek(x) = y}) =

µP×K(x,K) = µP(x) and µP×C(P, y) =
∑
x∈P µP×K(x, {k ∈ K;Ek(x) = y}) =

µP×K({[x, k] ∈ P ×K;Ek(x) = y}) = µC(y). Since µP and µK are independent
we more precisely get µP×C(x, y) = µP(x)µK({k ∈ K;Ek(x) = y}) and µC(y) =∑
x∈P µP(x)µK({k ∈ K;Ek(x) = y}).

A ciphertext y ∈ C such that µC(y) = 0 does never occur, and can be discarded
from C, and similarly a plaintext x ∈ P such that µP(x) = 0 does never occur,
and can be discarded from P.

The cryptosystem is called perfectly secure, if µP and µC are independent,
i. e. for all y ∈ C such that µC(y) > 0 we have µP(· |y) = µP , or equivalently
for all x ∈ P such that µP(x) > 0 we have µC(· |x) = µC . Hence from observing
a ciphertext no information about the associated plaintext can be extracted.

(7.3) Theorem: Shannon [1949]. Let [P, C,K, E ,D] be a cryptosystem such
that |P| = |C| = |K|, together with independent probability distributions µK
and µP , such that µP(x) > 0 for all x ∈ P. Then the following are equivalent:
a) The cryptosystem is perfectly secure, and we have µC(y) > 0 for all y ∈ C.

I Classical cryptography 28

b) The probability distribution µK is uniform, and for all x ∈ P and y ∈ C there
is a unique k ∈ K such that Ek(x) = y.

Proof. a)⇒b) For x ∈ P and y ∈ C we by perfect security have µP×C(x, y) =
µP(x)µC(y) > 0, implying that there is k ∈ K such that Ek(x) = y. Thus fixing
x ∈ P we have {Ek(x) ∈ C; k ∈ K} = C, hence |C| = |{Ek(x) ∈ C; k ∈ K}| ≤
|K| = |C|, implying equality and thus Ek(x) 6= Ek′(x) whenever k 6= k′, proving
the second assertion.

For x ∈ P and y ∈ C let kx,y ∈ K be the unique key such that Ekx,y (x) = y.
Hence µP(x)µC(y) = µP×C(x, y) = µP(x)µK(kx,y) implies µK(kx,y) = µC(y).
By the injectivity of encryption functions we have kx,y 6= kx′,y whenever x 6= x′,
hence by |P| = |K| we have {kx,y ∈ K;x ∈ P} = K. Thus for all k ∈ K and
y ∈ C we have µK(k) = µC(y), proving the first assertion.

b)⇒a) Keeping the above notation we have µK(kx,y) = 1
|K| for all x ∈ P and

y ∈ C, and thus µC(y) =
∑
x∈P µP(x)µK(kx,y) = 1

|K| ·
∑
x∈P µP(x) = 1

|K| > 0.

This yields µP(x|y) =
µP(x)µK(kx,y)

µC(y)
= µP(x) for all x ∈ P and y ∈ C.]

(7.4) Corollary. a) Condition a) implies that µC is uniform.
b) The validity of condition a) does not depend on the particular choice of µP ,
as long as µP(x) > 0 for all x ∈ P.
c) If we allow |P|, |C|, |K| to be distinct then condition a) still implies |C| ≤ |K|;
by the injectivity of encryption functions we have |P| ≤ |C| anyway.

(7.5) Vernam’s One-Time Pad [1917]. We consider the Vigenère cipher
over R := Zn, where n ∈ N, of block length l ∈ N; the particular case n = 2
being Vernam’s One-Time Pad: We have P = C = K = Rl, and for k ∈ Rl
we have Ek : v 7→ v + k and Dk : v 7→ v − k. Since k = Ek(v) − v ∈ Rl, for
v ∈ Rl, the Vigenère cipher is vulnerable to a known-plaintext attack. Thus a
chosen key may only be used to encrypt a single plaintext, and has to be chosen
anew afterwards; the terminology ‘one-time’ is reminiscent of this fact.

We have |P| = |C| = |K| = Rl, and for v, w ∈ Rl the unique key such that
Ek(v) = w is given as k := w− v ∈ Rl. Hence if µK is uniform, and if µP is any
probability distribution such that µP(x) > 0 for all x ∈ P, then the Vigenère
cipher is perfectly secure.

(7.6) Remark. For further aspects of information theory related to cryptog-
raphy, in particular the notion of entropy [Shannon, 1948], see [12, Ch.2.4ff.].

II Public key cryptography 29

II Public key cryptography

8 The RSA cryptosystem

(8.1) Cyclic groups. Let G be a finite group and U ≤ G. Then for the
associated group orders we have Lagrange’s Theorem |U | | |G|; the number

[G : U] := |G|
|U | ∈ N is called the index of U in G:

For g ∈ G let Ug := {ug ∈ G;h ∈ U} ⊆ G be the associated (right) coset. We
have |Ug| = |U |: For u, v ∈ U , from ug = vg we get u = ugg−1 = vgg−1 = v.
We have G =

⋃
g∈G Ug, and given g, h ∈ G from Ug ∩ Uh 6= ∅ we already get

Ug = Uh: Let vh ∈ Ug ∩ Uh for some v ∈ U , then for all u ∈ U we have
uh = uv−1vh ∈ Ug, thus Uh ⊆ Ug, and similarly Ug ⊆ Uh. Thus we have
G =

∐
t∈T Ut for a suitable (right) transversal T ⊆ G.]

Given g ∈ G then 〈g〉 := {gk ∈ G; k ∈ Z} ≤ G is the smallest subgroup of G
containing g. The number |g| := |〈g〉| ∈ N is called the order of g; in particular
we have |g| | |G|. The group G is called cyclic, if there is g ∈ G such that
G = 〈g〉; if |G| = n ∈ N we write G ∼= Cn. E. g. we have (Z,+) = 〈1〉 = 〈−1〉,
and for n ∈ Z we have (Z/nZ,+) = 〈1〉.

(8.2) Theorem. Let G be a finite group.
a) Let g ∈ G and Ig := {i ∈ Z; gi = 1}. Then we have Ig = |g|Z and 〈g〉 =
{gi ∈ G; i ∈ {0, . . . , |g| − 1}}; in particular we have g|g| = g|G| = 1.
b) Let G be cyclic. Then any subgroup of G is cyclic as well. There is U ≤ G
of order d ∈ N if and only if d | |G|; in this case U is uniquely determined.
c) G is cyclic if and only if G has at most one subgroup of order d for any d ∈ N.
In particular, if |G| is a prime then G is cyclic.

Proof. a) There are i 6= j such that gi = gj , hence gi−j = 1, thus 0 6= i−j ∈ Ig.
Let n ∈ N be minimal such that n ∈ Ig, then we have Ig = nZ: We have nZ ⊆ Ig,
and by quotient and remainder for i = nq + r ∈ Ig, where q, r ∈ Z such that
r ∈ {0, . . . , n−1}, we have gr = gi(gn)−q = 1, hence by the choice of n we deduce
r = 0 and thus i ∈ nZ. Moreover, for any i = nq + r ∈ Z we have gr = gi, and
since gi = gj implies i− j ∈ Ig = nZ, we get 〈g〉 = {gi ∈ G; i ∈ {0, . . . , |g|−1}}.
b) Let G = 〈g〉. For {1} 6= U ≤ G let IU := {k ∈ Z; gk ∈ U}. Then letting
m ∈ N be minimal such that m ∈ IU , we have 〈gm〉 ≤ U . Conversely, if gi ∈ U
for some i = mq + r ∈ Z, where q, r ∈ Z such that r ∈ {0, . . . ,m − 1}, we get
gr = gi(gm)−q ∈ U , thus r ∈ IU and hence by the choice of m we deduce r = 0
and thus gi ∈ 〈gm〉. Hence U = 〈gm〉 is cyclic.

Let n := |G| = |g| and let k ∈ Z. Then for i ∈ Z we have gik = 1 if and only
if n | ik, which holds if and only if n

gcd(k,n) | i. Hence we have |gk| = n
gcd(k,n) ;

in particular we have |gk| = n if and only if gcd(k, n) = 1. Hence for any
d ∈ N such that d | n there is a subgroup of order d: Writing n = md we

II Public key cryptography 30

have |gm| = d. Finally, if |gk| = d for k ∈ Z, then n
gcd(k,n) = d = n

m implies

m = gcd(k, n) | k, thus 〈gk〉 ≤ 〈gm〉, implying equality.

c) If H is a cyclic group of order n ∈ N, then using Euler’s totient function there
are precisely ϕ(n) ∈ N elements h ∈ H such that 〈h〉 = H. Thus the subgroup
structure of cyclic groups implies

∑
d∈N,d |n ϕ(d) = n for any n ∈ N.

Let G fulfil the assumption on the subgroup structure, and let n := |G|. For any
d ∈ N there is an element of order d only if d | n, and if there is an element of
order d there are precisely ϕ(d) of them. Thus by

∑
d |n,d6=n ϕ(d) = n−ϕ(n) < n

there is an element of order n.]

(8.3) Corollary. a) Let Aut(G) be the automorphism group of G, i. e. the
set of all bijective group homomorphisms G→ G together with the composition
of maps. If G = 〈g〉 is a cyclic group of order n ∈ N, then any ϕ ∈ Aut(G)
is uniquely determined by ϕ(g) ∈ G, which again is a generator, implying that
there is k ∈ Z∗n such that ϕ(g) = gk; since gk = gk+in, for all k, i ∈ Z, we
may assume k ∈ (Z/nZ)∗. Conversely, if k ∈ (Z/nZ)∗ then gk is a generator
of G, and there is ϕk ∈ Aut(〈g〉) such that ϕk(g) = gk. Thus we have a group
isomorphism (Z/nZ)∗ → Aut(G) : k 7→ ϕk.

b) Let n ∈ N. From |(Z/nZ)∗| = ϕ(n) we conclude Euler’s Theorem: For
all x ∈ (Z/nZ)∗ we have xϕ(n) = 1. If p ∈ N is a prime, then in particular we
have Fermat’s Theorem: For all x ∈ Z/pZ we have xp = x: If x ∈ (Z/pZ)∗ =
(Z/pZ) \ {0}, then we get xp−1 = 1, and if x = 0 then xp = 0 = x anyway.

c) Let Fq be the field with q elements. Then we have Artin’s Theorem: The
group F∗q = Fq \ {0} is cyclic; an element ρ ∈ F∗q such that 〈ρ〉 = F∗q is called a
primitive root: For all d ∈ N such that d | q − 1 = |F∗q | the elements of F∗q
having order dividing d are roots of Xd − 1 ∈ Fq[X]. Since there are at most d
roots in the field Fq, we conclude that F∗q has at most d elements having order
dividing d, thus has at most one subgroup of order d, hence is cyclic.

(8.4) The Rivest-Shamir-Adleman (RSA) cryptosystem [1978]. Let
p 6= q ∈ N be odd primes and let n := pq ∈ N be the associated modulus.
Let P = C := (Z/nZ)∗ and K := (Z/ϕ(n)Z)∗, and let the encryption functions
E = {Ee : P → C; e ∈ K} and decryption functions D = {Dd : C → P; d ∈ K}
be given as follows: For e ∈ (Z/ϕ(n)Z)∗ let Ee : (Z/nZ)∗ → (Z/nZ)∗ : a 7→ ae,
and similarly for d ∈ (Z/ϕ(n)Z)∗ let Dd : (Z/nZ)∗ → (Z/nZ)∗ : a 7→ ad. Given
e ∈ (Z/ϕ(n)Z)∗, choosing d ∈ (Z/ϕ(n)Z)∗ such that EeDd = id(Z/nZ)∗ , the
public key is [n, e], the private key is [p, q, d]. We show that this is an un-
symmetric cryptosystem:

Indeed, for e ∈ Z/ϕ(n)Z the function Ee is well-defined: Since |(Z/nZ)∗| =
ϕ(n), by Euler’s Theorem we have ai+jϕ(n) = ai, for a ∈ (Z/nZ)∗ and i, j ∈ Z.
Next, for e ∈ (Z/ϕ(n)Z)∗ the function Ee is bijective, the inverse being Dd for
d := e−1 ∈ (Z/ϕ(n)Z)∗: We have ed = 1 ∈ Z/ϕ(n)Z, and thus for a ∈ (Z/nZ)∗

we have Dd(Ee(a)) = (ae)d = aed = a1 = a ∈ (Z/nZ)∗. Hence this is a

II Public key cryptography 31

cryptosystem. Since given an encryption key e ∈ (Z/ϕ(n)Z)∗ the decryption
key d ∈ (Z/ϕ(n)Z)∗ is computed by an inversion modulo ϕ(n), which is kept
private, this is an unsymmetric cryptosystem.:]

For further analysis, in particular to determine ϕ(n), recall that by the Chinese
remainder theorem the natural map νp,q : Z/nZ→ (Z/pZ)⊕ (Z/qZ) : a+nZ 7→
[a + pZ, a + qZ] is a ring isomorphism, where (Z/pZ) ⊕ (Z/qZ) is the Carte-
sian product (Z/pZ) × (Z/qZ) becoming a commutative ring with respect to
componentwise addition and multiplication. In particular, νp,q induces a group
isomorphism (Z/nZ)∗ ∼= (Z/pZ)∗ × (Z/qZ)∗, where the right hand side be-
comes a group with respect to componentwise multiplication. Hence we get
ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1). We derive a couple of further consequences:

For e ∈ (Z/ϕ(n)Z) \ (Z/ϕ(n)Z)∗ the function Ee actually is not bijective: From
gcd(e, ϕ(n)) > 1 we may assume that f := gcd(e, p − 1) > 1, hence letting a ∈
(Z/pZ)∗ be a primitive root we have a

p−1
f 6= 1 and (a

p−1
f)e = (ap−1)

e
f = 1 = 1e.

Moreover for e ∈ Z/ϕ(n)Z the map Ee : (Z/nZ)∗ → (Z/nZ)∗ can be naturally
extended to map Ee : Z/nZ → Z/nZ : a 7→ ae, as soon as we restrict ourselves
to choose residue class representatives e ∈ N, thus defining a cryptosystem on
Z/nZ (although this will turn out to be useless): Using the natural map νp,q, the
elements of (Z/nZ)\ (Z/nZ)∗ are given as [a, 0] for a ∈ (Z/pZ)∗, or [0, a] for a ∈
(Z/qZ)∗, or [0, 0]; since ϕ(p) | ϕ(n) and ϕ(q) | ϕ(n), arguing as above shows
that Ee is well-defined and bijective, and that for the analogously extended
maps Dd we have EeDd = idZ/nZ if and only if EeDd|(Z/nZ)∗ = id(Z/nZ)∗

(8.5) Encryption functions of the RSA cryptosystem. Let p 6= q ∈ N be
odd primes and let n := pq ∈ N.

a) We determine |E| = |D|, that is how many distinct encryption and decryption
function there actually are:

Since for e, e′ ∈ (Z/ϕ(n)Z)∗ we have EeEe′ = Eee′ : a 7→ (ae)e
′

= aee
′
, we

have a group homomorphism ε : (Z/ϕ(n)Z)∗ → Aut((Z/nZ)∗) : e 7→ Ee. Using
the natural embeddings (Z/pZ)∗ → (Z/nZ)∗ and (Z/qZ)∗ → (Z/nZ)∗ shows
that Ee leaves (Z/pZ)∗ and (Z/qZ)∗ invariant, hence by restriction induces
automorphisms thereon, and moreover is uniquely determined by these restric-
tions. Thus we actually have ε : (Z/ϕ(n)Z)∗ → Aut((Z/pZ)∗)×Aut((Z/pZ)∗) ≤
Aut((Z/pZ)∗ × (Z/qZ)∗) ∼= Aut((Z/nZ)∗).

Since we have Aut((Z/pZ)∗) ∼= Aut(Cp−1) ∼= (Z/(p − 1)Z)∗, and similarly
Aut((Z/qZ)∗) ∼= Aut(Cq−1) ∼= (Z/(q − 1)Z)∗, we have Ee = id(Z/nZ)∗ if and
only if e ≡ 1 (mod p − 1) and e ≡ 1 (mod q − 1), which holds if and only
if e ≡ 1 (mod lcm(p − 1, q − 1)); note that this condition is independent of
the choice of representatives modulo ϕ(n). Hence we have ker(ε) := {e ∈
(Z/ϕ(n)Z)∗;Ee = id(Z/nZ)∗} = {e ∈ (Z/ϕ(n)Z)∗; lcm(p− 1, q − 1) | e− 1}. By
the homomorphism theorem (which we do not prove here) this can be rephrased
as E = im(ε) ∼= (Z/ϕ(n)Z)∗/ ker(ε) ∼= (Z/lcm(p − 1, q − 1)Z)∗, showing that

II Public key cryptography 32

|E| = ϕ(lcm(p− 1, q − 1)). Alternatively, we may argue as follows:

Since the divisibility condition lcm(p − 1, q − 1) | e − 1 implies gcd(e, ϕ(n)) =
1, we have ker(ε) = {e ∈ Z/ϕ(n)Z; lcm(p − 1, q − 1) | e − 1}. Next, since

lcm(p − 1, q − 1) | ϕ(n) we thus have | ker(ε)| = ϕ(n)
lcm(p−1,q−1) = (p−1)(q−1)

lcm(p−1,q−1) =

gcd(p−1, q−1). Since we have Ee = Ee′ if and only if Ee−1e′ = id(Z/nZ)∗ , which
holds if and only if e−1e′ ∈ ker(ε) ≤ (Z/ϕ(n)Z)∗, that is ker(ε)e = ker(ε)e′ ⊆
(Z/ϕ(n)Z)∗, by Lagrange’s Theorem we infer |E| = |im(ε)| = |(Z/ϕ(n)Z)∗|

| ker(ε)| =
ϕ((p−1)(q−1))
gcd(p−1,q−1) . Finally, since for any prime r ∈ N and i > j ∈ N0 we have

ϕ(rirj)
gcd(ri,rj) = ri+j−1(r−1)

rj = ri−1(r − 1) = ϕ(ri) = ϕ(lcm(ri, rj)), we in conclusion

get |E| = ϕ(lcm(p− 1, q − 1)).]

Hence p and q have to be chosen such that gcd(p−1, q−1) = (p−1)(q−1)
lcm(p−1,q−1) is not

too large, otherwise the set E of actually available encryption functions might
become too small. Thus for a good choice of p and q we have gcd(p−1, q−1) = 2,
and moreover the numbers p − 1 and q − 1 do not have too many small prime
divisors, so that we expect that |E| = ϕ(lcm(p− 1, q − 1)) = ϕ(1

2 (p− 1)(q − 1))
is a number of magnitudse ∼ pq = n

For an encryption key e ∈ (Z/ϕ(n)Z)∗ an element d ∈ (Z/ϕ(n)Z)∗ is a decryp-
tion key if and only if EeDd = id(Z/nZ)∗ , that is ed ∈ ker(ε), or equivalently
d ∈ ker(ε)e−1. Hence there are precisely | ker(ε)| = gcd(p− 1, q− 1) possible de-
cryption keys, since ker(ε) = {c ∈ Z/ϕ(n)Z; c ≡ 1 (mod lcm(p−1, q−1))} given
as {e−1 ·

(
1+k ·lcm(p−1, q−1)

)
∈ (Z/ϕ(n)Z)∗; k ∈ {0, . . . , gcd(p−1, q−1)−1}}.

In particular, the above condition on good choices of p and q also entails that
the number of possible decryption keys for a given encryption key is as small as
possible. Indeed, since the more possible decryption keys there are, the easier
it becomes to break the cryptosystem, this number should be kept small.

b) In the same vein, we compare the order |e| ∈ N of e ∈ (Z/ϕ(n)Z)∗ and the
order k := |Ee| ∈ N of Ee ∈ Aut((Z/pZ)∗) × Aut((Z/qZ)∗) ≤ Aut((Z/nZ)∗).
Using the group homomorphism ε : (Z/ϕ(n)Z)∗ → Aut((Z/nZ)∗) : e 7→ Ee, we
get k | |e|, and since ek ∈ ker(ε) Euler’s Theorem implies |e| | k · | ker(ε)|. Thus
if | ker(ε)| = gcd(p−1, q−1) is chosen to be small, then k is of magnitude ∼ |e|.
Now k is the order of e ∈ (Z/lcm(p−1, q−1)Z)∗, but we may determine k also as
follows: Let l,m ∈ N be the order of e ∈ (Z/(p− 1)Z)∗ and e ∈ (Z/(q − 1)Z)∗,
respectively. Hence these are are the order of Ee ∈ Aut((Z/pZ)∗) and Ee ∈
Aut((Z/qZ)∗), respectively, and we have k = lcm(l,m).

This reduces the question of finding k to finding the order l of e ∈ (Z/(p−1)Z)∗.
Instead of successively computing ei, for i ≥ 1 increasing until we find el = 1,
we proceed as follows, recalling that computing powers with respect to a known
exponent can be done by repeated squaring: If the factorisation of p − 1 is
known, then ϕ(p− 1) can be determined, and if the factorisation of ϕ(p− 1) is
known as well, using l | ϕ(p− 1) we infer that only the divisors of ϕ(p− 1) are
candidates for l to be checked.

II Public key cryptography 33

(8.6) Example. Let p := 97 and q := 193, hence n := pq = 18721. Letting
e := 43, using ϕ(n) = (p− 1)(q − 1) = 96 · 192 = 18432 the extended Euclidean
algorithm yields 1 = gcd(e, ϕ(n)) = −8573 · e+ 20 ·ϕ(n), hence e ∈ (Z/ϕ(n)Z)∗

and d := e−1 = −8573 = 9859 ∈ (Z/ϕ(n)Z)∗.

i) We determine the number of encryption functions, where it turns out that this
example is chosen as badly as possible: We have p−1 = 25 ·3 and q−1 = 26 ·3,
thus p−1 | q−1, hence gcd(p−1, q−1) = p−1 = 96 and lcm(p−1, q−1) = q−1 =
192. Hence (Z/ϕ(n)Z)∗ has order ϕ(ϕ(n)) = ϕ((p − 1)(q − 1)) = ϕ(211 · 32) =
211 ·3 = 6144, but there are only |E| = ϕ(lcm(p−1, q−1)) = ϕ(26 ·3) = 26 = 64
encryption functions, which is far off the number we had hoped for.

Moreover, given e ∈ (Z/ϕ(n)Z)∗, there are | ker ε| = gcd(p − 1, q − 1) = 96
decryption keys in (Z/ϕ(n)Z)∗, which since ker(ε) = {c ∈ Z/ϕ(n)Z; c ≡ 1
(mod lcm(p − 1, q − 1))} = {c ∈ Z/ϕ(n)Z; c ≡ 1 (mod 192)} are given as
{e−1 · (1 + k · 192) ∈ (Z/ϕ(n)Z)∗; k ∈ {0, . . . , 95}}. For example, for e := 43
and d := 9859 we get {9859, 9859 · (1 + 192), . . . , 9859 · (1 + 95 · 192)} =
{67, 259, . . . , 18307} ⊆ (Z/ϕ(n)Z)∗, hence we might also choose d′ := 67 ∈
(Z/ϕ(n)Z)∗ as a decryption key.

ii) Using the structure of groups of prime residues (which is not proved here) we
get (Z/ϕ(n)Z)∗ ∼= (Z/(p−1)(q−1)Z)∗ ∼= (Z/211Z)∗× (Z/32Z)∗ ∼= (C2×C29)×
(C2 ×C3). Hence any element e ∈ (Z/ϕ(n)Z)∗ has order dividing 29 · 3 = 1536,
where the latter maximum is attained by a fraction of 1

2 ·
2
3 = 1

3 = 2048
6144 of all

elements; for example, by e = 43.

In contrast, the order of Ee ∈ Aut((Z/pZ)∗) × Aut((Z/qZ)∗) ≤ Aut((Z/nZ)∗)
equals the order of e ∈ (Z/lcm(p− 1, q − 1)Z)∗ = (Z/(q − 1)Z)∗ ∼= (Z/26Z)∗ ×
(Z/3Z)∗ ∼= (C2×C24)×C2. Alternatively, it is given as |Ee| = lcm(l,m), where
in turn l,m ∈ N are the order of e ∈ (Z/(p − 1)Z)∗ ∼= (Z/25Z)∗ × (Z/3Z)∗ ∼=
(C2×C23)×C2 and e ∈ (Z/(q−1)Z)∗ ∼= (Z/26Z)∗×(Z/3Z)∗ ∼= (C2×C24)×C2,
respectively. Since p−1 | q−1 we have l | m, hence |Ee| = m, which coincides
with the order of e ∈ (Z/lcm(p − 1, q − 1)Z)∗. Thus any Ee ∈ Aut((Z/nZ)∗)
has order dividing 24 = 16, where the latter maximum is attained by a fraction
of 1

2 = 32
64 of all elements; for example, by e = 43.

(8.7) RSA block ciphers. Let p 6= q ∈ N be odd primes and let n := pq ∈ N.
We obtain a block cipher of block length l := blog26(n)c ∈ N as follows: Words
in X llatin are first encoded into Zl26, and then via 26-adic expansion considered
as elements of Z26l ⊆ Zn; for example, for l = 3 the word abc ∈ X 3

latin yields
0 · 262 + 1 · 26 + 2 = 28 ∈ Zn. Thus the set of admissible plaintexts can be
identified with P = Z26l .

But note that using this simple idea we might have P ∩ (Zn \ Z∗n) 6= ∅. Hence
the latter cases have to be excluded explicitly; these would indeed break the
cryptosystem, see (9.2), but in practice they are easily avoided. Moreover, P
must be chosen large enough, since otherwise a protocol failure results from
encrypting all plaintexts using the public key, allowing to just read off the

II Public key cryptography 34

Table 8: RSA block cipher.

X 3
latin Z26 P = Z263 C = Z∗18721
she 18 7 4 12354 13130
has 7 0 18 4750 95
sen 18 4 13 12285 7342
sed 18 4 3 12275 13805
ach 0 2 7 59 8347
ang 0 13 6 344 10022
ein 4 8 13 2925 5164
the 19 7 4 13030 13434
wea 22 4 0 14976 18716
the 19 7 4 13030 13434
rzz 17 25 25 12167 14498

plaintext associated with a given ciphertext; for example, such a protocol failure
results from letting the block length to be l := 1 instead.

For the above example, p := 97 and q := 193, we have n := pq = 18721,
and since 263 = 17576 we let l := 3. Letting e := 43 again, the plaintext
she has sensed a change in the weather, padded to obtain a plaintext of
length divisible by l, yields the ciphertext as shown in Table 8, where we are
indeed lucky enough to end up in (Z/nZ)∗.

9 Attacking the RSA cryptosystem

(9.1) Protocol failure of the RSA cryptosystem. Let p 6= q ∈ N be odd
primes and let n := pq ∈ N.

a) Multiplicativity attack. For e ∈ Z/ϕ(n)Z and x, y ∈ Z/nZ we have
(xy)e = xeye. This leads to the following adaptive chosen-ciphertext attack,
where an opponent, Oscar say, is able to convince Alice, who keeps the secret
key, to decrypt any ciphertext Oscar’s choice, except x; for example, in an
identification protocol: Let e, d ∈ (Z/ϕ(n)Z)∗ such that EeDd = id(Z/nZ)∗ , and
let x ∈ (Z/nZ)∗ be a ciphertext Oscar wants to decrypt. Now Oscar chooses
y ∈ (Z/nZ)∗, and masks x by letting z := xye ∈ (Z/nZ)∗, then Alice is happy
to compute zd ∈ (Z/nZ)∗, and finally Oscar unmasks by computing zdy−1 =
xdyed−1 = xd ∈ (Z/nZ)∗, which is the decryption of x.

To prevent a multiplicativity attack, plaintexts are chosen from a suitable (large
enough) admissible subset such that it is unlikely that the product of two ad-
missible plaintexts again is admissible; for example, it may be required that, in
binary representation, the first and last bits of a plaintext are identical.

b) Cycling attack. For e ∈ (Z/ϕ(n)Z)∗ let k := |Ee| ∈ N be the order of

II Public key cryptography 35

Ee ∈ Aut((Z/pZ)∗)×Aut((Z/qZ)∗) ≤ Aut((Z/nZ)∗). Since (xe)e
k−1

= xe
k

= x,
for all x ∈ (Z/nZ)∗, if k is small the plaintext x can be recovered from the
associated ciphertext xe by repeated re-encryption. Thus e has to be chosen
such that k is sufficiently large. In practice this is easily achieved:

Recall that if l,m ∈ N are the order of e ∈ (Z/(p−1)Z)∗ and e ∈ (Z/(q−1)Z)∗,
respectively, then we have k = lcm(l,m). Hence we have to ensure that the
latter orders are large enough. Now, if p′ | p− 1 is a (large) prime divisor, then
Z/(p− 1)Z has a direct summand Z/p′Z, hence Aut((Z/pZ)∗) ∼= (Z/(p− 1)Z)∗

has a direct factor (Z/p′Z)∗ ∼= Cp′−1, If moreover p′′ | p′ − 1 is a (large) prime
divisor, then Cp′−1 has a unique quotient Cp′′ . Hence choosing e ∈ (Z/(p−1)Z)∗

randomly, the probability that p′′ | l is given as p′′−1
p′′ = 1 − 1

p′′ . Thus if p′′ is

large enough, then it is (extremely) likely that l is large enough as well.

c) Common modulus attack. Let e1, e2 ∈ N such that gcd(e1, e2) = 1, and
let f1, f2 ∈ Z be Bézout coefficients such that e1f1 + e2f2 = 1. Thus we have
x = xe1f1+e2f2 = (xe1)f1 · (xe2)f2 ∈ (Z/nZ)∗. Hence, for suitable encryption
keys e1 and e2, a plaintext x can be recovered from two associated ciphertexts
xe1 and xe2 . To prevent a common-modulus attack, no two plaintexts encrypted
must be equal; for example, by chossing parts of plaintexts randomly.

d) Low exponent attack. Let e ∈ N, and let n1, . . . , ne ∈ N be pairwise
coprime moduli. Let x ∈ N such that x < min{n1, . . . , ne}, and let yi ∈
(Z/niZ)∗ such that xe = yi ∈ (Z/niZ)∗ for i ∈ {1, . . . , e}; hence the yi are
various ciphertexts obtained from the same plaintext x with the same encryption
key e. Let m :=

∏e
i=1 ni ∈ N, and using the Chinese remainder theorem yielding

the ring isomorphism Z/mZ ∼=
∏e
i=1 Z/niZ, let x′ ∈ Zm be the unique element

such that x′ = yi ∈ Z/niZ, for i ∈ {1, . . . , e}. Since we also have xe ∈ Zm, we
conclude x′ = xe, hence the given plaintext can be recovered as x = e

√
x′ ∈ N.

Thus e has to be chosen large enough, or again no two plaintexts encrypted
must be equal. Since the number of arithmetical operations to compute xe ∈
(Z/nZ)∗ from x ∈ (Z/nZ)∗ should be kept small, typical choices are e := 3
(for randomised plaintexts) or e := 216 + 1 = 65537 (recalling that computing
powers can be done by repeated squaring), provided these are coprime to ϕ(n).

(9.2) Breaking the RSA cryptosystem. a) Let p 6= q ∈ N be odd primes
and let n := pq ∈ N. If ϕ(n) is known, then inverses in (Z/ϕ(n)Z)∗ can be com-
puted in polynomial time, by the extended Euclidean algorithm. a Computing
ϕ(n) = (p−1)(q−1) is polynomial time equivalent to factoring n = pq: If p and
q are known, then ϕ(n) = (p− 1)(q − 1) can be computed as well. Conversely,
since factoring n = pq is polynomial time equivalent to computing a prime di-
visor of n, if ϕ(n) is known then ϕ(n) = (p− 1)(q − 1) = (p− 1)(np − 1) yields

p2 + (ϕ(n)−n− 1)p+n = 0, and thus {p, q} = {n+1−ϕ(n)
2 ±

√
(n+1−ϕ(n))2−4n

2 },
where

√
(n+ 1− ϕ(n))2 − 4n ∈ N.

In particular, for 0 6= x ∈ (Z/nZ) \ (Z/nZ)∗ we have 1 < gcd(x, n) < n, thus

II Public key cryptography 36

we have found a prime divisor of n. Thus these elements are not admissible

plaintexts, but since n−1−ϕ(n)
n = p+q

pq = 1
p + 1

q they are rare anyway.

Hence breaking the RSA cryptosystem polynomial time reduces to factoring n,
thus the RSA cryptosystem is secure only if factoring n = pq is computationally
difficult. It is conjectured that factoring integers of the form pq is as difficult as
factoring arbitrary integers, and that integer multiplication is a cryptographic
one-way function, see (18.1).

b) Conversely it is conjectured that factoring n = pq polynomial time reduces to
breaking the RSA cryptosystem, implying that these problems are polynomial
time equivalent. This is supported by the following: Given e ∈ Z∗ϕ(n), being
able to compute d ∈ Z∗ϕ(n) such that EeDd = idZ/nZ, allows for the following
polynomial time Las-Vegas algorithm to factor n = pq:

Let s ∈ N0 and c ∈ N odd such that ed − 1 = 2sc; note that 2s ≤ ed ≤ n2

implies that s ≤ 2 log2(n). Hence for x ∈ (Z/nZ)∗ we have 1 = xed−1 = (xc)2
s ∈

(Z/nZ)∗. Thus the order of xc ∈ (Z/nZ)∗ is 2k, for some k ∈ {0, . . . , s}. Now
we proceed as follows:

choose x ∈ Z∗n randomly
y ← (xc mod n)
for i ∈ [0, . . . , s] do

g ← gcd(y − 1, n)
if 1 < g < n then

return g
y ← (y2 mod n)

return fail

An element x ∈ (Z/nZ)∗ providing a prime divisor of n is called a factorisation
witness. We show that the fraction of witnesses is at least 1

2 :

Using the isomorphism (Z/nZ)∗ ∼= (Z/pZ)∗×(Z/qZ)∗ ∼= Cp−1×Cq−1 shows that
the order of xc ∈ (Z/pZ)∗ and xc ∈ (Z/qZ)∗ is equal to 2l and 2m, respectively,

where l,m ∈ {0, . . . , k} and k = max{l,m}. Then we have gcd((xc)2
i−1, n) = p,

say, if and only if (xc)2
i

= 1 ∈ (Z/pZ)∗ and (xc)2
i 6= 1 ∈ (Z/qZ)∗. There is

such an i ∈ {0, . . . , s} if and only if l < m. Hence x ∈ (Z/nZ)∗ is a witness if
and only l 6= m. We determine the fraction of elements having this property:

Let p − 1 = 2ta and q − 1 = 2ub, where t, u ∈ N and a, b ∈ N odd, and let
C2t
∼= G ≤ (Z/pZ)∗ and C2u

∼= H ≤ (Z/qZ)∗ be the uniquely determined
subgroups of order 2t and 2u, respectively, where we may assume that t ≤ u.
Hence we have |{[g, h] ∈ G×H; |g| = |h|}| =

∑t
i=0 ϕ(2i)2 = 1 +

∑t
i=1(2i−1)2 =

1 +
∑t−1
i=0 22i = 1 + 22t−1

22−1 = 22t+2
3 .

Since c is odd, and any element of [g, h] ∈ G × H is a 2-power, we have
〈[gc, hc]〉 = 〈[g, h]〉, thus any element of G × H is a c-th power. Thus the
group homomorphism (Z/nZ)∗ → G ×H : x 7→ [xc, xc] is surjective. Hence all

elements of G×H have the same number (p−1)(q−1)
2t·2u = ab of preimages with re-

spect to this map. Thus the fraction of witnesses in (Z/nZ)∗ coincides with the

II Public key cryptography 37

fraction of witnesses in G×H, which by the above is 1− 22t+2
3·2t+u = 3·2t+u−22t−2

3·2t+u ≥
3·2t+u−2t+u−2

3·2t+u = 2
3 −

2
3·2t+u ≥

2
3 −

2
3·22 = 1

2 .]

(9.3) Continued fractions. a) Let r0 ∈ N0 and r1 ∈ N. Then the Euclidean
algorithm yields l ∈ N and qi ∈ N0 for i ∈ {1, . . . , l} such that ri+1 := ri−1 −
qiri ∈ {0, . . . , ri − 1} and rl+1 = 0; hence we have qi ≥ 1 for i ≥ 2. This yields
the (regular) continued fraction

ρ :=
r0
r1

= q1 +
r2
r1

= q1 +
1
r1
r2

= q1 +
1

q2 + 1
r2
r3

= · · · = q1 +
1

q2 + 1

. . .+ 1

ql−1+ 1
ql

.

For the latter expression we write cf[q1, . . . , ql], where more generally we allow
for q1 ∈ N0, and qi ∈ N for i ∈ {2, . . . , l − 1}, and 1 ≤ ql ∈ R whenever l ≥ 2.
In particular, if 1 6= ql ∈ N we have cf[q1, . . . , ql] = cf[q1, . . . , ql − 1, 1]. Then we
get a continued fraction expansion for any ρ ∈ R≥0, by taking q1 := bρc ∈ N0

and proceeding with 1
ρ−bρc instead of ρ; it is of infinite length l =∞ whenever

ρ 6∈ Q.

For i ∈ {1, . . . , l} let ρi := σi
τi

:= cf[q1, . . . , qi] ∈ Q be the i-th convergent,
where σi ∈ N0 and τi ∈ N such that gcd(σi, τi) = 1. Letting additionally
σ−1 := 0 and τ−1 := 1, as well as σ0 := 1 and τ0 := 0, we by induction on
i ∈ {1, . . . , l} get σi = qiσi−1 + σi−2 and τi = qiτi−1 + τi−2:

We have ρ1 = q1, yielding σ1 = q1 = q1σ0 + σ−1 and τ1 = 1 = q1τ0 + τ−1. For
i ≥ 2 we obtain ρi from ρi−1 by replacing qi−1 by qi−1 + 1

qi
. Thus from ρi−1 =

σi−1

τi−1
= qi−1σi−2+σi−3

qi−1τi−2+τi−3
we get ρi =

(qi−1+
1
qi

)σi−2+σi−3

(qi−1+
1
qi

)τi−2+τi−3
= (qiqi−1+1)σi−2+qiσi−3

(qiqi−1+1)τi−2+qiτi−3
=

qiσi−1+σi−2

qiτi−1+τi−2
. For i ∈ {0, . . . , l} we moreover have σiτi−1 − σi−1τi = (−1)i,

implying that indeed gcd(σi, τi) = 1: We have σ0τ−1 − σ−1τ0 = 1 and for
i ≥ 1 we obtain σiτi−1 − σi−1τi = (qiσi−1 + σi−2)τi−1 − σi−1(qiτi−1 + τi−2) =
−(σi−1τi−2 − σi−2τi−1) = −(−1)i−1 = (−1)i.]

For i ∈ {1, . . . , l− 1} the ρi are approximations of ρ in the following sense: Let
ωi := cf[qi+1, qi+2, . . .] ∈ R, hence we have ρ = cf[q1, . . . , qi, ωi] and ωi ≥ qi+1 >
0. Thus ρ is obtained from ρi by replacing qi by qi + 1

ωi
. This implies ρ =

(qi+
1
ωi

)σi−1+σi−2

(qi+
1
ωi

)τi−1+τi−2
= ωiσi+σi−1

ωiτi+τi−1
, thus since τi+1 > τi we get |ρ−ρi| = |ωiσi+σi−1

ωiτi+τi−1
−

σi
τi
| = |σi−1τi−σiτi−1

(ωiτi+τi−1)τi
| = 1

(ωiτi+τi−1)τi
≤ 1

(qi+1τi+τi−1)τi
= 1

τi+1τi
< 1

τ2
i

.

b) Let γ ∈ R≥0, and let x ∈ N0 and y ∈ N such that |γ − x
y | ≤

1
2y2 , where we

may assume that gcd(x, y) = 1; hence x
y ∈ Q approximates γ somewhat better

than guaranteed by the bound for its convergents. Then we have Legendre’s
Theorem: The fraction x

y ∈ Q indeed is a convergent:

Let x
y = cf[q1, . . . , ql] be the continued fraction expansion of x

y , and let ρi = σi
τi

,

for i ∈ {1, . . . , l}, be the convergents of xy , hence we have x = σl and y = τl. By

II Public key cryptography 38

assumption there are ε ∈ {±1} and δ ∈ R such that 0 ≤ δ ≤ 1
2 and γ = σl

τl
+ εδ

τ2
l

,

where we may assume that δ > 0 and ε = (−1)l−1. Let ω := τl−δτl−1

δτl
∈ R. Since

τl−1 < τl we have (1− δ)τl ≥ τl
2 > τl−1

2 ≥ δτl−1, implying τl − δτl−1 > δτl, and

thus ω = τl−δτl−1

δτl
> 1. We have cf[q1, . . . , ql, ω] =

(ql+
1
ω)σl−1+σl−2

(ql+
1
ω)τl−1+τl−2

= ωσl+σl−1

ωτl+τl−1
=

(
τl−δτl−1

δτl
)σl+σl−1

(
τl−δτl−1

δτl
)τl+τl−1

= σlτl−δ(σlτl−1−σl−1τl)
τ2
l

= σl
τl
− (−1)lδ

τ2
l

= γ. Thus replacing ω by

its continued fraction expansion, which starts with a positive integer, yields the
expansion of γ as a prolongation of cf[q1, . . . , ql].]

(9.4) Low decryption exponent attack [Wiener, 1990]. Let p 6= q ∈ N
be odd primes and let n := pq ∈ N. Let e, d ∈ Zϕ(n) such that d 6= 1 and
ed = 1 ∈ Z/ϕ(n)Z. There is k ∈ N such that ed − kϕ(n) = 1, hence we have
gcd(k, d) = 1 and from kϕ(n) = ed− 1 < dϕ(n) we infer k < d. Thus, if we are
able to determine k

d ∈ Q, then d is found, and the RSA cryptosystem is broken.

Assume that q < p < λq for some λ > 1, and that d <
4
√
n√

2(λ+1)
. Hence we have

0 < n − ϕ(n) = pq − (p − 1)(q − 1) = p + q − 1 < (λ + 1)q < (λ + 1)
√
n. This

yields | en −
k
d | = | ed−kndn | = | ed−k(n−ϕ(n))−kϕ(n)dn | = | 1−k(n−ϕ(n))dn | < k(n−ϕ(n))

dn <
d(λ+1)

√
n

dn = λ+1√
n
< λ+1

2(λ+1)d2 = 1
2d2 . Hence k

d ∈ Q is a convergent of ρ := e
n ∈ Q,

and can be computed in polynomial time by the Euclidean algorithm. For the
convergents ρi = σi

τi
∈ Q, where σi, τi ∈ N such that gcd(σi, τi) = 1, letting

ψi := eτi−1
σi
∈ Q, we solve the quadratic equation X2 + (ψi − n− 1)X + n = 0,

yielding p and q if the convergent taken was the right one.

(9.5) Practical aspects of the RSA cryptosystem. a) Let p 6= q ∈ N be
odd primes and let n := pq ∈ N.

Given the capabilities of the known factorisation algorithms, p and q should be
chosen of the same size, which nowadays should be at least ∼ 2512 ∼ 10154,
thus n ∼ 21024 ∼ 10308. If there are factorisation algorithms running faster for
certain choices of the prime divisors of n, for example if p − 1 or p + 1 has no
large prime divisors, then these have to be avoided as well. Moreover, |p − q|
must not be too small, since otherwise p, q ∼

√
n ∈ R and the prime divisors of

n can be found by trial division with integers close to
√
n.

The state of the art, as far as integer factorisation is concerned, is reflected by
the RSA challenge problems. The current record [Kleinjung et al., 2009] is
the factorisation of the modulus ‘RSA-768’, which is of size ∼ 2768 ∼ 10232, by
a parallel computing approach which needed an equivalent of some 2000 years
of serial computing time. (A few smaller ones have been factored since then.)

To give an explicit example, we present the details of the modulus ‘RSA-100’,
which is of size ∼ 2330 ∼ 10100, and has been factored [A. Lenstra, 1991] using
the multipolynomial quadratic sieve (MPQS), which nowadays would need

II Public key cryptography 39

roughly one hour of computing time:

n := 15226050279225333605356183781326374297180681149613
80688657908494580122963258952897654000350692006139

p := 37975227936943673922808872755445627854565536638199

q := 40094690950920881030683735292761468389214899724061

The factorisation of p − 1 and q − 1 is easily found (in less than a second of
computing time):

p−1 = 2 · 3167 · 3613 · 587546788471 · 3263521422991 · 865417043661324529

q−1 = 22 · 5 · 41 · 2119363 · 602799725049211 · 38273186726790856290328531

In particular, we have gcd(p− 1, q − 1) = 2. Moreover, p− 1 and q − 1 indeed
have large prime divisors, and letting p′ := 865417043661324529 and q′ :=
38273186726790856290328531 be the respective largest ones in turn we get:

p′ − 1 = 24 · 3 · 11 · 17 · 61 · 1580566471723

q′ − 1 = 2 · 3 · 5 · 61 · 113 · 93557 · 1978284752702551

In particular, p′ − 1 and q′ − 1 have large prime divisors as well.

b) In practice, the Public-Key Cryptography Standard (PKCS) #1 is
used, for example in the SSL/TLS Handshake Protocol; this is about 103

times slower than DES or AES. Randomisation is done using Optimal Asym-
metric Encryption Padding (OAEP), which runs as follows:

Let b := dlog2(n)e ∈ N be the number of binary digits needed to represent n.
Moreover, let k, l ∈ N such that k + l = b − 1. Then the elements of Zk+l2 can
be considered as binary representations of integers in Z2k+l ⊆ Zn. Now let Zl2
be the set of plaintexts of a block cipher of length l over Z2, and let Zk2 be a
source of random vectors. Finally, let f : Zk2 → Zl2 and g : Zl2 → Zk2 be ‘random’
expansion and compression functions, respectively, which are made public:

Then encryption runs as follows: Let v ∈ Zl2 be a plaintext, let u ∈ Zk2 be
randomly chosen, and let w :=

(
(f(u)⊕v) ·2k

)
⊕
(
u⊕g(f(u)⊕v)

)
∈ Zk+l2 ⊆ Zn.

Hence both v and u are masked: The former by adding f(u), which since u
is chosen randomly is random as well; the latter by adding g(f(u) ⊕ v), which
since f(u) ⊕ v can be considered random is random as well. Both ingredients
are incorporated into w, which is encrypted yielding ŵ := (we mod n) ∈ Zn.

Decryption runs as follows: We recover w := (ŵd mod n) ∈ Zk+l2 ⊆ Zn. Then
we have (w÷2k) = f(u)⊕v ∈ Zl2 and (w mod 2k) = u⊕g(f(u)⊕v) ∈ Zk2 , hence
we recover (w mod 2k)⊕ g(w÷ 2k) =

(
u⊕ g(f(u)⊕ v)

)
⊕ g(f(u)⊕ v) = u ∈ Zk2 ,

and subsequently f(u)⊕ (w ÷ 2k) = f(u)⊕ (f(u)⊕ v) = v ∈ Zl2.]

In the above, the functions f and g are considered to obey to the random or-
acle model [Bellare-Rogaway, 1993], which says that they are evaluated by an

II Public key cryptography 40

oracle, rather than by a formula, for example; hence no information on preim-
ages can be obtained from images. But k has to be chosen large enough such
that a complete search through Zk2 is infeasible: Otherwise, we would be able to
compute all possible encryptions of a given plaintext, rendering randomisation
useless. This is a drawback, since it reduces the fraction of information bits to
l
b ; typical values nowadays are k + l + 1 = b = 1024 and k = 128.

10 The Rabin cryptosystem

(10.1) The Rabin cryptosystem [1979]. Let p 6= q ∈ N be primes such that
p, q ≡ 3 (mod 4), and let n := pq ∈ N be the modulus. Let P = C := Z/nZ,
and let the only encryption function be E : Z/nZ→ Z/nZ : x 7→ x2. The public
key is n, the private key is [p, q].

Since 2 ∈ (Z/ϕ(n)Z) \ (Z/ϕ(n)Z)∗, decryption is not unique, thus this is not a
cryptosystem. For x ∈ Z/nZ there are at most four square roots of x2 in Z/nZ,
and if p and q are known these can be computed in polynomial time as follows:

For any y ∈ Z/pZ the polynomial X2 − y ∈ Z/pZ[X] has at most two roots in
Z/pZ, and yp ∈ Z/pZ is a root if and only if −yp ∈ Z/pZ is a root as well; we
have yp 6= −yp if and only if yp 6= 0, which holds if and only if y 6= 0. If X2 − y
has a root x ∈ Z/pZ at all, i. e. we have y = x2, then for yp := y

p+1
4 ∈ Z/pZ

we have y2p = (y
p+1
4)2 = ((x2)

p+1
4)2 = xp+1 = x(p−1)+2 = x2 = y ∈ Z/pZ, and

thus {±yp} indeed are the roots of X2 − y in Z/pZ. If X2 − y does not have a
root in Z/pZ, then this is detected by observing that y2p 6= y ∈ Z/pZ.

Given y ∈ Z/nZ, using the ring isomorphism Z/nZ → (Z/pZ) × (Z/qZ) we
conclude that X2−y ∈ Z/nZ[X] has a root in Z/nZ if and only if both X2−y ∈
Z/pZ[X] and X2 − y ∈ Z/qZ[X] have a root in Z/pZ and Z/qZ, respectively.
In this case there are at most four roots in Z/nZ, given as the preimages of
[±yp,±yq] ∈ (Z/pZ) × (Z/qZ), where yp ∈ Zp and yq ∈ Zq are such that

yp = y
p+1
4 ∈ Z/pZ and yq = y

q+1
4 ∈ Z/qZ. Letting sp, sq ∈ Z such that

1 = spp+ sqq, and x ∈ Zn such that x = (±ypsqq) + (±yqspp) ∈ Z/nZ, we have
x = ±yp(1− spp) = ±yp ∈ Z/pZ and x = ±yq(1− sqq) = ±yq ∈ Z/qZ, and thus
x2 = y ∈ Z/nZ.]

Rabin encryption is faster than RSA encryption, while Rabin decryption is
about as fast as RSA decryption. Similar to the RSA cryptosystem, the Rabin
cryptosystem is vulnerable to protocol failure by multiplicativity or low ex-
ponent attacks, countermeasures again are restricting plaintexts to admissible
subsets and randomisation, respectively. Since decryption of a ciphertext yields
up to four possible plaintexts, from which the correct one has to be determined,
plaintexts should be chosen from an admissible subset anyway:

E. g. let p := 251 and q := 263, hence n = 66013 and 216 = 65536 < n.
We consider a Rabin block cipher: We encode elements of Z10

2 into Z16
2

by repeating the last 6 letters, and the latter are considered via 2-adic ex-
pansion as elements of Z216 ⊆ Zn. E. g. 1001111001 ∈ Z10

2 is encoded into

II Public key cryptography 41

x := 1001111001|111001 ∈ Z16
2 , yielding x = 40569 ∈ Zn. Thus y = x2 ∈ Z/nZ

where y := 7645 ∈ Zn, and yp = 93 ∈ Zp and yq = 196 ∈ Zq. Using sp = −22
and sq = 21 we get the following square roots, only x4 being admissible:

Zn Z16
2

x1 25444 0010011011|000110

x2 54374 0110011000|101011

x3 11639 1110111010|110100

x4 40569 1001111001|111001

(10.2) Protocol failure of the Rabin cryptosystem. a) By the above,
protocol failure of the Rabin cryptosystem polynomial time reduces to factoring
n. Conversely, protocol failure of the Rabin cryptosystem, i. e. having an oracle
being able to compute a square root for any square in (Z/nZ)∗, yields the
following polynomial time Las-Vegas algorithm to factor n:

choose x ∈ Zn randomly
if x = 0 then return fail
g := gcd(x, n) ∈ Zn
if 1 < g < n then return g
compute x′ ∈ Zn such that (x′)2 = x2 ∈ Z/nZ
g := gcd(x− x′, n) ∈ Zn
if 1 < g < n then return g
return fail

For x ∈ (Z/nZ)∗ we have x 6= −x ∈ Z/pZ and x 6= −x ∈ Z/qZ, hence we have
precisely four cases x′ = ±x ∈ Z/pZ and x′ = ±x ∈ Z/qZ. The cases with equal
signs yield gcd(x − x′, n) = gcd(0, n) = n and gcd(x − x′, n) = gcd(2x, n) = 1,
respectively, while the cases with different signs yield gcd(x − x′, n) = p and
gcd(x−x′, n) = q, respectively. Thus in the latter two cases x is a factorisation
witness, while in the former two cases it is not. Hence the fraction of witnesses

is precisely
n−1−ϕ(n)+ϕ(n)

2

n = 1
2 + p+q−3

2pq > 1
2 .]

Hence the Rabin cryptosystem is provably secure, relative to factoring the mod-
ulus n, against a chosen-plaintext attack: Given a plaintext x ∈ Z/nZ, any
decryption x′ ∈ Z/nZ of the ciphertext x2 ∈ Z/nZ, which by assumption can
be found, with probability more than 1

2 leads to a factorisation of n. It is con-
jectured that squaring in Z/nZ is a cryptographic one-way function, see (18.1).

b) At the same time, the Rabin cryptosystem is insecure against a chosen-
ciphertext attack, inasmuch in this case the hypothetical decryption algorithm
in a chosen-plaintext attack is just replaced by an actual decryption algorithm.

This is prevented if only plaintexts from an admissible subset, e. g. as described
above, are allowed: If x ∈ Z/nZ is such that no square root of x2 ∈ Z/nZ is
admissible, then decryption of x2 simply is forbidden. However, in this case
we can no longer prove that protocol failure necessarily leads to a factorisation
algorithm for n, i. e. we no longer have provable security.

II Public key cryptography 42

11 The ElGamal cryptosystem

(11.1) The ElGamal cryptosystem [1985]. Let p ∈ N be a prime, and let
ρ ∈ (Z/pZ)∗ be a primitive root. Hence given β ∈ (Z/pZ)∗ there is a unique
discrete logarithm b = logρ(β) ∈ Z/(p− 1)Z such that β = ρb.

Let P := (Z/pZ)∗ and C := (Z/pZ)∗ × (Z/pZ)∗; ciphertexts being twice as
long as plaintexts is a disadvantageous message expansion. For [a, b] ∈ K :=
(Z/(p − 1)Z) × (Z/(p − 1)Z) let α := ρa ∈ (Z/pZ)∗, the public key is [p, ρ, α],
while a is private to Alice, and b is private to Bob. To send messages from Bob to
Alice, let Eb : (Z/pZ)∗ → (Z/pZ)∗× (Z/pZ)∗ : x 7→ [ρb, xαb], and Da : (Z/pZ)∗×
(Z/pZ)∗ → (Z/pZ)∗ : [β, y] 7→ yβ−a. Then we have Da(Eb(x)) = Da(ρb, xαb) =
xαb(ρb)−a = x(ρa)b(ρb)−a = x ∈ (Z/pZ)∗.

The ElGamal cryptosystem is used as a randomised cryptosystem: Let µP be a
probability distribution on P. Since ρb ∈ (Z/pZ)∗ is a primitive root if and only
if b ∈ (Z/(p − 1)Z)∗, for C′ := {β ∈ (Z/pZ)∗;β primitive root} × (Z/pZ)∗ ⊆ C
and [a, b] ∈ K′ := (Z/(p − 1)Z) × (Z/(p − 1)Z)∗ we get Eb : P → C′; note that
|C′| = ϕ(p − 1) · (p − 1) = |K′|. Let µK′ be the uniform distribution, i. e.
the components of K′ are uniformly distributed and independent, and assume
that µK′ and µP are independent. Then µC′ is the uniform distribution and the
ElGamal cryptosystem is perfectly secure, i. e. from observing ciphertexts alone,
neglecting the fact that α is publicly known, no information about plaintexts
can be extracted:

For [β, y] ∈ C′ we have Eb(x) = [β, y], where [x; a, b] ∈ P × K′, if and only
if β = ρb and y = xαb = xρab = x(ρb)a ∈ (Z/pZ)∗. Thus b = logρ(β) ∈
(Z/(p − 1)Z)∗ is uniquely determined. Moreover, for any x ∈ (Z/pZ)∗ we get
a = logρb(yx

−1) = b−1 · logρ(yx
−1) ∈ Z/(p − 1)Z, in other words a is uniquely

determined as soon as b and x are given; note that here we use b ∈ (Z/(p−1)Z)∗.

Hence we have µC′(β, y) = 1
ϕ(p−1) ·

∑
x∈P

µP(x)
p−1 = 1

(p−1)·ϕ(p−1) = 1
|C′| . Moreover,

for any [β, y] ∈ C′ and x ∈ P this shows µP×C′(x;β, y) = µP(x)
|K′| = µP(x)

|C′| =

µP(x) · µC′(β, y), thus µP(x | β, y) =
µP×C′ (x;β,y)

µC′ (β,y)
= µP(x).]

(11.2) Protocol failure of the unrandomised ElGamal cryptosystem.
We keep the setting of (11.1). To prevent the following attacks, the second
component of the key used has to be varied for each encryption.
a) Malleability. Changing ciphertexts suitably leads to a controllable change
of the associated plaintext: Given [a, b] ∈ K, a plaintext x ∈ (Z/pZ)∗ and the
associated ciphertext [ρb, xαb] ∈ C, then for any x′ ∈ (Z/pZ)∗ the encryption of
x′x is [ρb, x′(xαb)] ∈ C, hence can be computed from the encryption of x.
b) There is the following protocol failure: Let x, x′ ∈ (Z/pZ)∗ be encrypted
with [a, b] ∈ K, yielding ciphertexts [ρb, y] and [ρb, y′], respectively, where y :=
xαb ∈ (Z/pZ)∗ and y′ := x′αb ∈ (Z/pZ)∗. Hence y−1y′ = x−1x′ ∈ (Z/pZ)∗, and
thus the plaintext x = yy′−1x′ ∈ (Z/pZ)∗ can be computed from the plaintext
x′ and the ciphertexts y and y′.

II Public key cryptography 43

(11.3) Breaking the ElGamal cryptosystem. We keep the setting of (11.1).
Breaking the ElGamal cryptosystem, by finding the first component a ∈ Z/(p−
1)Z of the key used, polynomial time reduces to solving the discrete logarithm
problem in (Z/pZ)∗: Given a primitive root ρ ∈ (Z/pZ)∗ and α ∈ (Z/pZ)∗,
find the discrete logarithm a = logρ(α) ∈ Z/(p − 1)Z such that ρa = α. Thus
this cryptosystem is secure only if solving the discrete logarithm problem in
(Z/pZ)∗ is computationally difficult; it is conjectured that exponentiation in
(Z/pZ)∗ is a cryptographic one-way function, see (18.1).

Conversely, it is conjectured that solving the discrete logarithm problem in
(Z/pZ)∗ polynomial time reduces to breaking the ElGamal cryptosystem. Given
the capabilities of modern algorithms for the discrete logarithm problem in
(Z/pZ)∗, the prime p should be of size p ∼ 21024 ∼ 10308, and p− 1 should have
a large prime divisor.

(11.4) The Diffie-Hellman key exchange protocol [1976]. The original
idea behind the ElGamal cryptosystem is the following protocol, which actually
was the very begin of public-key cryptography:

a) Alice and Bob want to agree on a common private key, using an insecure
channel. To do so, Alice and Bob publicly agree on a prime p ∈ N and a primitive
root ρ ∈ (Z/pZ)∗. Then Alice picks a ∈ Z/(p−1)Z and sends α := ρa ∈ (Z/pZ)∗

to Bob, similarly Bob picks b ∈ Z/(p − 1)Z and sends β := ρb ∈ (Z/pZ)∗

to Alice. Finally, Alice computes γ := βa = ρab ∈ (Z/pZ)∗, Bob computes
γ := αb = ρab ∈ (Z/pZ)∗, hence γ is their common private key.

It is not necessary to choose ρ as a primitive root, but just to choose ρ ∈ (Z/pZ)∗

having a sufficiently large order. To compute the order of ρ efficiently, we have
to be able to factor p− 1.

A man-in-the-middle attack leads to the following protocol failure: Since
Alice and Bob cannot verify who has sent the messages, an adversary Oscar can
impersonate Alice and exchange a key with Bob, and Oscar can impersonate Bob
and exchange a key with Alice, and then Oscar is able to intercept all messages.
This attack is prevented using signatures.

b) Determining the private key γ ∈ (Z/pZ)∗ is called the Diffie-Hellman
problem: Given a prime p ∈ N, a primitive root ρ ∈ (Z/pZ)∗, and α := ρa ∈
(Z/pZ)∗ as well as β := ρb ∈ (Z/pZ)∗, without knowing a, b ∈ Z/(p − 1)Z find
γ := ρab ∈ (Z/pZ)∗. Hence solving the Diffie-Hellman problem polynomial time
reduces to solving the discrete logarithm problem in (Z/pZ)∗. Conversely, it
is an open problem whether solving the discrete logarithm problem in (Z/pZ)∗

polynomial time reduces to solving the Diffie-Hellman problem.

Solving the Diffie-Hellman problem is polynomial time equivalent to protocol
failure of the ElGamal cryptosystem: Assume we have a Diffie-Hellman oracle,
and let [β, y] ∈ (Z/pZ)∗ × (Z/pZ)∗ be an ElGamal ciphertext, keeping the
setting of (11.1). Using the oracle with input [ρ, α, β] compute γ ∈ (Z/pZ)∗,
then yγ−1 = xαbρ−ab = x(ρa)bρ−ab = x ∈ (Z/pZ)∗ is the plaintext associated

II Public key cryptography 44

with [β, y]. Conversely, assume we have an ElGamal decryption oracle, and let
ρ ∈ (Z/pZ)∗ be a primitive root and α, β ∈ (Z/pZ)∗. Using the oracle with
input [β, 1] ∈ (Z/pZ)∗ × (Z/pZ)∗ compute x ∈ (Z/pZ)∗, then 1 = xαb = xρab

implies x−1 = γ ∈ (Z/pZ)∗.

Since breaking the ElGamal cryptosystem polynomial time reduces to solving
the discrete logarithm problem in (Z/pZ)∗, and conjecturally is polynomial time
equivalent to it, this indicates that the discrete logarithm problem in (Z/pZ)∗ in
general might not polynomial time reduce to solving the Diffie-Hellman problem.
This changes if p− 1 has only small prime factors, see [10, Ch.3.7].

(11.5) Generalised ElGamal cryptosystems. For any finite cyclic group
G = 〈ρ〉 of known order |G|, there is an associated discrete logarithm problem:
Given γ ∈ G, find the discrete logarithm c = logρ(γ) ∈ Z/|G|Z such that
γ = ρc. Any such discrete logarithm problem yields a generalised ElGamal
cryptosystem, which is secure only if solving the underlying discrete logarithm
problem is computationally difficult.

There are discrete logarithm problems which can be solved in polynomial time;
e. g. for n ∈ N the additive group Z/nZ is cyclic with generator a ∈ (Z/nZ)∗,
and for x ∈ Z/nZ we have loga(x) = xa−1 ∈ Z/nZ, which hence can be com-
puted in polynomial time by the Euclidean algorithm. Still, there are finite
commutative groups possessing cyclic subgroups having conjecturally difficult
discrete logarithm problems:

a) (Z/pZ)∗ where p ∈ N is a prime, and (Z/nZ)∗ where n ∈ N composite.
b) F∗q , where Fq is the field with q elements.
c) The points of an elliptic curve over Fq [Miller, 1986; Koblitz, 1987; Menezes-
Vanstone, 1993], see [8, Ch.6].
d) The points of the Jacobian variety of an hyperelliptic curve over Fq
[Koblitz, 1989; Frey, ≥1994], see [8, Ch.6].
e) Class groups of algebraic number fields [Buchmann, 1990].

(11.6) Randomised public key cryptosystems. Next to the generalised
ElGamal cryptosystems there are other randomised public key cryptosystems:
The Blum-Goldwasser cryptosystem [1985], which is the most efficient ran-
domised public key cryptosystem and comparable to the RSA cryptosystem, is
based on the computational difficulty of integer factorisation, see [10, Ch.8.7.2].

The Goldwasser-Micali cryptosystem [1982] is based on the computational
difficulty of the quadratic residuosity problem for integers, see [10, Ch.8.7.1];
see (18.1) for the associated function problem of taking integer modular square
roots, and (28.1) for the case of prime moduli.

The McEliece cryptosystem [1978], which was the first realisation of a ran-
domised public key cryptosystem and is very efficient, but has due to its large
public keys received little practical attention, is based on the computational
difficulty of decoding linear error-correcting codes, which is an NP-hard

II Public key cryptography 45

problem, see [10, Ch.8.5]. Similar to the Merkle-Hellman cryptosystem, see
(12.2), which is based on the NP-hard subset sum problem, the idea is to con-
sider particular codes having polynomial time decoding algorithms, e. g. al-
gebraic geometric codes such as Goppa codes, and to disguise them; the
version using Goppa codes is still unbroken.

12 Knapsack cryptosystems

(12.1) The subset sum problem. Given s ∈ N0, as well as n ∈ N and a
knapsack sequence [a1, . . . , an] ∈ Nn0 , the subset sum problem is to find a
sequence [x1, . . . , xn] ∈ {0, 1}n such that

∑n
i=1 xiai = s, or to show that such a

sequence does not exist; in general a solution sequence is not necessarily unique.

The subset sum problem is solved by the following recursive algorithm S, re-
turning S(s; a1, . . . , an), which is a solution sequence if such a sequence exists,
or fail otherwise:

if n = 1 then
if s = 0 then return [0]
if s = a1 then return [1]
return fail

T := S(s; a1, . . . , an−1) # recursion
if T 6= fail then return [T, 0]
if s ≥ an then

T := S(s− an; a1, . . . , an−1) # recursion
if T 6= fail then return [T, 1]

return fail

Since S is recursively called twice for given n, for the runtime we have t(n) =
2t(n−1)+1 for n ≥ 2 and t(1) = 1. This by induction yields t(n) = 2n−1, hence
S has exponential running time; actually S runs in non-deterministic linear time.
No polynomial time deterministic algorithm to solve the subset sum problem is
known, actually this problem is NP-hard. The following particular case can be
easily solved:

A knapsack sequence [a1, . . . , an] ∈ Nn is called superincreasing if aj >∑j−1
i=1 ai for j ∈ {1, . . . , n}; hence if there is a solution sequence it is unique. The

subset sum problem for superincreasing sequences is solved by the following re-
cursive algorithm S′, returning S′(s; a1, . . . , an), which is the solution sequence
if it exists, or fail otherwise; since S′ is recursively called only once for given n,
it has linear running time:

if n = 1 then
if s = 0 then return [0]
if s = a1 then return [1]
return fail

if s ≥ an then
T ′ := S′(s− an; a1, . . . , an−1) # recursion

II Public key cryptography 46

if T ′ 6= fail then return [T ′, 1]
else

T ′ := S′(s; a1, . . . , an−1) # recursion
if T ′ 6= fail then return [T ′, 0]

return fail

(12.2) The Merkle-Hellman cryptosystem [1978]. It is based on the sub-
set sum problem, and was the first realisation of a public-key cryptosystem:
Let n,m ∈ N. For c ∈ Z∗m and a := [a1, . . . , an] ∈ Nn superincreasing such
that

∑n
i=1 ai < m, hence ai ∈ Zm, let b := [b1, . . . , bn] ∈ Znm such that

bi = cai ∈ Z/mZ. Since c ∈ (Z/mZ)∗ the bi are pairwise distinct, but b in
general is not superincreasing, disguising the superincreasing sequence a.

Let P := Zn2 and C := Zn(m−1), and K := {[c, a] ∈ Z∗m×Nn; a superincreasing}.
The public key is b ∈ Znm, the private key is [m, c, a]. Encryption is given
as Eb : Zn2 → Zn(m−1) : [x1, . . . , xn] →

∑n
i=1 xibi. Decryption is given as fol-

lows: For y ∈ Zn(m−1) let z ∈ Zm such that z = c−1y ∈ Z/mZ, then
we let Dc,a : Zn(m−1) → Zn2 : y 7→ S′(z; a); if the subset sum problem is not
solvable we let S′(z; a) := [0, . . . , 0] instead. Then we have EbDc,a = idP :
For [x1, . . . , xn] ∈ Zn2 and y :=

∑n
i=1 xibi ∈ Zn(m−1) we have z = c−1y =∑n

i=1 xi · c−1bi =
∑n
i=1 xiai ∈ Z/mZ, implying S′(z; a) = [x1, . . . , xn].

The best known attack against the Merkle-Hellman cryptosystem is a ciphertext-
only attack [Shamir, 1982; Lagarias, 1984] using LLL lattice base reduction
[Lenstra-Lenstra-Lovász, 1982], leading to protocol failure, see [10, Ch.8.6.1].

(12.3) The Chor-Rivest cryptosystem [1988]. It is also based on the com-
putational difficulty of the subset sum problem, but not on the idea of disguise:

a) For n, k ∈ N0 let
(
n
k

)
:= n(n−1)···(n−k+1)

k(k−1)···1 ∈ N0 be the associated binomial

coefficient, where empty products are assumed to be equal to 1; we have
(
n
0

)
= 1,

and
(
0
k

)
= 0 for k ≥ 1, as well as

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
for n, k ∈ N.

Given n, k ∈ N such that k ≤ n, we consider the knapsack sequence [
(
m
l

)
∈

N0;m ∈ {0, . . . , n− 1}, l ∈ {0, . . . ,min{k,m+ 1}]. Any x ∈ Z(nk)
can be written

as a sum x =
∑n
i=1 xi·

(
n−i
ki

)
, where xi ∈ {0, 1} and ki ∈ {0, . . . ,min{k, n−i+1}},

such that precisely k of the xi are equal to 1, and [k1, . . . , kn] = [k, . . . , k, k −
1, . . . , k − 1, . . . , 0, . . . , 0] ∈ Nn0 where ki+1 = ki − 1 if and only if xi = 1:

We proceed by induction on n ∈ N: If n = 1 then k = 1, hence x = 0 =
(
0
1

)
.

If n ≥ 2 then we let k1 := k. If 0 ≤ x <
(
n−1
k

)
then k ≤ n − 1, and letting

x1 := 0 we are done by induction. If
(
n−1
k

)
≤ x <

(
n
k

)
then 0 ≤ x −

(
n−1
k

)
<(

n
k

)
−
(
n−1
k

)
=
(
n−1
k−1
)
, and letting x1 := 1 we are done by induction.]

Hence to recover x from [x1, . . . , xn] ∈ {0, 1}n, let 1 ≤ i1 < · · · < ik ≤ n such

that xi = 1 if and only if i ∈ {i1, . . . , ik}. Then we have x =
∑k
j=1

(
n−ij
k−j+1

)
.

b) Let q ∈ N be a prime power, let 2 ≤ d ≤ q, and let P := Z(qd)
and C := Zqd−1.

II Public key cryptography 47

Fix a numbering Fq = {α1, . . . , αq} of the field with q elements, let Fq ⊆ Fqd
be the field with qd elements, and let K := {ρ ∈ F∗qd ; ρ primitive root}. Given

ρ ∈ K, for i ∈ {1, . . . , q} let ai = logρ(ρ+αi) ∈ Z/(qd−1)Z, i. e. we have ρ+αi =
ρai ∈ F∗qd . Then the private key is ρ, and the public key is [q, d, a1, . . . , aq].

The encryption function Eρ is given as follows: For x ∈ P let [x1, . . . , xq] ∈
{0, 1}q such that precisely d of the xi are equal to 1 as above. Then y =
Eρ(x) ∈ C is given by y =

∑q
i=1 xiai ∈ Z/(qd − 1)Z. Decryption is given as

follows:

We have ρy = ρ
∑q
i=1 xiai =

∏q
i=1(ρai)xi =

∏q
i=1(ρ + αi)

xi ∈ Fqd . Let µρ ∈
Fq[X] be the minimum polynomial of ρ; hence µρ is irreducible of degree d and
Fq[X]/µρFq[X] ∼= Fqd as rings via X 7→ ρ. Let f ∈ Fq[X] such that deg(f) < d
and Xy ≡ f (mod µρ). Then f + µρ ∈ Fq[X] is monic of degree d such that
f +µρ ≡ Xy (mod µρ). Since

∏q
i=1(X +αi)

xi ∈ Fq[X] has the same properties
we conclude f + µρ =

∏q
i=1(X + αi)

xi ∈ Fq[X]. Hence f + µρ splits into linear
factors in Fq[X], and [x1, . . . , xq] can be recovered from them.

The factorisation of f + µρ into linear factors can be computed by evaluating
f +µρ at αi ∈ Fq, for ∈ {1, . . . , q}. Computing the discrete logarithms ai in F∗qd
is feasible if qd − 1 has only small prime factors. The recommended sizes are
q ∼ 200 and d ∼ 25; one particular choice is q = 197, a prime, and d = 24, where
qd − 1 ∼ 1055 has largest prime factor 10 316 017 ∼ 107; we have

(
q
d

)
∼ 4 · 1030.

Drawbacks of the Chor-Rivest cryptosystem are message expansion, and its
fairly large public keys. As it stands this cryptosystem is insecure, but against
an only slightly more involved version there is no feasible attack known, provided
parameters are chosen carefully to escape attacks against the underlying subset
sum problem based on LLL lattice base reduction, see [10, Ch.8.6].

13 The Imai-Matsumoto cryptosystem

(13.1) The Imai-Matsumoto (IM) cryptosystem [1989]. Let q ∈ N be a
2-power, let Fq be the finite field with q elements. We consider a block cipher
over Fq of block length l ∈ N, i. e. we have P = C = Flq. Encryption and
decryption are given as follows:

Let F := Fql be the finite field with ql elements, hence Fq ⊆ F is a field
extension of degree [F : Fq] = l, and let {λ1, . . . , λl} ⊆ F be an Fq-basis of

F ; hence we have a bijection : Flq → F : x := [x1, . . . , xl] 7→
∑l
i=1 xiλi =: x,

with inverse : F → Flq. Let e := qm + 1 ∈ Zql−1, where 0 6= m ∈ Zl, such

that gcd(e, ql − 1) = 1. Since F ∗ ∼= Z/(ql − 1)Z, the map F ∗ → F ∗ : α 7→ αe

is bijective with inverse F ∗ → F ∗ : α 7→ αd, where d ∈ Zql−1 such that ed =
1 ∈ Z/(ql − 1)Z. Let A = [aij]ij ∈ GLl(Fq) and B = [bij]ij ∈ GLl(Fq), and
a = [a1, . . . , al] ∈ Flq and b = [b1, . . . , bl] ∈ Flq, and let ϕA,a : Flq → Flq and

ϕB,b : Flq → Flq be the associated affine Fq-linear maps.

The private key is [λ1, . . . , λl;ϕA,a, e, ϕB,b]. Encryption and decryption are

II Public key cryptography 48

given by Flq
ϕA,a−→ Flq −→ F

α7→αe−→ F −→ Flq
ϕB,b−→ Flq, and Flq

ϕ−1
B,b−→ Flq −→ F

α 7→αd−→

F −→ Flq
ϕ−1
A,a−→ Flq, respectively; thus encryption is given by powering in F ∗

which is disguised by the affine Fq-linear maps.

The public key is given as follows: The Frobenius map F → F : α 7→ αq
m

is
a field automorphism fixing Fq elementwise, hence is a bijective Fq-linear map.
Let Q = [qij]ij ∈ GLl(Fq) be its matrix with respect to the chosen Fq-basis of

F . For i, j ∈ {1, . . . , l} we have λiλj =
∑l
k=1 pijkλk, where pijk ∈ Fq, and we

let Pi := [pijk]jk ∈ GLl(Fq).

Let x = [x1, . . . , xl] ∈ Flq be a plaintext with ciphertext y = [y1, . . . , yl] ∈ Flq.
Let u = [u1, . . . , ul] := ϕA,a(x) ∈ Flq and v = [v1, . . . , vl] := ϕ−1B,b(y) ∈ Flq, hence

we have ui =
∑l
s=1 xsasi + ai and yt =

∑l
j=1 vjbjt + bt for i, t ∈ {1, . . . , l}.

Using this we compute v = ue = uq
m

· u = (
∑l
i=1 uiλ

qm

i) · (
∑l
j=1 ujλj) =

(
∑l
i=1

∑l
k=1 uiqikλk)·(

∑l
j=1 ujλj) =

∑l
i=1

∑l
j=1

∑l
k=1 uiujqikλkλj , and hence

we obtain v =
∑l
i=1

∑l
j=1

∑l
k=1

∑l
r=1 uiujqikpkjrλr, which finally implies vr =∑l

i=1

∑l
j=1

∑l
k=1 uiujqikpkjr for r ∈ {1, . . . , l}. From this we obtain yt =

bt +
∑l
i=1

∑l
j=1

∑l
k=1

∑l
r=1(

∑l
s=1 xsasi + ai)(

∑l
s=1 xsasj + aj)qikpkjrbrt. The

public key consists of the above quadratic equations describing the entries of y
in terms of the entries of x. Using the private key we find quadratic equations to
decrypt y again, while an adversary has to solve a system of nonlinear equations
for the entries of x.

(13.2) Cryptanalysis of the IM cryptosystem [Patarin, 1995]. The
cryptanalysis is based on the following observation: From v = uq

m+1 we de-

duce vq
m−1 = u(q

m+1)(qm−1) = uq
2m−1, and thus necessarily uq

2m

· v = u · vq
m

.

If 0 6= v ∈ Flq is fixed, the set of 0 6= u′ ∈ Flq fulfilling u′
q2m · v = u′ · vq

m

is

given as follows: Let u ∈ Flq be the unique element such that uq
m+1 = v, thus

vq
m−1 = uq

2m−1. If u′
q2m · v = u′ · vq

m

for some u′ 6= 0, then we also have

vq
m−1 = u′

q2m−1
. Thus we have u(q

m−1)(qm+1) = u′
(qm−1)(qm+1)

, and since

gcd(qm + 1, qn − 1) = 1 we conclude uq
m−1 = u′

qm−1
, and hence u′ · u−1 ∈ F is

a (qm − 1)-st root of unity. Conversely, if ζ ∈ F is a (qm − 1)-st root of unity,

then from uq
2m

· v = u · vq
m

we get (u · ζ)q
2m · v = (u · ζ) · vq

m

.

From the Euclidean algorithm we get gcd(qm − 1, ql − 1) = qg − 1 where g :=
gcd(m, l) ∈ N, hence {ζ ∈ F ∗; ζqm−1 = 1} = {ζ ∈ F ∗; ζqg−1 = 1} = K∗, where
Fq ⊆ K ⊆ F is the unique subfield such that [K : Fq] = g. Hence for v 6= 0 the
above set of solutions, including u′ = 0, is given as {u′ ∈ Flq;u′ ∈ u ·K}, which is

a g-dimensional Fq-subspace of Flq. Transforming to plaintext-ciphertext pairs

using ϕ−1A,a and ϕB,b shows that, given a ciphertext y ∈ Flq such that v 6= 0, the

associated plaintext x ∈ Flq is contained in a g-dimensional affine Fq-subspace

of Flq, thus having cardinality qg.

II Public key cryptography 49

Hence if g is small, an exhaustive search attack is feasible; from 0 6= m ∈ Zl
we get g = gcd(m, l) < l anyway. Assume we have g = l

2 , hence 2m = l and
gcd(qm + 1, qn − 1) = gcd(qm + 1, q2m − 1) = qm + 1 6= 1, a contradiction.
Hence we have g ≤ l

3 , where this case can indeed occur: If 3m = l, then
since gcd(qm − 1, q3m − 1) = qm − 1 = gcd(q2m − 1, q3m − 1) we conclude
gcd(qm + 1, q3m − 1) = 1. Thus to prevent this attack, l has to be chosen large,
hence the cryptosystem is either insecure or inefficient. It remains to show how
the above affine solution space can be found:

From uq
2m

· v = (uq
m

)q
m

= u · vq
m

, for all v ∈ Flq, we obtain (
∑l
i=1 ui(λ

qm

i)q
m

) ·
(
∑l
j=1 vjλj) = (

∑l
i=1 uiλi)·(

∑l
j=1 vjλ

qm

j), hence we get (
∑l
i=1

∑l
k=1 uiqikλ

qm

k)·
(
∑l
j=1 vjλj) = (

∑l
i=1

∑l
k=1

∑l
h=1 uiqikqkhλh) · (

∑l
j=1 vjλj) = (

∑l
i=1 uiλi) ·

(
∑l
j=1

∑l
k=1 vjqjkλk), thus we obtain

∑l
i=1

∑l
j=1

∑l
k=1

∑l
h=1 uivjqikqkhphjr =∑l

i=1

∑l
j=1

∑l
k=1 uivjqjkpikr for r ∈ {1, . . . , l}. Using ui =

∑l
s=1 xsasi + ai

and vj =
∑l
t=1(yt − bt)b′tj , where B−1 = [b′ij]ij ∈ GLl(Fq), leads to equations

(
∑l
s=1

∑l
t=1 αstrxsyt) + (

∑l
s=1 βsrxs) + (

∑l
t=1 γtryt) + δr = 0 for r ∈ {1, . . . , l}

where αstr, βsr, γtr, δr ∈ Fq.

The latter equations are linear in x, hence once the coefficients are known finding
the candidate x for a given y amounts to solving a system of linear equations;
since the affine solution space is g-dimensional, it is described by l − g linearly
independent equations for x. We have l disjoint identical systems of equations
(
∑l
s=1

∑l
t=1 αstxsyt)+(

∑l
s=1 βsxs)+(

∑l
t=1 γtyt)+δ = 0. Since each plaintext-

ciphertext pair yields a linear equation for the l2 + 2l+ 1 = (l+ 1)2 coefficients
αst, βs, γt, δ, the latter can be found by a chosen-plaintext attack. Since there
are (l+ 1)2 coefficients, (l+ 1)2− (l− g) linearly independent equations coming
from plaintext-ciphertext pairs are needed to give l − g linearly independent
equations for x.

There is a total of ql plaintext-ciphertext pairs, whose number thus grows ex-
ponentially with q. Hence if q is large, a negligible fraction of all plaintext-
ciphertext pairs suffices to find a maximal linearly independent set of linear
equations. If q is small there might be less than (l+ 1)2 − (l− g) linearly inde-
pendent equations coming from plaintext-ciphertext pairs, implying that for a
given ciphertext y there is an affine solution space of Fq-dimension less than g,
being described by more than l − g linearly independent equations for x.

(13.3) Example. Let q := 2 and l := 3. Since T 3 +T +1 ∈ F2[T] is irreducible
we have F8

∼= F := F2[T]/(T 3 + T + 1)F2[T]. Let {1, T, T 2} ⊆ F be the chosen
F2-basis. Let m := 2, hence we have e = qm + 1 = 5 and gcd(ql − 1, e) =
gcd(7, 5) = 1, and thus d = 3 and g = gcd(m, l) = 1. Let a := [1, 0, 1] ∈ F3

2 and
b := [1, 0, 0] ∈ F3

2, and

A =

 . 1 .
1 1 .
. 1 1

 ∈ GL3(F2) and B =

 1 1 1
. 1 1
. . 1

 ∈ GL3(F2).

II Public key cryptography 50

By computing (T i)4 ∈ F for i ∈ {0, . . . , 2} we obtain Q =

 1 . .
. 1 1
. 1 .

 ∈
GL3(F2), and by computing the products T iT j ∈ F for i, j ∈ {0, . . . , 2} we
obtain P1, P2, P3 ∈ GL3(F2) where

P1 =

 1 . .
. 1 .
. . 1

 and P2 =

 . 1 .
. . 1
1 1 .

 and P3 =

 . . 1
1 1 .
. 1 1

 .
For u = [u1, u2, u3] ∈ F3

2 and v = [v1, v2, v3] ∈ F3
2 we obtain ue = u4 · u = (u1 +

(u2+u3)T+u2T
2)·(u1+u2T+u3T

2) ∈ F . From this we obtain v1+v2T+v3T
2 =

v = ue = (u21 +u22 +u2u3 +u23) + (u1u3 +u22 +u23)T + (u1u2 +u1u3 +u22)T 2 ∈ F ,
thus v1 = u21+u22+u2u3+u23 and v2 = u1u3+u22+u23 and v3 = u1u2+u1u3+u22.

For x = [x1, x2, x3] ∈ F3
2 and y = [y1, y2, y3] ∈ F3

2 we have u1 = x2 + 1 and
u2 = x1 + x2 + x3 and u3 = x3 + 1, as well as y1 = v1 + 1 and y2 = v1 + v2
and y3 = v1 + v2 + v3. This yields v1 = (x2 + 1)2 + (x1 + x2 + x3)2 + (x1 +
x2 + x3)(x3 + 1) + (x3 + 1)2 = x21 + x1x3 + x2x3 + x23 + x1 + x2 + x3 and
v2 = (x2+1)(x3+1)+(x1+x2+x3)2+(x3+1)2 = x21+x22+x2x3+x2+x3 and v3 =
(x2+1)(x1+x2+x3)+(x2+1)(x3+1)+(x1+x2+x3)2 = x21+x1x2+x23+x1+1.
Hence the public key is

y1 = x21 + x1x3 + x2x3 + x23 + x1 + x2 + x3 + 1,
y2 = x1x3 + x22 + x23 + x1,
y3 = x21 + x1x2 + x1x3 + x22 + 1.

Hence the plaintext-ciphertext pairs [x; y] = [x1, x2, x3; y1, y2, y3] ∈ F3
2 × F3

2 are

. . . 1 . 1

. . 1 1 1 1

. 1 . . 1 .

. 1 1 1 . .
1 . . 1 1 .
1 . 1 . 1 1
1 1
1 1 1 . . 1

.

Running through plaintext-ciphertext pairs yields the following relation ma-
trix M ∈ F8×16

2 , i. e. M · [α11, α12, . . . , α33, β1, . . . , β3, γ1, . . . , γ3, δ]
tr = 0, i. e.

II Public key cryptography 51

[α11, α12, . . . , α33, β1, . . . , β3, γ1, . . . , γ3, δ] ∈ ker(M tr) ≤ F16
2 :

M =

. 1 . 1 1

. 1 1 1 . . 1 1 1 1 1

. . . . 1 1 . . 1 . 1

. . . 1 . . 1 . . . 1 1 1 . . 1
1 1 1 . . 1 1 . 1
. 1 1 1 1 1 . 1 . 1 1 1
. 1 1 1
. . 1 . . 1 . . 1 1 1 1 . . 1 1

It turns out that M has maximal rank rkF2(M) = 8, and an F2-basis of ker(M tr)
is given as follows:

1 1 1 . . 1
1 1 . 1 . . 1 1
. . 1 1 . . 1 . 1
. 1 . 1 1 1 1
. . 1 . . . 1 1
. 1 . 1 1 . 1 1 . .
1 . 1 1 1 . 1 .
1 . . . 1 1 . . 1 . . 1

Each of the 3-subsets {1, 4, 7}, {2, 5, 8}, {3, 6, 9} and {10, 11, 12} of columns
is F2-linearly independent, thus for all ciphertexts y ∈ F3

2 the matrix of the
resulting system of linear equations for the associated plaintext x ∈ F3

2 has rank
3, and since there is a solution, the affine solution space for x is 0-dimensional,
hence x is uniquely determined. The cryptanalysis only ensures 1-dimensional
affine solution spaces, but here the plaintext-ciphertext pairs do actually fulfil
more equations than the generic ones:

The input data is also valid for the case q := 4 and m := 1, where since
T 3 + T + 1 ∈ F4[T] still is irreducible we let F64

∼= F ′ := F4[T]/(T 3 + T +
1)F4[T]. We still have e = qm + 1 = 5 and gcd(e, ql − 1) = gcd(5, 63) = 1
and g = gcd(m, l) = 1. Running through all 43 = 64 plaintext-ciphertext
pairs yields a matrix M ′ ∈ F64×16

4 such that rkF4
(M ′) = 14, and we get the

following F4-basis of ker(M ′tr) ≤ F64
4 consisting of l − g = 2 elements; we have

ker(M ′tr) ≤ (ker(M tr)⊗F2 F4):[
1 1 1 1 . . 1 1 . 1 1 1 . 1 . .
1 . 1 . 1 1 1 1 1 1 . 1 1 . . 1

]
For generalisations of Imai-Matsumoto cryptosystem and their cryptanalysis,
see [8, Ch.4.2, 4.3].

III Integer arithmetic 52

III Integer arithmetic

14 Computational complexity

(14.1) Turing machines. The standard model of algorithmic computing is
performing operations on finite strings of letters out of a finite alphabet being
written onto an infinite tape, using a machine running back and forth on the tape
reading and writing letters according to specified rules. By Church’s Hypoth-
esis this idea precisely covers the intuitive notion of algorithmic computability.
An early occurrence of this type of question is Hilbert’s 10th problem on
the decidability of the solubility of Diophantine equations; it was solved to the
negative by Matijasevich [1972].

A (deterministic) Turing machine over an alphabet X is a triple T := [X
.
∪

Y,S, τ], where Y is a working alphabet, in particular containing a blank letter
∈ Y, an accepting letter 1, and a rejecting or failure letter 0, where S is a

finite set of states, in particular containing an initial state s0 and a halting
state s∞, and where τ is a transition function

τ : (X
.
∪ Y)× (S \ {s∞}) −→ (X

.
∪ Y)× {←, ↑,→}× S.

T acts on the set (X
.
∪ Y)∗ × S × (X

.
∪ Y)∗ of configurations as follows: The

initial configurations are given as [, s0, u], where u ∈ X ∗ is called an input;
an input of several u1, . . . , un ∈ X ∗ is encoded as u1 u2 . . . un ∈ (X

.
∪ Y)∗.

Let [v, s, w] be a configuration, where s ∈ S \ {s∞}. If ε 6= v, w ∈ (X
.
∪ Y)∗, let

v = v′x and w = yw′, where x, y ∈ X
.
∪ Y; if v = ε, let v′ := ε and x := ; if

w = ε, let w′ := ε and y := . Then T induces the transition

[v, s, w] 7→

 [v, s′, zw′], if τ(y, s) = [z, ↑, s′],
[vz, s′, w′], if τ(y, s) = [z,→, s′],
[v′, s′, xzw′], if τ(y, s) = [z,←, s′].

For a configuration [v, s∞, w] no transition is defined and T halts. We assume
that for all inputs leading to such a halting configuration we are in one and
the same of the following cases, depending on whether we consider a decision
problem or a function problem: Either we have w ∈ 1(X

.
∪ Y)∗ or w ∈

0(X
.
∪ Y)∗, i. e. T accepts or rejects, respectively; or we have w ∈ 0(X

.
∪ Y)∗

or w ∈ w′ (X
.
∪ Y)∗, where w′ ∈ X ∗, i. e. T fails or outputs w′.

(14.2) Example. Let X := {1} and S := {s0, s1, s∞}, and let T be given by

τ 1

s0 [1,←, s1] [1,→, s0]
s1 [,→, s∞] [1,←, s1]

.

III Integer arithmetic 53

Hence upon input 11 ∈ X 2 we obtain

s0 11 7→ 1 s0 1 7→ 11 s0 7→

1 s1 11 7→ s1 111 7→ s1 111 7→ s∞ 111 ,

and for ε ∈ X 0 we obtain s0 7→ s1 1 7→ s∞ 1 .

T computes the successor function N0 → N : n 7→ n + 1, where N0 is given in
unary encoding.

(14.3) Decision problems. Let X be an alphabet, and let L ⊆ X ∗ be a
language. Then L is called decidable (recursive), if there is a Turing machine
T deciding L, i. e. T halts for all w ∈ X ∗, and accepts w if and only if w ∈ L,
otherwise rejects w; and L is called recursively enumerable, if there is a
Turing machine T accepting L, i. e. T halts for w ∈ X ∗ if and only if w ∈ L.
Hence if L is decidable, then it is recursively enumerable: Let T decide L, then
T ′ accepting L is a copy of T , except that whenever T rejects an input, then
T ′ enters an infinite loop.

A Turing machine T deciding a language L ⊆ X ∗ is called to run in time f : {n ∈
N;n ≥ N} → R>0, where N ∈ N, if T halts after at most f(l(w)) transitions,
for all w ∈ X ∗ such that l(w) ≥ N . The complexity class TIME(f) ⊆ Pot(X ∗)
is the set of all languages being decidable in time f . In particular, we have the

complexity classes P :=
⋃
k∈N TIME(nk) and EXP :=

⋃
k∈N TIME(cn

k

), where
c > 1, of languages being decidable in polynomial and exponential time,
respectively; EXP does not depend on the choice of c > 1. We have P = coP,
where coP is the complexity class of languages L ⊆ X ∗ such that (X ∗ \ L) ∈ P.

(14.4) Non-deterministic Turing machines. A non-deterministic Tur-
ing machine over an alphabet X is a triple T := [X

.
∪ Y,S, τ], where X

.
∪ Y

and S are as in (14.1), while the transition function

τ : (X
.
∪ Y)× (S \ {s∞}) −→ Pot((X

.
∪ Y)× {←, ↑,→}× S)

allows for choices and thus branching. Let the non-determinateness be
defined as dT := max{|τ(x, s)|;x ∈ X

.
∪ Y, s ∈ S \ {s∞}} ∈ N. The machine

T halts if no further transition in either branch is possible. We assume that
for all inputs T on halting either accepts or rejects, or outputs; for acceptance,
rejection or output one of the branches is chosen randomly.

A language L ⊆ X ∗ is called non-deterministically decidable, if there is a
non-deterministic Turing machine T deciding L, i. e. T halts for all w ∈ X ∗,
and we have w ∈ L if and only if there is a branch accepting w, otherwise all
branches reject w; acceptance and rejection are treated asymmetrically.

The complexity class NTIME(f) is the set of all languages being non-determinis-
tically decidable in time f . In particular, we have the complexity class NP :=

III Integer arithmetic 54

⋃
k∈N NTIME(nk) of languages being decidable in non-deterministic poly-

nomial time. Let coNP be the complexity class of languages L ⊆ X ∗ such
that (X ∗ \ L) ∈ NP; we have P ⊆ NP ∩ coNP. It is conjectured that P 6= NP
and NP 6= coNP and P 6= NP ∩ coNP, the most outstanding open problem of
computational complexity theory.

(14.5) Theorem. We have NTIME(f) ⊆
⋃
c>1 TIME(cf), thus in particular we

have NP ⊆ EXP.

Proof. Let L be non-deterministically decidable by a Turing machine T , having
non-determinateness dT ≥ 2 and running in time f . Each finite sequence of
choices of T can be encoded dT -adically as

∑
i≥1 cid

i−1
T ∈ N0, where ci ∈ Zd.

Let T ′ be a 3-string Turing machine, where the input is kept on string 1, while on
string 2 a counter enumerates N0 in dT -adic representation, thus producing all
possible sequences of choices of increasing lengths. On string 3 the computation
of T , with the sequence of choices determined by string 2, is done. If for some
finite sequence of choices T accepts, then so does T ′. Otherwise T ′ runs until
some t ∈ N0 is reached such that for no sequence of choices of length t a sequence
of choices of length t+ 1 is possible, in this case T ′ rejects.

The running time of T ′ is the time needed to do the computation for a fixed
sequence, times the number of sequences to be considered. Letting n be the

input length, the former is in O(f(n)), and the latter is in O(
∑f(n)
t=1 (dT)t) =

O((dT)f(n)+1). Then T ′ can be simulated by a conventional Turing machine at
the expense of squaring the running time.]

(14.6) Theorem. Let X be an alphabet such that |X | ≥ 2, and let L ⊆ X ∗ be
a language. Then we have L ∈ NP if and only if there is a relation R ⊆ X ∗×X ∗
having the following properties:
i) We have L = {w ∈ X ∗; [w, v] ∈ R for some v ∈ X ∗}.
ii) There is k ∈ N such that l(v) ≤ l(w)k for all [w, v] ∈ R.
iii) Letting LR := {w v; [w, v] ∈ R} ⊆ X ∗ X ∗, we have LR ∈ P.

Given w ∈ L, an element v ∈ X ∗ such that [w, v] ∈ R is called a polynomial
certificate for w.

Proof. Let R fulfil the above conditions. Then L is decided by a non-determi-
nistic Turing machine, which for w ∈ X ∗ first finds a certificate v ∈ X ∗ of
polynomial length l(v) ≤ l(w)k, hence in polynomial time, and then decides in
polynomial time whether [w, v] ∈ R. Hence we have L ∈ NP.

Conversely, let L ∈ NP be decided by a non-deterministic Turing machine T ,
running in polynomial time and having non-determinateness dT . Each finite
sequence of choices of T can be encoded dT -adically into an element of N0, and
hence |X |-adically into an element of X ∗. Thus we define R ⊆ X ∗ × X ∗ by
letting [w, v] ∈ R if and only if v ∈ X ∗ is the encoding of a sequence of choices

III Integer arithmetic 55

of an accepting computation for w ∈ X ∗. Hence by construction of R we have
(i) and (ii). Moreover, for w v it can be checked in linear time whether v indeed
encodes an accepting computation for w, hence we also have (iii).]

(14.7) Randomised machines. a) A (one-sided) Monte-Carlo machine
for a language L ⊆ X ∗ is a non-deterministic Turing machine T halting for all
w ∈ X ∗, having an error bound 0 < ε < 1 such that T accepts w ∈ L in at
least a fraction of ε of the branches, while T rejects w 6∈ L in all branches. Hence
acceptance is correct, but rejection might be incorrect with an error probability
1 − ε; we may fix an error bound 0 < ε0 < 1 a priorly: If ε < ε0, then T is
repeated k times, until (1− ε)k ≤ (1− ε0).

The complexity class RP of languages being decidable in randomised poly-
nomial time is the set of languages possessing a Monte-Carlo machine running
in polynomial time. Hence we have P ⊆ RP ⊆ NP. Let coRP be the complexity
class of languages L ⊆ X ∗ such that (X ∗ \ L) ∈ RP, and let ZPP := RP ∩ coRP
be the complexity class of languages being decidable in randomised polynomial
time with zero probability error:

For L ∈ ZPP let T ′ and T ′′ be Monte-Carlo machines for L and X ∗ \ L, re-
spectively, both with error bound 0 < ε < 1. A Las-Vegas machine for L is
a non-deterministic Turing machine T defined as follows: T runs both T ′ and
T ′′, if T ′ accepts then T accepts, if T ′′ accepts then T rejects, and otherwise
repeats. Hence T not necessarily halts, but if it does then the result is correct;
T halts after at most k repetitions with a probability of at least 1− (1− ε)k.

Assuming the uniform probability distributions on X≤n, for n ∈ N, and taking
the limit n → ∞, there are straightforward notions of expected (average)
running time and of the success probability of a Monte-Carlo or Las-Vegas
machine, given as expectation values; the success probability is bounded
below by the given error bound.

b) The complexity class BPP of languages being decidable in polynomial time
with bounded probability error is the set of languages possessing a non-
deterministic Turing machine T , called a two-sided Monte-Carlo machine,
running in polynomial time, halting for all w ∈ X ∗, and having an error bound
1
2 < ε < 1 such that T accepts w ∈ L in at least a fraction of ε of the branches,
and T rejects w 6∈ L in at least a fraction of ε of the branches. Hence BPP =
coBPP and RP ∪ coRP ⊆ BPP, and it is conjectured that BPP 6⊆ NP holds.

We may fix an error bound 0 < ε0 < 1 a priorly, by running T repeatedly,
k times say, and accepting an input if and only if it is accepted by a strict
majority of the runs: For w ∈ L, the set of possible results {1, 0} is considered
as a probability space, with elementary probabilities ε and 1 − ε, respectively.
Running T repeatedly on w ∈ L yields independent choices x1, . . . , xk ∈ {1, 0}.
Letting x :=

∑k
i=1 xi, rejection is equivalent to x ≤ k

2 . There are 2k−1 sequences

[x1, . . . , xk] such that x ≤ k
2 , any of them occurring with probability ≤ ε

k
2 (1−

ε)
k
2 . Hence we get µ(x ≤ k

2) ≤ 2k−1ε
k
2 (1 − ε) k2 = 1

2 (1 − (2ε − 1)2)
k
2 , and since

III Integer arithmetic 56

1
2 < ε < 1 it suffices to choose k large enough such that the latter expression is
≤ ε0.

(14.8) Function problems. a) Let X be an alphabet and let R ⊆ X ∗ × X ∗
be a relation. The function problem associated with R is for given w ∈ X ∗ to
find a solution v ∈ X ∗ such that [w, v] ∈ R, if such a v exists at all, otherwise
to report failure. A Turing machine T solves the function problem R, if T halts
for all w ∈ X ∗, and outputs a solution if any exists at all, and fails otherwise.
There are straightforward notions of running time and complexity classes.

There are straightforward generalisations to non-deterministic Turing machines,
in particular there are Monte-Carlo and Las-Vegas machines for function
problems, where the former yield results which might be incorrect with a given
error probability, while the latter always yield correct results or with a given
error probability report failure.

b) The function problems associated with L ∈ NP are the function problems
associated with the polynomial certificates R for L. Let FNP be the complex-
ity class of function problems associated with languages in NP. In particular,
function problems in FNP are solvable by non-deterministic Turing machines
running in polynomial time. Let FP ⊆ FNP be the complexity class of function
problems being solvable by Turing machines running in polynomial time; it is
conjectured that FP 6= FNP holds.

c) A language L ⊆ X ∗ polynomial time reduces to a language L′ ⊆ X ∗, if
there is a function problem in FP, associated with a relation R ⊆ X ∗×X ∗, such
that for all w ∈ X ∗ there is v ∈ X ∗ such that [w, v] ∈ R, i. e. failure does not
occur, and for all [w, v] ∈ R we have w ∈ L if and only if v ∈ L′. Languages L
and L′ are called polynomial time equivalent, if L polynomial time reduces
to L′ and vice versa. A Turing machine deciding L′ is called an oracle for L.
Given a complexity class C of languages, L′ ∈ C is called C-complete if each
L ∈ C polynomial time reduces to L′.
There are straightforward notions of polynomial time reduction, polynomial
time equivalence, and oracles for function problems. Given a complexity class
C of languages, a function problem is called C-hard if each language L ∈ C
polynomial time reduces to that function problem.

15 Integer arithmetic

(15.1) Landau symbols. Let {n ∈ N;n ≥ N} ⊆ DN ⊆ N0, where N ∈ N0.
For an eventually positive function f : DN → R, i. e. we have f(n) > 0 for
all n ≥ N , let the Landau symbols O(f) and o(f) be the sets of all eventually

positive functions g : DN → R such that the sequence [g(n)f(n) ∈ R>0;n ≥ N] is

bounded, and such that limn→∞
g(n)
f(n) = 0, respectively; hence o(f) ⊆ O(f).

Eventually positive functions f, g : DN → R are called asymptotically equiv-

alent, f ∼ g, if limn→∞
g(n)
f(n) = 1; in this case f ∈ O(g) and g ∈ O(f). We use a

III Integer arithmetic 57

similar notation for functions in several variables, and for functions defined on
right unbounded subsets of R.

E. g. we have Stirling’s formula limn→∞
n!·en

nn·
√
2πn

= 1, see [6, Formula 96.2], and

thus n! ∼ (ne)n ·
√

2πn, hence ln(n!) ∼ n(ln(n) − 1) + 1
2 · ln(n) + ln(

√
2π) and

thus ln(n!) ∼ n ln(n). Letting π(n) := |{p ∈ N; p ≤ n, p prime}| ∈ N0 for n ∈ N,
by the Prime Number Theorem, see [5, Ch.22], we have π(n) ∼ n

ln(n) .

(15.2) Bit lengths and bit operations. The number of digits to the base

1 6= z ∈ N necessary to represent n =
∑b
i=0 niz

i ∈ N, where ni ∈ Zz, is given

as the bit length bz(n) := 1 + b = 1 + blogz(n)c = 1 + b ln(n)ln(z) c. For n ∈ Z
we need an additional sign, hence for the input length of 0 6= n ∈ Z we have
1 + bz(|n|) ∈ O(ln(n)).

The computational complexity of integer arithmetic is counted in bit opera-
tions, i. e. and, or, exclusive or, not and shift, on bit strings, hence with respect
to the base z = 2. Generalised bit operations are Byte operations, word
operations and long word operations, with respect to the bases z = 28,
z = 232 and z = 264, respectively. The time needed for these operations indeed
is polynomial in the input length 1 + bz(|n|).
We treat bit operations as oracles. An algorithm using integer arithmetic, whose
input up to sign is n ∈ N, is called an Lα,c-time algorithm, where 0 ≤ α ≤ 1

and c > 0, if it needs Lα,c := O(ec(ln(n))
α(ln(ln(n)))1−α) bit operations. For α = 0

we have Lα,c = O(ln(n)c), thus a polynomial time algorithm. For α = 1 we have
Lα,c = O(ec ln(n)) = O(nc), thus an exponential time algorithm. For 0 < α < 1
we have cxα ln(x)1−α ∈ o(x), thus an subexponential time algorithm, i. e. it
runs in time O(eh(ln(n))) for some eventually positive function h(x) ∈ o(x).

(15.3) Ring operations. a) Addition. Let n ≥ m ∈ N and b := bz(n),

for some 1 6= z ∈ N. Hence we have n =
∑b−1
i=0 niz

i, where ni ∈ Zz, and

we may assume m =
∑b−1
j=0mjz

j , where mj ∈ Zz, by letting mj := 0 for
j ∈ {bz(m), . . . , b− 1}.

δ := 0 ∈ Zz
for k ∈ [0, . . . , b− 1] do

sk := nk +mk + δ ∈ Z2z

if sk ≥ z then
sk := sk − z ∈ Zz
δ := 1 ∈ Zz

else δ := 0 ∈ Zz
sb := δ ∈ Zz
return [s0, . . . , sb]

Hence we have n+m =
∑b
k=0 skz

k. For each k this needs a fixed number of bit
operations, and hence needs O(bz(n)) = O(ln(n)) bit operations; subtraction
also needs O(bz(n)) bit operations.

III Integer arithmetic 58

b) Multiplication. Let n,m ∈ N and bn := bz(n) and bm := bz(m), hence

nm =
∑bn−1
i=0

∑bm−1
j=0 nimjz

i+j =
∑bn+bm−1
k=0 (

∑min{bn−1,k}
l=max{0,k−bm+1} nlmk−l)z

k.

for k ∈ [0, . . . , bn + bm − 1] do sk := 0 ∈ Zz
for i ∈ [0, . . . , bn − 1] do

δ := 0 ∈ Zz
for j ∈ [0, . . . , bm − 1] do

s := si+j + nimj + δ ∈ N0 # s = (s mod z) + b sz c · z
si+j := (s mod z) ∈ Zz
δ := b sz c ∈ N0

si+bm := δ ∈ Zz
return [s0, . . . , sbn+bm−1]

Hence we have nm =
∑bn+bm−1
k=0 skz

k. For each i and j this needs a fixed number
of bit operations, thus needs O(bz(n)bz(m)) = O(ln(n) ln(m)) bit operations.

(15.4) Quotient and remainder. Let m ≥ n ∈ N, hence there are unique
q, r ∈ N0 such that r < n and m = qn+ r.

Let b′ := bz(m) and b′′ := bz(n), for some 1 6= z ∈ N. Replacing [m,n] by a
suitable multiple [km, kn], for some 1 ≤ k < z, we may assume that nb′′−1 ≥
b z2c. After replacing n by nzl for some l ∈ N0, i. e. after a suitable shift, we may
assume that we have bz(n) = b and bz(m) ∈ {b, b+ 1}, where b ∈ {b′, b′+ 1}. To
compute q, we let q′ := min{bmbz+mb−1

nb−1
c, z− 1}. Then we have q′ − 2 ≤ q ≤ q′:

We have nb−1q
′ ≥ mbz+mb−1− (nb−1−1). Hence m−q′n ≤ m−q′nb−1zb−1 ≤

m − (mbz + mb−1)zb−1 + (nb−1 − 1)zb−1 = (nb−1 − 1)zb−1 +
∑b−2
j=0mjz

j <

nb−1z
b−1 ≤ n. From q ≤ z − 1 we conclude q ≤ q′. We have q′ ≤ m

nb−1zb−1 <
m

n−zb−1 and q = bmn c >
m
n − 1. Assume that 3 ≤ q′ − q < m

n−zb−1 − (mn − 1) =
m·zb−1

n(n−zb−1)
+ 1, then we have m

n > 2(nb−1 − 1), and hence z − 4 ≥ q′ − 3 ≥ q =

bmn c ≥ 2(nb−1 − 1) ≥ z − 3, a contradiction. Thus q′ − 2 ≤ q.]

Computing [km, kn] needs O(b′) bit operations, the shifts need O(b′′(b′ − b′′))
bit operations, to compute the quotient q at most 3 trials are necessary, since
bz(q

′) = 1 the trial multiplication to compute q′n needs O(b) = O(b′) bit opera-
tions, and the addition r := m−qn needs O(b′) bit operations. This amounts to
O(max{b′, b′′(b′ − b′′)}) bit operations, where b′′(b′ − b′′) ≥ b′ whenever b′ > b′′,
hence since m ≥ n this needs O(ln(m) ln(n)) ⊆ O(ln(m)2) bit operations.

(15.5) Modular exponentiation. Let e, n ∈ N and m ∈ Zn. We compute
me ∈ Z/nZ as follows:

r := 1 ∈ Zn
while e > 0 do

if (e mod 2) = 1 then r := (rm mod n) ∈ Zn
e := b e2c ∈ N0

III Integer arithmetic 59

m := (m2 mod n) ∈ Zn
return r

Using the binary representation of e ∈ N shows that r ∈ Zn fulfils r = me ∈
Z/nZ. Since b2(e) ∈ O(ln(e)), and multiplication and computing remainders
need O(ln(n)2) bit operations, we need O(ln(e) ln(n)2) bit operations; conven-
tional exponentiation needs O(e ln(n)2) bit operations.

(15.6) Extended Euclidean algorithm. Let m,n ∈ N. We compute the
greatest common divisor gcd(m,n) ∈ N as follows:

r0 := m ∈ N; s0 := 1 ∈ Z; t0 := 0 ∈ Z
r1 := n ∈ N; s1 := 0 ∈ Z; t1 := 1 ∈ Z
i := 1 ∈ N
while ri 6= 0 do

ri+1 := (ri−1 mod ri) ∈ Zri
qi := b ri−1

ri
c ∈ N0 # quotient and remainder

si+1 := si−1 − qisi ∈ Z
ti+1 := ti−1 − qiti ∈ Z
i := i+ 1 ∈ N

return [ri−1, si−1, ti−1]

We have r0 = s0m+ t0n and r1 = s1m+ t1n, and by induction on i ≥ 1 we have
ri+1 = ri−1 − qiri = (si−1m+ ti−1n)− qi · (sim+ tin) = si+1m+ ti+1n. Since
ri+1 < ri for i ≥ 1, the algorithm terminates, after step i := l+ 1 say, returning
[d, s, t] := [rl, sl, tl]. Thus we have d = sm+tn, hence gcd(m,n) | d. Conversely,
since rl+1 = 0, for i ∈ {l, l − 1, . . . , 1} we by induction have rl | ri+1, ri and
thus rl | qiri + ri+1 = ri−1, hence in particular rl | r0, r1, thus rl | gcd(m,n).
Thus we have 0 < d = gcd(m,n) = sm+ tn with Bézout coefficients s and t; if
the latter are not needed, the computation of the si and ti can be left out.

Let 1 6= z ∈ N. For i ∈ {1, . . . , l} we need O(bz(ri)bz(qi)) bit operations

to compute [qi, ri]. Since bz(qi) = 1 + blogz(qi)c, we have O(
∑l
i=1 bz(qi)) =

O(bz(
∏l
i=1 qi)) ⊆ O(bz(r0)). Hence computing the quotients and remainders

needs O(
∑l
i=1 bz(ri)bz(qi)) ⊆ O(bz(r1) ·

∑l
i=1 bz(qi)) ⊆ O(bz(r1)bz(r0)) bit op-

erations. To compute the linear combination needs O(
∑l
i=1 bz(qi)bz(si)) bit op-

erations, where in turn bz(si) ∈ O(bz(si−1) + bz(qi−1)), hence we have bz(si) ∈
O(
∑i−1
j=1 bz(qj)), yielding O(

∑l
i=1

∑i−1
j=1 bz(qi)bz(qj)) bit operations. As above

we from this obtain O(
∑l−1
j=1

∑l
i=j+1 bz(qj)bz(qi)) ⊆ O(

∑l−1
j=1 bz(qj)bz(rj)) ⊆

O(bz(r1) ·
∑l−1
j=1 bz(qj)) ⊆ O(bz(r1)bz(r0)) bit operations. Thus this needs

O(bz(r1)bz(r0)) = O(bz(m)bz(n)) bit operations; if m ≥ n this hence needs
O(ln(m)2) bit operations.

III Integer arithmetic 60

16 Primality testing

(16.1) Fermat-Lucas test [1876]. Let 1 6= n ∈ N. Then n is a prime if and
only if (Z/nZ)∗ is cyclic of order n − 1: If n is a prime then Z/nZ is a field
and hence (Z/nZ)∗ ∼= Cn−1; conversely, if ϕ(n) = |(Z/nZ)∗| = n − 1 then n is
a prime. To verify this condition we specify a primitive root x ∈ (Z/nZ)∗: Let
n − 1 =

∏r
i=1 p

ai
i , where the pi ∈ N are pairwise distinct primes and ai ∈ N.

Then x has order n−1 if and only if xn−1 = 1 and x
n−1
pi 6= 1 for i ∈ {1, . . . , r}. If

n is a prime, then the tuple [x; p1, . . . , pr] as above is a called a Lucas primality
witness for n. If n is a prime then for all x ∈ (Z/nZ)∗ we have xn−1 = 1. Hence
an element x ∈ (Z/nZ)∗ such that xn−1 6= 1 is called a Fermat compositeness
witness for n.

E. g. for n ∈ N0 let Fn := 22
n

+ 1 ∈ N be the n-th Fermat number, where
F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 are primes, with Lucas witnesses
[2; 2], [3; 2], [3; 2], [3; 2], [3; 2], respectively. It was conjectured [Fermat, 1640]

that Fn always is a prime, but 3F5−1 = 32
32 ≡ 3 029 026 160 6≡ 1 (mod F5),

hence F5 = 4 294 967 297 is composite. All Fn for n ∈ {5, . . . , 30} are known
to be composite; and Pepin’s test [1877], proved using the quadratic reciprocity
law for Jacobi symbols, says that for n ≥ 1 the element 3 always is a Lucas
primality or Fermat compositeness witness, see [7, Exc.18.25].

If n is composite and xn−1 = 1 for 1 6= x ∈ (Z/nZ)∗, then n is called a Fermat
pseudoprime with respect to the base x, the latter is called a Fermat liar
for n. Then Un := {x ∈ (Z/nZ)∗;xn−1 = 1} ≤ (Z/nZ)∗ is a subgroup. Hence

if Un 6= (Z/nZ)∗ then we have |Un| ≤ |(Z/nZ)
∗|

2 , implying that in this case the
fraction of compositeness witnesses is at least 1

2 .

If n is a Fermat pseudoprime with respect to all bases 1 6= x ∈ (Z/nZ)∗, i. e.
we have Un = (Z/nZ)∗, then n is called a Carmichael number [Korselt, 1899;

Carmichael, 1910]. We have n
2
7 ≤ |{k ∈ {1, . . . , n}; k Carmichael number}| ≤

n1−(1+o(1))·
ln ln ln(n)
ln ln(n) for n >> 0 [Alford-Granville-Pomerance, 1992; Pomerance-

Selfridge-Wagstaff, 1980], hence there are infinitely many Carmichael numbers.

(16.2) Proposition. Let p ∈ N be an odd prime, and let a ∈ N. Then we have
(Z/paZ)∗ ∼= Cpa−1(p−1).

Proof. Since (Z/pZ)∗ ∼= Cp−1 there is x ∈ (Z/paZ)∗ such that x ∈ (Z/pZ)∗

has order p− 1, hence x has order divisible by p− 1, and thus we may assume
that x has order p− 1. Assume there is y ∈ (Z/paZ)∗ having order pa−1, then
xy ∈ (Z/paZ)∗ has order pa−1(p − 1). Since |(Z/paZ)∗| = ϕ(pa) = pa−1(p − 1)
this implies that (Z/paZ)∗ is cyclic. By induction on a ∈ N we show that

(1 + p)p
a−1

= 1 + kap
a where p 6 | ka ∈ N, this implies that y := 1 + p ∈ Z has

order pa−1 in (Z/paZ)∗:

The case a = 1 is fulfilled with ka = 1. For a ≥ 2 we have (1 + p)p
a−1

=

(1 + ka−1p
a−1)p = 1 + ka−1p

a + p(p−1)
2 k2a−1p

2(a−1) +
∑p
i=3

(
p
i

)
kia−1p

i(a−1). We

III Integer arithmetic 61

have 2(a − 1) + 1 ≥ a + 1 if and only if a ≥ 2, and i(a − 1) ≥ a + 1 if and
only if a ≥ i+1

i−1 = 1 + 2
i−1 , which for a ≥ 2 and i ≥ 3 is fulfilled. Thus we have

(1 + p)p
a−1

= 1 + kap
a where ka ≡ ka−1 (mod p).]

(16.3) Proposition. Let p ∈ N be an odd prime, and let p − 1 = 2lm, where
l ∈ N and m is odd. Then for all x ∈ (Z/pZ)∗ we have either xm = 1 or there

is a unique k ∈ {0, . . . , l − 1} such that x2
km = −1.

Proof. The conditions are mutually exclusive. Let x ∈ (Z/pZ)∗ such that

xm 6= 1, and let J := {j ∈ {0, . . . , l− 1};x2jm 6= 1}. We have 0 ∈ J 6= ∅, hence

let k := maxJ and y := x2
km ∈ (Z/pZ)∗. Using xp−1 = x2

lm = 1, this implies
y2 = 1, and thus y is a root of X2 − 1 ∈ Z/pZ[X]. Since Z/pZ is a field and
y 6= 1 we conclude y = −1.]

(16.4) Theorem: [Miller, 1976; Rabin, 1980]. Let 9 6= n ∈ N be odd
and composite, and let n − 1 = 2lm, where l ∈ N and m is odd. Then the

fraction of elements x ∈ (Z/nZ)∗ such that xm = 1 or x2
km = −1 for some

k ∈ {0, . . . , l − 1} is at most 1
4 .

Proof. Let B∗n := {x ∈ (Z/nZ)∗;xm = 1}, let Bn,k := {x ∈ (Z/nZ)∗;x2
km =

−1} for k ∈ {0, . . . , l − 1}, and let Bn := B∗n
.
∪
∐l−1
k=0Bn,k ⊆ Un := {x ∈

(Z/nZ)∗;xn−1 = 1}. We have to show that |Bn| ≤ 1
4ϕ(n) holds:

Let ϕ(paii) = pai−1i (pi− 1) = 2limi, where li,mi ∈ N and mi is odd; we may as-
sume that l1 ≤ l2 ≤ · · · ≤ lr. Hence we have ϕ(n) =

∏r
i=1 ϕ(paii) =

∏r
i=1 2limi

and gcd(n− 1, ϕ(paii)) = 2l
′
im′i, where l′i = min{l, li} and m′i = gcd(m,mi).

We have B∗n
∼=
∏r
i=1{x ∈ (Z/paii Z)∗;xm = 1} as groups. Since (Z/paii Z)∗ ∼=

Cϕ(pai) we conclude |B∗n| =
∏r
i=1 gcd(m,ϕ(paii)) =

∏r
i=1m

′
i. We have Bn,k ∼=∏r

i=1{x ∈ (Z/paii Z)∗;x2
km = −1} as sets, thus for k ≥ l1 we have Bn,k = ∅.

For k < l1 we have |{x ∈ (Z/paii Z)∗;x2
km = −1}| = |{x ∈ (Z/paii Z)∗;x2

k+1m =

1}| − |{x ∈ (Z/paii Z)∗;x2
km = 1}| = gcd(2k+1m,ϕ(paii)) − gcd(2km,ϕ(paii)) =

(2k+1 − 2k) gcd(m,mi) = 2km′i, implying |Bn,k| = 2kr
∏r
i=1m

′
i. Hence |Bn| =∏r

i=1m
′
i +

∑l1−1
k=0 (2kr

∏r
i=1m

′
i) = (1 + 2rl1−1

2r−1) ·
∏r
i=1m

′
i, thus |Bn| = αβϕ(n),

where α := 2rl1+2r−2
(2r−1)·2

∑r
i=1

li
and β :=

∏r
i=1

m′i
mi
≤ 1.

Since α ≤ 1
2r−1 · (1 + 2r−2

2rl1
) ≤ 1

2r−1 · (1 + 2r−2
2r) = 2(2r−1)

2r(2r−1) = 1
2r−1 we are done

for r ≥ 3. If r = 2 and [m1,m2] 6= [m′1,m
′
2], then we have α ≤ 1

2 and β ≤ 1
2 and

we are done as well. Hence let r = 2 and mi = m′i. Then we have pai−1i | mi =
m′i | m | n− 1, and from pi | n we conclude ai = 1, and thus n = p1p2. Since
ai = 1 we have pi− 1 = 2limi, and hence 0 ≡ n− 1 ≡ p1p2− 1 ≡ pj − 1 ≡ 2ljmj

(mod mi) for j 6= i. This implies mi | mj , and hence we have m1 = m2 and

l1 < l2. Thus we obtain α ≤ 1
22−1 ·

22l1+22−2
2l1+l2

≤ 1
3 (22l1

22l1+1 + 2
23) = 1

3 (1
2 + 1

4) = 1
4 .

III Integer arithmetic 62

Table 9: Strong pseudoprimes

t p1, . . . , pt n factorization ∼
1 2 2047 23·89 2·103

2 2, 3 1373653 829·1657 1·106

3 2, 3, 5 25326001 2251·11251 3·107

4 2, 3, 5, 7 3215031751 151·751·28351 3·109

5 2, 3, 5, 7, 11 2152302898747 6763·10627·29947 2·1012

6 2, 3, 5, 7, 11, 13 3474749660383 1303·16927·157543 3·1012

7 2, 3, 5, 7, 11, 13, 17 341550071728321 10670053·32010157 3·1015

8 2, 3, 5, 7, 11, 13, 17, 19 341550071728321 10670053·32010157 3·1015

Finally let r = 1 and a1 > 1. Since (Z/pa11 Z)∗ is cyclic, we have |Bn| ≤ |Un| =
gcd(ϕ(n), n − 1) = gcd(pa1−11 (p1 − 1), pa11 − 1) = p1 − 1, and thus we obtain
|Bn|
ϕ(n) ≤

p1−1
p
a1−1
1 (p1−1)

= 1

p
a1−1
1

≤ 1
4 .]

(16.5) Miller-Rabin test. Let 1 6= n ∈ N be odd. An element x ∈ (Z/nZ)∗ \
Bn is called a strong compositeness witness for n, hence for composite
n 6= 9 the fraction of compositeness witnesses amongst all elements of (Z/nZ)∗

is at least 3
4 ; for n = 9 we have B9 = {±1}, while ϕ(9) = 6 and hence

(Z/9Z)∗ ∼= C6. Since l ∈ O(ln(n)) and exponentiation needs O(ln(n)3) bit
operations, a strong compositeness test needs O(ln(n)4) bit operations. This
yields a polynomial time Monte-Carlo algorithm to prove compositeness, which
actually is the workhorse of modern primality testing.

If n is composite and x ∈ Bn, then n is called a strong pseudoprime with
respect to the base x, the latter is called a strong liar for n; in this we have

xn−1 = x2
lm = 1, hence x also is a Fermat liar. Although there are composite

n 6= 9 which are strong pseudoprimes with respect to a fraction of 1
4 of the

bases, for most n this fraction is much smaller. Still, it is possible to construct
strong pseudoprimes for any given finite set of bases [Arnault, 1995].

We have B∗n ≤ (Z/nZ)∗, and for k, k′ ∈ {0, . . . , l − 1} such that k > k′ we have
B∗nBn,k = Bn,k and Bn,kBn,k′ ⊆ Bn,k, as well as Bn,0Bn,0 ⊆ B∗n, but in general
Bn,kBn,k 6⊆ Bn,k−1. Thus if n is a strong pseudoprime with respect to the bases
x, y ∈ (Z/nZ)∗, then n is not necessarily a strong pseudoprime with respect to
the base xy, but still this seems to be likely. Hence we are tempted to only
consider bases x = z ∈ (Z/nZ)∗ such that z ∈ N can be chosen to be prime: Let
[p1, . . . , pt] ⊆ N be the sequence of the first t ∈ N primes. Then the smallest
composite odd n ∈ N which is a strong pseudoprime with respect to the bases
{p1, . . . , pt} for t ∈ {1, . . . , 8} are given in Table 9.

III Integer arithmetic 63

(16.6) Other primality tests and complexity. Let PRIMES be the following
decision problem: Given 1 6= n ∈ N, is n prime? Hence the complementary
decision problem is COMPOSITES: Given 1 6= n ∈ N, is n composite? The
classical result (16.7) shows that PRIMES is in NP ∩ coNP.

The Solovay-Strassen test [1977], based on Euler’s criterion for being a square
and using Jacobi symbols, also is a polynomial time Monte-Carlo algorithm to
prove compositeness, the associated liars being called Euler liars. But since it
is more expensive and at the same time has more liars, it is superseded by the
Rabin-Miller test, see [10, Ch.4.2]. Anyway, this shows that PRIMES is in coRP.

Adleman-Huang [1992] have given a polynomial time Monte-Carlo algorithm to
prove primality; this algorithm uses hyperelliptic curves of genus 2 and is imprac-
tical, but it shows that PRIMES is in RP and thus in ZPP. For practical purposes
the Elliptic Curve Primality Proving (ECPP) algorithm [Atkin-Morain, 1990]
is used, which is based on the impractical Goldwasser-Kilian test [1986]. The
ECPP algorithm needs expected polynomial time, but in the worst case might
be much slower. The largest integers proven to be prime have size ∼ 101000; see
[10, Ch.4.7] and [7, Ch.18.6] and [3, Ch.9].

The Jacobi sum test [Adleman-Pomerance-Rumely, 1983] to deterministically
decide primality of n runs in time O(ln(n)c ln ln ln(n)), which is quite close to
polynomial time. Finally, Agrawal-Kayal-Saxena [2002] have given an astonish-
ingly simple polynomial time algorithm to decide primality; this algorithm is as
yet impractical, but shows that PRIMES is in P.

(16.7) Theorem: Pratt [1975]. PRIMES is in NP ∩ coNP.

Proof. a) We provide a polynomial certificate for being composite: Let R :=
{[n, n′] ∈ N× N; 1 < n′ < n, n′ | n}. Hence 1 6= n ∈ N is composite if and only
if there is n′ ∈ N such that [n, n′] ∈ R. If [n, n′] ∈ R, then for the bit lengths
we have ln(n′) ≤ ln(n). For [n, n′] ∈ N× N we can decide whether n′ | n using
O(ln(n′) ln(n)) bit operations, where the bit length of [n, n′] is ln(n′) + ln(n),
hence this decision problem is in P.
b) We provide a polynomial certificate for being a prime: Since 1 6= n ∈
N is a prime if and only if there is a Lucas witness for n, we let R′ :=
{[n;x, p1, . . . , pr]; [x, p1, . . . , pr] Lucas witness for n}. If [n;x, p1, . . . , pr] ∈ R′,
then for the bit lengths we have ln(x) ≤ ln(n) and ln(pi) ≤ ln(n), where
r ∈ O(ln(n)). Hence the bit length of a Lucas witness for n is bounded quadrat-
ically in ln(n). To check the defining conditions of Lucas witnesses, we need
O(ln(n)2) bit operations to compute n−1

pi
, and O(ln(n)3) bit operations to com-

pute x
n−1
pi ∈ Z/nZ and xn−1 ∈ Z/nZ. Since r ∈ O(ln(n)), this amounts to

O(ln(n)4) bit operations, hence this decision problem is in P.]

III Integer arithmetic 64

17 Factorisation

(17.1) The ρ method [Pollard, 1975]. Let n ∈ N be composite, let x0 ∈
Z/nZ, and for a function f : Z/nZ → Z/nZ let xi := f(xi−1) for i ∈ N. We
assume that f is chosen such that the xi ∈ Z/nZ behave like random choices in
Z/nZ. To minimise the number of operations needed, and since linear functions
do not behave randomly, in practice functions fc : x 7→ x2 + c are used, where
c ∈ Z/nZ such that c 6= 0,−2, typically c = ±1; the function f0 does not behave
randomly, and for x ∈ (Z/nZ)∗ we get f−2(x+ x−1) = x2 + x−2.

Let 1 6= p ∈ N be a divisor of n. Hence there are k ∈ N0 and l ∈ N minimal
such that we have a collision xk = xk+l ∈ Z/pZ; hence xk = xk+jl ∈ Z/pZ
for all j ∈ N0, which is the name-giving property of the method. Thus we have
p | gcd(xk − xk+l, n). Assume that n

p 6= 1 and gcd(p, np) = 1; this is feasible
if and only if n is not a prime power. By the Chinese remainder theorem
xi ∈ Z/pZ and xi ∈ Z/qZ behave like independent random choices in Z/pZ
and Z/qZ, respectively, hence it is likely that q 6 | gcd(xk − xk+l, n), implying
1 < gcd(xk − xk+l, n) < n, yielding a proper divisor of n.

The number of steps needed until we arrive at a collision is of size O(
√
p) =

O(4
√
n), showing that we have a Las-Vegas algorithm to factor n having ex-

ponential running time O(e(
1
4+o(1)) ln(n)): For t ∈ N0 such that t ≤ p there

are pt+1 sequences [x0, . . . , xt] ∈ (Z/pZ)t+1, where precisely
∏t
i=0(p − i) of

them pairwise different entries. For the exponential function we for 0 ≤ λ ≤ 1

have e−λ ≥ 1 − λ ≥ 0, where |e−λ − (1 − λ)| ≤ λ2

2 . Hence for the fraction
of the sequences with pairwise different entries amongst all sequences we get∏t
i=0(1− i

p) ≤
∏t
i=0 e

− i
p = e

−t(t+1)
2p ≤ e

−t2
2p . Given 0 < ε < 1, we have e

−t2
2p < ε

if and only if t >
√
−2p ln(ε); since for ε = 1

2 and p = 365 this yields t ≥ 23,
this is called the birthday paradox.

To detect a collision, we can avoid to store all the values x0, x1, . . . successively
computed, without increasing the number of steps needed, by using Floyd’s
cycle detection trick: Let y0 := x0 ∈ Z/nZ and yi := f(f(yi−1)) = x2i ∈
Z/nZ for i ∈ N. Then we have xi = yi ∈ Z/pZ if and only if i ≥ k and
l | 2i − i = i. The minimal i ∈ N fulfilling these conditions is an element of
{k, . . . , k + l}, hence we need at most k + l steps to arrive at the collision xi =
yi ∈ Z/pZ. This yields the following algorithm to factor n, where f : Zn → Zn:

choose x ∈ Zn randomly
y := x ∈ Zn
i := 0 ∈ N0

while i < n do
i := i+ 1 ∈ N
x := f(x) ∈ Zn
y := f(f(y)) ∈ Zn
g := gcd(x− y, n) ∈ Zn
if 1 < g < n then return g

III Integer arithmetic 65

od
return fail

(17.2) The p − 1 method [Pollard, 1974]. Let n ∈ N be composite. For a
bound B ∈ {2, . . . , n} we for a number of tries do the following:

choose x ∈ Zn randomly
if x = 0 then return fail
g := gcd(x, n) ∈ Zn
if 1 < g < n then return g
l := 1 ∈ N
for k ∈ {2, . . . , B} do

compute e ∈ N0 maximal such that ke ≤ n
l := lcm(l, ke) ∈ N

y := (xl mod n) ∈ Zn
g := gcd(y − 1, n) ∈ Zn
if 1 < g < n then return g
return fail

If there is a prime p | n such that p − 1 is B-smooth, i. e. for all primes
q | p− 1 we have q ≤ B, then p− 1 | l. For x ∈ Z∗n we have x ∈ (Z/pZ)∗, and
hence from xp−1 = 1 ∈ (Z/pZ)∗ we get y = xl = 1 ∈ (Z/pZ)∗, implying g > 1.
We have g < n if there is a prime p 6= q | n such that xl 6= 1 ∈ (Z/qZ)∗, i. e. l
is not a multiple of the order of x ∈ (Z/qZ)∗, which is likely to happen if q − 1
is not B-smooth.

(17.3) Example. We apply the ρ method and the p−1 method to a few Fermat
numbers; for the ρ method, which in the considered cases always works, we use
c := 1 and x0 := 1, the parameters for the p− 1 method in the successful cases
are given below:

For F5 := 22
5

+ 1 = 4 294 967 297 ∼ 4 · 109, using the ρ method, or using B := 5
and x := 3 in the p − 1 method, we find the prime divisor p3 := 641 | F5,
and p7 := F5

p3
= 6 700 417 [Euler, 1732]. We have p3 − 1 = 27 · 5, as well as

p7 − 1 = 27 · 3 · 17449, and 17449 − 1 = 23 · 3 · 727. The Lucas test yields the
primality witnesses 17 for 17449, and 5 for p7.

For F6 := 22
6

+1 ∼ 1.8·1019, using the ρ method, or using B := 17 and x := 3 in
the p− 1 method, we find p6 := 274177 | F6 and p14 := F6

p6
= 67 280 421 310 721

[Landry, 1880]. We have p6 − 1 = 28 · 32 · 7 · 17, and the Lucas test yields the
primality witness 5 for p6. We have p14 − 1 = 28 · 5 · 47 · 373 · 2 998 279, and
2 998 279− 1 = 2 · 32 · 166571, and 166571− 1 = 2 · 5 · 16657, and 16657− 1 =
24 · 3 · 347, and the Lucas test yields the primality witnesses 5 for 16657, and 2
for 166571, and 3 for 2 998 279, and 3 for p14.

For F7 := 22
7

+ 1 ∼ 3.4 · 1038 we find for which the p − 1 method is unsuc-
cessful, by the ρ method we find p17 := 59 649 589 127 497 217 and p22 := F7

p17
=

5 704 689 200 685 129 054 721. We have p17 − 1 = 29 · 116 503 103 764 643, and

III Integer arithmetic 66

116 503 103 764 643 − 1 = 2 · 7 · 449 · 18 533 742 247, and 18 533 742 247 − 1 =
2 · 33 · 181 · 1896229, and the Lucas test yields the primality witnesses 11 for
18 533 742 247, and 2 for 116 503 103 764 643, and 3 for p17. We have p22 − 1 =
29 ·35 ·5 ·12497 ·733 803 839 347, and 733 803 839 347−1 = 2 ·3 ·2203 ·55 515 497,
and 55 515 497 − 1 = 23 · 6939437, and the Lucas test yields the primality wit-
nesses 3 for 55 515 497, and 2 for 733 803 839 347, and 23 for p22.

For F8 := 22
8

+ 1 ∼ 1077, for which the p − 1 method is unsuccessful, by
the ρ method we find p16 := 1 238 926 361 552 897 and p62 := F8

p16
. We have

p16 − 1 = 211 · 157 · 3 853 149 761, and 3 853 149 761 − 1 = 26 · 5 · 719 · 16747,
and the Lucas test yields the primality witnesses 7 for 3 853 149 761, and 3
for p16. We have p62 − 1 = 211 · 3 · 5 · 7 · 13 · n, where n ∼ 3 · 1055, and
by the ρ method we find n = 31 618 624 099 079 · n′ where n′ ∼ 1042. We have
31 618 624 099 079−1 = 2 ·1789 ·10079 ·876769, and the Lucas test yields the pri-
mality witness 17 for 31 618 624 099 079. Again by the ρ method we find succes-
sively n′−1 = 24 ·3·8861·10 608 557·25 353 082 741 699·9 243 081 088 796 207, and
25 353 082 741 699−1 = 2·32·16879·83 447 159, and 83 447 159−1 = 2·41 723 579,
and 41 723 579−1 = 2 ·13 ·1604753, and the Lucas test yields the primality wit-
nesses 2 for 41 723 579, and 11 for 83 447 159, and 2 for 25 353 082 741 699, as well
as 9 243 081 088 796 207 − 1 = 2 · 20939 · 220 714 482 277, and 220 714 482 277 −
1 = 22 · 32 · 6 130 957 841, and 6 130 957 841 − 1 = 24 · 5 · 7 · 10 948 139, and
10 948 139 − 1 = 2 · 23 · 292 · 283, and the Lucas test yields the primality wit-
nesses 2 for 10 948 139, and 3 for 6 130 957 841, and 5 for 220 714 482 277, and 5
for 9 243 081 088 796 207, which yields the primality witness 11 for n′.

For F9 := 22
9

+ 1 ∼ 1.3 · 10154, using the ρ method, or using B := 37 and x := 3
in the p−1 method, we find p7 := 2 424 833 | F9. We have p7−1 = 216 ·37, and
the Lucas test yields the primality witness 3 for p7. For n := F6

p6
∼ 5.5 · 10146

the Fermat test yields the compositeness witness 3; we have n = p49 · p99, the
prime factors having the indicated number of digits.

The Fermat numbers F7, F8, F9, F10, F11 have been completely factored by the
continued fraction method [Morrison-Brillhart, 1971], the ρ method [Pollard,
1975], the Number Field Sieve [Lenstra, 1990], the Elliptic Curve Method [Brent,
1995], and the Elliptic Curve Method [Brent, 1988], respectively; we have F10 ∼
10309 and F11 ∼ 10617. In general, already integers of size ∼ 10200 pose severe
problems to factorisation methods.

(17.4) Index calculus methods. Let n ∈ N be odd and composite. If x, y ∈
Z∗n such that x 6= ±y ∈ (Z/nZ)∗ and x2 = y2 ∈ (Z/nZ)∗, then we have
(x+ y)(x− y) = x2 − y2 = kn for some k ∈ Z, and thus 1 < gcd(x+ y, n) < n
and 1 < gcd(x− y, n) < n, yielding a factorisation of n. Hence by the Fermat-
Legendre method simply choose k ∈ N small, and for increasing x > b

√
knc

check whether x2 − kn ∈ N is a square.

If n has r ∈ N distinct prime divisors, then by the Chinese remainder theorem
and the cyclicity of (Z/paZ)∗, where p ∈ N is an odd prime and a ∈ N, we
conclude that any square in (Z/nZ)∗ has precisely 2r square roots. Hence given

III Integer arithmetic 67

x ∈ Z∗n, if y ∈ Z∗n is randomly chosen such that x2 = y2 ∈ (Z/nZ)∗, then with
probability 2r−2

2r = 1 − 1
2r−1 we have x 6= ±y ∈ (Z/nZ)∗. Hence if n is not a

prime power this yields a factorisation of n with probability ≥ 1
2 .

To find x, y ∈ Z∗n such that x2 = y2 ∈ (Z/nZ)∗ in the first place we proceed
as follows: Let B ∈ N be a bound, and assume that all the primes p1, . . . , pt ∈
N not exceeding B are known. Letting additionally p0 := −1, the sequence
[p0, p1, . . . , pt] is called the associated factor base.

For x ∈ Z∗n let x′ ∈ {−n−12 , . . . , n−12 } such that x2 = x′ ∈ (Z/nZ)∗. If |x′| ∈ N is

B-smooth, then we have x′ =
∏t
i=0 p

ai(x
2)

i ∈ Z, where ai(x
2) ∈ N0 and a0(x2) ≤

1. In this case x is called a B-number and a(x2) := [a0(x2), . . . , at(x
2)] ∈ Nt+1

0

is called the associated exponent vector; considering its entries as elements
of F2 we get the reduced exponent vector a(x2) := [a0(x2), . . . , at(x

2)] ∈ Ft+1
2 .

Let x1, . . . , xs ∈ Z∗n be B-numbers such that
∑s
j=1 a(x2j) = 0 ∈ Ft+1

2 . Hence∑s
j=1 ai(x

2
j) ∈ N is even for i ∈ {0, . . . , t}. Letting x :=

∏s
j=1 xj ∈ Z and y :=∏t

i=0 p
1
2

∑s
j=1 ai(x

2
j)

i ∈ Z we have y2 =
∏t
i=0 p

∑s
j=1 ai(x

2
j)

i =
∏s
j=1

∏t
i=0 p

ai(x
2
j)

i =∏s
j=1 x

′
j ∈ Z, implying y2 = x2 ∈ (Z/nZ)∗.

a) The random squares method [Dixon, 1981]. If the integers x ∈ Z∗n are
chosen randomly, this yields a Las-Vegas algorithm to factor n, and using the
Canfield-Erdős-Pomerance Theorem [1983] estimating of the fraction of B-
smooth integers in Z∗n we get Dixon’s Theorem: Letting L(n) := L 1

2 ,1
(n) :=

e
√

ln(n) ln ln(n), we find a proper divisor of n using a factor base of size t ∼
√
L(n)

and s ∼
√
L(n)3 tries with a probability ≥ 1 − 2e−

1
2

√
L(n) in subexponential

time O(L(n)2+o(1)).

In practice, the integers x are not chosen randomly but taken as x ∼ b
√
nc,

since then |x2 − n| is more likely to be B-smooth. We have to find at most
t + 2 B-numbers until we arrive at a F2-linear dependency between the asso-
ciated reduced exponent vectors, where the exponent vectors can be computed
independently, and hence using distributed computing, while finding F2-linear
dependencies has to be done using specially tailored Gaussian elimination tech-
niques for sparse matrices over F2.

b) The continued fraction method [Morrison-Brillhart, 1971]. If x2 =
z ∈ Z/nZ for some z ∈ Z, then we have x2 = z + l2kn for some k, l ∈ Z. If

k, l > 0 then (xl)
2 − kn = z

l2 implies |xl −
√
kn| ≤ 1

| xl +
√
kn| ·

|z|
l2 ≤

|z|
l2
√
n

. Hence

if |z| < 1
2

√
n we from Legendre’s Theorem (9.3) get that x

l ∈ Q is a convergent

of the continued fraction expansion of the quadratic irrationality
√
kn ∈ R.

Hence for k ∈ N small we check for a few of its convergents ρi = σi
τi
∈ Q,

where i ∈ N and σi, τi ∈ N such that gcd(σi, τi) = 1, whether x = σi ∈ N is
a B-number, i. e. letting l = τi whether z = x2 − l2kn = σ2

i − τ2i kn ∈ Z is
B-smooth. This yields a Las-Vegas algorithm to factor n, conjecturally having

subexponential running time O(L(n)
√

3
2+o(1)).

III Integer arithmetic 68

c) The quadratic sieve method (QS) [Pomerance, 1984]. Let m := b
√
nc

and f := (X + m)2 − n ∈ Z[X]. Hence it is likely that f(x) ∈ Z is B-smooth
whenever x ∈ Z is small, thus yielding a whole bunch of B-numbers x+m ∈ Z:

We choose a sieve interval {−C, . . . , C} for some C ∈ N, assumed to be small
compared to n. If p ∈ N is a prime, then from f(x + p) = (x + m + p)2 −
n = f(x) + p(2x + 2m + p) we conclude that f(x) = 0 ∈ Z/pZ if and only if
f(x + kp) = 0 ∈ Z/pZ for all k ∈ Z. If p is odd such that gcd(p, n) = 1 and
f(x) = 0 ∈ Z/pZ, then n = (x + m)2 ∈ (Z/pZ)∗ is a square, which by the

cyclicity of (Z/pZ)∗ is seen to be equivalent to n
p−1
2 = 1 ∈ (Z/pZ)∗; the latter

is called Euler’s criterion. Thus those p such that n
p−1
2 6= 1 ∈ (Z/pZ)∗ can

be discarded from the factor base. For the remaining p we first check whether
f(x) = 0 ∈ Z/pZ, where x ∈ {−p−12 , . . . , p−12 } whenever p is odd, and x ∈ {0, 1}
for p = 2, and then compute the values of f at the other x ∈ C, increasing and
decreasing x in steps of length p. Whenever we have f(x) = 0 ∈ Z/pZ, we
divide out the maximum p-power dividing f(x) and proceed with the quotient.

Since m2 − n is small and C is small compared to n, for x ∈ {−C, . . . , C} we
have f(x) = (x + m)2 − n = x2 + 2xm + (m2 − n) ∼ 2xm, hence |f(x)| is
bounded by ∼ 2C

√
n. The Pomerance conjecture says that the fraction of

B-smooth integers amongst the f(x), for x ∈ {−C, . . . , C}, is asymptotically
the same as the fraction of B-smooth integers in {1, . . . , 2C

√
n}. Assuming the

validity of this conjecture, this yields a Las-Vegas algorithm to factor n, and we
have Pomerance’s Theorem: We find a proper divisor of n with a probability

≥ 1− 2e−
1
2

3
√
L(n) in subexponential time O(L(n)

√
9
8+o(1)).

In practice, for n ∼ 1050 factor bases of size t ∼ 3000, by the Prime Number
Theorem, see [5, Ch.22], corresponding to B ∼ 105, and sieve intervals of size
C ∼ 2 · 105 are used, while for n ∼ 10100 we choose t ∼ 50 000, corresponding
to B ∼ 106, and C ∼ 1.4 · 107; see [2, Tbl.9.1].

(17.5) Example. We apply the above quadratic form methods to n := 7429,
hence m := b

√
nc = 86. The Fermat-Legendre method for k := 1 and x :=

m+87 = 173 yields y = 150, thus x2−y2 = 29929−22500 = n = (x−y)(x+y) =
23 · 323. We choose B := 7, hence the factor base is [−1, 2, 3, 5, 7].

a) Using the random choice x1 := 6708 and x2 := 2468, yields the exponent
vectors a(x21) = [1, 0, 3, 0, 1] and a(x22) = [1, 2, 3, 0, 1], hence 1

2 (a(x21) + a(x22)) =
[1, 1, 3, 0, 1], yielding x = x1x2 = 16 555 344 and y = (−1)1 ·21 ·33 ·50 ·71 = −378,
thus gcd(x+ y, n) = 19 and gcd(x− y, n) = 391 and n = 19 · 391.

b) The continued fraction method for k := 1 yields
√
n = cf[86, 5, 4, 1, 1, . . .].

We get the first convergent ρ1 = 86
1 , thus x = 86 and l = 1, hence z = x2 −

l2n = −33, which is not B-smooth. The second convergent is ρ2 = 431
5 , thus

thus x = 431 and l = 5, hence z = x2 − l2n = 36, yielding the exponent
vector a(x2) = [0, 2, 2, 0, 0]. Thus letting y = (−1)0 · 21 · 31 · 50 · 70 = 6 yields
gcd(x− y, n) = 17 and gcd(x+ y, n) = 437 and n = 17 · 437.

III Integer arithmetic 69

c) We choose C := 3 in the quadratic sieve method, hence the sieve interval is
{−3, . . . , 3}, and precisely [−3, 1, 2] therein correspond to B-numbers:

x −3 −2 −1 0 1 2 3
(x+m)2 − n −540 −373 −204 −33 140 315 492

sieve with 2 −135 −51 35 123
sieve with 3 −5 −17 −11 35 41
sieve with 5 −1 7 7
sieve with 7 1 1

The associated matrix of exponent vectors is M :=

 1 2 3 1 .
. 2 . 1 1
. . 2 1 1

 ∈ Z3×5.

Reduction yields

 1 . 1 1 .
. . . 1 1
. . . 1 1

 ∈ F3×5
2 , whose kernel is 〈[0, 1, 1]〉F2

. Let-

ting 1
2 · [0, 1, 1] ·M = [0, 1, 1, 1, 1] ∈ Z5 we get y = (−1)0 · 21 · 31 · 51 · 71 = 210

and x = (1 + m) · (2 + m) = 87 · 88 = 7656, thus gcd(x − y, n) = 17 and
gcd(x+ y, n) = 437 and n = 17 · 437.

(17.6) Other factorisation methods. In practice, trial division of composite

n ∈ N, running in exponential time O(e(
1
2+o(1)) ln(n)), is used to find prime

divisors p < 106.

The p − 1 method is based on the group F∗p ∼= Cp−1, and is feasible whenever
p − 1 has only small prime divisors. Using the group F∗p2/F

∗
p
∼= Cp+1 instead

yields the p + 1 method [Guy, 1975; Williams, 1982], and even more generally
there is the Φk(p) method [Bach-Shallit, 1988], where Φk ∈ Z[X] is the k-th
cyclotomic polynomial.

In the Elliptic Curve Method (ECM) [Lenstra, 1987], which also generalises
the p − 1 method, the group G of points of an elliptic curve over Fp is used
instead. The Hasse bound yields ||G| − (p+ 1)| ≤ 2

√
p, hence again |G| ∼ p,

and varying the elliptic curve it is likely to find a group such that |G| only has
small prime divisors. Conjecturally it has Las-Vegas subexponential running
time O(L(n)1+o(1)); see [7, Ch.19] and [3, Ch.10.3].

Shanks’s class group method [1969] and the Square Form Factorisation method
(SQUFOF) [Shanks, 1972], exploiting the ideal class groups of imaginary and
real quadratic number fields, respectively, have Las-Vegas exponential running
time O(e(

1
4+o(1)) ln(n)). Combining these methods with the ideas of the p − 1

method and the index calculus methods yields the Schnorr-Lenstra class group
method [1984], which has Las-Vegas subexponential running time; see [3, Ch.8.6,
8.7, 10.2].

Generalising the quadratic sieve, the Multi-Polynomial Quadratic Sieve (MPQS)
[Pomerance, 1987], conjecturally has Las-Vegas subexponential running time

IV Authentication 70

O(L(n)1+o(1)); see [3, Ch.10.4]. The Number Field Sieve (NFS) [Lenstra-
Lenstra-Manasse-Pollard, 1990] generalises the idea from quadratic to general
number fields, and conjecturally has Las-Vegas subexponential running time

O(L 1
3 ,c

(n)), where L 1
3 ,c

(n) := ec
3
√

ln(n) 3
√

(ln ln(n))2 and c = 3

√
64
9 ; see [3, Ch.10.5].

IV Authentication

18 One-way functions

(18.1) One-way functions. Let X be an alphabet, let D ⊆ X ∗ and let f : D →
X ∗ be in FP; hence in particular there is k ∈ N such that l(f(w)) ≤ l(w)k for
w ∈ D. Letting R := {[v, w] ∈ im(f) × D; f(w) = v} ⊆ X ∗ × X ∗, assume that
l(w) ≤ l(v)k = l(f(w))k for all [v, w] ∈ R. Hence R is a polynomial certificate
for the following decision problem: Given v ∈ X ∗, is v ∈ im(f)? Thus the
function problem associated to R is in FNP; if f is injective, then R represents
the inverse f−1 : im(f)→ D of f .

If the function problem associated to R is not in FP, then f is called a one-way
function, if it even cannot be solved in expected Las-Vegas polynomial time,
then f is called a cryptographic one-way function; since f is in FP Monte-
Carlo and Las-Vegas algorithms for the function problem associated to R are
polynomial time equivalent. If we had FNP = FP, which only by conjecture is
not the case, there could not possibly exist any one-way functions at all. Still,
candidates for one-way functions are the following:
a) Since integer multiplication needs polynomial time, but there are only Las-
Vegas subexponential time algorithms for integer factorisation known, see (17.6),
integer multiplication conjecturally is a cryptographic one-way function.
b) Since integer modular exponentiation needs polynomial time, but there are
only Las-Vegas subexponential time algorithms for the discrete logarithm prob-
lem known, see [12, Ch.6.2] and [2, Ch.10] and [10, Ch.3.6], integer modular
exponentiation conjecturally is a cryptographic one-way function.
c) Since integer modular squaring needs polynomial time, but taking square
roots is Las-Vegas polynomial time equivalent to factoring the modulus, where
the treatment of RSA moduli in (10.2) is straightforwardly generalised, modular
squaring conjecturally is a cryptographic one-way function.
d) If the modulus is an odd prime p, taking modular square roots needs Las-
Vegas polynomial time: Let p − 1 = 2lm, where l ∈ N and m is odd. By
randomly choosing elements z ∈ (Z/pZ)∗, and by Euler’s criterion checking

whether z
p−1
2 = −1, we find a non-square in (Z/pZ)∗, and thus α := zm ∈

(Z/pZ)∗ has order 2l. Letting x ∈ (Z/pZ)∗ be a square, there is k ∈ N0 such

xm = α2k. Hence letting y := x
m+1

2 α−k ∈ (Z/pZ)∗ we have y2 = xm+1α−2k =
x ∈ (Z/pZ)∗, thus {±y} are the square roots of x ∈ (Z/pZ)∗.

If p ≡ 3 (mod 4) or p ≡ 5 (mod 8) taking modular square roots needs polyno-

IV Authentication 71

mial time by (10.1) and (26.12), respectively, but this in not known for the case
p ≡ 1 (mod 8). Hence integer modular squaring with prime modulus is not a
cryptographic one-way function, but conjecturally is a one-way function.

(18.2) Unambiguous machines [Valiant, 1976]. A non-deterministic Tur-
ing machine T over an alphabet X is called unambiguous, if for all w ∈ X ∗
the machine T halts, and there is at most one accepting branch. The complex-
ity class UP is the set of languages being non-deterministically decidable by an
unambiguous non-deterministic Turing machine running in polynomial time.

We have P ⊆ UP ⊆ NP, where it is conjectured that P 6= UP and UP 6= NP.

(18.3) Theorem. P 6= UP if and only if there is an injective one-way function.

Proof. Let f : D → X ∗ be an injective one-way function, where X is an alpha-
bet and D ⊆ X ∗. Let X = {x1, . . . , xn} be totally ordered by x1 < x2 < · · · <
xn, and let X ∗ be totally ordered length-lexicographically, the order also being
denoted by ≤. Let Lf := {[w, v] ⊆ X ∗×X ∗×; v = f(u) for some u ∈ D, u ≤ w}.
We show that Lf ∈ UP \ P:

Let T be the following non-deterministic Turing machine: Since f is a one-way
function, there is k ∈ N such that for all u, v ∈ X ∗ such that f(u) = v we
have l(u) ≤ l(v)k. Hence given [w, v], the machine T chooses u ∈ X ∗ such
that l(u) ≤ l(v)k, and checks whether f(u) = v holds. If this is the case, it
checks whether u ≤ w holds, and in this case the corresponding branch accepts,
otherwise the branch rejects. Since f is in FP, the machine T decides Lf in
polynomial time, and since f is injective, T is unambiguous, thus Lf ∈ UP.

Assume that Lf is in P. Then for v ∈ X ∗ we find f−1(v) by n-ary search as

follows: If [x
l(v)k

n , v] 6∈ Lf , then v 6∈ im(f). Otherwise, we determine the largest

i ∈ N0 such that [x
l(v)k−i
n , v] ∈ Lf , hence we have v = f(u) where u ∈ X ∗ such

that l := l(u) = l(v)k− i. We determine the initial letter xj ∈ X of u by finding
the smallest j ∈ N such that [xjx

l−1
n , v] ∈ Lf . Keeping j fixed, we proceed by

considering [xjxj′x
l−2
n , v] for j′ ∈ N, and so on. Thus u can be computed by

at most i + nl ≤ (1 + |X |) · l(v)k runs of the polynomial time Turing machine
deciding Lf , hence f−1 is in FP, a contradiction.

Conversely, let L be in UP \ P, and let T be a polynomial time unambiguous
non-deterministic Turing machine over X deciding L. We define fT : D → X ∗
as follows: Let D ⊆ X ∗ be the set of all vw ∈ X ∗ encoding an accepting
computation for some w ∈ X ∗, and let fT (vw) := w. We show that fT is an
injective one-way function: Since the input w of a computation can be read
off from the encoding vw the function fT is well-defined and in FP, since T
is unambiguous fT is injective, and since T runs in polynomial time we have
l(vw) ≤ l(w)k for some k ∈ N. Assume that f−1T is in FP, then f−1T (w) for
w ∈ X ∗ decides in polynomial time whether w ∈ L, a contradiction.]

IV Authentication 72

(18.4) Trapdoor functions. Let X be an alphabet, let D ⊆ X ∗ and let
f : D → X ∗ be an injective one-way function. Let moreover t : D → X ∗ be
in FP, such that there is a function ft : im(f) × im(t) → D : [f(w), t(w)] 7→ w
which is in FP. Then t is called a (deterministic) trapdoor function for f .
If ft can be computed in expected Las-Vegas polynomial time, then t is called
a cryptographic trapdoor function.

E. g. we consider the RSA function f : [p, q, e, x]→ [pq, e, xe], where p 6= q ∈ N
are odd primes, e ∈ (Z/ϕ(pq)Z)∗ and x ∈ (Z/pqZ)∗. Hence f is an injective
function in FP, and since inverting f involves integer factorisation, f is a one-
way function if integer multiplication is. Letting d := e−1 ∈ (Z/ϕ(pq)Z)∗,
the component x of [p, q, e, x] can be computed in polynomial time from d and
[pq, e, xe], hence t : [p, q, e, x] → d is a trapdoor function for the component x.
The modulus pq can be factored using e and d in Las-Vegas polynomial time,
see (9.2), hence t is a cryptographic trapdoor function for p and q.

19 Hash functions

(19.1) Hash functions. a) Let X be an alphabet, let D ⊆ X ∗ and let n ∈ N.
A function h : D → X≤n in FP is called a hash function; if additionally D is
finite such that |D| ≥ |X≤n| then h is called a compression function. The
elements of D ⊆ X ∗ are called the messages, and the hash values h(w) for
w ∈ D are also called message digests or authentication tags.

A function h : H × D → X≤n : [u,w] 7→ hu(w) in FP, where H ⊆ X ∗ is called
the set of keys, is called a keyed hash function; if additionally D is finite
such that |D| ≥ |X≤n| then h is called a keyed compression function.

Hash functions are used for modification detection codes (MDCs): To
assure that some message w ∈ D, which is to be made public, is not changed
afterwards, its hash value h(w) ∈ X≤n is stored privately, and later on for
the possibly modified message w′ ∈ X ∗ it is checked whether still w′ ∈ D and
h(w′) = h(w).

Keyed hash functions are used for message authentication codes (MACs):
If Alice and Bob agree on a private key u ∈ H, then Bob publicly sends the
message-hash value pair [w, hu(w)] ∈ D×X≤n to Alice, and Alice verifies whether
the received pair [w′, v′] ∈ X ∗ ×X ∗ fulfils w′ ∈ D and hu(w′) = v′.

b) Associated with a hash function h : D → X≤n we have the following func-
tions problems not necessarily in FNP: If the function problem associated to
{[b, v;w] ∈ N0 ×X≤n ×D; l(w) = b, h(w) = v}, i. e. given b ∈ N0 and v ∈ X≤n,
find w ∈ D such that l(w) = b and h(w) = v, cannot be solved in expected
Monte-Carlo polynomial time, the input length being in O(n + ln b), then h is
called preimage resistant.

If the function problem associated to {[w;w′] ∈ D ×D;w 6= w′, h(w) = h(w′)},
i. e. given w ∈ D, find a collision w 6= w′ ∈ D such that h(w) = h(w′), cannot

IV Authentication 73

be solved in expected Monte-Carlo polynomial time, the input length being l(w),
then h is called second-preimage resistant or weakly collision resistant.

If the function problem associated to {[b;w,w′] ∈ N0 ×D×D; l(w) = b, l(w′) ≤
b, w 6= w′, h(w) = h(w′)}, i. e. given b ∈ N0, find w 6= w′ ∈ D such that l(w) = b
and l(w′) ≤ b and h(w) = h(w′), cannot be solved in expected Monte-Carlo
polynomial time, the input length being in O(ln b), then h is called (strongly)
collision resistant.

(19.2) Random oracle model [Bellare-Rogaway, 1993]. We assume the
compression function h : D → X≤n to be chosen randomly from the set (X≤n)D

of all functions from D to X≤n, where we assume the uniform probability dis-
tribution on (X≤n)D. Hash values are computed by an oracle, and are inde-
pendent in the following sense: Let D′ ⊆ D and vw′ ∈ X≤n for all w′ ∈ D′ be
given. Then for w ∈ D \ D′ and v ∈ X≤n we have the conditional probability
µ(h(w) = v|h(w′) = vw′ for all w′ ∈ D′) = 1

t , where t := |X≤n| ∈ N; we have

t = |X≤n| =
∑n
i=0 |X |i = |X |n+1−1

|X |−1 if |X | > 1, and t = n+ 1 if |X | = 1.

a) To find a collision we query the oracle for D′ ⊆ D where k := |D′| ∈ {1, . . . , t},
and for w ∈ D′ store the hash value h(w) and compare it with the hash values

found earlier. Hence the success probability is ε = 1 −
∏k−1
i=0 (1 − i

t), which

using e−λ ≥ 1 − λ ≥ 0 for 0 ≤ λ ≤ 1, where |e−λ − (1 − λ)| ≤ λ2

2 , yields

ε ≥ 1 −
∏k−1
i=0 e

− it = 1 − e
−k(k−1)

2t . Thus we obtain k(k − 1) ≥ −2t ln(1 − ε),
hence we arrive again at the birthday paradox k ≥

√
−2t ln(1− ε). Thus given

a fixed success probability 0 < ε < 1 we need k ∈ O(
√
t) queries to find a

collision; in practice, where |X | = 2, to avoid the birthday attack or square
root attack n ∼ 128 is recommended, yielding t = 2129 − 1 and k ∼ 264.

b) Given w ∈ D, to find a second preimage w 6= w′ ∈ D such that h(w) = h(w′),
we query the oracle for w 6∈ D′ ⊆ D where |D′| = k, hence the success probability
is ε = 1− (1− 1

t)
k.

Anyway, not necessarily assuming the random oracle model, finding a collision
reduces to finding a second preimage, by choosing w ∈ D and computing a
second preimage w 6= w′ ∈ D of h(w). If a second preimage is found with
success probability ε, then a collision is also found with success probability ε.

c) Given v ∈ X≤n, to find a preimage w ∈ D we query the oracle for D′ ⊆ D
where |D′| = k, hence the success probability is ε = 1− (1− 1

t)
k.

Anyway, not necessarily assuming the random oracle model, finding a collision
reduces to finding a preimage, by choosing w ∈ D, computing a preimage w′ ∈ D
of h(w), and checking whether w 6= w′. If a preimage is found with success
probability ε, yielding any preimage of h(w) with the same probability, then
a collision is found with success probability ε(1 − 1

|h−1(h(w))|) for fixed w ∈ D,

and averaging over D yields a success probability ε
|D| ·

∑
w∈D(1− 1

|h−1(h(w))|) =

ε
|D| · (|D| −

∑
v∈im(h)

|h−1(v)|
|h−1(v)|) = ε(1− |im(h)|

|D|).

IV Authentication 74

(19.3) Chaum-van Heijst-Pfitzmann function [1992]. Let q ∈ N be an
odd prime such that p := 2q + 1 ∈ N is a prime as well, being called a pair
of Germain primes; it is an open problem whether there are infinitely many
such pairs, but it is conjectured that |{q ∈ N; q ≤ n, q, 2q + 1 prime}| ∼ 2cn

ln(n)2

for some c > 0 [Hardy-Littlewood, 1922].

Let ρ ∈ (Z/pZ)∗ be a primitive root, let σ ∈ (Z/pZ)∗, and let hρ,σ : Zq ×
Zq → (Z/pZ)∗ : [x, y] 7→ ρxσy; hence hρ,σ is in FP, and since q2 > p − 1
this is a compression function. We show that finding the discrete logarithm
b := logρ(σ) ∈ Z/(p− 1)Z reduces to finding collisions of hρ,σ:

Let [x, y] 6= [x′, y′] ∈ Zq × Zq such that ρxσy = hρ,σ(x, y) = hρ,σ(x′, y′) =

ρx
′
σy
′ ∈ (Z/pZ)∗. Assume that y = y′, then we conclude ρx = ρx

′
and thus

2q = p−1 | x−x′, and since |x−x′| < q we have x = x′, a contradiction. Hence
we have y 6= y′. We consider the equation x − x′ = z(y′ − y) ∈ Z/(p − 1)Z for
z ∈ Z/(p−1)Z. Since ρx−x

′
= σy

′−y = ρb(y
′−y) shows that this equation at least

has the solution z = b, we conclude that g := gcd(2q, y′−y) = gcd(p−1, y′−y) |
(x − x′), where |y − y′| < q implies that g ∈ {1, 2}. If g = 1 then y′ − y ∈
(Z/(p−1)Z)∗, and hence we have the unique solution b = x−x′

y′−y ∈ Z/(p−1)Z. If

g = 2 then gcd(q, y′ − y) = 1, and thus the equation x− x′ = z(y′ − y) ∈ Z/qZ
has the unique solution c := x−x′

y′−y ∈ Z/qZ, implying that b ∈ {c, c+ q}.]

(19.4) Merkle-Damgard construction [1990]. a) Let X = {0, 1}, and let
h : Xn+t → Xn be a compression function, where n, t ∈ N such that t ≥ 2. We
construct a (keyed) iterated hash function ĥ : Xn×X≥n+t+1 → Xn, using a
padding function g : X≥n+t+1 →

∐
j≥2 X j(t−1) and an iteration process:

Padding is done as follows: Let w ∈ X≥n+t+1. Then w = w1w2 · · ·wkwk+1,

where k = b l(w)
t−1 c, and l(wi) = t− 1 for i ∈ {1, . . . , k}, and l(wk+1) = t− 1− d

where d ∈ Zt−1. Let g : X≥n+t+1 →
∐
j≥2 X j(t−1) be defined by g(w) :=

w′1w
′
2 · · ·w′kw′k+1w

′
k+2, where w′i = wi for i ∈ {1, . . . , k} and w′k+1 := wk+10d

and w′k+2 = 0t−1−b2(d)β(d), where β(d) ∈ X b2(d) is the binary representation of
d ∈ N. Since t ≥ 2 we have b2(d) = 1 + blog2(d)c ≤ 1 + blog2(t − 1)c ≤ t − 1,
and hence we have l(w′i) = t − 1 for i ∈ {1, . . . , k + 2}; the function g is in FP
and is injective, hence does not have collisions.

Iteration is done as follows: Let u ∈ Xn be a key; for the use as an unkeyed hash
function we may let u := 0n ∈ Xn. For w′ = w′1w

′
2 · · ·w′j ∈ X j(t−1) such that

l(w′i) = t − 1 for i ∈ {1, . . . , j}, let v1, . . . , vj ∈ Xn be defined successively by

v1 := h(u0w′1) and vi := h(vi−11w′i) for i ∈ {2, . . . , j}. Let ĥu : X≥n+t+1 → Xn

be defined as ĥu(w) := vb l(w)
t−1 c+2

(g(w)); to compute ĥu(w) for w ∈ X≥n+t+1 we

need b l(w)
t−1 c+ 2 queries of h, hence ĥ is in FP.

b) We show that finding a collision of h reduces to finding a collision of ĥ:

Assume we have a collision w 6= w̃ ∈ X≥n+t+1 of ĥu, then we need O(l(w)+l(w̃))
queries of h to find a collision of h; to this we distinguish three cases:

IV Authentication 75

Firstly, let l(w) 6≡ l(w̃) (mod t − 1), hence d 6= d̃ and w′k+2 6= w̃′
k̃+2

. Since

h(vk+11w′k+2) = vk+2 = ṽk̃+2 = h(ṽk̃+11w̃′
k̃+2

) we have found a collision of h.

Secondly, let l(w) = l(w̃). Hence we have k = k̃ and w′k+2 = w̃′k+2, thus
h(vk+11w′k+2) = vk+2 = ṽk+2 = h(ṽk+11w̃′k+2), and either we have found a
collision of h, or we have vk+1 = ṽk+1. In the latter case we in turn have
h(vk1w′k+1) = vk+1 = ṽk+1 = h(ṽk1w̃′k+1), and hence proceeding backwards we
find a collision of h, since otherwise we finally get w′i = w̃′i for i ∈ {1, . . . , k+2},
implying g(w) = g(w̃), a contradiction.

Thirdly, let l(w) ≡ l(w̃) (mod t−1) and l(w) < l(w̃). Hence we have k < k̃, and
proceeding as above, we either find a collision of h, or we finally get h(u0w′1) =
v1 = ṽk̃−k+1 = h(ṽk̃−k1w̃′

k̃−k+1
), where since l(ṽk̃−k) = n = l(u), the arguments

of h differ at their (n+ 1)-st entry, hence we have found a collision of h.]

(19.5) Merkle-Damgard construction for t = 1. a) Let X = {0, 1} and let
h : Xn+1 → Xn be a compression function, where n ∈ N. Similarly, we construct
ĥ : Xn ×X≥n+2 → Xn as follows:

Padding is done as follows: Let w = x1x2 · · ·xk ∈ X≥n+2, where xi ∈ X and
k := l(w), let g′ : X → X≤2 be defined by g′(0) = 0 and g′(1) = 01, and let
g : X≥n+2 → X≥n+4 be defined by g(w) := 11 · g′(x1) · · · g′(xk). Hence g is in
FP, and is injective. Except of the prefix 11, the word g(w) does not contain
the subword 11, hence whenever w, w̃ ∈ X≥n+2 such that g(w) = vg(w̃) for
some v ∈ X ∗ we have v = ε and thus w = w̃, implying that g(w) is not a
postfix of g(w̃) where w 6= w̃.

Iteration is done as follows: Let u ∈ Xn be a key; for the use as an unkeyed
hash function we may let u := 0n. For w′ = x′1x

′
2 · · ·x′j ∈ X j let v1, . . . , vj ∈ Xn

be defined successively by v1 := h(ux′1) and vi := h(vi−1x
′
i) for i ∈ {2, . . . , j}.

Let ĥu : X≥n+2 → Xn be defined as ĥu(w) := vl(g(w))(g(w)); to compute ĥu(w)

for w ∈ X≥n+2 we need l(g(w)) ≤ 2l(w) + 2 queries of h, hence ĥ is in FP.

b) We show that finding a collision of h reduces to finding a collision of ĥ:

Assume we have a collision w 6= w̃ ∈ X≥n+2 of ĥu, then we need O(l(w) + l(w̃))
queries of h to find a collision of h; to this end we distinguish two cases:

Firstly, let j := l(w′) = l(w̃′). Thus we have h(vj−1x
′
j) = vj = ṽj = h(ṽj−1x̃

′
j),

and either we have found a collision of h, or we have vj−1 = ṽj−1 and x′j = x̃′j .
In the latter case, proceeding backwards we find a collision of h, since otherwise
we finally get x′i = x̃′i for i ∈ {1, . . . , j}, implying g(w) = g(w̃), a contradiction.

Secondly, we may assume that j := l(w′) < l(w̃′) =: j̃. Proceeding as above,
we either find a collision of h, or we finally get h(ux′1) = v1 = ṽj̃−j+1 =

h(ṽj̃−j x̃
′
j̃−j+1

), where x′i = x̃′
j̃−j+i for i ∈ {1, . . . , j}, implying that g(w̃) =

vg(w) for some v ∈ X j̃−j , a contradiction.]

IV Authentication 76

(19.6) Remark. In practice, the Secure Hash Algorithm SHA-1 [1995] is
the current standard. It follows the idea of iterated hash functions, and is based
on a compression function Xn+t → Xn, where X := {0, 1} and n = 160 and
t = 512, and where the particular padding function used maps X≤m → X t,
where m = 264 − 1. No collisions of SHA-1 are currently known; for further
comments, on predecessors and successful attacks against those, as well as on
proposed new standards, see [12, Ch.4.3.2] and [10, Ch.9.4].

20 Message authentication

(20.1) Forgeries. Let X be an alphabet, let D,H ⊆ X ∗, and let h : H×D →
X≤n, where n ∈ N, be a keyed hash function. A pair [w,w′] ∈ X ∗ × X ∗ such
that w ∈ D and hu(w) = w′ is called valid for h with respect to u. A valid
pair [w,w′] ∈ X ∗ ×X ∗ is called an (existential) forgery, if it has been found
without querying hu(w); queries hu(w̃) for w 6= w̃ ∈ D are allowed. A forgery
[w,w′] ∈ X ∗×X ∗ with prescribed message w ∈ D is called a selective forgery.

(20.2) Remark. A simple idea to construct a MAC is to incorporate a private
key into an iterated hash function. However, this has to be done carefully:

Let X := {0, 1} and let h : Xn+t → Xn be a compression function, where
n, t ∈ N. Let g : X ∗ →

∐
j≥1 X jt : w 7→ wŵ be a padding function in FP. Let

u ∈ Xn be a key. For w′ = w′1w
′
2 · · ·w′j ∈ X jt, where l(w′i) = t for i ∈ {1, . . . , j},

let v1, . . . , vj ∈ Xn be defined successively by v1 := h(uw′1) and vi := h(vi−1w
′
i)

for i ∈ {2, . . . , j}. Let ĥ : Xn×X ∗ → Xn be defined as ĥu(w) := vl(g(w))(g(w));

to compute ĥu(w) for w ∈ X ∗ we need l(g(w)) queries of h, hence ĥ is in FP.

To find a forgery, we proceed as follows: Let a valid pair [w, ĥu(w)] ∈ X ∗ ×Xn

be known, and let w̃ ∈ X ∗. Letting j := l(g(w))
t ≥ 1 we have vj(g(g(w)w̃)) =

vj(wŵw̃ ̂̂w) = vj(wŵ) = vj(g(w)) = ĥu(w). Thus ĥu(g(w)w̃) = vj̃(g(g(w)w̃)),

where j̃ := l(g(g(w)w̃))
t ≥ j, can be computed without knowing the key u ∈ Xn.

(20.3) CBC-MACs [1985; Bellare-Kilian-Rogaway, 2000]. The cipher
block chaining (CBC) mode of operation for block ciphers is used to define
a keyed hash function: Let X := {0, 1}, let C := Xm where m ∈ N, and let
[C, C,H, E ,D] be a cryptosystem where H ⊆ X ∗ and where we assume that
Eu ∈ E is in FP for u ∈ H. For n ∈ N let h : H × Cn → C be the keyed
hash function defined as follows: For w = w1 · · ·wn ∈ Cn let v0, . . . , vn ∈ C
be successively defined by v0 := 0m ∈ C and vi := Eu(vi−1 ⊕ wi) ∈ C for
i ∈ {1, . . . , n}, where ⊕ denotes the ‘exclusive or’ operation on bit strings, then
let hu(w) := vn; since Eu is in FP so is h.

Assuming appropriate security properties of the underlying cryptosystem, CBC-
MACs are considered to be secure. The best known attack is a birthday chosen-
message attack: Let n ≥ 2, let k ∈ N, let w0 ∈ C, let w1,1, . . . , w1,k ∈ C
be pairwise distinct, let w2,1, . . . , w2,k ∈ C, let w3, . . . , wn ∈ C, and let w̃i :=

IV Authentication 77

w1,iw2,iw3 · · ·wn ∈ Cn for i ∈ {1, . . . , k}. Since w1,i 6= w1,j we have w̃i 6= w̃j for
all i 6= j. Querying hu(w̃i) for i ∈ {1, . . . , k}, by way of birthday attack assume
that for some i 6= j ∈ {1, . . . , k} we have hu(w̃i) = hu(w̃j). Since Eu : C → C
is bijective, this is equivalent to v2(w1,iw2,i) = v2(w̃i) = v2(w̃j) = v2(w1,jw2,j),
which in turn is equivalent to v1(w1,i) ⊕ w2,i = v1(w1,j) ⊕ w2,j . Letting w :=
w1,i(w2,i ⊕ w0)w3 · · ·wn ∈ Cn and w̃ := w1,j(w2,j ⊕ w0)w3 · · ·wn ∈ Cn. Hence
we have w 6= w̃ and hu(w) = hu(w̃), and querying hu(w) yields the forgery
[w̃, hu(w)] ∈ Cn × C; by the birthday paradox we obtain a forgery with success
probability 0 < ε < 1 using 1 +

√
−2m+1 ln(1− ε) ∈ O(2

m
2) queries of h.

(20.4) Nested MACs. a) Let X be an alphabet, let D,D′ ⊆ X ∗ and G,H ⊆
X ∗, and let g : G×D → X≤m and h : H×D′ → X≤n, where m,n ∈ N, be keyed
hash functions such that im(g) ⊆ D′. The composition gh : (H × G) × D →
X≤n : [v, u;w] 7→ hv(gu(w)) is called a nested keyed hash function.

We show that finding a collision of gu or a forgery for hv reduces to finding a
forgery for guhv: Let u ∈ G and v ∈ H, and let [w,w′′] ∈ D×X≤n be a forgery for
guhv, found using k ∈ N queries of both gu and hv. Hence for some w1, . . . , wk ∈
D, where w 6= wi for i ∈ {1, . . . , k}, we have found w′i := gu(wi) ∈ X≤m and
w′′i := hv(w

′
i) ∈ X≤n. By another query of gu let w′ := gu(w) ∈ X≤m. If

w′ = w′i for some i ∈ {1, . . . , k}, then w 6= wi ∈ D is a collision of gu. If w′ 6= w′i
for all i ∈ {1, . . . , k} , then [w′, w′′] ∈ D′ ×X≤n is a forgery for hv.

b) Let X := {0, 1} and let h : Xn+t → Xn be a compression function, where

n, t ∈ N such that n ≤ t. Let ĥ : X ∗ → Xn be the iterated hash function given
in (20.2), using the key 0n ∈ Xn. We consider the keyed hash function η : X t ×
X ∗ → Xn : [u,w] 7→ ĥ(uw) and the associated nested keyed hash function X t ×
X ∗ → Xn : [u,w] 7→ ηu(ηu(w)) = ĥ(uĥ(uw)), taking the key u ∈ X t twice.

Hence by the above we have to ensure that it is difficult to find collisions of
the inner function ηu : X ∗ → Xn : w 7→ ĥ(uw) =: w′, for all keys u ∈ X t; e. g.
the Merkle-Damgard construction hints to how this might be achieved using
variations of ĥ and suitable compression functions h to start with.

To compute the outer function (ηu)|Xn : Xn → Xn : w′ 7→ ĥ(uw′), since l(uw′) =
t+ n ≤ 2t the argument is first padded giving uw′ŵ ∈ X 2t, where l(ŵ) = t− n,
to which then the compression function h is applied twice. Since l(u) = t this

yields ĥ(uw′) = h(h(0nu)w′ŵ), hence the first application of h only depends on
u, and we have only one application of h depending on w′. Thus by the above
we also have to ensure that it is difficult to find forgeries of (ηu)|Xn , which in
turn means that the compression function h must be chosen suitably.

In practice, a proposed standard is the nested function HMAC [1996], which
is based on the SHA-1 standard: We have SHA-1: X≤m → Xn, where X :=
{0, 1} and m = 264 − 1 and n = 160, being based on a compression function
Xn+t → Xn where t = 512. Letting p, q, u ∈ X t we have HMACp,q,u(w) :=
SHA-1((u⊕ q) · SHA-1((u⊕ p)w)) for w ∈ X≤m−t, where p, q are public and u
is private. For further comments on MACs see [12, Ch.4.4] and [10, Ch.9.5].

IV Authentication 78

(20.5) Strongly universal functions [Carter-Wegmann, 1979]. Let X be
an alphabet, let D,H ⊆ X ∗ be finite, and let h : H ×D → X≤n, where n ∈ N,
be a keyed compression function. Let H be uniformly distributed.

a) Given w ∈ D and v ∈ X≤n, the probability that [w, v] is valid with re-

spect to some key is given as µ(w, v) = |{u∈H;hu(w)=v}|
|H| . Hence a Las-Vegas

algorithm finding a forgery without querying h, an impersonation attack,
has a success probability which is bounded above by the deception proba-
bility ε0 := max{µ(w, v); [w, v] ∈ V}, where V := {[w, v] ∈ D × X≤n;hu(w) =
v for some u ∈ H}.

For w ∈ D we have
∑
v∈im(h) µ(w, v) =

∑
v∈im(h)

|{u∈H;hu(w)=v}|
|H| = |H|

|H| = 1,

hence there is v ∈ im(h) such that µ(w, v) ≥ 1
t , implying ε0 ≥ 1

t , and we have
ε0 = 1

t if and only if for all w ∈ D and v ∈ im(h) we have µ(w, v) = 1
t .

b) Let |D| ≥ 2. Given w 6= w′ ∈ D and v, v′ ∈ X≤n such that [w, v] ∈ V,
the conditional probability that [w′, v′] is valid with respect to some key u ∈
H, such that [w, v] also is valid with respect to the same key u, is given as

µ(w′, v′|w, v) = |{u∈H;hu(w
′)=v′,hu(w)=v}|

|{u∈H;hu(w)=v}| . Hence a Las-Vegas algorithm find-

ing a forgery querying h at most once, a substitution attack, has a suc-
cess probability which is bounded above by the deception probability ε1 :=
max{µ(w′, v′|w, v); [w′, v′], [w, v] ∈ V, w′ 6= w}.
The keyed compression function h is called strongly universal, if for any

w 6= w′ ∈ D and v, v′ ∈ im(h) we have |{u∈H;hu(w)=v,hu(w
′)=v′}|

|H| = 1
t2 , where

t := |im(h)| ∈ N. We have ε1 ≥ 1
t , with equality if and only if h is strongly

universal; in the latter case we have ε0 = 1
t as well:

Again, for w 6= w′ ∈ D and v ∈ im(h) such that [w, v] ∈ V we obtain∑
v′∈im(h) µ(w′, v′|w, v) =

∑
v′∈im(h)

|{u∈H;hu(w)=v,hu(w
′)=v′}|

|{u∈H;hu(w)=v}| = 1, hence there

is v′ ∈ im(h) such that µ(w′, v′|w, v) ≥ 1
t and thus ε1 ≥ 1

t . If ε1 = 1
t , then

for all v′ ∈ im(h) we have µ(w′, v′|w, v) ≤ 1
t and thus µ(w′, v′|w, v) = 1

t .
Hence we have [w′, im(h)] ⊆ V, thus V = D × im(h), implying µ(w′, v′|w, v) =
µ(w, v|w′, v′), and thus µ(w, v) = 1

t , in particular ε0 = 1
t . This yields |{u ∈

H;hu(w) = v, hu(w′) = v′}| = |H| · µ(w′, v′|w, v)µ(w, v) = |H|
t2 . If conversely

h is strongly universal, then we have |{u ∈ H;hu(w) = v}| =
∑
v′∈im(h) |{u ∈

H;hu(w) = v, hu(w′) = v′}| =
∑
v′∈im(h)

|H|
t2 = |H|

t , yielding µ(w′, v′|w, v) =
|{u∈H;hu(w

′)=v′,hu(w)=v}|
|{u∈H;hu(w)=v}| = |H|

t2 ·
t
|H| = 1

t , thus ε1 = 1
t .]

21 Signatures

(21.1) Signatures [Diffie-Hellman, 1976; Merkle, 1978]. a) Let X be
an alphabet, let D,G ⊆ X ∗, and let n ∈ N. A signature scheme or digital
signature is a keyed hash function g : G×D → X≤n : [u,w] 7→ gu(w), called the
signature function, together with a (weak) verification function γ : G ×
X ∗×X≤n → {0, 1} : [u,w, v] 7→ γu(w, v) in FP, such that γu(w, v) = 1 whenever

IV Authentication 79

[w, v] ∈ X ∗ × X≤n is valid for g with respect to the key u ∈ G. If γu(w, v) = 1
implies that [w, v] indeed is valid with respect to u then γ is called a strong
verification function.

The key u used is kept private, while the verification function γu is made public.
Hence there is a straightforward notion of (existential or selective) forgeries
for signature schemes: These are pairs which either are valid but have been found
without using the signature function, or are non-valid but verified by a weak
verification function.

b) Signature schemes are often used in conjunction with hash functions: Let
X be an alphabet, let m,n ∈ N, and for E ⊆ X ∗ let h : E → X≤m be a hash
function. Let g : G × D → X≤n be a signature function such that im(h) ⊆
D ⊆ X ∗, with verification function γ : G × X ∗ × X≤n → {0, 1}. Then hg : G ×
E → X≤n : [u,w] 7→ gu(h(w)) is a signature function, with verification function
γ(h) : G × X ∗ ×X≤n → {0, 1} : [u,w, v] 7→ γu(h(w), v).

We describe various attacks: For w ∈ E the selective forgery [h(w), gu(h(w))] ∈
X≤m ×X≤n for gu yields the selective forgery [w, gu(h(w))] ∈ E × X≤n for hg.
Hence it must be difficult to find selective forgeries for gu.

Let [w, v] ∈ E × X≤n be valid, hence v = gu(h(w)), let z := h(w) ∈ X≤m,
and let w 6= w′ ∈ E be a second preimage of z. Hence [w′, v] ∈ E × X≤n is an
existential forgery found by a known-message attack. Hence it must be difficult
to find second preimages under h.

Let w 6= w′ ∈ E be a collision for h. If h(w) ∈ X≤m is signed using gu,
yielding v := gu(h(w)) ∈ X≤n, the pair [w, v] ∈ E × X≤n is valid, and thus
[w′, v] ∈ E × X≤n is an existential forgery found by a chosen-message attack.
Hence it must be difficult to find collisions of h.

Let the signature scheme g be subject to existential forgery by a key-only
attack, i. e. an attack only using the verification function γ, let [z, v] ∈ im(h)×
X≤n be a forgery for gu thus found, and let w ∈ E be a preimage of z. Thus
[w, v] ∈ E × X≤n is an existential forgery. Hence if g is susceptible to key-only
attacks, it must be difficult to find preimages under h.

(21.2) The Rivest-Shamir-Adleman (RSA) signature scheme [1978].
a) Let p 6= q ∈ N be odd primes, let n := pq ∈ N, let D := Z/nZ and
G := (Z/ϕ(n)Z)∗. For e ∈ (Z/ϕ(n)Z)∗ let d := e−1 ∈ (Z/ϕ(n)Z)∗, where
[p, q, d] is the private key and [n, e] is the public key, we get the signature function
ge : Z/nZ → Z/nZ : x 7→ xd, and the strong verification function γe : (Z/nZ) ×
(Z/nZ)→ {0, 1}, where γe(x, y) := 1 if and only if ye = x ∈ Z/nZ.

The security of the RSA signature scheme depends on the computational dif-
ficulty of integer factorisation. We describe various attacks, which can be pre-
vented by using the signature scheme in conjunction with a hash function, or
by requiring that messages are only chosen from a suitable admissible subset:

Letting y ∈ Z/nZ and x := ye ∈ Z/nZ yields the existential forgery [x, y]

IV Authentication 80

by a key-only attack. Letting [x1, y1] and [x2, y2] be valid, multiplicativity of
the signature function yields the existential forgery [x1x2, y1y2] by a known-
message attack. Letting x ∈ Z/nZ and x1 ∈ (Z/nZ)∗ and x2 := x

x1
∈ Z/nZ,

we have x = x1x2 and querying for signatures y1 := ge(x1) and y2 := ge(x2)
multiplicativity of the signature function yields the selective forgery [x, y1y2] by
a chosen-message attack.

b) Encryption and signatures can be combined as follows: A message is to be
sent encrypted from Bob to Alice, and Alice has to be sure that Bob indeed is the
sender and that the message has not been changed in between. To achieve this,
let both Alice and Bob have RSA cryptosystems available, based on odd primes
p 6= q ∈ N and p′ 6= q′ ∈ N, respectively, where n := pq ≥ n′ := p′q′; hence we
have Zn′ ⊆ Zn. Let e = d−1 ∈ (Z/ϕ(n)Z)∗ and e′ = d′−1 ∈ (Z/ϕ(n′)Z)∗ be
Alice’s and Bob’s pairs of keys, respectively.

Let x ∈ Zn′ ⊆ Zn. Bob first uses his signature function to compute y :=
ge′(x) ∈ Zn′ ⊆ Zn, and then uses Alice’s encryption function to send the mes-
sage [Ee(x), Ee(y)] ∈ Z2

n. Alice first decrypts it using her decryption function,
yielding [x, y] = [Dd(Ee(x)), Dd(Ee(y))] ∈ Z2

n, and since x, y ∈ Zn′ ⊆ Zn she
then uses Bob’s verification function to check γe′(x, y) = 1.

c) Alternatively, we could also proceed the other way around: Letting n ≤ n′,
Bob first encrypts x ∈ Zn ⊆ Zn′ using Alice’s encryption function, yield-
ing y := Ee(x) ∈ Zn ⊆ Zn′ , then uses his signature function to compute
z := ge′(y) ∈ Zn′ , and sends the message [y, z] ∈ Z2

n′ . Alice first uses Bob’s
verification function to check γe′(y, z) = 1, and then decrypts y ∈ Zn ⊆ Zn′
using her decryption function yielding x = Dd(y).

This allows for the following man-in-the-middle attack, which shows that
signing before encrypting is preferable: Let Oscar also have an RSA cryptosys-
tem available, based on odd primes p′′ 6= q′′ ∈ N such that n ≤ n′ ≤ n′′ := p′′q′′,
and let e′′ = d′′−1 ∈ (Z/ϕ(n′)Z)∗ be Oscar’s pair of keys. Oscar intercepts a
message [y, z] ∈ Z2

n′ sent from Bob, computes z̃ := ge′′(y) ∈ Zn′′ using his sig-
nature function, and sends [y, z̃] ∈ Z2

n′′ instead to Alice. Then Alice uses Oscar’s
verification function to check γe′′(y, z̃) = 1, and thus concludes that the message
originated from Oscar instead from Bob.

(21.3) Efficient Digital Signature (ESIGN) [Okamoto-Shiraishi, 1985].
Let p ≥ q ∈ N be primes, let n := p2q, let r ∈ (Z/nZ)∗, and let G := {e ∈
N; gcd(e, p) = 1}, where [p, q, r] is the private key and [n, e] is the public key.
Let X be an alphabet, let D := X ∗, and let h : X ∗ → Zn be a hash function. For
w ∈ X ∗ let x ∈ Zn such that x = h(w)−re ∈ Z/nZ, let y := d xpq e·

1
ere−1 ∈ Z/pZ,

and let v := r+ypq ∈ Z/nZ. Let the signature functions be defined as ge : X ∗ →
Z/nZ : w 7→ v. The verification function γe : X ∗× (Z/nZ)→ {0, 1} is defined as
follows: Given [w, v] ∈ X ∗×(Z/nZ), let z ∈ Zn such that z = ve ∈ Z/nZ, and let

γe(w, v) := 1 if and only if h(w) ≤ z ≤ h(w)+2d
2
3 log2(n)e. Indeed valid pairs are

verified: We have z = ve = (r + ypq)e =
∑e
i=0

(
e
i

)
re−i(ypq)i = re + ere−1ypq ∈

Z/nZ. Since ere−1y = d xpq e ∈ Z/pZ this yields z = h(w)− x+ pqd xpq e ∈ Z/nZ,

IV Authentication 81

and thus h(w) ≤ z ≤ h(w) + pq, where pq ≤ n 2
3 ≤ 2d

2
3 log2(n)e.

Forgeries can be found by a known-message attack as follows: Let [w, v] ∈
X ∗ × (Z/nZ) be valid. If w′ ∈ X ∗ such that h(w′) ≤ z ≤ h(w′) + 2d

2
3 log2(n)e,

where z ∈ Zn such that z = ve ∈ Z/nZ, then [w′, v] is a forgery. Hence it must

be difficult to find preimages under h of w′ such that |h(w′)−h(w)| ≤ 2d
2
3 log2(n)e.

Forgeries can also be found by a chosen-message attack as follows: Let w ∈ X ∗,
let v := ge(w) ∈ Z/nZ, and let z ∈ Zn such that z = ve ∈ Z/nZ, hence

h(w) ≤ z ≤ h(w) + 2d
2
3 log2(n)e. If w′ ∈ X ∗ such that h(w) ≤ h(w′) ≤ z, we

have h(w′) ≤ z ≤ h(w) + 2d
2
3 log2(n)e ≤ h(w′) + 2d

2
3 log2(n)e, thus [w′, v] is a

forgery. From h(w) ≤ h(w′) ≤ z ≤ h(w) + 2d
2
3 log2(n)e we get |h(w′) − h(w)| ≤

2d
2
3 log2(n)e, i. e. h(w) and h(w′) coincide in the d 13 log2(n)e highest of their

b2(n− 1) = dlog2(n)e bits. Hence by way of a birthday attack such w,w′ ∈ X ∗
are expected to be found using O(n

1
6) queries of h.

It has been shown that the ESIGN signature scheme can be broken if e ≤ 3,
hence we have to choose e ≥ 4. The security of the ESIGN signature scheme
also depends on the computational difficulty of integer factorisation, where it is
an open problem whether factoring integers of the form p2q is as difficult than
factoring integers of the form pq. For practical purposes, the ESIGN signature
scheme runs much faster than the RSA signature scheme.

(21.4) Remark. Other signature schemes using RSA moduli, and thus de-
pending on the computational difficulty of integer factorisation are the Rabin
signature scheme, based on the Rabin cryptosystem, see [10, Ch.11.3.4], the
Feige-Fiat-Shamir signature scheme, based on the Fiat-Shamir identifica-
tion scheme (23.3), see [10, Ch.11.4.1], and the Guillou-Quisquater signa-
ture scheme, based on the Guillou-Quisquater identification scheme (23.4),
see [10, Ch.11.4.2]; the general idea of converting a challenge-response identi-
fication scheme into a signature scheme is to replace the challenge by a hash
value of the concatenation of the witness and the message to be signed, and the
corresponding response is the signature.

(21.5) The ElGamal signature scheme [1985]. a) Let p ∈ N be a prime,
and let ρ ∈ (Z/pZ)∗ be a primitive root. For [a, b] ∈ G := (Z/(p − 1)Z) ×
(Z/(p− 1)Z)∗ let α := ρa ∈ (Z/pZ)∗, and β ∈ Z∗p such that β = ρb ∈ (Z/pZ)∗;
hence β ∈ (Z/pZ)∗ is a primitive root. Let [p, ρ, α] be the public key, and [a, b]
be the private key. Letting D := Z/(p − 1)Z we get the signature function
ga,b : Z/(p− 1)Z→ Z∗p × (Z/(p− 1)Z) : x 7→ [β, x−aβb].

The verification function γa,b : (Z/(p−1)Z)×Z∗p×(Z/(p−1)Z)→ {0, 1} is given

by γa,b(x, ζ, y) := 1 if and only if αζζy = ρx ∈ (Z/pZ)∗: Letting z := logρ(ζ) ∈
Z/(p− 1)Z, we have αζζy = (ρa)ζ(ρz)y = ρaζ+zy = ρx ∈ (Z/pZ)∗ if and only if
aζ + zy = x ∈ Z/(p − 1)Z, which holds if and only if y = x−aζ

z ∈ Z/(p − 1)Z.

The latter equation indeed holds true for a valid pair [x;β, x−aβb].

IV Authentication 82

b) The security of the ElGamal signature scheme depends on the computational
difficulty of the discrete logarithm problem in (Z/pZ)∗. Indeed, given x ∈
Z/(p− 1)Z selective forgeries are difficult to find by way of key-only attacks: If
a primitive root β ∈ Z∗p is chosen first, then y = logβ(ρxα−β) ∈ Z/(p−1)Z is the
solution of a discrete logarithm problem in (Z/pZ)∗. If y ∈ Z/(p−1)Z is chosen
first, the equation αββy = ρx ∈ (Z/pZ)∗ has to be solved for β ∈ Z∗p, an efficient
solution not being known. Finally [β, y] can be computed simultaneously, where
again no efficient solution is known. Actually, selective forgeries seem to be
difficult to find by any type of attack, hence the ElGamal signature scheme is
considered to be secure in conjunction with a sufficiently secure hash function.

If [β, y] is given, then x = logρ(α
ββy) ∈ Z/(p − 1)Z again is the solution of a

discrete logarithm problem in (Z/pZ)∗, thus existential forgeries with prescribed
signature are difficult to find by way of key-only attacks. But usual existential
forgeries using a key-only attack are possible: Let i ∈ Z/(p − 1)Z and j ∈
(Z/(p − 1)Z)∗, and let β ∈ Z∗p such that β = ρiαj ∈ (Z/pZ)∗. Hence αββy =

ρx ∈ (Z/pZ)∗ is equivalent to αβ+jy = ρx−iy ∈ (Z/pZ)∗, which holds if both
β + jy = 0 ∈ Z/(p− 1)Z and x− iy = 0 ∈ Z/(p− 1)Z, where the latter system
of equations is equivalent to y = −β

j ∈ Z/(p − 1)Z and x = −iβ
j ∈ Z/(p − 1)Z.

Hence we have found the forgery [−iβj ;β, −βj].

Existential forgeries using a known-message attack are possible as well: Let
[x;β, y] be valid, let i, j, k ∈ Z/(p− 1)Z such that kβ − jy ∈ (Z/(p− 1)Z)∗, let

β′ ∈ Z∗p such that β′ = ρiαjβk ∈ (Z/pZ)∗, and let y′ := yβ′

kβ−jy ∈ Z/(p − 1)Z
and x′ := β′(kx+iy)

kβ−jy ∈ Z/(p − 1)Z. Then [x′;β′, y′] is a forgery: The condition

αβ
′
β′y
′

= ρx
′ ∈ (Z/pZ)∗ is equivalent to αβ

′+jy′βky
′

= ρx
′−iy′ ∈ (Z/pZ)∗.

Since β′ + jy′ = kββ′

kβ−jy ∈ Z/(p− 1)Z, the left hand side of the latter condition

is αβ
′+jy′βky

′
= α

kββ′
kβ−jy β

kyβ′
kβ−jy ∈ (Z/pZ)∗, while since x′ − iy′ = β′kx

kβ−jy ∈
Z/(p − 1)Z and αββy = ρx ∈ (Z/pZ)∗ the right hand side equals ρx

′−iy′ =

(ρx)
β′k

kβ−jy = α
kββ′
kβ−jy β

kyβ′
kβ−jy ∈ (Z/pZ)∗.

c) We consider security objectives related to the private key [a, b]: Breaking
the ElGamal signature scheme amounts to finding the key a, where finding
a := logρ(α) from α alone amounts to solve a discrete logarithm problem in
(Z/pZ)∗. Let [x;β, y] ∈ Zp−1 × Z∗p × Zp−1 be valid. If y = 0 then a ∈ Zp−1
can be determined from aβ = x − by = x ∈ Z/(p − 1)Z, hence we may assume
that y 6= 0; if a ∈ Zp−1 is known, then b ∈ Zp−1 can be determined from
aβ = x − by ∈ Z/(p − 1)Z again. Conversely, if b ∈ Zp−1 is known, then
a ∈ Zp−1 can be computed as follows: For d := gcd(p− 1, β) let p′ := p−1

d and

β′ := β
d , and since aβ = x − by ∈ Z/(p − 1)Z let x′ := x−by

d ∈ Z. This yields

a = x′

β′ ∈ Z/p′Z, and letting z′ ∈ Zp′ such that z′ = x′

β′ ∈ Z/p′Z we obtain

a = z′ + ip′ ∈ Z/(p− 1)Z for some i ∈ {0, . . . , d− 1}. Thus a can be found by

checking the condition ρ
x′
β′+ip

′
= ρa = α ∈ (Z/pZ)∗ for i ∈ {0, . . . , d−1}, which

is feasible if d is small.

IV Authentication 83

If a is kept fixed, b must only be used once; hence by varying b the ElGamal
signature scheme is used as a randomised signature scheme: Let [x1;β, y1] ∈
Zp−1 × Z∗p × Zp−1 and [x2;β, y2] ∈ Zp−1 × Z∗p × Zp−1 be valid with respect to

[a, b]. Since αββyi = ρxi ∈ (Z/pZ)∗ we have ρx1−x2 = βy1−y2 = ρb(y1−y2) ∈
(Z/pZ)∗, which is equivalent to (x1 − x2) = b(y1 − y2) ∈ Z/(p − 1)Z. For
d := gcd(p− 1, y1 − y2) let p′ := p−1

d , and let y′ := y1−y2
d and x′ := x1−x2

d ∈ Z.

Since x′ = by′ ∈ Z/p′Z we let z′ ∈ Zp′ such that z′ = x′

y′ ∈ Z/p′Z, hence we

obtain b = z′ + ip′ ∈ Z/(p − 1)Z for some i ∈ {0, . . . , d − 1}. Hence b is found
by checking the condition ρz

′+ip′ = ρb = β ∈ (Z/pZ)∗ for i ∈ {0, . . . , d− 1}.

(21.6) The Schnorr signature scheme [1991]. Given a prime modulus p the
ElGamal signature scheme yields an output of bit length 2b2(p), where the bit
length of the public key is not counted. Since for security reasons b2(p) cannot
be chosen too small, for practical applications a shorter signature is desirable.
To this end, the Schnorr signature scheme varies the ElGamal signature scheme,
making use of a second smaller prime q, and integrating a hash function.

Let q < p ∈ N be primes such that q | p − 1, and let σ ∈ (Z/pZ)∗ be a
primitive q-th root of unity; σ can be found from a primitive root ρ ∈ (Z/pZ)∗

as σ := ρ
p−1
q ∈ (Z/pZ)∗. For [a, b] ∈ G := (Z/qZ) × (Z/qZ) let α := σa ∈

(Z/pZ)∗, and β ∈ Z∗p such that β = σb ∈ (Z/pZ)∗. Let [p, q, σ, α] be the public
key, and [a, b] be the private key. Integers are considered to be given in their
binary representation; for the transition from integers to binary representations
a redundancy function might be used, where security objectives related to
the latter are not discussed here. Let X := {0, 1} and let h : X ∗ → Z/qZ be a
hash function. For x ∈ X ∗ let y := h(xβ) ∈ Z/qZ. Letting D := X ∗ we get the
signature function ga,b : X ∗ → (Z/qZ)× (Z/qZ) : : x 7→ [y, b+ ay].

The verification function γa,b : X ∗×(Z/qZ)×(Z/qZ)→ {0, 1} is given as follows:
For [x, y, z] ∈ X ∗× (Z/qZ)× (Z/qZ) let v ∈ Zp such that v = σzα−y ∈ (Z/pZ)∗,
and let γa,b(x, y, z) := 1 if and only if h(xv) = y. Indeed, if [x; y, z] is valid
then we have σzα−y = σb+ayσ−ay = σb = β ∈ (Z/pZ)∗, hence v = β and
h(xv) = h(xβ) = y. Because of the use of h we cannot expect to have strong
verification functions, for practical purposes we have to assume that for given
[y, z] it is difficult to find preimages under h of y having v = σzα−y as a postfix.

(21.7) The Nyberg-Rueppel signature scheme [1993]. The schemes given
so far are signature schemes with appendix, i. e. messages are required as
arguments of the verification functions. The following variant of the Schnorr
signature scheme allows for message recovery, i. e. messages can be recovered
from their signatures; hence to prevent existential forgeries only messages from
an admissible subset may be allowed:

Let q < p ∈ N be primes such that q | p−1, and let σ ∈ (Z/pZ)∗ be a primitive
q-th root of unity. For [a, b] ∈ G := (Z/qZ) × (Z/qZ) let α := σa ∈ (Z/pZ)∗

and β := σb ∈ (Z/pZ)∗. Let [p, q, σ, α] be the public key, and [a, b] be the

IV Authentication 84

private key. For x ∈ (Z/pZ)∗ let y ∈ Z∗p such that y = x
β ∈ (Z/pZ)∗. Letting

D := (Z/pZ)∗ we get the signature function ga,b : (Z/pZ)∗ → Z∗p× (Z/qZ) : x 7→
[y, b + ay]. The verification function γa,b : (Z/pZ)∗ × Z∗p × (Z/qZ) → {0, 1} is
given as follows: For [x, y, z] ∈ (Z/pZ)∗ × Z∗p × (Z/qZ) let γa,b(x, y, z) := 1 if
and only if x = yσzα−y ∈ (Z/pZ)∗. Indeed, if [x; y, z] is valid then we have
yσzα−y = yσb+ayσ−ay = yσb = x

β · β = x ∈ (Z/pZ)∗.

(21.8) The Digital Signature Algorithm (DSA) [1994]. a) The DSA
is a currently used standard for practical applications. It is a combination
of the ElGamal and the Schnorr signature schemes, where b2(q) = 160 and
64 | b2(p) such that 512 ≤ b2(p) ≤ 1024, the maximum being recommended,
using SHA-1: X≤m → Xn as hash function, where X := {0, 1} and m = 264− 1
and n = 160.

Let q < p ∈ N be primes such that q | p−1, and let σ ∈ (Z/pZ)∗ be a primitive
q-th root of unity. For [a, b] ∈ G := (Z/qZ) × (Z/qZ)∗ let α := σa ∈ (Z/pZ)∗,
and β ∈ Z∗p such that β = σb ∈ (Z/pZ)∗. Let [p, q, σ, α] be the public key, and
[a, b] be the private key. Let X := {0, 1} and let h : X ∗ → Z/qZ be a hash

function. Letting D ⊆ X ∗ be chosen such that h(x)+aβ
b 6= 0 ∈ Z/qZ we get the

signature function ga,b : D → (Z/qZ)× (Z/qZ)∗ : x 7→ [β, h(x)+aβb].

The verification function γa,b : X ∗ × (Z/qZ) × (Z/qZ)∗ → {0, 1} is defined as
follows: For [x, y, z] ∈ X ∗ × (Z/qZ) × (Z/qZ)∗ let w ∈ Z∗p such that w =

σ
h(x)
z α

y
z ∈ (Z/pZ)∗, where the exponents are considered as elements of Z/qZ,

and let γa,b(x, y, z) := 1 if and only if w = y ∈ Z/qZ. If [x; y, z] is valid then we

have σ
h(x)
z α

y
z = σ

b(h(x)+aβ)
h(x)+aβ = σb = β ∈ (Z/pZ)∗, hence we have w = β.

b) Another standard currently used is the Elliptic Curve Digital Signature
Algorithm (ECDSA) [2000], which is based on the computational difficulty
of the discrete logarithm problem for elliptic curves, and also is a combination
of the ElGamal and the Schnorr signature schemes; see [12, Ch.7.4.3].

22 Undeniable signatures

(22.1) The Lamport signature scheme [1976]. a) Let X := {0, 1} and
let f : C → X≤n be a compression function for some n ∈ N; in particular C
is finite. Let k ∈ N, and for i ∈ {1, . . . , k} and j ∈ {0, 1} choose ui,j ∈
C, let vi,j := f(ui,j) ∈ X≤n, and let u := [u1,0, u1,1, . . . , uk,1] ∈ C2k be the
private key and v := [v1,0, v1,1, . . . , vk,1] ∈ (X≤n)2k be the public key. Let the
signature functions be defined as gu : X k → Ck : x1 · · ·xk 7→ [u1,x1

, . . . , uk,xk].
For [u1, . . . , uk] ∈ Ck let the verification function γu : X k×Ck → {0, 1} be defined
as γu(x1 · · ·xk;u1, . . . , uk) := 1 if and only if f(ui) = vi,xi for i ∈ {1, . . . , k}:
Indeed for [x1 · · ·xk;u1,x1

, . . . , uk,xk] we have f(ui,xi) = vi,xi for i ∈ {1, . . . , k}.
Because of the use of the compression function f we cannot expect to have strong
verification functions, for practical considerations we thus have to assume that
it is difficult to find preimages under f .

IV Authentication 85

If a key is used more than once, existential forgeries can be computed by a
known-message attack; hence this is a one-time signature scheme: For k ≥ 2
let [x1 · · ·xk;u1,x1

, . . . , uk,xk] and [x′1 · · ·x′k;u1,x′1 , . . . , uk,x′k] be valid such that
x1 · · ·xk and x′1 · · ·x′k differ in positions i < j. Hence ui,0, ui,1 and uj,0, uj,1 are
known, and [x1 · · ·x′i · · ·x′j · · ·xk;u1,x1

, . . . , ui,x′i , . . . , uj,x′j , . . . , uk,xk] is valid.

b) We show that finding preimages under f reduces to finding existential forg-
eries by a key-only attack: Let f : C → C be bijective, and assume there is an
oracle finding an existential forgery for each public key consisting of 2k ≤ |C|
pairwise distinct elements. Then we have the following Las-Vegas algorithm
to find the preimage under f of v ∈ C: Choose i ∈ {1, . . . , k} and j ∈ {0, 1},
and choose a public key [v1,0, v1,1, . . . , vk,1] ∈ C2k consisting of 2k pairwise dis-
tinct elements such that vi,j = v, and let [x1 · · ·xk;u1, . . . , uk] be an existential
forgery. If xi = j then we indeed have f(ui) = vi,xi = vi,j = v.

We show that this algorithm has success probability at least 1
2 : Let V be the

set of all public keys consisting of 2k pairwise distinct elements, let Vv ⊆ V be
the subset of the keys containing v, and let V ′v ⊆ Vv in turn be the subset of the
keys such that the existential forgery found fulfils xi = j where vi,j = v. We
firstly consider the matrix in {0, 1}V×C , whose rows and columns are indexed
by V and C, respectively, and whose [v1,0, v1,1, . . . , vk,1; v]-entry is 1 if and only
if [v1,0, v1,1, . . . , vk,1] contains v. Hence each row contains precisely 2k non-
vanishing entries, and all columns contain the same number of non-vanishing
entries. Thus summing all matrix entries, adding rows first yields 2k|V|, and
adding columns first yields

∑
w∈C |Vw| = |C|·|Vv|, hence we have 2k|V| = |C|·|Vv|.

We secondly consider the matrix in {0, 1}V×C , whose [v1,0, v1,1, . . . , vk,1; v]-entry
is 1 if and only if vi,j = v and xi = j for some i ∈ {1, . . . , k} and j ∈ {0, 1}.
Hence each row contains precisely k non-vanishing entries, thus summing all
matrix entries, adding rows first yields k|V|, and adding columns first yields∑
w∈C |V ′w|. Thus the success probability of the above algorithm is given as

1
|C| ·

∑
v∈C

|V′v|
|Vv| = 1

2k|V| ·
∑
v∈C |V ′v| =

k|V|
2k|V| = 1

2 .]

(22.2) The Chaum-van Antwerpen signature scheme [1990]. Undeni-
able signatures require the signer to participate in the verification process, and
prevent unacknowledged use of signed messages and the signer from disavowing.

a) Let q < p ∈ N be primes such that q | p − 1, let e ∈ (Z/qZ)∗ and d :=
e−1 ∈ (Z/qZ)∗, let σ ∈ (Z/pZ)∗ be a primitive q-th root of unity, and let
τ := σe ∈ (Z/pZ)∗. Let [p, q, σ, τ] be the public key, and [e, d] be the private
key. We have the bijective signature function ge : 〈σ〉 → 〈σ〉 : x 7→ xe. The
verification function γe : 〈σ〉 × 〈σ〉 → {0, 1} is defined by the following two-
pass challenge-response protocol: Given [x, y] ∈ 〈σ〉 × 〈σ〉, Bob chooses
a ∈ (Z/qZ)∗ and b ∈ Z/qZ randomly, and sends the challenge z := yaτ b ∈ 〈σ〉
to Alice, who returns the response w := zd ∈ 〈σ〉, and we let γe(x, y) := 1 if
and only if w = xaσb ∈ 〈σ〉. Indeed, if [x, y] is valid, then we have y = xe, thus
x = yd, and from τ = σe we get σ = τd, implying xaσb = (yaτ b)d = zd = w.

IV Authentication 86

This is only weak verification, but if [x, y] is not valid, i. e. we have y 6= xe, then
w is verified, i. e. we have w = xaσb, with a probability of at most 1

q−1 : Since

〈τ〉 = 〈σ〉, we for fixed a ∈ (Z/qZ)∗ have {yaτ b; b ∈ Z/qZ} = 〈σ〉. Thus each
challenge z arises from precisely q−1 pairs [a, b]. Let α, β, γ, δ ∈ Z/qZ such that
z = σα and w = σβ and x = σγ and y = σδ. From σα = z = yaτ b = σδa+eb and
σβ = w = xaσb = σγa+b we obtain the system of linear equations α = δa + eb
and β = γa + b for [a, b] ∈ (Z/qZ)2. From σδ = y 6= xe = σγe we conclude
δ 6= γe. Hence the matrix of the above system has determinant δ−γe 6= 0, thus
has a unique solution in (Z/qZ)2. Hence for a given challenge z there is at most
one pair [a, b], out of the q − 1 pairs fulfilling a 6= 0 and yielding this challenge,
such that the response w is verified.

b) The disavowal protocol is essentially a twofold run of the above challenge-
response protocol: Bob chooses a ∈ (Z/qZ)∗ and b ∈ Z/qZ randomly, and sends
the challenge z := yaτ b ∈ 〈σ〉 to Alice, who returns the response w := zd ∈ 〈σ〉.
Then Bob checks whether w = xaσb ∈ 〈σ〉, in which case Bob accepts [x, y].
Otherwise Bob chooses a′ ∈ (Z/qZ)∗ and b′ ∈ Z/qZ randomly, and sends the
challenge z′ := ya

′
τ b
′ ∈ 〈σ〉 to Alice, who returns the response w′ := z′d ∈ 〈σ〉.

Then Bob checks whether w′ = xa
′
σb
′ ∈ 〈σ〉, in which case Bob accepts [x, y].

Otherwise Bob accepts [x, y] if and only if (wσ−b)a
′ 6= (w′σ−b

′
)a ∈ 〈σ〉.

If Alice honestly follows the disavowal protocol and y 6= xe, then with a small
probability Bob incorrectly accepts [x, y] in the first or second step, or finally
we have (wσ−b)a

′
= ((yaτ b)dσ−b)a

′
= yaa

′dτdba
′
σ−ba

′
= yaa

′d and (w′σ−b
′
)a =

((ya
′
τ b
′
)dσ−b

′
)a = yaa

′dτdb
′aσ−b

′a = yaa
′d, thus Bob correctly rejects [x, y].

If Alice is dishonest and does not follow the disavowal protocol, and y = xe,
then w 6= xaσb or w′ 6= xa

′
σb
′
. Then we have (wσ−b)a

′
= (w′σ−b

′
)a with a

probability of at most 1
q−1 , thus with a high probability Bob accepts [x, y]: Since

a ∈ (Z/qZ)∗ there is ã ∈ (Z/qZ)∗ such that aã = 1, hence (wσ−b)a
′

= (w′σ−b
′
)a

implies w′ = (wσ−b)ãa
′
σb
′
. Letting x′ := (wσ−b)ã ∈ 〈σ〉 we have x′a

′
σb
′

= w′.
If w 6= xaσb then x 6= (wσ−b)ã = x′, while if x′a

′
σb
′

= w′ 6= xa
′
σb
′

then again
x′ 6= x. Hence we have y = xe 6= x′e, thus [x′, y] is not valid. Since x′a

′
σb
′

= w′

the response w′ is verified, which happens with a probability of at most 1
q−1 .]

(22.3) The Van Heijst-Pedersen signature scheme [1992]. Fail-stop
signatures provide a mechanism to prove that a signature is a forgery.

a) Let q < p ∈ N be primes such that q | p−1, let e ∈ (Z/qZ)∗, let σ ∈ (Z/pZ)∗

be a primitive q-th root of unity, let τ := σe ∈ (Z/pZ)∗, let a, b, a′, b′ ∈ Z/qZ
be chosen randomly, and let t := σaτ b ∈ 〈σ〉 and t′ := σa

′
τ b
′ ∈ 〈σ〉. Let

[p, q, σ, τ, t, t′] be the public key, and [a, b, a′, b′] be the private key, while the
key e is chosen by a trusted authority and kept completely private, even
from Alice and Bob; thus we have to assume that solving the discrete logarithm
problem in Cq ∼= 〈σ〉 ≤ (Z/pZ)∗ is difficult.

Given x ∈ Z/qZ, let y := a + xa′ ∈ Z/qZ and z := b + xb′ ∈ Z/qZ, yielding
the signature function gt,t′ : Z/qZ → (Z/qZ) × (Z/qZ) : x 7→ [y, z]. The verifi-

IV Authentication 87

cation function γt,t′ : (Z/qZ) × (Z/qZ) × (Z/qZ) → {0, 1} is defined by letting
γt,t′(x; y, z) := 1 if and only if tt′x = σyτz ∈ 〈σ〉. Indeed, if [x; y, z] is valid

then we have tt′x = σa+xa
′
τ b+xb

′
= σyτz ∈ 〈σ〉. This is only weak verification,

but we have the following fail-stop property: Let [x; y, z] be valid, and let
[x; y′, z′] be verified such that [y′, z′] 6= [y, z]. From tt′x = σyτz = σy+ez and
tt′x = σy

′
τz
′

= σy
′+ez′ we get y − y′ = e(z′ − z) ∈ Z/qZ. Assume that z′ = z,

then we also have y = y′, thus [y′, z′] 6= [y, z], a contradiction. Hence we have

z′ 6= z and e = y−y′
z′−z ∈ Z/qZ, thus Alice and Bob are able to compute the

discrete logarithm e = logσ(τ), which we are assuming is difficult.

If [x; y, z] and [x′; y′, z′] are valid with respect to the same key [a, b, a′, b′], where
x′ 6= x, then [a, b, a′, b′] can be determined; hence this is a one-time signature
scheme: We have y = a+xa′ and z = b+xb′, and y′ = a+x′a′ and z′ = b+x′b′.
Thus we are looking for the solutions in (Z/qZ)4 of the following system of linear
equations, whose matrix has (Z/qZ)-rank 4, and thus has a unique solution:

1 . x .
. 1 . x
1 . x′ .
. 1 . x′

 · [a, b, a′, b′]tr = [y, z, y′, z′]tr ∈ (Z/qZ)4

b) Keys [a, b, a′, b′], [ã, b̃, ã′, b̃′] ∈ (Z/qZ)4 are called equivalent if t := σaτ b =

σãτ b̃ ∈ 〈σ〉 and t′ := σa
′
τ b
′

= σã
′
τ b̃
′ ∈ 〈σ〉; hence the associated verification

functions are identical. For fixed b ∈ Z/qZ we have {σaτ b; a ∈ Z/qZ} = 〈σ〉,
thus each element of 〈σ〉 arises from precisely q pairs [a, b], hence each equiva-
lence class of keys has precisely q2 elements.

If [x; y, z] is valid with respect to the key [a, b, a′, b′], then it is valid with respect
to precisely q of the keys equivalent to [a, b, a′, b′]: We are looking for simultane-
ous solutions of the equations y = a+xa′ and z = b+xb′, and t = σaτ b = σa+eb

and t′ = σa
′
τ b
′

= σa
′+eb′ . Letting c, c′ ∈ Z/qZ such that t = σc and t′ = σc

′
,

these are the solutions in (Z/qZ)4 of the following system of linear equations:
1 e . .
. . 1 e
1 . x .
. 1 . x

 · [a, b, a′, b′]tr = [c, c′, y, z]tr ∈ (Z/qZ)4

Since the left hand matrix has (Z/qZ)-rank 3, and the system by construction
has a solution, we conclude that the set of solutions is an affine space of (Z/qZ)-
dimension 1, and thus there are precisely q solutions.]

If [x; y, z] is valid with respect to the key [a, b, a′, b′], and [x′; y′, z′] ∈ (Z/qZ)3

such that x′ 6= x, then there is at most one key equivalent to [a, b, a′, b′] such
that both [x; y, z] and [x′; y′, z′] are valid with respect to that key; such a key
exists only if [x′; y′, z′] is verified: We are looking for the solutions in (Z/qZ)4

IV Authentication 88

of the following system of linear equations:
1 e . .
. . 1 e
1 . x .
. 1 . x
1 . x′ .
. 1 . x′

 · [a, b, a
′, b′]tr = [c, c′, y, z, y′, z′]tr ∈ (Z/qZ)6

Since the left hand matrix has (Z/qZ)-rank 4, there is at most one solution.]

In conclusion, if [x; y, z] is valid then it has been produced using one out of q
keys in an equivalence class of keys. Given x′ 6= x, for any forgery [x′; y′, z′], i. e.
[x′; y′, z′] is verified, there is at most one key out of the above q ones such that
[x′; y′, z′] is valid with respect to that key. Hence the probability that [x′; y′, z′] is
valid is at most 1

q . In particular, any Las-Vegas algorithm computing a selective

forgery by a known-message attack has a success probability of at most 1
q .

(22.4) The Chaum blind signature protocol [1982]. Blind signatures
were invented for electronic payment systems. They are issued without Alice,
the signer, knowing neither what is signed nor the signature. To achieve this,
Bob, the blinder, blinds the message to be signed and unblinds the signature:

Let Alice have an RSA cryptosystem with public key [n, e], with modulus n ∈ N
and e ∈ (Z/ϕ(n)Z)∗, and private key d := e−1 ∈ (Z/ϕ(n)Z)∗. This is used
as an RSA signature scheme, hence still the signature function is ge : Z/nZ →
Z/nZ : x 7→ xd, and the strong verification function γe : (Z/nZ) × (Z/nZ) →
{0, 1} is defined by γe(x, y) := 1 if and only if ye = x ∈ Z/nZ.

Bob chooses k ∈ (Z/nZ)∗ randomly, which he keeps private. If x ∈ Z/nZ is to be
signed, Bob sends the blinded message x′ := xke ∈ Z/nZ to Alice, who returns
its RSA signature y′ := x′d ∈ Z/nZ to Bob, who in turn unblinds it to find the
signature y := y′k−1 ∈ Z/nZ; we indeed have y = (xke)dk−1 = xd ∈ Z/nZ.

Since ke ∈ Z/nZ is uniformly distributed, the blinded messages x′ are as well,
hence Alice does not obtain any information on the signed messages. Similarly,
as k−1 ∈ (Z/nZ)∗ is uniformly distributed, the blinded signatures y′ are as well,
and Alice does not obtain any information on the signatures either. If Alice keeps
a track of all the blinded pairs she has produced and then gets hold of valid pair,
again since k ∈ (Z/nZ)∗ is uniformly distributed she is not able to associate it
with a particular blinded pair; in particular, if Alice communicates with various
blinders she is not able to identify the sender of a particular blinded message.

23 Identification

(23.1) Identification schemes. a) Identification is based on the idea that the
prover (claimant) Alice has to convince the verifier Bob about her identity,

IV Authentication 89

by showing that she possesses some secret, at least with some high probabil-
ity. The simplest identification schemes employ weak identification (weak
authentication), where Alice has to disclose her secret password, which sub-
sequently is known to Bob or might be caught by an opponent.

The danger of replay attacks, i. e. an opponent could try to identify him-
self as being Alice by reusing a password, is remedied by one-time password
schemes, where to avoid lists of passwords kept private by both Alice and Bob,
e. g. the Lamport one-time password scheme proceeds as follows: Letting
X be an alphabet and f : X ∗ → X ∗ be a one-way function, Alice and Bob agree
on a common secret w0 ∈ X ∗, and the password used for the i-th verification,
where i ∈ N, is wi := f(wi−1) ∈ X ∗. Still, this allows for a pre-play attack,
hence Alice may present a password only if Bob is known to be authentic.

b) In challenge-response identification (strong identification) schemes
the use of passwords is avoided: Bob sends a challenge, i. e. a question, to
Alice, who returns as a response the answer to that question, having been
computed using the secret without disclosing it.

E. g. cryptosystems [P, C,K, E ,D] can be used to devise challenge-response
identification schemes: If the cryptosystem is symmetric, Alice and Bob agree
on a common private key k ∈ K, where we assume EkDk = idP , then Bob sends
the challenge x ∈ P to Alice, who responds by returning y := Ek(x) ∈ C to Bob,
who finally checks whether Dk(y) = x ∈ P; still, both Alice and Bob know the
secret, the private key k, in particular Bob is able to impersonate Alice.

If Alice and Bob have a public-key cryptosystem, let e ∈ K be the chosen public
key and d ∈ K be a suitable private key, Bob chooses x ∈ P, sends the challenge
y := Ee(x) ∈ C to Alice, who returns z := Dd(y) ∈ P as a response to Bob, who
checks whether z = x ∈ P; only Alice knows of the secret, the private key d, but
if an opponent is able to replace Alice’s public key by his own one he is able to
identify himself as Alice to Bob.

Challenge-response identification schemes often use certification by a trusted
authority, who possesses a private signature function g : X ∗ → X≤n, where X
is an alphabet, with corresponding public verification function γ : X ∗×X≤n →
{0, 1}. Instead of simply publishing a certificate v ∈ X ∗, the prover Alice sends
v to the trusted authority, who chooses an identification string w ∈ X ∗ identify-
ing Alice, and publishes the signed certificate [w, v, g(wv)]. Since the signed
certificate is publicly known, all the security objectives for signature schemes
discussed earlier apply, to prevent attacks using a forged signed certificates.

(23.2) Proofs of knowledge. At best the protocol underlying a challenge-
response identification scheme is a proof of knowledge, i. e. the protocol is
complete inasmuch any valid identification is accepted, and sound, i. e. the
existence of an oracle to forge identifications entails the existence of an ex-
pected polynomial time Monte-Carlo algorithm to compute the prover’s secret.
The protocol is correct, if forging identifications cannot be solved in expected

IV Authentication 90

Monte-Carlo polynomial time; hence a sound protocol such that the prover’s
secret cannot be computed in expected Monte-Carlo polynomial time is correct.

Still, an opponent Oscar observing the execution of the protocol could collect
information about Alice’s secret. This leads to the following notion: A tran-
script of a protocol is the tuple of messages being sent on a single execution.
Executing the protocol between a honest prover and a honest verifier induces
a probability distribution on the set of transcripts. Then the protocol is called
(perfectly) zero-knowledge if there is a simulator, i. e. a polynomial time
Las-Vegas algorithm not interacting with the prover, producing transcripts with
the same probability distribution as for honest interactions; the protocol is called
polynomially zero-knowledge if there is a simulator producing tuples, not
necessarily being transcripts, with a probability distribution which cannot be
distinguished from the probability distribution for honest interactions in ex-
pected Monte-Carlo polynomial time.

This means that through pure observation of the execution of the protocol
no further information about the secret can be obtained, hence only through
active participation the verifier can be convinced that the prover indeed knows
the secret. Still, by a chosen-text attack, i. e. a clever choice of challenges, a
dishonest verifier might be able to discover at least part of the secret, hence the
zero-knowledge property does not imply security of the identification scheme.

Typically, zero-knowledge proofs of knowledge are three-pass protocols being a
combination of a cut-and-choose and a challenge-response protocol; the name
refers to the method of sharing a cake by one person cutting and one choosing:

(23.3) The Fiat-Shamir identification scheme [1986]. Let p 6= q ∈ N be
odd primes and let n := pq ∈ N. Alice chooses a key r ∈ (Z/nZ)∗ and lets the
certificate be s := r2 ∈ (Z/nZ)∗, then the public key is [n, s], while the private
key is [p, q, r]. Identification runs in a three-pass protocol: Alice randomly
chooses a commitment t ∈ (Z/nZ)∗, and sends the witness u := t2 ∈ (Z/nZ)∗

to Bob; then Bob sends a challenge x ∈ {0, 1}, chosen independently from the
witness, to Alice; then Alice returns the response y := trx ∈ (Z/nZ)∗ to Bob,
who finally checks whether u = y2s−x ∈ (Z/nZ)∗.

Since y2s−x = (trx)2r−2x = t2 = u ∈ (Z/nZ)∗ the protocol is complete. Let
[u, x, y] ∈ (Z/nZ)∗ × {0, 1} × (Z/nZ)∗ such that u = y2s−x, then u ∈ (Z/nZ)∗

is a square, thus there is t ∈ (Z/nZ)∗ such that u = t2, hence y2 = (trx)2, thus
choosing t appropriately amongst the four square roots of u, we conclude that
[u, x, y] is a witness-challenge-response triple, i. e. a transcript.

The commitment t must be chosen before Alice knows of the challenge x:
Otherwise an opponent Oscar is able to impersonate Alice by choosing any
y ∈ (Z/nZ)∗, letting the witness be u := y2s−x ∈ (Z/nZ)∗, and answering
the challenge x by the response y. Identification can be forged from the knowl-
edge of the key r, breaking the identification scheme; in particular, if the same
commitment t is used for both challenges x ∈ {0, 1}, then tr and t are known

IV Authentication 91

to Bob, hence r±1 ∈ (Z/nZ)∗, and thus from r2 = s the key r can be found.

Assume Oscar has an oracle to forge identifications, thus for some witness u
Oscar is able to compute valid responses y0 and y1 to both challenges x ∈
{0, 1}, respectively. Hence we have s = su · u−1 = (y1y

−1
0)2 ∈ (Z/nZ)∗, thus

y1y
−1
0 ∈ (Z/nZ)∗ is one of the four possibilities for the key r, also being a

square root of s. Hence Oscar is able to compute r in Las-Vegas polynomial
time, thus the protocol is sound, hence a proof of knowledge of a square root
r of the certificate s. Assuming that modular squaring is a cryptographic one-
way function, i. e. computing modular square roots cannot be done in expected
Las-Vegas polynomial time, as is conjectured (18.1), the protocol is correct.

We consider the transcripts [u(t), x, yr(t, x)] ∈ (Z/nZ)∗ × {0, 1} × (Z/nZ)∗ as
functions of [t, x] ∈ (Z/nZ)∗×{0, 1}, considering r ∈ (Z/nZ)∗ as a fixed param-
eter. The commitments t are chosen randomly, and t and the challenges x are
chosen independently, hence the responses yr(t, x) := trx ∈ (Z/nZ)∗ are uni-
formly distributed, and x and yr(t, x) are independent. Then u(t) = yr(t, x)2s−x

is determined from x and yr(t, x), hence the set of transcripts is uniformly dis-
tributed, independently from the key r, and the uniform distribution can be
simulated in polynomial time, thus the protocol is zero-knowledge. Still, no
statement is made if Bob behaves dishonestly and chooses the challenges x de-
pending on the witnesses u.

(23.4) The Guillou-Quisquater identification scheme [1988]. Let p 6=
q ∈ N be primes, let n := pq ∈ N, and let e < n be a prime such that
e ∈ (Z/ϕ(n)Z)∗. Alice chooses a key r ∈ (Z/nZ)∗ and lets the certificate be
s := re ∈ (Z/nZ)∗, then the public key is [n, s, e], while the private key is
[p, q, r]. Identification runs in a three-pass protocol: Alice randomly chooses a
commitment t ∈ (Z/nZ)∗, and sends the witness u := te ∈ (Z/nZ)∗ to Bob;
then Bob sends a challenge x ∈ Ze, chosen independently from the witness, to
Alice; then Alice returns the response y := trx ∈ (Z/nZ)∗ to Bob, who finally
checks whether u = yes−x ∈ (Z/nZ)∗.

Since yes−x = (trx)er−ex = te = u ∈ (Z/nZ)∗ the protocol is complete. Let
[u, x, y] ∈ (Z/nZ)∗ × Ze × (Z/nZ)∗ such that u = yes−x, then u ∈ (Z/nZ)∗ is
an e-th power, thus there is t ∈ (Z/nZ)∗ such that u = te, hence ye = (trx)e,
letting e′ := e−1 ∈ (Z/ϕ(n)Z)∗ yields y = yee

′
= (trx)ee

′
= trx ∈ (Z/nZ)∗, thus

[u, x, y] is a transcript. Identification can be forged from the knowledge of r.

Assume Oscar has an oracle to forge identifications, thus for some witness u Oscar
is able to compute valid responses y and y′ to challenges x 6= x′, respectively.
Then we have yes−x = u = (y′)es−x

′ ∈ (Z/nZ)∗, thus sx
′−x = (y′y−1)e ∈

(Z/nZ)∗. Since 0 < |x′ − x| < e and e is a prime, we have gcd(e, x′ − x) = 1 =
ae+b(x′−x) for some a, b ∈ Z. Thus s = sae+(x′−x)b = (sa(y′y−1)b)e ∈ (Z/nZ)∗.
Letting e′ := e−1 ∈ (Z/ϕ(n)Z)∗ yields r = se

′
= sa(y′y−1)b ∈ (Z/nZ)∗. Hence

Oscar is able to compute r in polynomial time, thus the protocol is sound,
hence a proof of knowledge of the e-th root r of the certificate s. Assuming
that modular powering is a cryptographic one-way function, i. e. computing

IV Authentication 92

modular e-th roots cannot be done in expected Las-Vegas polynomial time, as
is conjectured, the protocol is correct.

We consider the transcripts [u(t), x, yr(t, x)] ∈ (Z/nZ)∗×Ze× (Z/nZ)∗ as func-
tions of [t, x] ∈ (Z/nZ)∗ × Ze, considering r ∈ (Z/nZ)∗ as a fixed parameter.
The commitments t are chosen randomly, and t and the challenges x are cho-
sen independently, hence the responses yr(t, x) := trx ∈ (Z/nZ)∗ are uniformly
distributed, and x and yr(t, x) are independent. Then u(t) = yr(t, x)es−x is
determined from x and yr(t, x), hence the set of transcripts is uniformly dis-
tributed, independently from r, and the uniform distribution can be simulated
in polynomial time, thus the protocol is zero-knowledge.

(23.5) The Schnorr identification scheme [1991]. Let q < p ∈ N be primes
such that q | p− 1, and let ρ ∈ (Z/pZ)∗ be a primitive q-th root of unity. Alice
chooses a key e ∈ Z/qZ and lets the certificate be σ := ρe ∈ (Z/pZ)∗, then
the public key is [p, q, ρ, σ], while the private key is e. Identification runs in a
three-pass protocol: Alice randomly chooses a commitment f ∈ Z/qZ, and sends
the witness τ := ρf ∈ (Z/pZ)∗ to Bob; then Bob sends a challenge x ∈ Z/qZ,
chosen independently from the witness, to Alice; then Alice returns the response
y := f − ex ∈ Z/qZ to Bob, who finally checks whether τ = ρyσx ∈ (Z/pZ)∗.

Since ρyσx = ρf−exρex = τ ∈ (Z/pZ)∗, the protocol is complete. Let [τ, x, y] ∈
(Z/pZ)∗×(Z/qZ)×(Z/qZ) such that τ = ρyσx, then letting f := y+ex ∈ Z/qZ
we have τ = ρf ∈ (Z/pZ)∗, thus [τ, x, y] is a transcript. Identification can be
forged from the knowledge of the key e.

Assume Oscar has an oracle to forge identifications, thus for some witness τ Oscar
is able to compute valid responses y and y′ to challenges x 6= x′, respectively.
Hence we have ρyσx = t = ρy

′
σx
′ ∈ (Z/pZ)∗, thus ρy−y

′
= σe(x

′−x) ∈ (Z/pZ)∗,

hence y − y′ = e(x′ − x) ∈ Z/qZ. Since x′ − x ∈ (Z/qZ)∗ we have e = y−y′
x′−x ∈

(Z/qZ)∗. Hence Oscar is able to compute e in polynomial time, thus the protocol
is sound, hence a proof of knowledge of the discrete logarithm e = logρ(σ) of
the certificate σ. Assuming that modular exponentiation is a cryptographic one-
way function, i. e. computing discrete logarithms cannot be done in expected
Las-Vegas polynomial time, as is conjectured (18.1), the protocol is correct.

We consider the transcripts [τ(f), x, ye(f, x)] ∈ (Z/pZ)∗ × (Z/qZ) × (Z/qZ) as
functions of [f, x] ∈ (Z/qZ)× (Z/qZ), considering e ∈ Z/qZ as a fixed parame-
ter. The commitments f are chosen randomly, and f and the challenges x are
chosen independently, hence the responses ye(f, x) := f − ex ∈ Z/qZ are uni-
formly distributed, and x and ye(f, x) are independent. Then τ(f) = ρye(f,x)σx

is determined from x and ye(f, x), hence the set of transcripts is uniformly dis-
tributed, independently from e, and the uniform distribution can be simulated
in polynomial time, thus the protocol is zero-knowledge.

(23.6) The Okamoto identification scheme [1993]. Let q < p ∈ N be
primes such that q | p − 1, let ρ ∈ (Z/pZ)∗ be a primitive q-th root of unity,

IV Authentication 93

let e ∈ (Z/qZ)∗ and σ := ρe ∈ (Z/pZ)∗; hence σ also is a primitive q-th root of
unity. The discrete logarithm e = logρ(σ) is only known to a trusted authority.

Then Alice randomly chooses a key [a, b] ∈ (Z/qZ) × (Z/qZ) and lets the cer-
tificate be τ := ρaσb ∈ (Z/pZ)∗, then the public key is [p, q, ρ, σ, τ], while the
private key is [a, b]. Identification runs in a three-pass protocol: Alice ran-
domly chooses a commitment [c, d] ∈ (Z/qZ) × (Z/qZ), and sends the witness
u := ρcσd ∈ (Z/pZ)∗ to Bob; then Bob sends a challenge x ∈ Z/qZ, cho-
sen independently from the witness, to Alice; then Alice returns the response
[y, z] := [c− ax, d− bx] ∈ (Z/qZ)× (Z/qZ) to Bob, who finally checks whether
u = ρyσzτx ∈ (Z/pZ)∗.

Since ρyσzτx = ρc−axσd−bxρaxσbx = ρcσd = u ∈ (Z/pZ)∗, the protocol is
complete. Let [u, x, y, z] ∈ (Z/pZ)∗ × (Z/qZ) × (Z/qZ) × (Z/qZ) such that
u = ρyσzτx, then letting c := y + ax ∈ Z/qZ and d := z + bx ∈ Z/qZ we get
ρcσd = ρy+axσz+bx = ρyσz(ρaσb)x = u, thus [u, x, y, z] is a transcript.

Let Kτ := {[a′, b′] ∈ (Z/qZ) × (Z/qZ); ρa
′
σb
′

= τ} be the set of keys possibly
used by Alice, hence we have [a, b] ∈ Kτ . For [a′, b′] ∈ Kτ we have ρa

′−a = σb−b
′
,

hence e(b − b′) = (a′ − a) ∈ Z/qZ, thus Kτ = {[a′, b′] ∈ (Z/qZ) × (Z/qZ); a′ =
a− ek, b′ = b+ k, k ∈ Z/qZ}, hence |Kτ | = q. Let a transcript [x, y, z] be fixed,
and let [a′, b′] ∈ Kτ , hence there is k ∈ Z/qZ such that a′ = a−ek and b′ = b+k.
Hence letting c′ := c− ekx ∈ Z/qZ and d′ := d+kx ∈ Z/qZ yields y = c−ax =
(c′+ekx)−(a′+ek)x = c′−a′x and z = d−bx = (d′−kx)−(b′−k)x = d′−b′x,
and ρc

′
σd
′

= ρc−ekxσd+kx = ρcσd(ρ−eσ)kx = u. Thus both the witness u and
the response [y, z] are also obtained using the key [a′, b′] instead of [a, b], and
the commitment [c′, d′] instead of [c, d], hence identification can be forged from
the knowledge of one of the keys in Kτ .

The protocol is a proof of knowledge of an element of Kτ , which is Alice’s secret:
Assume Oscar has an oracle to forge identifications, thus for some witness u
Oscar is able to compute valid responses [y, z] and [y′, z′] to challenges x 6= x′,
respectively. Hence we have ρyσzτx = u = ρy

′
σz
′
τx
′
, and thus ρy−y

′
σz−z

′
=

τx
′−x. Hence letting a′ := y−y′

x′−x ∈ Z/qZ and b′ := z−z′
x′−x ∈ Z/qZ we get ρa

′
σb
′

=
τ and thus [a′, b′] ∈ Kτ . Hence Oscar is able to compute an element of Kτ in
polynomial time, and thus the protocol is sound.

For [a′, b′] 6= [a′′, b′′] ∈ Kτ , since b′ = b′′ if and only if a′ = a′′, we have b′ 6= b′′,

and thus from ρa
′′−a′ = σb

′−b′′ = ρe(b
′−b′′) we conclude e = logρ(σ) = a′′−a′

b′−b′′ ∈
Z/qZ. Thus computing the discrete logarithm e polynomial time reduces to
finding two distinct elements of Kτ . Still, Oscar’s algorithm might first compute
[a′, b′] ∈ Kτ , using some challenge-response pair [x, y, z] and some other pair
with a different challenge, and then just return y′ := y− (x′ − x)a′ ∈ Z/qZ and

z′ := z − (x′ − x)b′ ∈ Z/qZ, for all x′ 6= x′′ ∈ Z/qZ. Then we have y′′−y′
x′−x′′ =

−(x′′−x)a′+(x′−x)a′
x′−x′′ = a′ ∈ Z/qZ and z′′−z′

x′−x′′ = −(x′′−x)b′+(x′−x)b′
x′−x′′ = b′ ∈ Z/qZ,

hence Oscar might only obtain precisely one element of Kτ . But since e is only
known to the trusted authority, who does not take part in the identification
scheme, we may even allow Alice to collaborate. Then since [a, b] has been

IV Authentication 94

chosen randomly, with probability 1− 1
q we have [a′, b′] 6= [a, b], and hence this

yields a polynomial time Las-Vegas algorithm to compute e. Hence if Oscar
has an expected Las-Vegas polynomial time algorithm to forge identifications,
there is an expected polynomial time Las-Vegas algorithm to compute e. Hence
assuming that modular exponentiation is a cryptographic one-way function, i. e.
computing discrete logarithms cannot be done in expected Las-Vegas polynomial
time, as is conjectured (18.1), this shows that the protocol is correct.

We consider the transcripts [u(c, d), x, ya,b(c, d, x), za,b(c, d, x)] ∈ (Z/pZ)∗ ×
(Z/qZ)× (Z/qZ)× (Z/qZ) as functions of [c, d, x] ∈ (Z/qZ)× (Z/qZ)× (Z/qZ)
considering [a, b] as a fixed parameter. The commitments [c, d] are chosen ran-
domly, and [c, d] and the challenges x are chosen independently, hence the re-
sponses ya,b(c, d, x) := c − ax ∈ Z/qZ and za,b(c, d, x) := d − bx ∈ Z/qZ are
uniformly distributed, and x and [y, z] are independent. Then u(c, d) = ρyσzτx

is determined from x and [y, z], hence the set of transcripts is uniformly dis-
tributed, independently from the key [a, b] used, and the uniform distribution
can be simulated in polynomial time, thus the protocol is zero-knowledge.

(23.7) The Shamir permuted kernel identification scheme [1988]. Let
p ∈ N be a prime, let n ≥ m ∈ N, and let A := [aij]ij ∈ Fn×mp such that
ker(A) := {u ∈ Fnp ;uA = 0} 6= {0}. For σ ∈ Sn and u = [u1, . . . , un] ∈ Fnp let
uσ := [u1σ−1 , . . . , unσ−1] ∈ Fnp and Aσ := [aiσ−1,j]ij ∈ Fn×mp ; hence [uσAσ]j =∑n
i=1 uiσ−1aiσ−1,j =

∑n
i=1 uiaij = [uA]j for j ∈ {1, . . . ,m}, thus uσAσ = uA.

Let X be an alphabet, and choosing some suitable encoding let D := {π · v ∈
X ∗;π ∈ Sn, v ∈ Fnp} ⊆ X ∗. Choosing k ∈ N large enough, let h : D → X≤k be
an injective cryptographic one-way function; the elements of D have length in
O(n ln(n) + n ln(p)), hence choosing k ∼ n ln(n) + n ln(p) suffices.

Alice chooses a key σ ∈ Sn, and a certificate u ∈ Fnp such that uσ ∈ ker(A), then
the public key is [h,A, u], while the private key is σ. Identification runs in a
three-pass protocol: Alice randomly chooses a commitment [τ, v] ∈ Sn×Fnp , and

sends the witness [s, t] := [h(τ · vA), h(στ · vτ)] ∈ X≤k ×X≤k to Bob; then Bob
sends a challenge [ξ, x] ∈ Fp×{0, 1}, chosen independently from the witness, to
Alice; then Alice returns the response [w, π] := [(v + ξuσ)τ , σxτ] ∈ Fnp × Sn to

Bob, who finally checks whether s := h(τ · vA) = h(π · wAπ) ∈ X≤k if x = 0,
and t := h(στ · vτ) = h(π · (w − ξuπ)) ∈ X≤k if x = 1.

Since for x = 0 we have π = τ and wAπ = (v + ξuσ)τAτ = (v + ξuσ)A = vA,
implying h(π · wAπ) = h(τ · vA) = s, while for x = 1 we have π = στ and
w − ξuπ = (v + ξuσ)τ − ξuστ = vτ , implying h(π · (w − ξuπ)) = h(στ · vτ) = t,
the protocol is complete.

Let Ku := {σ′ ∈ Sn;uσ
′
A = 0} be the set of keys possibly used by Alice,

hence we have σ ∈ Ku, and identification can be forged from the knowledge
of one of the keys in Ku. If the commitment τ is used for both challenges
x ∈ {0, 1}, then from the responses στ · τ−1 = σ can be determined. If the
commitment v is used for the challenges [ξ, 0] and [ξ′, 0], where ξ 6= ξ′, we get

IV Authentication 95

the responses [w, τ] and [w′, τ ′], thus wτ
−1−ξuσ = v = w′τ

′−1−ξ′uσ yields uσ =
1

ξ−ξ′ (w
τ−1 − w′τ ′−1

) ∈ Fnp ; some σ′ ∈ Sn such that uσ
′

= 1
ξ−ξ′ (w

τ−1 − w′τ ′−1

)

can be found in polynomial time by sorting, and hence we have σ′ ∈ Ku.

Given u ∈ Fnp and A ∈ Fn×mp , finding a permutation σ′ ∈ Sn such that

uσ
′ ∈ ker(A), if there exists any, is called the permuted kernel problem,

i. e. the function problem associated to the relation R := {[u,A;σ′] ∈ Fnp ×
Fn×mp × Sn;n ≥ m ∈ N, uσ′A = 0}. Since the input lengths of [u,A] and σ′ are

in O(n2 ln(p)) and O(n ln(n)), respectively, and computing uσ
′ ∈ Fnp and the

product uσ
′
A ∈ Fnp need O(n2) and O(n2 ln(p)2) bit operations, respectively,

we conclude that R is a polynomial certificate for the following decision prob-
lem: Given [u,A] ∈ Fnp × Fn×mp , is there σ′ ∈ Sn such that uσ

′
A = 0? Hence

the latter problem is in NP, and the associated function problem in FNP. The
permuted kernel problem is NP-hard, see [10, Ch.10.6], hence it is conjectured
that it cannot be solved in expected Las-Vegas polynomial time.

Assume Oscar has an oracle to forge identifications, thus for some witness [s, t]
Oscar is able to compute valid responses [w0, π0] and [w1, π1] to challenges x ∈
{0, 1}. Since h is injective we have π0 = τ and π1 = στ , hence Oscar is able
to compute σ in polynomial time, thus the protocol is sound, hence a proof of
knowledge of σ. Assuming that the permuted kernel problem cannot be solved in
expected Las-Vegas polynomial time, as is conjectured, the protocol is correct.

We consider the transcripts [s(τ, v), tσ(τ, v); ξ, x;wσ(τ, v, ξ), πσ(τ, x)] ∈ X≤k ×
X≤k×Fp×{0, 1}×Fnp×Sn as functions of [τ, v; ξ, x] ∈ Sn×Fnp×Fp×{0, 1} consid-
ering σ as a fixed parameter. The commitments [τ, v] are chosen randomly, and
[τ, v] and the challenges [ξ, x] are chosen independently, hence the responses
wσ(τ, v, ξ) := (v + ξuσ)τ ∈ Fnp and πσ(τ, x) := σxτ ∈ Sn are uniformly dis-
tributed, and [ξ, x] and [w, π] are independent. Given [ξ, x, w, π], from τ = σ−xπ

and v = wπ
−1σx−ξuσ the witnesses s(τ, v) := h(τ ·vA) = h(σ−xπ ·wAσ−xπ) and

tσ(τ, v) := h(στ · vτ) = h(σ1−xπ · (w − ξuσ1−xπ)) are determined, thus the set
of transcripts is uniformly distributed; in particular we recover the verification
conditions using s for x = 0 and t for x = 1.

To simulate transcripts, values of h for arguments involving both π and σ′π,
where π ∈ Sn and σ′ ∈ Ku, have to be computed, to do so an element σ′ ∈ Ku
has to be computed. Thus assuming that the latter cannot be done in expected
Las-Vegas polynomial time, the protocol is not zero-knowledge. Instead, the
uniform distribution on the set of tuples [s̃, t̃; ξ, x, w, π] obtained from transcripts
by letting t̃ := h(π′ · w′) for x = 0 and s̃ := h(π′ · w′) for x = 1, for some
randomly chosen π′ ∈ Sn and w′ ∈ Fnp , can be simulated in polynomial time.

A tuple [s̃, t̃; ξ, x, w, π] is a transcript if and only if π′π−1 ∈ Ku for x = 0 and
ππ′−1 ∈ Ku for x = 1, where to decide this π′ has to be computed as a preimage
under h, which by assumption on h cannot be done in expected Monte-Carlo
polynomial time. Hence the protocol still is polynomially zero-knowledge.

IV Authentication 96

24 Interactive proof systems

(24.1) Interactive proof systems [Goldwasser-Micali-Rackoff, 1985].
a) Let X be an alphabet. An interactive proof system is a distributed algo-
rithm, called a protocol, between a polynomial time non-deterministic Turing
machine B and an exponential time deterministic Turing machine A, hence in
particular A might also be a polynomial time non-deterministic Turing ma-
chine. We proceed as follows: For w ∈ X ∗, beginning with A, the machines
alternatingly compute ai(w) ∈ X ∗ and bi(w) ∈ X ∗

.
∪ {fail}, for i ∈ N, depend-

ing on [w, a1(w), b1(w), , . . . , bi−1(w)] and [w, a1(w), b1(w), , . . . , bi−1(w), ai(w)],
respectively, such that l(ai(w)), l(bi(w)) ≤ l(w)k for some k ∈ N, and termi-
nating after at most l(w)k steps by B either accepting or rejecting w; hence B
behaves both as a decision machine and a function machine. The finite tuple
[w, a1(w), b1(w), ...] is called a transcript of the interactive proof system.

b) A language L ⊆ X ∗ is decided by an interactive proof system [A,B], if there
is 0 < ε < 1 such that w ∈ L is accepted in at least a fraction of 1− (1−ε)l(w) of
the branches (completeness), while w 6∈ L is accepted by any system [A′,B]
in at most a fraction of (1 − ε)l(w) of the branches (correctness). Let IP be
the complexity class of languages being decided by an interactive proof system.

An interactive proof system deciding L is called zero-knowledge, if there is
a polynomial time Las-Vegas algorithm, which for w ∈ L produces transcripts
with the same probability distribution as is obtained by execution of the inter-
active proof system on input w.

c) Since NP ⊆ EXP, by letting A be a polynomial time non-deterministic de-
cision machine and letting B just accept A’s decision, we get NP ⊆ EXP ⊆ IP.
Letting B be a decision machine in BPP ignoring A, we get BPP ⊆ IP.

By Shamir’s Theorem [1990], see [11, Thm.19.8], we have IP = PSPACE,
where PSPACE is the complexity class of languages being decided by determin-
istic Turing machines needing space which is bounded polynomially in the input
length. Since it is conjectured that BPP 6⊆ NP 6= P, it is also conjectured that
IP is a much larger class than both NP and BPP.

(24.2) Graphs. a) A (simple undirected) graph G := [V,E] is a finite set
V 6= ∅ of vertices together with a set E of two-element subsets of V called
edges; we may assume that V = {1, . . . , n} for some n ∈ N. The symmetric
group Sn acts on the set of two-element subsets of V , hence for a graph G =
[V,E] and π ∈ Sn we have the graph Gπ := [V,Eπ]. Graphs G = [V,E] and
G′ = [V,E′] are called isomorphic if there is π ∈ Sn such that E′ = Eπ.

A graph is described by its edge set, where we have |E| ≤
(
n
2

)
≤ n2, each edge

consists of two numbers of input length in O(ln(n)), thus the input length of
a graph is in O(n2 ln(n)). Sorting an edge set E can be done by swapping
adjacent entries of the list encoding E at most O(|E|2) times, hence needing at
most O(n4) steps, being polynomial in the input length. Both applying π ∈ Sn

IV Authentication 97

to an edge set and comparing two edge sets need O(n2 ln(n)) steps.

b) We have the decision problem GraphIsomorphism (GRISO): Given graphs G
and G′ on the same vertex set, are they isomorphic? Hence the complementary
decision problem is GraphNonIsomorphism (GRNISO): Given graphs G and G′

on the same vertex set, are they non-isomorphic?

A non-deterministic algorithm deciding GRISO is given by running through all
π ∈ Sn by successively choosing 1π, 2π, . . . , nπ, computing Eπ, and comparing
with E′. Since there are n choices to be made, this runs in polynomial time,
thus GRISO is in NP; actually it is neither known whether GRISO is NP-complete
nor whether it is in P, see [11, Ex.12.4].

By Stirling’s Formula we have n! ∈ O(e(n+
1
2) ln(n)), thus there is a deterministic

algorithm running in exponential time to decide GRNISO, thus GRNISO in EXP;
GRNISO is neither known to be in NP nor in BPP, i. e. it is neither known
whether GRISO is in coNP nor whether it is in BPP.

c) A k-colouring of a graph G = [V,E], for k ∈ N, is a map χ : V 7→ {1, . . . , k}
such that for all {i, j} ∈ E we have χ(i) 6= χ(j). We have the decision problem
Graph-3-Colourability (GR3COL): Given a graph G, is there a 3-colouring of G?

A non-deterministic algorithm deciding GRISO is given by running through
v ∈ V and successively choosing χ(v) ∈ {1, 2, 3}, and checking the colouring
condition. Since there are n choices to be made and there are at most

(
n
2

)
edges, this runs in polynomial time, thus GR3COL is in NP; actually GR3COL
is NP-complete, see [11, Thm.9.8]. From that, since by (24.5) GR3COL is de-
cided by a zero-knowledge interactive proof system, it can be deduced that
all problems in NP are decided by a zero-knowledge interactive proof system
[Goldreich-Micali-Wigderson, 1986], see [11, 12.3.6].

(24.3) Graph non-isomorphism. Let G1 = [V,E1] and G2 = [V,E2] be
graphs, and n := |V |. For some fixed k ≥ 3 and i ∈ {1, . . . , nk} we proceed
as follows: B randomly chooses x ∈ {1, 2} and π ∈ Sn, and sends H := (Gx)π

to A; then A computes y ∈ {1, 2} such that Gy is isomorphic to H, choosing
y ∈ {1, 2} randomly if G1 and G2 are isomorphic, and sends y to B; then B
checks whether y = x. Finally, B accepts if and only if the verification succeeds
for all i ∈ {1, . . . , nk}.
This is an interactive proof system for GRNISO: The lengths of the messages
exchanged and the number of repetitions is bounded polynomially in the input
length, and deciding GRISO as part of A runs in exponential time. If G1 and G2

are non-isomorphic, then we always have y = x, hence the protocol is complete.
If G1 and G2 are isomorphic, then we have y = x with probability 1

2 , indepen-
dently from any choice of exponential time machine A′ instead of A, hence the
probability that G1 and G2 are erroneously verified to be non-isomorphic is at

most (1
2)n

k

, thus the protocol is correct.

The protocol is zero-knowledge: The transcripts produced by execution of a

IV Authentication 98

round of the protocol, for a pair of non-isomorphic graphs, are of the form
[H, y], where H is a random permutation of a graph randomly chosen amongst
G1 and G2, and y ∈ {1, 2} is determined by H ∼= Gy. Thus the transcripts
are uniformly distributed. Hence by choosing y ∈ {1, 2} and π ∈ Sn randomly
and independently, and letting H := (Gy)π, transcripts can be produced by a
polynomial time Las-Vegas algorithm.

(24.4) Graph isomorphism. Let G1 = [V,E1] and G2 = [V,E2] be graphs,
and n := |V |. For some fixed k ≥ 3 and i ∈ {1, . . . , nk} we proceed as follows:
A randomly chooses y ∈ {1, 2} and σ ∈ Sn, and sends H := (Gy)σ to B; then B
chooses x ∈ {1, 2}, and sends x to A; then A computes {π ∈ Sn; (Gx)π = H}
and randomly chooses one of its elements, which is chosen randomly if Gx and
H are non-isomorphic, and sends π to B; then B checks whether (Gx)π = H.
Finally, B accepts if and only if the verification succeeds for all i ∈ {1, . . . , nk}.
This is an interactive proof system for GRISO: The lengths of the messages
exchanged and the number of repetitions is bounded polynomially in the input
length, and computing {π ∈ Sn; (Gx)π = H} runs in exponential time. If G1

and G2 are isomorphic, then we always have (Gx)π = H, hence the protocol
is complete. If G1 and G2 are non-isomorphic, then we have (Gx)π = H with
probability 1

2 , independently from any choice of exponential time machine A′
instead of A, hence the probability that G1 and G2 are erroneously verified to

be isomorphic is at most (1
2)n

k

, thus the protocol is correct.

The protocol is zero-knowledge: The transcripts produced by execution of a
round of the protocol, for a pair of isomorphic graphs, are of the form [H,x, π],
where H is a random permutation of a graph randomly chosen amongst G1 and
G2, the element x ∈ {1, 2} is randomly chosen, and π is randomly chosen in
{π ∈ Sn; (Gx)π = H}. Thus the transcripts are uniformly distributed. Hence by
choosing x ∈ {1, 2} and π ∈ Sn randomly and independently, and letting H :=
(Gx)π, transcripts can be produced by a polynomial time Las-Vegas algorithm.

(24.5) Graph 3-colourability. Let G = [V,E] be a graph such that V =
{1, . . . , n}. We assume there is a Las-Vegas oracle computing RSA moduli. Then
A first computes a 3-colouring χ : V → {0, 1, 2}, where if there is no 3-colouring
A just chooses some map χ. For some fixed k ≥ 3 and l ∈ {1, . . . , nk} we then
proceed as follows: A randomly chooses π ∈ S{0,1,2}, and for i ∈ {1, . . . , n}
requests RSA moduli ni ≤ nk from the oracle and computes their factorisation
ni = piqi ∈ N, then A randomly chooses ei ∈ (Z/ϕ(ni)Z)∗ and computes
di := e−1i ∈ (Z/ϕ(ni)Z)∗, randomly chooses yi ∈ {1, . . . , bni3 c−1} and computes
zi := (3yi + χ(i)π)ei ∈ Z/niZ, and sends [ni, ei, zi] for all i ∈ {1, . . . , n} to B;
then B randomly chooses an edge {i, j} ∈ E and sends [i, j] to A; and A returns

[di, dj] to B; then B computes xi := zdii ∈ Zni and xj := z
dj
j ∈ Znj , and checks

whether xi 6≡ xj (mod 3). Finally, B accepts if and only if the verification
succeeds for all l ∈ {1, . . . , nk}.
This is an interactive proof system for GR3COL: The lengths of the messages

IV Authentication 99

exchanged and the number of repetitions is bounded polynomially in the input
length, and computing a 3-colouring and the factorisation of RSA moduli runs
in exponential time. If there is a 3-colouring of G, then since 3yi + χ(i)π ∈
{3, . . . , ni − 3} and χ(i)π ∈ {0, 1, 2} we have xi = 3yi + χ(i)π ∈ Zni , and
thus we always have xi 6≡ xj (mod 3), hence the protocol is complete. If there
is no 3-colouring of G, then we have xi = xj with probability at least 1

|E| ,

independently from any choice of exponential time machine A′ instead of A,
hence the probability that G is erroneously verified to have a 3-colouring is at

most (1− 1
|E|)

nk , thus the protocol is correct.

The protocol is zero-knowledge: The transcripts produced by execution of
a round of the protocol, for a graph having a 3-colouring, are of the form
[n1, e1, z1, n2, e2, z2, . . . ; i, j; di, dj], where the ns are produced by the oracle,
the es ∈ (Z/psqsZ)∗ and {i, j} ∈ E are chosen randomly and independently,
and independent from the RSA moduli, thus determining di and dj , and where
the zs ∈ Z/nsZ are chosen randomly and independently, and independent
from the earlier choices, only subject to the condition xi 6≡ xj (mod 3), where

xi := zdii ∈ Zni . Thus the transcripts are uniformly distributed, and can be
produced by a polynomial time Las-Vegas algorithm.

V Exercises 100

V Exercises

25 Exercises for Part I

(25.1) Exercise: Enumerating permutations.

a) Let p1, . . . , pd ∈ N. Show that any x ∈ {0, . . . , (
∏d
j=1 pj)− 1} can be written

uniquely in the form x =
∑d−1
i=0 xi ·

∏i
j=1 pj , where xi ∈ {0, . . . , pi+1 − 1}.

b) Let n ∈ N. Using expansions with respect to 1, . . . , n to give an explicit
bijection {0, . . . , n!− 1} → S{0,...,n−1}.

Hint for (b). Given x =
∑n−1
i=0 xi ·i!, describe the associated permutation π ∈

S{0,...,n−1} by letting (n−1)π := xn−1, and proceeding by induction, using that
for any j ∈ {0, . . . , n−1} there is bijection {0, . . . , n−2} → {0, . . . , n−1}\{j}.

(25.2) Exercise: Sign map.
For n ∈ N0 let sgn: Sn → {±1} : π 7→

∏
1≤i<j≤n

jπ−iπ
j−i .

Show that sgn: Sn → {±1} is well-defined, that is the formula on the right hand
side indeed yields either 1 or −1, that it coincides with the sign map introduced
in (2.1), and that it is a group homomorphism.

(25.3) Exercise: Encryption and decryption.
a) Implement programs to encode and decode words over Xlatin to and from
words over Z26; encrypting and decrypting words over Z26 using a shift cipher;
launching a ciphertext-only attack against the shift cipher.
b) Decrypt the following text obtained by a shift cipher:

beeakfydjxuqyhyjiqryhtyjiqfbqduyjiikfuhcqd

Proof. b) See [12, Exc.1.5].]

(25.4) Exercise: Shift cipher.
Give a formal definition of a cryptosystem where encryption is done as follows:
For shift keys k and k′, the letters of a word at odd and even positions are
encrypted using k and k′, respectively, and finally the resulting word is reversed.

Proof. See [2, Exc.3.16.2].]

(25.5) Exercise: Substitution cipher.
Decrypt the following text obtained by a substitution cipher:

emglosudcgdncuswysfhnsfcykdpumlwgyicoxysipjck

qpkugkmgolicgincgacksnisacykzsckxecjckshysxcg

oidpkzcnkshicgiwygkkgkgoldsilkgoiusigledspwzu

gfzccndgyysfuszcnxeojncgyeoweupxezgacgnfglkns

acigoiyckxcjuciuzcfzccndgyysfeuekuzcsocfzccnc

iaczejncshfzejzegmxcyhcjumgkucy

V Exercises 101

Hint. f decrypts to w.

Proof. See [12, Exc.1.21].]

(25.6) Exercise: Permutation cipher.
Decrypt the following text obtained by a permutation cipher of unknown block
length:

tgeemnelnntdroeoaahdoetcshaeirlm

Proof. See [12, Exc.1.16].]

(25.7) Exercise: Block ciphers.
a) Implement encryption and decryption for a block cipher over Z2 of block
length l ∈ N, running in one of the operation modes ECB, CBC, CFB, or OFB.
In the former two modes assume that the block cipher in use is a permutation
cipher, in the latter two modes assume that the auxiliary block cipher of block
length k ≥ l is a permutation cipher.

b) Use this to encrypt the plaintext 101010101010, and to decrypt the ciphertext
111111111111, using π := (1, 2, 3) and l = 3 in the former two modes, resp. π :=
(1, 2, 3), initialisation vector 000 and l = 2 in the latter two modes.

(25.8) Exercise: Corrupted blocks.
We consider a block cipher over Z2, running in one of the operation modes ECB,
CBC, CFB, or OFB. Let [w1, w2, . . .] be the sequence of ciphertext blocks trans-
mitted. Which of the associated plaintext blocks [v1, v2, . . .] will be incorrectly
decrypted in the following situations?

a) A ciphertext block wi, for some i ∈ N, is transmitted incorrectly, that is
some block w′i is received instead.

b) A ciphertext block wi, for some i ∈ N, is lost completely, that is the sequence
received is [w1, w2, . . . , , wi−1, wi+1, . . .].

(25.9) Exercise: Transposition cipher.
a) Give a formal definition of a cryptosystem where encryption is done as follows:
Letting m,n ∈ N, words of length mn are written row by row into an (m× n)-
matrix, then the rows are permuted, after that the columns are permuted, and
finally words are read out column by column. How many keys are there?
b) Decrypt the following text obtained by such a transposition cipher of
unknown block length:

myamraruyiqtenctorahroywdsoyeouarrgdernogw

Proof. See [12, Exc.1.26].]

V Exercises 102

(25.10) Exercise: Involutory keys.
For a cryptosystem [P, C,K, E ,D] such that P = C, a key k ∈ K such that
E2
k = idP is called involutory. Let R := Zn, where n ∈ N.

a) Determine the involutory keys of a Vigenère cipher of block length l ∈ N.
b) Show that a key [a, b] ∈ R∗ ×R of an affine substitution cipher is involutory
if and only if a = a−1 ∈ R∗ and (a+ 1)b = 0 ∈ R. Determine their number if n
is a prime, and if n = pq where p, q ∈ N are distinct primes.
c) Describe the involutory keys of a general substitution cipher over R. Deter-
mine their number for n = 26.

Proof. See [12, Exc.1.6, 1.11].]

(25.11) Exercise: Cramer’s rule.
Let R be a commutative ring, let A = [aij] ∈ GLn(R) and b = [b1, . . . , bn] ∈ Rn.
a) Show that the system of R-linear equations XA = b, where X = [X1, . . . , Xn]
are indeterminates, has a unique solution c = [c1, . . . , cn] ∈ Rn.
b) Use the adjointness theorem for determinants to prove Cramer’s rule:
Letting ai := [ai1, . . . , ain] ∈ Rn be the rows of A, where i ∈ {1, . . . , n}, we have

ci =
1

det(A)
· det(a1, . . . , ai−1, b, ai+1, . . . , an) ∈ R.

(25.12) Exercise: Invertible matrices.

Let n,m ∈ N. Show that |GLn(Z/mZ)| = mn2 ·
∏
p prime,p |m

∏n
i=1(1− 1

pi).

(25.13) Exercise: Matrix inversion.
Check whether the following matrices over Z26 are invertible, and if so compute
their inverses:

i)

[
7 23
5 4

]
ii)

15 6 4
14 19 22
24 14 23

(25.14) Exercise: Bit permutations.
Let n ∈ N.

a) Provide a permutation on Zn2 which is not a bit permutation.

b) Provide a permutation on Zn2 which is not affine linear.

(25.15) Exercise: Affine cipher.
Break an affine cipher of unknown block length using the following plaintext-
ciphertext pair:

adisplayedequation 7→ dsrmsioplxljbzullm.

Proof. See [12, Exc.1.24].]

V Exercises 103

(25.16) Exercise: Hill cipher.
Break a Hill cipher of unknown block length using the following plaintext-
ciphertext pair:

breathtaking 7→ rupotentoifv.

Proof. See [12, Exc.1.23].]

(25.17) Exercise: Hill cipher.
Describe a ciphertext-only attack against a Hill cipher with block length 2, using
the frequency of occurrence of pairs of letters in the plaintext language. Decrypt
the following text obtained by such a cipher:

lmqetxyeagtxctuiewnctxlzewuaispzyvapewlmgqwya

xftcjmsqcadagtxlmdxnxsnpjqsyvapriqsmhnocvaxfv

Proof. See [12, Exc.1.25].]

(25.18) Exercise: Vigenère cipher.
Decrypt the following text obtained by a Vigenère cipher of unknown block
length:

kccpkbgufdphqtyavinrrtmvgrkdnbvfdetdgiltxrguddkotf

mbpvgegltgckqracqcwdnawcrxizakftlewrptycqkyvxchkft

poncqqrhjvajuwetmcmspkqdyhjvdahctrlsvskcgczqqdzxgs

frlswcwsjtbhafsiasprjahkjrjumvgkmitzhfpdispzlvlgwt

fplkkebdpgcebshctjrwxbafspezqnrwxcvycgaonwddkackaw

bbikftiovkcgghjvlnhiffsqesvyclacnvrwbbirepbbvfexos

cdygzwpfdtkfqiycwhjvlnhiqibtkhjvnpist

Proof. See [12, Exc.1.21].]

(25.19) Exercise: Affine substitution cipher.
Decrypt the following text obtained by an affine substitution cipher:

kqerejebcppcjcrkieacuzbkrvpkrbcibqcarbjcvfcupkriof

kpacuzqepbkrxpeiieabdkpbcpfcdccafieabdkpbcpfeqpkaz

bkrhaibkapcciburccdkdccjcidfuixpafferbiczdfkabicbb

enefcupjcvkabpcydccdpkbcocperkivkscpicbrkijpkabi

Proof. See [12, Exc.1.21].]

V Exercises 104

(25.20) Exercise: Decryption.
Decrypt the following text obtained by an unknown cipher:

bnvsnsihqceelsskkyerifjkxumbgykamqljtyavfbkvtdvbpv

vrjyylaokympqscgdlfsrllproygesebuualrwxmmasazlgled

fjbzavvpxwicgjxascbyehosnmulkceahtqokmflebkfxlrrfd

tzxciwbjsicbgawdvydhavfjxzibkcgjiweahttoewtuhkrqvv

rgzbxyiremmascspbnlhjmblrffjelhweylwistfvvyfjcmhyu

yrufsfmgesigrlwalswmnuhsimyyitccqpzsicehbccmzfegvj

yocdemmpghvaaumelcmoehvltipsuyilvgflmvwdvydbthfray

isysgkvsuuhyhggcktmblrx

Proof. See [12, Exc.1.21].]

(25.21) Exercise: Autokey cipher.
Decrypt the following text obtained by an autokey cipher:

malvvmafbhbuqptsoxaltgvwwrg

Proof. See [12, Exc.1.28].]

(25.22) Exercise: Vigenère stream cipher.
Given a Vigenère cipher over R := Zn, where n ∈ N, of block length l ∈ N, we
obtain the synchronous Vigenère stream cipher using a seed key b0 ∈ Rl and
the keystream bi := bi−1 + [1, . . . , 1] ∈ Rl, for i ∈ N. What is its period?

Decrypt the following text obtained by a Vigenère stream cipher of unknown
block length:

iymysilonrfncqxqjedshbuibcjuzbolfqyschatpeqgqjejng

nxzwhhgwfsukuljqaczkkjoaahgkemtafgmkvrdopxnehekznk

fskifrqvhhovxinphmrtjpywqgjwpuuvkfpoawpmrkkqzwlqdy

azdrmlpbjkjobwiwpsepvvqmbcryvcruzaaoumbchdagdiemsz

fzhaligkemjjfpciwkrmlmpinayofireaoldthitdvrmse

Proof. See [12, Exc.1.29].]

(25.23) Exercise: Enigma cipher.
Given a substitution cipher with respect to the permutation π ∈ SZ26

, we obtain
a synchronous stream cipher using a seed key k0 ∈ Z26 and the keystream
ki := ki−1 + i ∈ Z26, for i ∈ N, where the i-th plaintext is encrypted by
Z26 → Z26 : x 7→ xπ + ki. Let now π ∈ SZ26 be given as follows:

x 0 1 2 3 4 5 6 7 8 9 10 11 12
xπ 23 13 24 0 7 15 14 6 25 16 22 1 19

V Exercises 105

x 13 14 15 16 17 18 19 20 21 22 23 24 25
xπ 18 5 11 17 2 21 12 20 4 10 9 3 8

Decrypt the following text obtained by such an Enigma cipher with respect
to the above permutation:

wswixggfctiorjlnlqmkbogxblcrjsrwsbmrktbxbhnnqfahxpdbkhuimjmt

Proof. See [12, Exc.1.30].]

(25.24) Exercise: Linear recurrences.
Let F2 be the field with two elements. For all d ∈ {1, . . . , 10} determine the
irreducible polynomials in F2[X] of degree d. For all those polynomials and any
seed in Fd2 determine the period of the associated linear recurrence.

(25.25) Exercise: Perfect security.
Let [P, C,K, E ,D] be a cryptosystem, with probability distribution µP and uni-
form distribution µK. Let the number |{k ∈ K;Ek(x) = y}| be independent
of the particular choice of x ∈ P and y ∈ C. Show that the cryptosystem is
perfectly secure, and that µC is the uniform distribution.

(25.26) Exercise: Perfect security of affine ciphers.
Let R := Z/nZ. Consider the affine cipher, the Hill cipher and the Vigenère
cipher over R of block length l ∈ N, and assume that the respective key sets are
uniformly distributed. Which of these ciphers are perfectly secure?

Proof. See [12, Exc.2.3].]

(25.27) Exercise: Latin square cryptosystems.
Let n ∈ N. A latin square is a matrix A ∈ Zn×nn such that any of its rows and
columns contains every element of Zn. Given a latin square A = [aij] ∈ Zn×nn ,
let P = C = K = Zn and E := {Ei; i ∈ Zn}, where Ei : Zn → Zn : j 7→ aij .
a) Show that this indeed defines a cryptosystem, called the associated latin
square cryptosystem.
b) Provided K is uniformly distributed, show that it is perfectly secure.

Proof. See [12, Exc.2.2].]

(25.28) Exercise: Entropy [Shannon, 1948].
Let X and Y be finite probability spaces.
a) Let H(X) := −

∑
x∈X;µX(x)>0 µX(x) · log2(µX(x)) ∈ R be the entropy

of X. Show that 0 ≤ H(X) ≤ log2(|X|). When do we have H(X) = 0 or
H(X) = log2(|X|)? How can entropy be interpreted as amount of information?
b) For y ∈ Y such that µY (y) > 0 let H(X|y) ∈ R be the entropy of the condi-
tional distribution µX(·|y), and let H(X|Y) :=

∑
y∈Y ;µY (y)>0 µY (y) ·H(X|y) ∈

V Exercises 106

R be the associated conditional entropy. Show that H(X × Y) = H(Y) +
H(X|Y) and H(X|Y) ≤ H(X). When does equality hold? How can conditional
entropy be interpreted?

Hint for a). Use the concavity of log2 : R>0 → R and the Jensen inequality.

Proof. See [12, Ch.2.4, 2.5].]

(25.29) Exercise: Entropy of cryptosystems.
Let [P, C,K, E ,D] be a cryptosystem, together with independent probability
distributions µP and µK, and associated distribution µC . We keep the notation
of (25.28).
a) Show that H(K|C) = H(K) + H(P) − H(C) and H(K|C) ≥ H(P|C). How
can the latter inequality be interpreted?
b) Show that [P, C,K, E ,D] is perfectly secure if and only if H(P|C) = H(P).

Proof. See [12, Ch.2.6, Exc.2.11, 2.12].]

26 Exercises for Part II

(26.1) Exercise: Artin’s Theorem.
Let U be a finite subgroup of the multiplicative group C∗. Show that U consists
of roots of unity, and is cyclic.

(26.2) Exercise: RSA block cipher.
a) Implement programs to encrypt and decrypt texts using an RSA block
cipher: Let p 6= q ∈ N be odd primes, let n := pq ∈ N be the modulus, and let
l := blog26 nc ∈ N be the block length. Words in X llatin are first encoded into
Zl26, and then via 26-adic expansion considered as elements of Z26l ⊆ Zn.

Try to implement encryption and decryption as efficient as possible. How can
the ring isomorphism Z/nZ→ (Z/pZ)×(Z/qZ) be used to optimise decryption?

b) Decrypt the following text obtained using n := 18721 and e := 43:

13130, 95, 7342, 13805, 8347, 10022, 5164, 13434, 18716, 13434, 14498

c) Describe a protocol failure if contrary to the above we just let l := 1, and
decrypt the following text obtained using n := 18721 and e := 25:

365, 0, 4845, 14930, 2608, 2608, 0

Proof. a) See [12, Exc.5.12, 5.13] and [2, Ch.8.3.9]. c) See [12, Exc.5.15].]

V Exercises 107

(26.3) Exercise: Protocol failure of RSA block ciphers.
a) Implement programs launching cycling attacks, low exponent attacks and
common modulus attacks against an RSA block cipher.
b) Encrypting the plaintext from (26.2)(b) using n := 18721 and e := 25 yields
the following ciphertext:

17980, 294, 9866, 6834, 14416, 5476, 3744, 10541, 16721, 10541, 4508.

Decrypt this text using a cycling attack and using a common modulus attack.

(26.4) Exercise: Generalised cycling attacks.
Let p 6= q ∈ N be odd primes, let n := pq ∈ N, and let e ∈ (Z/ϕ(n)Z)∗. What
happens in a cycling attack against an RSA cryptosystem, if for x ∈ Z/nZ the

minimal k ∈ N such that gcd(xe
k − x, n) > 1 is searched for? What does this

mean for the security of RSA cryptosystems?

Proof. See [10, Ch.8.2].]

(26.5) Exercise: Low decryption exponent attack.
a) Implement a program launching a low decryption exponent attack against
an RSA cryptosystem.
b) For which of the admissible encryption keys for the modulus n := 18721 is
this attack successful?
c) Factor the modulus n := 317940011 using e := 77537081.

Proof. See [12, Exc.5.32].]

(26.6) Exercise: Fixed points.
Let p 6= q ∈ N be odd primes, let n := pq ∈ N, and let e ∈ (Z/ϕ(n)Z)∗. Show
that |{x ∈ Z/nZ;xe = x}| = (1 + ggT(e − 1, p − 1)) · (1 + ggT(e − 1, q − 1)).
What does this mean for RSA cryptosystems?

Proof. See [12, Exc.5.18].]

(26.7) Exercise: Perfect security of the RSA cryptosystem.
Let p 6= q ∈ N be odd primes, let n := pq ∈ N, and let K := (Z/ϕ(n)Z)∗ be
uniformly distributed. Which of the RSA cryptosystems with P = C = Z/nZ
and P = C = (Z/nZ)∗, respectively, are perfectly secure?

(26.8) Exercise: Semantic security of the RSA cryptosystem.
Let p 6= q ∈ N be odd primes, let n := pq ∈ N, and let e, d ∈ (Z/ϕ(n)Z)∗ such
that EeDd = idZn . Let σe : Zn → Z2 : y 7→ Dd(y) (mod 2), and let τe : Zn → Z2

such that τe(y) = 0 if and only if Dd(y) ∈ {0, . . . , n−12 }. Show that computing
σe, computing τe, and computing Dd are polynomial time equivalent.

V Exercises 108

Proof. See [12, Ch.5.9.1, Exc.5.34].]

(26.9) Exercise: Legendre and Jacobi symbols.
a) Let p ∈ N be an odd prime. Show that Qp := {x2 ∈ (Z/pZ)∗;x ∈ (Z/pZ)∗} ≤
(Z/pZ)∗ is the unique subgroup of index 2. The elements of Qp are called
quadratic residues, and those of Np := (Z/pZ)∗ \ Qp are called quadratic
non-residues.
b) Let the Legendre symbol

(
·
p

)
: Z/pZ→ {0, 1,−1} be defined by

(
x

p

)
:=

 0, if x = 0,
1, if x ∈ Qp,
−1, if x ∈ Np.

Show that
(
xy
p

)
=
(
x
p

)(
y
p

)
for all x, y ∈ Z/pZ.

c) Now let p 6= q ∈ N be odd primes, let n := pq ∈ N, and let the Jacobi symbol

be defined by
(·
n

)
:=
(
·
p

)(
·
q

)
: Z/nZ → {0, 1,−1}. Letting e ∈ (Z/ϕ(n)Z)∗,

show that
(
x
n

)
=
(
Ee(x)
n

)
. What does this mean for the RSA cryptosystem?

Proof. See [12, Ch.5.4].]

(26.10) Exercise: Choice of moduli.
Show that an RSA cryptosystem with modulus n := 2189284635403183 can be
broken by elementary arithmetic.

Proof. See [12, Exc.5.29].]

(26.11) Exercise: RSA factorisation.
a) Implement the Las-Vegas algorithm to factor an RSA modulus using a known
pair of encryption-decryption keys.
b) Factor the modulus n := 18721 using the pair e := 43 and d := 9859. How
many factorisation witnesses are there in Z/nZ?

(26.12) Exercise: Square roots.
Let p ∈ N be a prime such that p ≡ 5 (mod 8) and let x ∈ (Z/pZ)∗.

a) Let y := x2 ∈ (Z/pZ)∗ and z := y
p−1
4 ∈ (Z/pZ)∗. Show that z ∈ {±1}.

b) If z = 1, show that x ∈ {±y
p+3
8 }. If z = −1, show that x ∈ {±2y · (4y)

p−5
8 }.

Hint for (b). Use the fact that 2 ∈ Np, see (26.9).

Proof. See [12, Exc.6.21] and [10, Alg.3.37].]

V Exercises 109

(26.13) Exercise: Rabin block cipher.
a) Implement programs to encrypt and decrypt texts using a Rabin block
cipher for primes p 6= q ∈ N such that p, q ≡ 3 (mod 4) and modulus n := pq ∈
N, which is defined as described in (26.2).

Decrypt the following text obtained using n := 458933, by first factoring n:

23178 14674 231736 113930 93071 353028 75628
5276 194098 144990 452983 1878 358306 304746

352950 435566 6494 124866 2862 174345 23021
142072 16254 146018 96674 30028 81000 333981

b) Implement the Las-Vegas algorithm to factor the Rabin modulus using a
square root oracle for (Z/nZ)∗. Use it to factor the modulus n := 458933. How
many factorisation witnesses are there in Z/nZ?

(26.14) Exercise: ElGamal block cipher.
Implement programs to solve the discrete logarithm problem and to encrypt and
decrypt texts using a randomised ElGamal block cipher, which is defined as
described in (26.2), but paying attention to the fact that 0 6∈ Z∗p.

Decrypt the following text obtained using p = 17579, ρ = 2 and α = 16295, by
solving a discrete logarithm problem:

[4112, 14926] [14877, 1629] [13851, 10582] [830, 15113]
[11462, 3281] [16556, 12332] [1696, 9016] [16695, 5440]
[10011, 6489] [13746, 13450] [14241, 17132] [364, 16819]
[4048, 10319] [14754, 17568] [8249, 13863] [14776, 13274]

(26.15) Exercise: ElGamal cryptosystem.
a) Let p ∈ N be a prime, let µ ∈ Fp[X] be irreducible of degree n ∈ N, and
let K := Fp[X]/µFp[X] be the field with pn elements. Implement programs for
addition, multiplication, inversion, and exponentiation in K, as well as finding
primitive roots and solving the discrete logarithm problem in K∗.

b) Specify an ElGamal cryptosystem over K∗, where |K| ≥ 27, and implement
programs to encrypt and decrypt texts using a randomised ElGamal cipher,
where letters in Xlatin are encoded into Z26, and K∗ is enumerated lexicograph-
ically, e. g. for p = n = 3 we letK∗ = [1, 2, X,X+1, X+2, 2X, . . . , 2X2+2X+2].

c) Let p := 3 and n := 3 as well as µ := X3 − X + 1 ∈ F3[X]. Show that
µ is irreducible and that X ∈ K := F3[X]/µF3[X] is a primitive root of K∗.
Decrypt the following text obtained using ρ := X and unknown key α ∈ K∗:

V Exercises 110

[−X2 +X − 1, X − 1] [−X2 + 1, X2]
[X,X2] [X,X2 − 1]
[−X2 + 1, X] [X2 +X − 1, X]
[−X2 +X,−X2 − 1] [−X2 + 1,−X2 −X − 1]
[−X2 +X,−X2 −X − 1] [−X2 +X − 1,−X]
[X + 1,−X2 + 1] [−X2 +X − 1,−X2 +X − 1]
[X,X2 +X] [X2 + 1, 1]
[−X2 + 1,−X2 +X] [−X2 −X − 1, X2 − 1]
[−X2,−X2 +X] [−X2 +X,X]
[X2 +X − 1,−X2 +X + 1] [−X2 −X,−X2 −X − 1]
[−X2 −X − 1, X − 1] [X2 −X − 1,−X]

Proof. See [12, Exc.6.11, 6.12].]

(26.16) Exercise: Semantic security of the ElGamal cryptosystem.
Let p ∈ N be an odd prime, let ρ ∈ (Z/pZ)∗ be a primitive root, and let
α ∈ (Z/pZ)∗ be a public key of an ElGamal cryptosystem.
a) Show Euler’s criterion: For x ∈ (Z/pZ)∗ we have x ∈ Qp, see (26.9), if

and only if x
p−1
2 = 1 ∈ (Z/pZ)∗.

b) Given a ciphertext [β, y] ∈ (Z/pZ)∗× (Z/pZ)∗, show that the Legendre sym-

bol
(
x
p

)
of the associated plaintext x ∈ (Z/pZ)∗ can be computed in polynomial

time. What does this mean for the security of the ElGamal cryptosystem?

Proof. See [12, Ch.6.7.2].]

(26.17) Exercise: Discrete logarithms.
Let p ∈ N be a prime such that p ≡ 3 (mod 4), let ρ ∈ (Z/pZ)∗ be a primitive
root, for x ∈ (Z/pZ)∗ let logρ(x) =

∑
i≥0 li(x) · 2i ∈ Zp−1, where li(x) ∈ {0, 1}.

a) Show that for any x ∈ (Z/pZ)∗ we have l0(x) 6= l0(−x), and that x ∈ Qp,
see (26.9), if and only if l0(x) = 0.
b) Assume we have an l1-oracle for x ∈ (Z/pZ)∗. Show that logρ(x) ∈ Zp−1 can
be computed in polynomial time.

Proof. See [12, Ch.6.7.1].]

(26.18) Exercise: Discrete logarithm factorisation.
Let p 6= q ∈ N be odd primes, and let n := pq ∈ N.
a) Show that for x ∈ (Z/nZ)∗ we have |x| | lcm(p− 1, q − 1), and that there is
ρ ∈ (Z/nZ)∗ such that |ρ| = lcm(p− 1, q − 1).
b) Let ρ ∈ (Z/nZ)∗ be as above. Show how a discrete logarithm oracle in 〈ρ〉
can be used to factor n.

Proof. See [12, Exc.6.7].]

V Exercises 111

(26.19) Exercise: Chor-Rivest cryptosystem.
a) Let n, k ∈ N such that k ≤ n. Implement a program to convert x ∈ Z(nk)

to

and from a sequence [x1, . . . , xn] ∈ {0, 1}n, where precisely k of the xi are equal
to 1, such that x =

∑n
i=1 xi ·

(
n−i
ki

)
, where 0 ≤ ki ≤ k.

b) Implement programs to encrypt and decrypt texts using the Chor-Rivest
cryptosystem for a prime p ∈ N and an irreducible polynomial µ ∈ Fp[X] of
degree d ≥ 2, such that X ∈ Fp[X]/µFp[X] is a primitive root.

27 Exercises for Part III

(27.1) Exercise: Turing machines.
Give the definition of a Turing machine over X := {0, 1}
a) which for w ∈ X ∗ outputs 0w ∈ X ∗,
b) which for n ∈ N0 in binary representation outputs the successor n+ 1 ∈ N.

Proof. a) See [11, Ex.2.1]. b) See [11, Ex.2.2].]

(27.2) Exercise: Multiple string Turing machines.
a) Generalising the notion of a Turing machine, give a formal definition of a
k-string Turing machine, where k ∈ N, having transition function

τ :
(
X

.
∪ Y

)k
× (S \ {s∞}) −→

(
(X

.
∪ Y)× {←, ↑,→}

)k
× S,

and acting on a suitable set of configurations, where inputs are provided on the
string 1, and outputs are provided on string k.
b) Show that a language L which is accepted (decided) by a k-string Turing
machine running in time f , is accepted (decided) by a conventional Turing
machine running in time O(f2).

Proof. See [11, Ch.2.3] and [1, La.10.1].]

(27.3) Exercise: Chernoff bound.
Let X := {0, 1} be a probability space such that 0 < µ(1) = ε < 1. Let

x1, . . . , xk ∈ X be independent choices, for k ∈ N, and let x :=
∑k
i=1 xi. Show

that for 0 < λ ≤ 1 we have µ(x ≥ (1 + λ)εk) ≤ e−λ
2εk
2 .

Hint. Consider etx for t ∈ R, and use the convexity of the exponential function,
and µ(z ≥ sE(z)) ≤ 1

s for s > 0, where E(z) denotes the expectation value of
the random variable z.

Proof. See [11, La.11.9].]

V Exercises 112

(27.4) Exercise: Asymptotic behaviour.
a) Give an elementary proof that ln(n!) ∈ O(n lnn) and n lnn ∈ O(ln(n!)).

b) Show that for k ∈ N we have
∑n
i=1 i

k ∼ nk+1

k+1 for n→∞.
c) For n ∈ N let fn ∈ N denote the n-th Fibonacci number be given by
f1 = f2 = 1, and fn := fn−1 + fn−2 for n ≥ 3. Find a function g : N → R>0

such that fn ∼ g(n).
d) Show that for the following functions N → R>0 we have f ∈ o(g) whenever
f < g, where 0 < ε < 1 < c:

1 < ln ln(n) < ln(n) < e(ln(n))
1
2 (ln ln(n))

1
2 < nε < nc < nln(n) < cn < nn < cc

n

.

Proof. a) See [8, Ex.2.2.2, Exc.2.2.4]. b) See [8, Ex.2.1.3].
c) See [8, Exc.2.2.2]. d) See [10, Ex.2.58].]

(27.5) Exercise: Time estimates.
a) Let n ∈ N. Show that n! can be computed using O(n2 ln(n)2) bit operations,
and give an estimate of the number of bit operations needed to compute nn.

b) By induction show that
∑n
i=1 i

2 = n·(n+1)·(2n+1)
6 , for n ∈ N. Give estimates

of the number of bit operations needed to compute the left hand side and the
right hand of this equation.
c) For n ∈ N let fn ∈ N denote the n-th Fibonacci number. Give estimates of
the number of bit operations needed to compute

∑n
i=1 fi and

∏n
i=1 fi.

d) For 1 6= z ∈ N and n ∈ N let Pz,n := {p ∈ N; bz(p) ≤ n, p prime}. Give
estimates of the number of bit operations needed to compute

∑
Pz,n and

∏
Pz,n.

Proof. a) See [8, Ex.2.3.3] and [8, Exc.2.3.1]. b) See [8, Exc.2.3.3].
c) See [8, Exc.2.3.5]. d) See [8, Exc.2.3.6].]

(27.6) Exercise: Euclidean algorithm.
Let q,m, n ∈ N such that q 6= 1. Show that gcd(qm − 1, qn − 1) = qgcd(m,n) − 1.

(27.7) Exercise: Lamé’s Theorem.
Show that the Euclidean algorithm needs at most blog 1+

√
5

2

(
√

5 ·n)c−2 division

steps to compute a greatest common divisor of m,n ∈ N, where m ≥ n.

Proof. See [7, Ch.3.3] and [3, Thm.1.3.2].]

(27.8) Exercise: Primitive roots.
Implement a program to compute the minimal primitive root in Z∗p, where p ∈ N
is a prime, and compute those for p < 103. What can be observed?

(27.9) Exercise: Divisibility.
a) Determine all n ∈ N such that n | 2n − 1.
b) Determine all n ∈ N such that n | xn+1 − x for all x ∈ Zn.

V Exercises 113

Proof. a) See [3, Exc.8.9.5]. b) See [3, Exc.8.9.4].]

(27.10) Exercise: Primality tests.
a) Show Wilson’s Theorem: For 1 6= n ∈ N we have (n− 1)! ≡ −1 (mod n)
if and only if n is a prime.
b) Determine the number of bit operations needed for the primality tests based
on trial division and on Wilson’s Theorem, respectively.

Proof. b) See [11, Exc.10.4.8] and (27.5).]

(27.11) Exercise: Pocklington test.
a) Let 1 6= n ∈ N, and let p ∈ N be a prime such that pa | n−1 but pa+1 6 | n−1
for some a ∈ N. Assume there is x ∈ Zn such that xn−1 = 1 ∈ Z/nZ and

gcd(x
n−1
p − 1, n) = 1. Show that for any d ∈ N dividing n we have pa | d− 1.

b) Let m, l ∈ N such that n− 1 = ml, where gcd(m, l) = 1 and m >
√
n. Show

that n is a prime if and only if for any prime p ∈ N dividing m there is xp ∈ Zn
fulfilling the conditions in a). How can this be used as a primality test?

Proof. a) See [3, Prop.8.3.1]. b) See [3, Cor.8.3.2].]

(27.12) Exercise: Fermat test.
a) Implement a program performing the Fermat compositeness test, and deter-
mine the fraction of Fermat witnesses for the composite integers n ≤ 104.
b) Which of the integers 10200 + 349 and 10200 + 357 are composite?

Proof. See [7, Exc.18.3].]

(27.13) Exercise: Fermat witnesses.
Let n ∈ N be composite, and let x ∈ (Z/nZ)∗ be Fermat witness such that
gcd(xn−1 − 1, n) > 1. Show that n is not a prime power.

Proof. See [7, Exc.18.6].]

(27.14) Exercise: Fermat liars.
a) Let p ∈ N be a prime such that 2p−1 is a prime as well, and let n := p(2p−1).
Show that a fraction of 1

2 of the elements of (Z/nZ)∗ are Fermat liars.
b) Let p 6= q ∈ N be primes such that p, q ≡ 3 (mod 4) and gcd(p−1, q−1) = 2,
and let n := pq ∈ N. Show that {xn−1 ∈ (Z/pZ)∗;x ∈ (Z/pZ)∗} ≤ (Z/pZ)∗ has
index 2, and use this to deduce the fraction of Fermat liars in (Z/nZ)∗.

Proof. a) See [7, Exc.18.5]. b) See [7, Exc.18.4].]

V Exercises 114

(27.15) Exercise: Carmichael numbers.
Let 1 6= n ∈ N be composite.
a) Show that n is a Carmichael number, if and only if n is squarefree and for
any prime divisor p ∈ N of n we have p− 1 | n− 1.
b) Show that if n is a Carmichael number, then n is odd and has at least three
different prime divisors.
c) Given an odd prime p ∈ N show that there are only finitely many Carmichael
numbers n being divisible by p and having precisely three different prime divi-
sors. Determine those for p = 3 and p = 5.
d) Implement a program to compute the Carmichael numbers n ≤ 104.

Proof. See [7, Exc.18.9, 18.10].]

(27.16) Exercise: Carmichael function.
Let 1 6= n =

∏r
i=1 p

ai
i ∈ N be odd, where the pi are pairwise distinct primes and

ai ∈ N. Let λ(n) := lcm(ϕ(pa11), . . . , ϕ(parr)) ∈ N be the Carmichael function.
a) For x ∈ (Z/nZ)∗ show that xλ(n) = 1. Use this to show that n is a Carmichael
number if and only if λ(n) | n− 1.

b) Show that Vn := {x ∈ (Z/nZ)∗;x
λ(n)

2 = ±1} ≤ (Z/nZ)∗ is a subgroup. Show
that Vn = (Z/nZ)∗ if and only if r = 1, i. e. n is a prime power. Use this to
device a primality test for n, whenever n is known not to be a perfect power.

Proof. See [7, Exc.18.13, 18.14].]

(27.17) Exercise: Strong pseudoprimes.
a) Show that there are composite odd 9 6= n ∈ N such that a fraction of 1

4 of
the elements of (Z/nZ)∗ are strong liars.
b) For t ∈ N let nt :=

∏
{p ∈ {3, . . . , t}; p prime} ∈ N. Determine the strong

liars for nt.

Proof. a) See [10, Ex.4.22]. b) See [10, Ex.4.27].]

(27.18) Exercise: Miller-Rabin test.
a) Implement a program performing the Miller-Rabin compositeness test, and
determine the fraction of strong witnesses for the composite integers n ≤ 104.
b) Is 1 195 068 768 795 265 792 518 361 315 725 116 351 898 245 581 composite? In
this case try to determine its factorisation.

Proof. b) See [3, Ch.8.2].]

(27.19) Exercise: Factorisation.
a) Implement the Lucas primality test, the ρ factorisation method and the p−1
factorisation method, and compute the factorisation of 15 770 708 441.
b) Show that the Fermat numbers F10, F11 and F12 have at least two, two, and
three prime divisors < 109, respectively. Which of the cofactors are prime?

V Exercises 115

Proof. a) See [12, Ex.5.9]. b) See [7, Ch.19.1].]

28 Exercises for Part IV

(28.1) Exercise: Computing square roots.
Let p be an odd prime. Let QuadraticResidue be the following decision problem,
see (26.9): Given x ∈ (Z/pZ)∗, is x ∈ Qp? Let SquareRoot be the following
function problem: Given x ∈ (Z/pZ)∗, if possible find y ∈ (Z/pZ)∗ such that
y2 = x.
a) Show that SquareRoot is the function problem associated to the decision
problem QuadraticResidue.
b) Show that QuadraticResidue can be decided in running time O(ln(p)3).
c) Show that SquareRoot can be solved by a Las-Vegas algorithm with error
bound 1

2 having running time O(ln(p)4).
d) Let p 6≡ 1 (mod 8). Show that SquareRoot can be solved in time O(ln(p)3).

Proof. c) See [8, Ch.6.1.8]. d) See [10, Ch.3.5.1].]

(28.2) Exercise: Collisions.
Let X be an alphabet, let D ⊆ X ∗ be finite, let h : D → X≤n be a compression
function, where s := |D| and t := |X≤n|, for v ∈ X≤n let sv := |h−1(v)|, and let
σ := 1

t ·
∑
v∈X≤n sv.

a) Let c := |{{w,w′} ⊆ D;w 6= w′, h(w) = h(w′)}|. Show that c = 1
2 ·

(
∑
v∈X≤n s

2
v) − s

2 and
∑
v∈X≤n(sv − σ)2 = 2c + s − s2

t , and conclude that

c ≥ 1
2 · (

s2

t − s), with equality if and only if sv = s
t for all v ∈ X≤n.

b) Let c′ := |{[w,w′] ∈ D×D;h(w) = h(w′)}|. Show that c′ ≥ s
t , with equality

if and only if sv = s
t for all v ∈ X≤n.

Proof. See [12, Exc.4.1, 4.2].]

(28.3) Exercise: Preimages and second preimages.
Let X be an alphabet, let D ⊆ X ∗ be finite, let h : D → X≤n be a compression
function, where s := |D| and t := |X≤n|, and for v ∈ X≤n let sv := |h−1(v)|.
Assume the random oracle model, and that the oracle is queried k ∈ N times.
a) Show that the success probability to find a preimage of v ∈ X≤n is given

as 1− (s−svk)
(sk)

, that the expected success probability over X≤n is given as εk :=

1− 1
t ·
∑
v∈X≤n

(s−svk)
(sk)

, and determine ε1.

b) Show that the success probability to find a second preimage of w ∈ D is

given as 1 − (s−svk)
(s−1
k)

, that the expected success probability over D is given as

δk := 1− 1
s ·
∑
v∈X≤n

sv·(s−svk)
(s−1
k)

, and determine δ1.

V Exercises 116

Proof. See [12, Exc.4.3, 4.4].]

(28.4) Exercise: Iterated functions.
Let X := {0, 1} and let h : X 2n → Xn be a compression function where n ∈ N.
Let g : X 4n → Xn be defined as follows: Writing w ∈ X 2n as w = w′w′′ where
w′, w′′ ∈ Xn, let g(w) := h(h(w′)h(w′′)). Show that finding a collision for h
reduces to finding a collision for g. How many queries of h are necessary?

Proof. See [12, Exc.4.9].]

(28.5) Exercise: Forgeries.
Let X := {0, 1}, let C := Xm where m ∈ N, and let [C, C,H, E ,D] be a cryptosys-
tem where H ⊆ X ∗. Let n ∈ N and let h : H×Cn → C be the keyed compression
function defined by hu(w1, . . . , wn) :=

⊕n
i=1Eu(wi), where Eu ∈ E and ⊕ de-

notes the ‘exclusive or’ operation on bit strings.
a) Show that an existential forgery can be computed using one query of h.
b) Given [w1, . . . , wn] ∈ Cn, show that a selective forgery [w1, . . . , wn;w′] ∈
Cn × C can be computed using two queries of h.

Proof. See [12, Exc.4.12].]

(28.6) Exercise: Deception probabilities.
Determine the deception probabilities ε0,1 for the keyed compression function
h : {1, . . . , 6} × {1, . . . , 4} → {1, . . . , 3} given by the authentication matrix

key 1 2 3 4

1 1 1 2 3
2 1 2 3 1
3 2 1 3 1
4 2 3 1 2
5 3 2 1 3
6 3 3 2 1

Proof. See [12, Exc.4.15].]

(28.7) Exercise: Strongly universal functions.
Let p ∈ N be a prime and let R := Z/pZ.
a) Show that the functions h′ : R×R×R→ R : [a, b;x] 7→ h′a,b(x) := ax+b and

h′′ : R×R×R→ R : [a, b;x] 7→ h′′a,b(x) := (x+ a)2 + b are strongly universal.

b) Let l ∈ N and D := {0, 1}l \ {[0, . . . , 0]}. Show that the function h : Rl ×
D → R : [a1, . . . , al;x1, . . . , xl] 7→ ha1,...,al(x1, . . . , xl) :=

∑l
i=1 aixi is strongly

universal.

Proof. a) See [12, Thm.4.12] and [12, Exc.4.16]. b) See [12, Thm.4.13].]

V Exercises 117

(28.8) Exercise: Higher deception probabilities.
Let h : H × D → X≤n be a strongly universal keyed hash function. Show that
there is a Las-Vegas algorithm finding a forgery, using at most two queries of h,

having success probability ε ≥ |im(h)|2
|H| .

Proof. See [12, Exc.4.14].]

(28.9) Exercise: Strongly k-universal functions.
Let X be an alphabet, let H,D ⊆ X ∗ be finite such that |D| ≥ k ≥ 1 and
let h : H × D → X≤n be a keyed compression function, where n ∈ N. Then
h is called strongly k-universal, if for w1, . . . , wk ∈ D pairwise distinct and

v1, . . . , vk ∈ im(h) we have |{u ∈ H;hu(wi) = vi for i ∈ {1, . . . , k}}| = |H|
|im(h)|k .

a) Show that strong k-universality, for k ≥ 2, implies strong (k−1)-universality.
b) Let p ∈ N be a prime, let R := Z/pZ, and let k ∈ N. Show that h : Rk×R→
R : [a0, . . . , ak−1;x] 7→ ha0,...,ak−1

(x) :=
∑k−1
i=0 aix

i is strongly k-universal.

Proof. See [12, Exc.4.17].]

(28.10) Exercise: ElGamal signature scheme.
a) Implement the signature and verification functions of the ElGamal signature
scheme, and various types of attacks.
b) Let p := 31847 and ρ := 5 and α := 26379. Show that [20543; 20679, 11082]
is valid, and determine the keys by solving a single discrete logarithm problem.
c) Let p := 31847 and ρ := 5 and α := 25703. Show that [8990; 23972, 31396]
and [31415; 23972, 20481] are valid, and determine the keys without solving a
discrete logarithm problem.
d) Let p := 467 and ρ := 2 and α := 132. Show that [100; 29, 51] is valid, and
compute forgeries using a key-only attack and a known-message attack.

Proof. See [12, Exc.7.1, 7.2, 7.4].]

(28.11) Exercise: ElGamal signature scheme with predictable keys.
a) Let [p, ρ, α] be the fixed public key of an ElGamal signature scheme. For
i ∈ {1, 2} let bi ∈ Z/(p − 1)Z such that b2 − b1 = 2, and let [xi;βi, yi] ∈
Zp−1 × Z∗p × Zp−1 be valid, where βi = ρbi ∈ (Z/pZ)∗. Show that the ElGamal
signature scheme can be broken without solving a discrete logarithm problem.
b) Let p := 28703 and ρ := 5 and α := 11339. Show that [12000; 26530, 19862]
and [24567; 3081, 7604] are valid, and break this scheme using the above attack.

Proof. See [12, Exc.7.3].]

(28.12) Exercise: Schnorr signature scheme.
Show that the Schnorr signature scheme is vulnerable to a key-reuse attack.

V Exercises 118

Proof. See [12, Exc.7.8].]

(28.13) Exercise: Lamport signature scheme.
Let two elements in {0, 1}k be signed using the Lamport signature scheme with
the same key. How many forgeries can be computed by a known-message attack?

Proof. See [12, Exc.7.14].]

(28.14) Exercise: Zero-knowledge proofs.
Let p ∈ N be a prime, let ρ ∈ (Z/pZ)∗ be a primitive root, let e ∈ Z/(p − 1)Z
and let σ := ρe ∈ (Z/pZ)∗. Give a zero-knowledge proof of knowledge of the
discrete logarithm e = logρ(σ). Is this protocol correct?

Proof. See [2, Exc.14.4.1].]

(28.15) Exercise: Feige-Fiat-Shamir identification scheme.
Give a generalisation of the Fiat-Shamir identification scheme, where the private
key is a tuple [r1, . . . , rk] of k ∈ N independently chosen ri ∈ (Z/nZ)∗, and the
challenges are tuples [x1, . . . , xk] of k independently chosen xi ∈ {0, 1}. Show
that this is a zero-knowledge proof of knowledge of a square root of the certificate
s ∈ (Z/nZ)∗. What is its advantage compared to the original protocol?

Proof. See [2, Exc.14.4.3] and [10, Ch.10.4.2].]

(28.16) Exercise: Matrix kernels.
Let p ∈ N be a prime, let n,m ∈ N, and let A ∈ Fn×mp be randomly chosen.
a) For n ≤ m determine the probability that ker(A) := {u ∈ Fnp ;uA = 0} = {0}.
b) For n ∈ {m,m+ 1} determine the probability that dimF (ker(A)) = 1.

(28.17) Exercise: Graph isomorphism and non-isomorphism.
Implement the interactive proof systems for graph isomorphism and graph non-
isomorphism, and apply them to the following graphs:

V Exercises 119

(28.18) Exercise: Mental poker.
Let n ∈ N. Describe a protocol between Alice and Bob producing uniformly
distributed pairs [a, b] such that a 6= b ∈ {1, . . . , n}, where a is only known to
Alice and b is only known to Bob.

Proof. See [11, Ch.12.2].]

(28.19) Exercise: Quadratic residues and non-residues.
Let p 6= q ∈ N be odd primes, and let n := pq ∈ N.
a) Let QuadraticResidue be the following decision problem: Given x ∈ (Z/nZ)∗,
is x ∈ Qn := {y2 ∈ (Z/nZ)∗; y ∈ (Z/nZ)∗}? Give an interactive proof system
deciding QuadraticResidue. Is the protocol zero-knowledge?
b) Let QuadraticNonResidue be the complementary decision problem: Given
x ∈ (Z/nZ)∗, is x ∈ Nn := (Z/nZ)∗ \ Qn? Give an interactive proof system
deciding QuadraticNonResidue. Is the protocol zero-knowledge?

Proof. a) See [13, Ch.13.2]. b) See [13, Exc.13.1].]

(28.20) Exercise: Coin flipping via telephone.
Which objectives should a protocol between Alice and Bob fulfil, who are only
connected by telephone and want to make a decision by coin flipping? Describe
such a protocol.

Hint. Let p 6= q ∈ N be odd primes and n := pq ∈ N, and use the difficulty of
the quadratic residuosity problem.

Proof. See [13, Ch.13.3].]

(28.21) Exercise: Subgroup membership.
Let SubgroupMembership be the following decision problem: Given n ∈ N and
x, y ∈ (Z/nZ)∗, is y ∈ 〈x〉? Give an interactive proof system deciding Subgroup-
Membership. Is the protocol zero-knowledge?

Proof. See [13, Ch.13.2].]

V Exercises 120

29 References

[1] A. Aho, J. Hopcroft, J. Ullman: The design and analysis of computer
algorithms, second printing, Addison-Wesley Series in Computer Science
and Information Processing, 1975.

[2] J. Buchmann: Introduction to cryptography, second edition, Undergrad-
uate Texts in Mathematics, Springer, 2004.

[3] H. Cohen: A course in computational algebraic number theory, Graduate
Texts in Mathematics 138, Springer, 1993.

[4] H. Cohen, G. Frey et al.: Handbook of elliptic and hyperelliptic curve
cryptography, CRC Press Series on Discrete Mathematics and its Applica-
tions, 2006.

[5] G. Hardy, E. Wright: An introduction to the theory of numbers, fifth
edition, Oxford University Press, 1979.

[6] H. Heuser: Lehrbuch der Analysis, Teil 1, Teubner, 1980.

[7] J. von zur Gathen, J. Gerhard: Modern computer algebra, second
edition, Cambridge University Press, 2003.

[8] N. Koblitz: Algebraic aspects of cryptography, Algorithms and Compu-
tation in Mathematics 3, Springer, 1998.

[9] N. Koblitz: A course in number theory and cryptography, second edition,
Graduate Texts in Mathematics 114, Springer, 1994.

[10] A. Menezes, P. van Oorschot, S. Vanstone: Handbook of applied
cryptography, CRC Press Series on Discrete Mathematics and its Applica-
tions, 1997.

[11] C. Papadimitriou: Computational complexity, Addison-Wesley, 1995.

[12] D. Stinson: Cryptography, theory and practice, third edition, CRC Press
Series on Discrete Mathematics and its Applications 36, 2006.

[13] D. Stinson: Cryptography, theory and practice, first edition, CRC Press
Series on Discrete Mathematics and its Applications 36, 1995.

[14] D. Wätjen: Kryptographie — Grundlagen, Algorithmen, Protokolle, 2.
Auflage, Spektrum Verlag, 2008.

