Association Schemes
 Group Theory Without Groups

RWTH Aachen, SS 2009

Jürgen Müller

Association schemes are a central notion in algebraic combinatorics. They provide a unified approach to various questions from design theory, coding theory, algebraic graph theory, discrete geometry, group theory and representation theory. This is facilitated by viewing ideas from the theory of groups and their representations from a combinatorial perspective, thus leading to a more general picture. The aims of this lecture are to introduce association schemes and the related basic structural notions and to present newer developments, in particular as far as their representation theory is concerned.

Contents

0 Introduction 1
1 Association schemes 1
2 Adjacency algebras 6
3 Symmetric algebras 10
4 Structure of adjacency algebras 15
5 Commutative schemes 21
6 References 25

0 Introduction

The theory of association schemes has its origin in the design of statistical experiments [4], in the construction of so-called balanced incomplete block designs [1, Ch.1.2]; In [8], association schemes were first recognised and fully used as the basic underlying structure of coding theory and design theory [1], giving birth to algebraic combinatorics as a mathematical discipline [3]. Besides that, association schemes appear e. g. in the theory of distance-regular graphs [5], in group theory related to coherent configurations [14, 15, 16] and to Schur rings [21], in representation theory related to centraliser algebras [19], and are interesting mathematical objects themselves deserving serious study, in particular as far as their representation theory is concerned [17].

1 Association schemes

(1.1) Association schemes. Let $X \neq \emptyset$ be a finite set and $n:=|X| \in \mathbb{N}$. For $d \in \mathbb{N}_{0}$ let $X^{2}:=X \times X=\coprod_{i=0}^{d} R_{i}$ be a disjoint union of relations $R_{i} \neq \emptyset$, where $R_{0}:=\{[x, x] ; x \in X\}$ is the identity relation, having the following pairing and regularity properties:
i) For all $i \in\{0, \ldots, d\}$ there is $i^{*} \in\{0, \ldots, d\}$ such that for the transposed relation we have $R_{i}^{\text {tr }}:=\left\{[y, x] \in X^{2} ;[x, y] \in R_{i}\right\}=R_{i^{*}}$. In particular we have $i^{* *}=i$ and $0^{*}=0$; let $\mathcal{I}:=\left\{i \in\{0, \ldots, d\} ; i^{*}=i\right\}$.
ii) For all $i, j, k \in\{0, \ldots, d\}$ there is an intersection number $p_{i j}^{k} \in \mathbb{N}_{0}$ such that for all $[x, z] \in R_{k}$ we have $\left|\left\{y \in X ;[x, y] \in R_{i},[y, z] \in R_{j}\right\}\right|=p_{i j}^{k}$, independent of the particular choice of $[x, z] \in R_{k}$.
Then $\mathcal{X}:=\left[X,\left\{R_{0}, \ldots, R_{d}\right\}\right]$ is called a (non-commutative) association scheme or homogeneous coherent configuration [16] on X, of order n, and of class d or rank $d+1$. Elements $x, y \in X$ such that $[x, y] \in R_{i}$, for $i \in\{0, \ldots, d\}$, are called i-th associates. Let the valency of R_{i} be defined as $n_{i}:=p_{i i^{*}}^{0} ;$ if $n_{i} \leq 1$ for all $i \in\{0, \ldots, d\}$ then \mathcal{X} is called thin.
If $p_{i j}^{k}=p_{j i}^{k}$ for all $i, j, k \in\{0, \ldots, d\}$, then \mathcal{X} is called commutative. If $\mathcal{I}=\{0, \ldots, d\}$ then \mathcal{X} is called symmetric or of Bose-Mesner type; in this case by (1.2) we have $p_{i j}^{k}=p_{j^{*} i^{*}}^{k^{*}}=p_{j i}^{k}$, thus \mathcal{X} is commutative.
E. g. for $|X| \geq 2$, letting $R_{0}:=\{[x, x] ; x \in X\}$ and $R_{1}:=X^{2} \backslash R_{0}$, we get the trivial scheme $\left[X,\left\{R_{0}, R_{1}\right\}\right]$, which is the unique association scheme on X of class 1. It is symmetric, and we have $n_{0}=1$ and $n_{1}=n-1$, as well as $P_{0}:=\left[p_{i 0}^{k}\right]_{i, k}=I_{2}$ and $P_{1}:=\left[p_{i 1}^{k}\right]_{i, k}=\left[\begin{array}{cc}\cdot & 1 \\ n-1 & n-2\end{array}\right]$.
(1.2) Proposition. Let \mathcal{X} be an association scheme and $i, j, k \in\{0, \ldots, d\}$.
a) We have $n_{i}=\left|\left\{y \in X ;[x, y] \in R_{i}\right\}\right| \in \mathbb{N}$, for any $x \in X$. In particular we have $n_{0}=1$ and $\sum_{i=0}^{d} n_{i}=n$, as well as $n_{i}=n_{i^{*}}$.
b) We have $p_{0 j}^{k}=\delta_{j k}$ and $p_{i 0}^{k}=\delta_{i k}$ and $p_{i j}^{0}=n_{i} \delta_{i j^{*}}$, as well as $p_{i j}^{k}=p_{j^{*} i^{*}}^{k^{*}}$. Moreover, we have $\sum_{j=0}^{d} p_{i j}^{k}=n_{i}$ and $\sum_{i=0}^{d} p_{i j}^{k}=n_{j}$, as well as the triangle formula $n_{k} p_{i j}^{k}=n_{j} p_{i^{*} k}^{j}=n_{i} p_{k j^{*}}^{i}$.
c) For $l, s, t \in\{0, \ldots, d\}$ we have the quadrangle formula $\sum_{k=0}^{d} p_{i j}^{k} p_{s k}^{t}=$ $\sum_{l=0}^{d} p_{s i}^{l} p_{l j}^{t}$, and if $p_{i j}^{k} \neq 0$ we have the inequality $p_{s t}^{k} \leq \sum_{l=0}^{d} \min \left\{p_{s l}^{i}, p_{l^{*} t}^{j}\right\}$.

Proof. a) For any $[x, z] \in R_{0}$, that is for any $x=z \in X$, we have $n_{i}=$ $p_{i i^{*}}^{0}=\left|\left\{y \in X ;[x, y] \in R_{i},[y, z] \in R_{i^{*}}\right\}\right|=\left|\left\{y \in X ;[x, y],[z, y] \in R_{i}\right\}\right|=\mid\{y \in$ $\left.X ;[x, y] \in R_{i}\right\} \mid$, thus since $R_{i} \neq \emptyset$ we conclude $n_{i} \neq 0$. Moreover, we have $n_{0}=$ $\left|\left\{y \in X ;[x, y] \in R_{0}\right\}\right|=|\{x\}|=1$, and from $X=\coprod_{i=0}^{d}\left\{y \in X ;[x, y] \in R_{i}\right\}$, for any $x \in X$, we get $\sum_{i=0}^{d} n_{i}=\sum_{i=0}^{d}\left|\left\{y \in X ;[x, y] \in R_{i}\right\}\right|=|X|=n$. Finally, from $R_{i}=\coprod_{x \in X}\left\{y \in X ;[x, y] \in R_{i}\right\}$ we get $n n_{i}=\left|R_{i}\right|=\left|R_{i^{*}}\right|=n n_{i^{*}}$.
b) For any $[x, z] \in R_{k}$ we have $p_{0 j}^{k}=\left|\left\{y \in X ;[x, y] \in R_{0},[y, z] \in R_{j}\right\}\right|=\mid\{y \in$ $\left.X ; y=x,[x, z] \in R_{j}\right\} \mid$, hence $p_{0 j}^{k}=|\{x\}|=1$ if $j=k$, and $p_{0 j}^{k}=|\emptyset|=0$ if $j \neq k$. Similarly we have $p_{i 0}^{k}=\left|\left\{y \in X ;[x, y] \in R_{i},[y, z] \in R_{0}\right\}\right|=\mid\{y \in X ; y=$ $\left.z,[x, z] \in R_{i}\right\} \mid$, hence $p_{i 0}^{k}=|\{z\}|=1$ if $i=k$, and $p_{i 0}^{k}=|\emptyset|=0$ if $i \neq k$.
For any $[x, z] \in R_{0}$, that is for any $x=z \in X$, we have $p_{i j}^{0}=\mid\{y \in X ;[x, y] \in$ $\left.R_{i},[y, x] \in R_{j}\right\}\left|=\left|\left\{y \in X ;[x, y] \in R_{i} \cap R_{j^{*}}\right\}\right|\right.$, hence $p_{i j}^{0}=0$ if $i \neq j^{*}$. For any $[x, z] \in R_{k}$, that is $[z, x] \in R_{k^{*}}$, we have $p_{i j}^{k}=\mid\left\{y \in X ;[x, y] \in R_{i},[y, z] \in\right.$ $\left.R_{j}\right\}\left|=\left|\left\{y \in X ;[y, x] \in R_{i^{*}},[z, y] \in R_{j^{*}}\right\}\right|=p_{j^{*} i^{*}}^{k^{*}}\right.$.
For any $[x, z] \in R_{k}$ we have $\sum_{j=0}^{d} p_{i j}^{k}=\sum_{j=0}^{d} \mid\left\{y \in X ;[x, y] \in R_{i},[y, z] \in\right.$ $\left.R_{j}\right\}\left|=\left|\left\{y \in X ;[x, y] \in R_{i}\right\}\right|=n_{i}\right.$ and $\left.\sum_{i=0}^{d} p_{i j}^{k}=\sum_{i=0}^{d}\right|\{y \in X ;[x, y] \in$ $\left.R_{i},[y, z] \in R_{j}\right\}\left|=\left|\left\{y \in X ;[y, z] \in R_{j}\right\}\right|=n_{j}\right.$.
For any $x \in X$ we have $n_{k} p_{i j}^{k}=\mid\left\{[y, z] \in X^{2} ;[x, y] \in R_{i},[y, z] \in R_{j},[x, z] \in\right.$ $\left.R_{k}\right\} \mid$, thus we get $n n_{k} p_{i j}^{k}=\mid\left\{[x, y, z] \in X^{3} ;[x, y] \in R_{i},[y, z] \in R_{j},[x, z] \in\right.$ $\left.R_{k}\right\}\left|=\left|\left\{[x, y, z] \in X^{3} ;[y, x] \in R_{i^{*}},[x, z] \in R_{k},[y, z] \in R_{j}\right\}\right|=n n_{j} p_{i^{*} k}^{j}\right.$ and $n n_{k} p_{i j}^{k}=\left|\left\{[x, y, z] \in X^{3} ;[x, z] \in R_{k},[z, y] \in R_{j^{*}},[x, y] \in R_{i}\right\}\right|=n n_{i} p_{k j^{*}}^{i}$.
c) For $[w, z] \in R_{t}$ we get $\sum_{k=0}^{d} p_{i j}^{k} p_{s k}^{t}=\sum_{k=0}^{d} \mid\left\{[x, y] \in X^{2} ;[w, x] \in R_{s},[x, z] \in\right.$ $\left.R_{k},[x, y] \in R_{i},[y, z] \in R_{j}\right\}|=|\left\{[x, y] \in X^{2} ;[w, x] \in R_{s},[x, y] \in R_{i},[y, z] \in\right.$ $\left.R_{j}\right\}\left|=\sum_{l=0}^{d}\right|\left\{[x, y] \in X^{2} ;[w, y] \in R_{l},[y, z] \in R_{j},[w, x] \in R_{s},[x, y] \in R_{i}\right\} \mid=$ $\sum_{l=0}^{d} p_{s i}^{l} p_{l j}^{t}$.
For any $[x, y, z] \in X^{3}$ such that $[x, y] \in R_{i},[y, z] \in R_{j}$, and $[x, z] \in R_{k}$, which by assumption exists, we have $p_{s t}^{k}=\mid\left\{w \in X ;[x, w] \in R_{s},[w, z] \in\right.$ $\left.R_{t}\right\}\left|=\sum_{l=0}^{d}\right|\left\{w \in X ;[x, w] \in R_{s},[w, z] \in R_{t},[w, y] \in R_{l}\right\} \mid$, hence from $\{w \in$ $\left.X ;[x, w] \in R_{s},[w, z] \in R_{t},[w, y] \in R_{l}\right\} \subseteq\left\{w \in X ;[x, w] \in R_{s},[w, y] \in R_{l}\right\}$ and $\left\{w \in X ;[x, w] \in R_{s},[w, z] \in R_{t},[w, y] \in R_{l}\right\} \subseteq\left\{w \in X ;[w, z] \in R_{t},[w, y] \in R_{l}\right\}$ we deduce $p_{s t}^{k} \leq \sum_{l=0}^{d} \min \left\{p_{s l}^{i}, p_{l^{*} t}^{j}\right\}$.
(1.3) Schurian schemes. Let $X \neq \emptyset$ be a finite set and $n:=|X| \in \mathbb{N}$, and let $G \leq \mathcal{S}_{n}$ be a transitive permutation group on X. Then G acts diagonally on X^{2}, yielding the disjoint union $X^{2}=\coprod_{i=0}^{d} \mathcal{O}_{i}$ of G-orbits, called the associated orbitals, where $d+1 \in \mathbb{N}$ is called the rank of the permutation action. The Schurian scheme $\mathcal{X}:=\left[X,\left\{\mathcal{O}_{0}, \ldots, \mathcal{O}_{d}\right\}\right]$ is an association scheme of class d :
Since $x_{0}^{G}=X$ for any $x_{0} \in X$, the diagonal $\mathcal{O}_{0}:=\left\{[x, x] \in X^{2} ; x \in\right.$ $X\}=\left\{\left[x_{0}^{g}, x_{0}^{g}\right] \in X^{2} ; g \in G\right\}$ indeed is an orbital. For any orbital $\mathcal{O}=$ $\left\{\left[x^{g}, y^{g}\right] \in X^{2} ; g \in G\right\}$, where $x, y \in X$, we have the paired orbital $\mathcal{O}^{*}=$ $\left\{[y, x] \in X^{2} ;[x, y] \in \mathcal{O}\right\}$. For $i, j, k \in\{0, \ldots, d\}$ let $[x, z],\left[x^{\prime}, z^{\prime}\right] \in \mathcal{O}_{k}$. Hence there is $g \in G$ such that $\left[x^{\prime}, z^{\prime}\right]=\left[x^{g}, z^{g}\right]$, thus we have $\{y \in X ;[x, y] \in$ $\left.\mathcal{O}_{i},[y, z] \in \mathcal{O}_{j}\right\}^{g}=\left\{y^{\prime} \in X ;\left[x, y^{\prime g^{-1}}\right] \in \mathcal{O}_{i},\left[y^{\prime g^{-1}}, z\right] \in \mathcal{O}_{j}\right\}=\left\{y^{\prime} \in X ;\left[x^{g}, y^{\prime}\right] \in\right.$ $\left.\mathcal{O}_{i},\left[y^{\prime}, z^{g}\right] \in \mathcal{O}_{j}\right\}=\left\{y^{\prime} \in X ;\left[x^{\prime}, y^{\prime}\right] \in \mathcal{O}_{i},\left[y^{\prime}, z^{\prime}\right] \in \mathcal{O}_{j}\right\}$, hence $\mid\{y \in X ;[x, y] \in$ $\left.\mathcal{O}_{i},[y, z] \in \mathcal{O}_{j}\right\}\left|=\left|\left\{y^{\prime} \in X ;\left[x^{\prime}, y^{\prime}\right] \in \mathcal{O}_{i},\left[y^{\prime}, z^{\prime}\right] \in \mathcal{O}_{j}\right\}\right|\right.$, implying regularity. $\quad \#$
The association scheme \mathcal{X} is symmetric if and only if for all $x, y \in X$ there is an orbital \mathcal{O} such that $[x, y],[y, x] \in \mathcal{O}$, that is there is $g \in G$ such that $[y, x]=\left[x^{g}, y^{g}\right]$, that is $x^{g}=y$ and $y^{g}=x$, that is G is generously transitive.
For any $x_{0} \in X$ let $H:=\operatorname{Stab}_{G}\left(x_{0}\right) \leq G$; hence $H \backslash G \rightarrow X: H g \mapsto x_{0}^{g}$ is an isomorphism of G-sets, and we have $n=|X|=[G: H]$. Let $X=\coprod_{i=0}^{r} X_{i}$ be the disjoint union of H-orbits, for some $r \in \mathbb{N}_{0}$, called the associated H-suborbits. Letting $x_{i} \in X_{i}$ and $g_{i} \in G$ such that $x_{i}=x_{0}^{g_{i}}$ as well as $H_{i}:=\operatorname{Stab}_{H}\left(x_{i}\right)=$ $H \cap H^{g_{i}} \leq H$, for all $i \in\{1, \ldots, r\}$, and for completeness $g_{0}:=1$ and $H_{0}:=H$, we get an isomorphism of H-sets $H_{i} \backslash H \rightarrow X_{i}: H_{i} h \mapsto x_{i}^{h}$.
Since $x_{0}^{G}=X$, for any orbital \mathcal{O} there is $x \in X$ such that $\left[x_{0}, x\right] \in \mathcal{O}$. For $x, y \in X$ we have $\left[x_{0}, x\right],\left[x_{0}, y\right] \in \mathcal{O}$ if and only if x and y are in one and the same H-suborbit: If $y=x^{h}$, for some $h \in H$, then $\left[x_{0}, y\right]=\left[x_{0}, x^{h}\right]=\left[x_{0}, x\right]^{h}$; if conversely $\left[x_{0}, x\right],\left[x_{0}, y\right] \in \mathcal{O}$ then there is $g \in G$ such that $\left[x_{0}, y\right]^{g}=\left[x_{0}, x\right]$, implying that $g \in \operatorname{Stab}_{G}\left(x_{0}\right)=H$ and $y=x^{g}$. Hence there is a bijection between the H-suborbits and the orbitals, implying that $r=d$, and we may assume that $X_{i}=\left\{x \in X ;\left[x_{0}, x\right] \in \mathcal{O}_{i}\right\}$, for all $i \in\{0, \ldots, d\}$.

The valencies coincide with the subgroup indices $n_{i}=\left|\left\{x \in X ;\left[x_{0}, x\right] \in \mathcal{O}_{i}\right\}\right|=$ $\left|X_{i}\right|=\left[H: H_{i}\right]$, and $p_{i j}^{k}=\left|\left\{x \in X_{i} ;\left[x, x_{0}^{g_{k}}\right] \in \mathcal{O}_{j}\right\}\right|=\mid\left\{x \in X_{i} ;\left[x_{0}, x^{g_{k}^{-1}}\right] \in\right.$ $\left.\mathcal{O}_{j^{*}}\right\}\left|=\left|X_{i} \cap X_{j^{*}}^{g_{k}}\right|\right.$, for all $i, j, k \in\{0, \ldots, d\}$; to straightforwardly determine the matrix $P_{j}=\left[p_{i j}^{k}\right]_{i k}$ we better use $p_{i j}^{k}=\frac{n_{j}}{n_{k}} \cdot p_{i^{*} k}^{j}=\frac{n_{j}}{n_{k}} \cdot\left|X_{i^{*}} \cap X_{k^{*}}^{g_{j}}\right|$.
E. g. $X:=G$ becomes a G-set by right multiplication action; hence we have $n=|G|$. The orbitals are given by $\mathcal{O}_{g}:=\left\{\left[x, x^{g}\right] \in X^{2} ; x \in X\right\}$, thus we have $n_{g}=1$, for all $g \in G$. Hence the regular Schurian scheme $\left[X,\left\{\mathcal{O}_{g} ; g \in G\right\}\right]$ is thin; it is symmetric if and only if $\exp (G):=\operatorname{lcm}\{|g| \in \mathbb{N} ; g \in G\} \leq 2$.
(1.4) Example: Johnson schemes. Let $V \neq \emptyset$ be a finite set and $v:=|V| \in$ \mathbb{N}, and let $k \in \mathbb{N}_{0}$ such that $k \leq \frac{v}{2}$. Let X be the set of all k-element subsets of V, hence $n:=|X|=\binom{v}{k}$. For $i \in\{0, \ldots, k\}$ let $R_{i}:=\left\{[x, y] \in X^{2} ;|x \cap y|=k-i\right\}$. Hence we have $X^{2}=\coprod_{i=0}^{k} R_{i}$, where $R_{0}=\left\{[x, x] \in X^{2} ; x \in X\right\}$ and $R_{i}^{\operatorname{tr}}=R_{i}$

Table 1: Petersen graph.

for all $i \in\{0, \ldots, k\}$. Regularity is fulfilled as well, by specifying an appropriate group action, hence the Johnson scheme $\mathcal{J}(v, k):=\left[X,\left\{R_{0}, \ldots, R_{k}\right\}\right]$ is a symmetric Schurian association scheme of class k :
The symmetric group \mathcal{S}_{v} acts k-transitively on V, that is \mathcal{S}_{v} acts transitively on X. For all $x, y \in X$ and $\pi \in \mathcal{S}_{v}$ we have $|x \cap y|=\left|x^{\pi} \cap y^{\pi}\right|$, hence the R_{i} are unions of orbitals. Conversely, let $x, y, x^{\prime}, y^{\prime} \in X$ such that $|x \cap y|=\left|x^{\prime} \cap y^{\prime}\right|$. Then we have $|x \backslash(x \cap y)|=\left|x^{\prime} \backslash\left(x^{\prime} \cap y^{\prime}\right)\right|$ and $|y \backslash(x \cap y)|=\left|y^{\prime} \backslash\left(x^{\prime} \cap y^{\prime}\right)\right|$, and let $\pi \in \mathcal{S}_{v}$ such that $(x \cap y)^{\pi}=x^{\prime} \cap y^{\prime}$ and $x \backslash(x \cap y)^{\pi}=x^{\prime} \backslash\left(x^{\prime} \cap y^{\prime}\right)$ and $y \backslash(x \cap y)^{\pi}=y^{\prime} \backslash\left(x^{\prime} \cap y^{\prime}\right)$. Then we have $x^{\pi}=x^{\prime}$ and $y^{\pi}=y^{\prime}$, implying that the R_{i} are precisely the orbitals.
For $x \in X$ we have $H:=\operatorname{Stab}_{\mathcal{S}_{v}}(x) \cong \mathcal{S}_{v-k} \times \mathcal{S}_{k}$, and for $i \in\{0, \ldots, k\}$ and $y \in X$ such that $[x, y] \in R_{i}$, that is $|x \cap y|=k-i$, we have $\operatorname{Stab}_{H}(y) \cong$ $\left(\mathcal{S}_{v-k-i} \times \mathcal{S}_{i}\right) \times\left(\mathcal{S}_{k-i} \times \mathcal{S}_{i}\right)$, hence $n_{i}=\left[H: \operatorname{Stab}_{H}(y)\right]=\binom{v-k}{i}\binom{k}{i}$; thus from $n=\sum_{i=0}^{k} n_{i}$ we recover the identity $\binom{v}{k}=\sum_{i=0}^{k}\binom{v-k}{i}\binom{k}{i}$.
E. g. the relation R_{1} of $\mathcal{J}(4,2)$ can be depicted as the regular octahedron, R_{2} becoming the space diagonals, hence $n_{0}=1, n_{1}=4$ and $n_{2}=1$, and $P_{0}:=\left[p_{i 0}^{k}\right]_{i, k}=I_{3}, P_{1}:=\left[p_{i 1}^{k}\right]_{i, k}=\left[\begin{array}{ccc}. & 1 & \cdot \\ 4 & 2 & 4 \\ \cdot & 1 & \cdot\end{array}\right], P_{2}:=\left[p_{i 2}^{k}\right]_{i, k}=\left[\begin{array}{ccc}\cdot & . & 1 \\ . & 1 & \cdot \\ 1 & \cdot & \cdot\end{array}\right]$.
E. g. the relation R_{2} of $\mathcal{J}(5,2)$ can be depicted as the Petersen graph, Table

1. Hence we have $n_{0}=1, n_{1}=6$ and $n_{2}=3$, as well as $P_{0}:=\left[p_{i 0}^{k}\right]_{i, k}=I_{3}$ and
$P_{1}:=\left[p_{i 1}^{k}\right]_{i, k}=\left[\begin{array}{ccc}. & 1 & . \\ 6 & 3 & 4 \\ . & 2 & 2\end{array}\right]$ and $P_{2}:=\left[p_{i 2}^{k}\right]_{i, k}=\left[\begin{array}{ccc}. & . & 1 \\ . & 2 & 2 \\ 3 & 1 & .\end{array}\right]$.
(1.5) Example: Hamming schemes. Let F be a finite set and $q:=|F| \geq 2$, and for $n \in \mathbb{N}$ let $X:=F^{n}$, hence $|X|=q^{n}$. For $x=\left[x_{1}, \ldots, x_{n}\right] \in F^{n}$ and
$y=\left[y_{1}, \ldots, y_{n}\right] \in F^{n}$ let $d(x, y):=\left|\left\{i \in\{1, \ldots, n\} ; x_{i} \neq y_{i}\right\}\right| \in \mathbb{N}_{0}$ be the associated Hamming distance. This defines a metric on F^{n} : The Hamming distance is positive definite, that is we have $d(x, y)=0$ if and only if $x=y$, symmetric, that is we have $d(x, y)=d(y, x)$, and the triangle inequality holds: From $\left\{i \in\{1, \ldots, n\} ; x_{i} \neq z_{i}\right\}=\left\{i \in\{1, \ldots, n\} ; y_{i}=x_{i} \neq z_{i}\right\} \dot{\cup}\{i \in$ $\left.\{1, \ldots, n\} ; y_{i} \neq x_{i} \neq z_{i}\right\} \subseteq\left\{i \in\{1, \ldots, n\} ; y_{i} \neq z_{i}\right\} \cup\left\{i \in\{1, \ldots, n\} ; x_{i} \neq y_{i}\right\}$ we get $d(x, z) \leq d(x, y)+d(y, z)$, for all $x, y, z \in F^{n}$.
For $i \in\{0, \ldots, n\}$ let $R_{i}:=\left\{[x, y] \in X^{2} ; d(x, y)=i\right\}$. Hence we have $X^{2}=$ $\coprod_{i=0}^{n} R_{i}$, where $R_{0}=\left\{[x, x] \in X^{2} ; x \in X\right\}$ and $R_{i}^{\operatorname{tr}}=R_{i}$ for all $i \in\{0, \ldots, n\}$. Regularity is fulfilled as well, by specifying an appropriate group action, hence the Hamming scheme $\mathcal{H}(q, n):=\left[X,\left\{R_{0}, \ldots, R_{n}\right\}\right]$ is a symmetric Schurian association scheme of class n :

We consider the wreath product $\mathcal{S}_{q} \imath \mathcal{S}_{n}:=\mathcal{S}_{n} \ltimes \mathcal{S}_{q}^{n}$, the semidirect product of \mathcal{S}_{n} with the direct product $\mathcal{S}_{q}^{n}:=\mathcal{S}_{q} \times \cdots \times \mathcal{S}_{q}$ with n factors, where \mathcal{S}_{n} acts on \mathcal{S}_{q}^{n} by permuting the direct factors. The group \mathcal{S}_{q} acts naturally on $F:=\{1, \ldots, q\}$, and the natural action of \mathcal{S}_{n} on $\{1, \ldots, n\}$ induces an action on X, yielding a transitive action of $\mathcal{S}_{q} \backslash \mathcal{S}_{n}$, given by $\left[x_{1}, \ldots, x_{n}\right] \mapsto\left[x_{1^{\tau^{-1}}}^{\sigma_{1}}, \ldots, x_{n^{-1}}^{\sigma_{n}}\right]$, for all $x \in X$ and $\pi:=\left[\tau ; \sigma_{1}, \ldots, \sigma_{n}\right] \in \mathcal{S}_{q} \backslash \mathcal{S}_{n}$.
For all $x, y \in X$ and $\pi \in \mathcal{S}_{q}\left\langle\mathcal{S}_{n}\right.$ we have $d(x, y)=d\left(x^{\pi}, y^{\pi}\right)$, thus $\mathcal{S}_{q}\left\langle\mathcal{S}_{n}\right.$ induces isometries of X with respect to the Hamming distance, and the R_{i} are unions of orbitals; actually, $\mathcal{S}_{q} 2 \mathcal{S}_{n}$ is the group of all such isometries of X. Conversely, let $x, y, x^{\prime}, y^{\prime} \in X$ such that $d(x, y)=d\left(x^{\prime}, y^{\prime}\right)$. Then let $\mathcal{J}:=\left\{i \in\{1, \ldots, n\} ; x_{i} \neq\right.$ $\left.y_{i}\right\}$ and $\mathcal{J}^{\prime}:=\left\{i \in\{1, \ldots, n\} ; x_{i}^{\prime} \neq y_{i}^{\prime}\right\}$, and let $\tau \in \mathcal{S}_{n}$ such that $\mathcal{J}^{\tau}=\mathcal{J}^{\prime}$. Moreover, for $i \in \mathcal{J}^{\prime}$ let $\sigma_{i} \in \mathcal{S}_{q}$ such that $x_{i^{\tau^{-1}}}^{\sigma_{i}}=x_{i}^{\prime}$ and $y_{i^{\top}-1}^{\sigma_{i}}=y_{i}^{\prime}$, while for $i \notin \mathcal{J}^{\prime}$ let $\sigma_{i} \in \mathcal{S}_{q}$ such that $x_{i^{\tau-1}}^{\sigma_{i}}=x_{i}^{\prime}$. Then for $\pi:=\left[\tau ; \sigma_{1}, \ldots, \sigma_{n}\right] \in \mathcal{S}_{q} \backslash \mathcal{S}_{n}$ we have $x^{\pi}=x^{\prime}$ and $y^{\pi}=y^{\prime}$, implying that the R_{i} are precisely the orbitals. $\#$ For $x \in X$ we have $H:=\operatorname{Stab}_{\mathcal{S}_{q} \backslash \mathcal{S}_{n}}(x) \cong \mathcal{S}_{q-1}\left\{\mathcal{S}_{n}\right.$, and for $i \in\{0, \ldots, n\}$ and $y \in X$ such that $[x, y] \in R_{i}$, that is $d(x, y)=i$, we have $\operatorname{Stab}_{H}(y) \cong\left(\mathcal{S}_{q-2} \imath \mathcal{S}_{i}\right) \times$ $\left(\mathcal{S}_{q-1}\left\{\mathcal{S}_{n-i}\right)\right.$, hence $n_{i}=\left[H: \operatorname{Stab}_{H}(y)\right]=\frac{(q-1)!^{n} \cdot n!}{(q-2)!^{!} \cdot i!\cdot(q-1)!^{n-i} \cdot(n-i)!}=(q-1)^{i} \cdot\binom{n}{i}$; thus from $|X|=\sum_{i=0}^{k} n_{i}$ we recover the identity $q^{n}=\sum_{i=0}^{n}(q-1)^{i} \cdot\binom{n}{i}$.
E. g. the relation R_{1} of $\mathcal{H}(2,2)$ can be depicted as the regular quadrangle, the lower left hand vertex being located in the origin; then R_{2} is depicted as the diagonals. Hence we have $n_{0}=1, n_{1}=2$ and $n_{2}=1$, as well as $P_{0}:=\left[p_{i 0}^{k}\right]_{i, k}=$ I_{3} and $P_{1}:=\left[p_{i 1}^{k}\right]_{i, k}=\left[\begin{array}{ccc}. & 1 & . \\ 2 & . & 2 \\ . & 1 & .\end{array}\right]$ and $P_{2}:=\left[p_{i 2}^{k}\right]_{i, k}=\left[\begin{array}{ccc}. & . & 1 \\ . & 1 & \cdot \\ 1 & . & .\end{array}\right]$.
E. g. the relation R_{1} of $\mathcal{H}(2,3)$ can be depicted as the regular cube, the lower left front vertex being located in the origin; then R_{2} and R_{3} are depicted as the face and space diagonals, respectively. Hence we have $n_{0}=1, n_{1}=3, n_{2}=3$
and $n_{3}=1$, as well as $P_{0}:=\left[p_{i 0}^{k}\right]_{i, k}=I_{4}$ and $P_{1}:=\left[p_{i 1}^{k}\right]_{i, k}=\left[\begin{array}{cccc}. & 1 & . & . \\ 3 & . & 2 & . \\ . & 2 & . & 3 \\ . & . & 1 & .\end{array}\right]$ and $P_{2}:=\left[p_{i 2}^{k}\right]_{i, k}=\left[\begin{array}{cccc}. & . & 1 & . \\ . & 2 & . & 3 \\ 3 & . & 2 & . \\ . & 1 & \cdot & .\end{array}\right]$ and $P_{3}:=\left[p_{i 3}^{k}\right]_{i, k}=\left[\begin{array}{cccc}. & . & . & 1 \\ . & . & 1 & \cdot \\ . & 1 & . & . \\ 1 & . & . & .\end{array}\right]$.

2 Adjacency algebras

(2.1) Adjacency matrices. Let \mathcal{X} be an association scheme. For all $i \in$ $\{0, \ldots, d\}$ let the i-th adjacency matrix $A_{i}:=\left[a_{i x y}\right]_{x, y \in X} \in\{0,1\}^{n \times n} \subseteq$ $\mathbb{Z}^{n \times n}$ be defined as $a_{i x y}:=1$ if and only if $[x, y] \in R_{i}$. Then the defining properties of \mathcal{X} yield the following: We have $A_{0}=I_{n}$ and $\sum_{i=0}^{d} A_{i}=J_{n}$, where $J_{n}:=[1]_{x, y \in X} \in \mathbb{Z}^{n \times n}$ is the all-1 matrix. For all $i \in\{0, \ldots, d\}$ we have $A_{i}^{\operatorname{tr}}=A_{i^{*}}$, and thus \mathcal{X} is a symmetric association scheme if and only if all the A_{i} are symmetric matrices.
By the definition of matrix products, we for all $i, j, k \in\{0, \ldots, d\}$ have $A_{i} A_{j}=$ $\sum_{k=0}^{d} p_{i j}^{k} A_{k} \in \mathbb{Z}^{n \times n}$. Thus $\mathcal{A}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle_{\mathbb{Z}} \subseteq \mathbb{Z}^{n \times n}$ is a \mathbb{Z}-algebra, called the adjacency algebra or Bose-Mesner algebra associated with \mathcal{X}. The algebra \mathcal{A} is \mathbb{Z}-free such that $\operatorname{rk}_{\mathbb{Z}}(\mathcal{A})=d+1$, and $\left\{A_{0}, \ldots, A_{d}\right\}$ is a \mathbb{Z}-basis, called the Schur basis. Moreover, \mathcal{X} is commutative if and only if \mathcal{A} is commutative.
E. g. for the regular Schurian scheme associated to a finite group G we have $\mathcal{A} \cong$ $\mathbb{Z} G$, the associated group algebra. For the Hamming scheme $\mathcal{H}(2,2)$, letting $X:=\{[0,0],[0,1],[1,0],[1,1]\}$, we get $A_{0}=I_{4}$ and $A_{1}=\left[\begin{array}{cccc}. & 1 & 1 & . \\ 1 & . & . & 1 \\ 1 & . & . & 1 \\ . & 1 & 1 & .\end{array}\right]$ and $A_{2}=\left[\begin{array}{cccc}. & . & . & 1 \\ . & . & 1 & \cdot \\ . & 1 & \cdot & \cdot \\ 1 & \cdot & . & \cdot\end{array}\right]$. For the Johnson scheme $\mathcal{J}(4,2)$, letting $X:=$ $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, we finally get $A_{0}=I_{6}$ and $A_{1}=$ $\left[\begin{array}{cccccc}. & 1 & 1 & 1 & 1 & . \\ 1 & . & 1 & 1 & . & 1 \\ 1 & 1 & . & . & 1 & 1 \\ 1 & 1 & . & . & 1 & 1 \\ 1 & . & 1 & 1 & . & 1 \\ . & 1 & 1 & 1 & 1 & .\end{array}\right]$ and $A_{2}=\left[\begin{array}{cccccc}. & . & . & . & . & 1 \\ . & . & . & . & 1 & . \\ . & . & . & 1 & . & . \\ . & . & 1 & . & . & . \\ . & 1 & . & . & . & . \\ 1 & . & . & . & . & .\end{array}\right]$.
(2.2) Representations. Let R be a commutative ring. Then $\mathcal{A}_{R}:=\mathcal{A} \otimes_{\mathbb{Z}} R \subseteq$ $R^{n \times n}$ is an R-free R-algebra such that $\operatorname{rk}_{R}\left(\mathcal{A}_{R}\right)=d+1$, and $\left\{A_{0}, \ldots, A_{d}\right\} \subseteq$ $\mathcal{A} \subseteq \mathcal{A}_{R}$ is an R-basis, where we identify $A \in \mathbb{Z}^{n \times n}$ with $A \otimes 1_{R} \in R^{n \times n}$ for all
$A \in \mathcal{A}$. We have $\mathcal{A}_{\mathbb{Z}} \cong \mathcal{A}$, and \mathcal{A}_{R} is commutative if and only if \mathcal{A} is.
Let V be an \mathcal{A}_{R}-lattice, that is an R-free \mathcal{A}_{R}-module, of degree $r:=\operatorname{rk}_{R}(V) \in$ \mathbb{N}_{0}, and let the homomorphism of R-algebras $\delta: \mathcal{A}_{R} \rightarrow \operatorname{End}_{R}(V) \cong R^{r \times r}$ be the associated representation. Then the R-linear map $\varphi_{\delta}: \mathcal{A}_{R} \rightarrow R: A \mapsto \operatorname{tr}(\delta(A))$ is called the character of \mathcal{A}_{R} afforded by V, where φ_{δ} is independent of the particular choice of the R-algebra isomorphism to $R^{r \times r}$, that is the particular choice of an R-basis of V, and $\varphi_{\delta}\left(A_{0}\right)=r$.
Let F be a field. Then up to isomorphism there are only finitely many irreducible \mathcal{A}_{F}-modules S_{0}, \ldots, S_{t}, for some $t \in \mathbb{N}_{0}$; for $i \in\{0, \ldots, t\}$ let $d_{i}:=\operatorname{dim}_{F}\left(S_{i}\right) \in$ \mathbb{N} be the associated degree. Let $\operatorname{Irr}\left(\mathcal{A}_{F}\right):=\left\{\varphi_{0}, \ldots, \varphi_{t}\right\}$ be the characters afforded by the irreducible \mathcal{A}_{F}-modules; hence we have $d_{i}=\varphi_{i}\left(A_{0}\right) \in F$, and if \mathcal{A}_{F} is split, that is F is a splitting field of \mathcal{A}_{F}, then by Wedderburn's Theorem $\operatorname{Irr}\left(\mathcal{A}_{F}\right)$ is F-linearly independent. The matrix $\Phi\left(\mathcal{A}_{F}\right):=\left[\varphi_{i}\left(A_{j}\right)\right]_{i j} \in$ $F^{(t+1) \times(d+1)}$ is called the F-character table of \mathcal{A}_{F}; we may identify $\operatorname{Irr}\left(\mathcal{A}_{F}\right)$ with the rows of $\Phi\left(\mathcal{A}_{F}\right)$.
If V is an \mathcal{A}_{F}-module then by the Jordan-Hölder Theorem the multiplicity [$\left.V: S_{i}\right] \in \mathbb{N}_{0}$ of S_{i} in an \mathcal{A}_{F}-module composition series of V is independent of the particular choice of the composition series, and we have $\varphi_{V}=\sum_{i=0}^{t}\left[V: S_{i}\right] \cdot \varphi_{i}$. If V is a faithful \mathcal{A}_{F}-module, that is δ_{V} is injective, we have $\left[V: S_{i}\right]>0$ for all $i \in\{0, \ldots, t\}$: Letting $e \in A$ be an S_{i}-primitive idempotent, we since $\delta_{V}(e) \neq 0$ have $\left[V: S_{i}\right] \cdot \operatorname{dim}_{F}\left(\operatorname{End}_{A_{F}}\left(S_{i}\right)\right)=\operatorname{dim}_{F}\left(\operatorname{Hom}_{A_{F}}\left(e A_{F}, V\right)\right)=\operatorname{dim}_{F}(V e) \neq 0$.
E. g. $V_{\text {nat }}:=R^{n}$ is an $\mathcal{A}_{R^{-}}$lattice, called the natural or standard module, the associated representation being $\delta_{\text {nat }}=\mathrm{id}_{\mathcal{A}}$, which is faithful. For its character we have $\nu\left(A_{i}\right)=\operatorname{tr}\left(A_{i}\right)=n \delta_{0 i}$, hence $\nu\left(A_{i} A_{j}\right)=\sum_{k=0}^{d} p_{i j}^{k} \operatorname{tr}\left(A_{k}\right)=n p_{i j}^{0}=$ $n n_{i} \delta_{i j^{*}}$, for all $i, j \in\{0, \ldots, d\}$. If F is a field, the integer $m_{i}:=\left[V_{\text {nat }}: S_{i}\right] \in \mathbb{N}$ is called the multiplicity associated with φ_{i}, for all $i \in\{0, \ldots, t\}$.
E. g. $V:=R$ becomes an \mathcal{A}_{R}-lattice, called the trivial or index module, by letting $\varphi_{0}: \mathcal{A}_{R} \rightarrow \operatorname{End}_{R}(R) \cong R: A_{i} \mapsto n_{i}$, for all $i \in\{0, \ldots, d\}$: By (1.2) we have $\varphi_{0}\left(A_{i} A_{j}\right)=\varphi_{0}\left(\sum_{k=0}^{d} p_{i j}^{k} A_{k}\right)=\sum_{k=0}^{d} n_{k} p_{i j}^{k}=\sum_{k=0}^{d} n_{i} p_{k j^{*}}^{i}=$ $n_{i} \cdot \sum_{k=0}^{d} p_{k j^{*}}^{i}=n_{i} n_{j}$, for all $i, j \in\{0, \ldots, d\}$. If F is a field then $S_{0}:=F$ is an irreducible \mathcal{A}_{F}-module.
(2.3) Intersection matrices. Let \mathcal{X} be an association scheme, and let R be a commutative ring. Then \mathcal{A}_{R} is an \mathcal{A}_{R}-lattice with R-basis $\left\{A_{0}, \ldots, A_{d}\right\}$, and for the associated (right) regular representation $\delta_{\rho}: \mathcal{A}_{R} \mapsto \operatorname{End}_{R}\left(\mathcal{A}_{R}\right) \cong$ $R^{(d+1) \times(d+1)}: A_{j} \mapsto\left(\mathcal{A}_{R} \rightarrow \mathcal{A}_{R}: A \mapsto A A_{j}\right)$ the multiplication rule yields $\delta_{\rho}: A_{j} \mapsto P_{j}$, for all $j \in\{0, \ldots, d\}$, where the j-th intersection matrix or collapsed adjacency matrix is defined as $P_{j}:=\left[p_{i j}^{k}\right]_{i k} \in \mathbb{N}_{0}^{(d+1) \times(d+1)} \subseteq$ $\mathbb{Z}^{(d+1) \times(d+1)} \subseteq R^{(d+1) \times(d+1)}$.
From $A_{0} A=A \neq 0$ for all $0 \neq A \in \mathcal{A}_{R}$ we conclude that δ_{ρ} is faithful. Hence letting $\mathcal{P}:=\left\langle P_{0}, \ldots, P_{d}\right\rangle_{\mathbb{Z}} \subseteq \mathbb{Z}^{(d+1) \times(d+1)}$ be the intersection algebra associated with \mathcal{X}, and $\mathcal{P}_{R}:=\mathcal{P} \otimes_{\mathbb{Z}} R \subseteq R^{(d+1) \times(d+1)}$, we get an isomorphism
of R-algebras $\delta_{\rho}: \mathcal{A}_{R} \rightarrow \mathcal{P}_{R}: A_{j} \rightarrow P_{j}$, for all $j \in\{0, \ldots, d\}$. For its character we have $\rho\left(A_{j}\right)=\sum_{i=0}^{d} p_{i j}^{i}$ for all $j \in\{0, \ldots, d\}$.
E. g. for the Hamming scheme $\mathcal{H}(2,2)$ we have $\delta_{\rho}: A_{j} \mapsto P_{j}$, for all $j \in\{0,1,2\}$, where A_{j} is as given in (2.1) and P_{j} is as given in (1.5). For the Johnson scheme $\mathcal{J}(4,2)$ we have $\delta_{\rho}: A_{j} \mapsto P_{j}$, for all $j \in\{0,1,2\}$, where A_{j} is as given in (2.1) and P_{j} is as given in (1.4).
(2.4) Theorem. Let F be a field such that $p:=\operatorname{char}(F) \geq 0$, let \mathcal{X} be an association scheme, and let $\mathcal{J}:=\left\{j \in\{0, \ldots, d\} ; p \mid n n_{j}\right\}$.
a) For the Jacobson radical of \mathcal{A}_{F} we have $\operatorname{rad}\left(\mathcal{A}_{F}\right) \subseteq\left\langle A_{j} ; j \in \mathcal{J}\right\rangle_{F}$. In particular, if $p \nmid n \cdot \prod_{i=0}^{d} n_{i}$ then \mathcal{A}_{F} is semisimple, that is the regular module \mathcal{A}_{F} is completely reducible, that is the direct sum of irreducible submodules. b) We have $\left\langle J_{n}\right\rangle_{F} \unlhd \mathcal{A}_{F}$, and $\left\langle J_{n}\right\rangle_{F} \subseteq \operatorname{rad}\left(\mathcal{A}_{F}\right)$ if and only if $p \mid n$. In particular, if $p \mid n$ then \mathcal{A}_{F} is not semisimple.

Proof. We have $\operatorname{rad}\left(\mathcal{A}_{F}\right):=\bigcap\left\{U<\mathcal{A}_{F}\right.$ maximal $\}=\bigcap_{i=0}^{t} \operatorname{ann}_{\mathcal{A}_{F}}\left(S_{i}\right) \triangleleft \mathcal{A}_{F}$, where $\operatorname{ann}_{\mathcal{A}_{F}}\left(S_{i}\right):=\left\{A \in \mathcal{A}_{F} ; S_{i} A=\{0\}\right\} \triangleleft \mathcal{A}_{F}$ is the annihilator of S_{i}. Then $\operatorname{rad}\left(\mathcal{A}_{F}\right) \triangleleft \mathcal{A}_{F}$ is the largest nilpotent ideal, that is we have $\operatorname{rad}\left(\mathcal{A}_{F}\right)^{k}=\{0\}$ for some $k \in \mathbb{N}$, and \mathcal{A}_{F} is semisimple if and only if $\operatorname{rad}\left(\mathcal{A}_{F}\right)=\{0\}$.
a) Let $A:=\sum_{k=0}^{d} \alpha_{k} A_{k} \in \operatorname{rad}\left(\mathcal{A}_{F}\right)$. Considering an \mathcal{A}_{F}-module composition series of the natural module F^{n}, we from $A A_{j} \in \operatorname{rad}\left(\mathcal{A}_{F}\right) \subseteq \operatorname{ann}_{\mathcal{A}_{F}}\left(S_{i}\right)$, for all $i \in\{0, \ldots, t\}$ and $j \in\{0, \ldots, d\}$, get that $0=\nu\left(A A_{j}\right)=\sum_{k=0}^{d} \alpha_{k} n n_{k} \delta_{k j^{*}}=$ $\alpha_{j^{*}} n n_{j^{*}}$. Hence for any $j \in\{0, \ldots, d\}$ such that $\alpha_{j} \neq 0$ we have $p \mid n n_{j}$, implying that $A \in\left\langle A_{j} ; j \in \mathcal{J}\right\rangle_{F}$. The assumption $p \nmid n \cdot \prod_{i=0}^{d} n_{i}$ is equivalent to $\mathcal{J}=\emptyset$, which implies $\operatorname{rad}\left(\mathcal{A}_{F}\right)=\{0\}$.
b) We have $A_{i} J_{n}=n_{i} J_{n}$ and $J_{n} A_{i}=n_{i^{*}} J_{n}=n_{i} J_{n}$, for all $i \in\{0, \ldots, d\}$, hence $\left\langle J_{n}\right\rangle_{F} \unlhd \mathcal{A}_{F}$. Moreover, we have $J_{n}^{2}=n J_{n}$, hence $\left\langle J_{n}\right\rangle_{F}$ is nilpotent if and only if $p \mid n$. Hence, if $p \mid n$ then $\{0\} \neq\left\langle J_{n}\right\rangle_{F} \subseteq \operatorname{rad}\left(\mathcal{A}_{F}\right)$.
(2.5) Corollary: Maschke's Theorem. If \mathcal{X} is thin, then \mathcal{A}_{F} is semisimple if and only if $p \nmid n$.
(2.6) Corollary. Let $p \nmid n$. Then $\mathcal{A}_{F} \cong\left\langle J_{n}\right\rangle_{F} \oplus \mathcal{A}_{F}^{\prime}$ as F-algebras, where $\left\langle J_{n}\right\rangle_{F}$ affords the trivial character; and the multiplicity of the trivial module as a constituent of the natural \mathcal{A}_{F}-module is $m_{0}=1$.

Proof. The first assertion follows from $\left\langle J_{n}\right\rangle_{F} \cap \operatorname{rad}\left(\mathcal{A}_{F}\right)=\{0\}$. As for the second assertion, we from $J_{n}^{2}=n J_{n}$ and $0 \neq J_{n} \neq n I_{n}$ get the minimum polynomial $\mu_{J_{n}}=T(T-n) \in F[T]$. Hence we have eigenspace decomposition $F^{n}=E_{n}\left(J_{n}\right) \oplus E_{0}\left(J_{n}\right)$ with respect to the eigenvalues n and 0 , respectively, where $\operatorname{dim}_{F}\left(\operatorname{im}\left(J_{n}\right)\right)=1$ yields $\operatorname{dim}_{F}\left(E_{0}\left(J_{n}\right)\right)=n-1$, thus $\operatorname{dim}_{F}\left(E_{n}\left(J_{n}\right)\right)=1$. Since $J_{n} \in Z\left(\mathcal{A}_{F}\right)$ we conclude that $E_{0}\left(J_{n}\right)$ and $E_{n}\left(J_{n}\right)$ are \mathcal{A}_{F}-submodules. Since $\varphi_{0}\left(J_{n}\right)=\sum_{j=0}^{d} \varphi_{0}\left(A_{j}\right)=\sum_{j=0}^{d} n_{j}=n$, and J_{n} acts on $E_{0}\left(J_{n}\right)$ by the zero map, $E_{0}\left(J_{n}\right)$ does not have the trivial module as a constituent.
(2.7) Example: Johnson scheme $\mathcal{J}(7,2)$. We have $n=\binom{7}{2}=21$ as well as $n_{0}=1$ and $n_{1}=\binom{5}{1}\binom{2}{1}=10$ and $n_{2}=\binom{5}{2}\binom{2}{2}=10$. Thus \mathcal{A}_{F}, where F is a field, is semisimple if $\operatorname{char}(F) \notin\{2,3,5,7\}$, it is not semisimple if $\operatorname{char}(F) \in$ $\{3,7\}$, while (2.4) does not assert anything if $\operatorname{char}(F) \in\{2,5\}$; actually \mathcal{A}_{F} is semisimple if $\operatorname{char}(F)=2$ and it is not semisimple if $\operatorname{char}(F)=5$:
 $P_{2} P_{1}$, thus $\mathcal{J}(7,2)$ is commutative. For the associated minimum polynomials we get $\mu_{A_{1}}=\mu_{P_{1}}=(T-10)(T-3)(T+2) \in \mathbb{Z}[T]$ and $\mu_{A_{2}}=\mu_{P_{2}}=(T-10)(T+$ 4) $(T-1) \in \mathbb{Z}[T]$. Hence P_{1} and P_{2} have simultaneous Jordan normal forms over any field F, all irreducible representations of \mathcal{A}_{F} have degree 1, implying that \mathcal{A}_{F} is split.
If $\operatorname{char}(F) \notin\{2,3,5,7\}$, then both P_{1} and P_{2} have three pairwise distinct eigenvalues in F, thus are diagonalisable, where simultaneous eigenvectors are $\left[\begin{array}{rrr}1 & 1 & 1 \\ -10 & -3 & 1 \\ 10 & -2 & 1\end{array}\right]$, the eigenvalues being ordered as above. Thus $\mathcal{A}_{F} \cong S_{0} \oplus S_{1} \oplus$
S_{2}, and the character table $\Phi\left(\mathcal{A}_{F}\right)$ is given as:

	m_{i}	d_{i}	A_{0}	A_{1}	A_{2}
φ_{0}	1	1	1	10	10
φ_{1}	6	1	1	3	-4
φ_{2}	14	1	1	-2	1

The multiplicities are computed as follows: If $\operatorname{char}(F)=0$ then the multiplicities can be just read off from the decomposition $\nu=\varphi_{0}+6 \varphi_{1}+14 \varphi_{2}$. Hence for the associated characteristic polynomials we have $\chi_{A_{1}}=(T-10)(T-3)^{6}(T+2)^{14} \in$ $\mathbb{Z}[T]$ and $\chi_{A_{2}}=(T-10)(T+4)^{6}(T-1)^{14} \in \mathbb{Z}[T]$. This yields the characteristic polynomials of A_{1} and A_{2} over any field F, and thus the associated multiplicities. For the remaining cases we have:
i) If $\operatorname{char}(F)=7$, then $\mu_{P_{1}}=(T-3)^{2}(T-5) \in F[T]$ and $\mu_{P_{2}}=(T-3)^{2}(T-1) \in$ $F[T]$. Vectors inducing simultaneous Jordan normal forms are $\left[\begin{array}{ccc}2 & 1 & . \\ 1 & 1 & 1 \\ \hline 3 & 5 & 1\end{array}\right]$. Thus \(\mathcal{A}_{F} \cong\left[\begin{array}{l}S_{0}

S_{0}\end{array}\right] \oplus S_{1}\), and $\Phi\left(\mathcal{A}_{F}\right)$ is given as: | | m_{i} | d_{i} | A_{0} | A_{1} | A_{2} |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | 7 | 1 | 1 | 3 | 3 |
| φ_{1} | 14 | 1 | 1 | 5 | 1 |

ii) If $\operatorname{char}(F)=3$, then $\mu_{P_{1}}=(T-1)^{2} T \in F[T]$ and $\mu_{P_{2}}=(T-1)(T-2) \in F[T]$. Vectors inducing simultaneous Jordan normal forms are $\left[\begin{array}{ccc}. & 1 & . \\ 1 & 1 & 1 \\ \hline 2 & \cdot & 1\end{array}\right]$. Thus \(\mathcal{A}_{F} \cong\left[\begin{array}{c}S_{0}

S_{0}\end{array}\right] \oplus S_{1}\), and $\Phi\left(\mathcal{A}_{F}\right)$ is given as: | | m_{i} | d_{i} | A_{0} | A_{1} | A_{2} | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | φ_{0} | 15 | 1 | 1 | 1 | 1 |
| φ_{1} | 6 | 1 | 1 | 0 | 2 | |

iii) If $\operatorname{char}(F)=5$, then $\mu_{P_{1}}=T(T-3)^{2} \in F[T]$ and $\mu_{P_{2}}=T(T-1)^{2} \in F[T]$.

Vectors inducing simultaneous Jordan normal forms are $\left[\begin{array}{ccc}1 & 1 & 1 \\ \cdot & 1 & \cdot \\ \cdot & 3 & 1\end{array}\right]$. Thus \(\mathcal{A}_{F} \cong S_{0} \oplus\left[\begin{array}{l}S_{1}

S_{1}\end{array}\right]\), and $\Phi\left(\mathcal{A}_{F}\right)$ is given as: | | m_{i} | d_{i} | A_{0} | A_{1} | A_{2} |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | φ_{0} | 1 | 1 | 1 | 0 |
| φ_{1} | 20 | 1 | 1 | 3 | 1 |

iv) If $\operatorname{char}(F)=2$, then $\mu_{P_{1}}=T(T-1) \in F[T]$ and $\mu_{P_{2}}=T(T-1) \in F[T]$. Simultaneous eigenvectors are $\left[\begin{array}{ccc}1 & 1 & 1 \\ . & 1 & . \\ . & . & 1\end{array}\right]$. Thus $\mathcal{A}_{F} \cong S_{0} \oplus S_{1} \oplus S_{2}$, and $\Phi\left(\mathcal{A}_{F}\right)$ is given as:

	m_{i}	d_{i}	A_{0}	A_{1}	A_{2}
φ_{0}	1	1	1	0	0
φ_{1}	6	1	1	1	0
φ_{2}	14	1	1	0	1

3 Symmetric algebras

In this section we place ourselves in a more general setting.
(3.1) Symmetric algebras. a) Let R be a commutative ring, let \mathcal{A} be an R-free R-algebra such that $n:=\operatorname{rk}_{R}(\mathcal{A})$, let λ be a symmetrising form, and let $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathcal{A}$ and $\left\{A_{1}^{*}, \ldots, A_{n}^{*}\right\} \subseteq \mathcal{A}$ be mutually dual R-bases of \mathcal{A}.
Comparing the right and left regular representations of \mathcal{A}, for $A \in \mathcal{A}$ let $A_{i} A=$ $\sum_{k=1}^{n} p_{i}^{k}(A) A_{k}$ and $A A_{i}^{*}=\sum_{k=1}^{n}{ }^{*} p_{k}^{i}(A) A_{k}^{*}$, where $p_{i}^{k}(A),{ }^{*} p_{k}^{i}(A) \in R$. Then we have ${ }^{*} p_{k}^{i}(A)=\lambda\left(A A_{i}^{*} \cdot A_{k}\right)=\lambda\left(A_{k} A \cdot A_{i}^{*}\right)=p_{k}^{i}(A)$, for all $i, k \in\{1, \ldots, n\}$. Hence for the associated representing matrices with respect to the given R-basis of \mathcal{A} and the associated dual basis, respectively, we have $P(A):=\left[p_{i}^{k}(A)\right]_{i k}=$ $\left[{ }^{*} p_{k}^{i}(A)\right]_{k i}=:{ }^{*} P(A) \in R^{n \times n}$.
Let V and V^{\prime} be \mathcal{A}-modules with associated representations δ and δ^{\prime}, respectively. For $M \in \operatorname{Hom}_{R}\left(V, V^{\prime}\right)$ let $M^{+}:=\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right) M \delta^{\prime}\left(A_{i}\right) \in \operatorname{Hom}_{R}\left(V, V^{\prime}\right)$. Then $\delta(A) M^{+}=\sum_{i=1}^{n} \delta\left(A A_{i}^{*}\right) M \delta^{\prime}\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{k=1}^{n}{ }^{*} p_{k}^{i}(A) \delta\left(A_{k}^{*}\right) M \delta^{\prime}\left(A_{i}\right)=$ $\sum_{i=1}^{n} \sum_{k=1}^{n} p_{k}^{i}(A) \delta\left(A_{k}^{*}\right) M \delta^{\prime}\left(A_{i}\right)=\sum_{k=1}^{n} \delta\left(A_{k}^{*}\right) M \delta^{\prime}\left(A_{k} A\right)=M^{+} \delta^{\prime}(A)$ for $A \in$ \mathcal{A} implies $M^{+} \in \operatorname{Hom}_{\mathcal{A}}\left(V, V^{\prime}\right)$.
Moreover, M^{+}is independent of the particular choice of an R-basis of \mathcal{A} : Let $\left\{A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right\} \subseteq \mathcal{A}$ be an R-basis of \mathcal{A}, and let $\left\{A_{1}^{*}, \ldots, A_{n}^{* *}\right\} \subseteq \mathcal{A}$ be the associated dual basis. For the base change matrices $B=\left[b_{i j}\right]_{i j}:={ }_{\left\{A_{i}^{\prime}\right\}} \mathrm{id}_{\left\{A_{j}\right\}} \in$ $R^{n \times n}$ and $B^{*}=\left[b_{i j}^{*}\right]_{i j}:={ }_{\left\{A_{i}^{\prime *}\right\}} \operatorname{id}_{\left\{A_{j}^{*}\right\}} \in R^{n \times n}$ we have $B B^{* \operatorname{tr}}=I_{n}$, that is $\sum_{i=1}^{n} b_{i j} b_{i k}^{*}=\delta_{j k}$, for all $j, k \in\{1, \ldots, n\}$. This implies $\sum_{i=1}^{n} \delta\left(A_{i}^{\prime *}\right) M \delta^{\prime}\left(A_{i}^{\prime}\right)=$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} b_{i j}^{*} b_{i k} \delta\left(A_{j}^{*}\right) M \delta^{\prime}\left(A_{k}\right)=\sum_{j=1}^{n} \delta\left(A_{j}^{*}\right) M \delta^{\prime}\left(A_{j}\right)=M^{+}$.
b) Let now $R:=F$ be a field such that \mathcal{A} is split, and let S and S^{\prime} be irreducible \mathcal{A}-modules with associated representations δ and δ^{\prime}, respectively,
such that either $\delta \not \not \delta^{\prime}$ or $\delta=\delta^{\prime}$. Letting $E_{q r}:=\left[\delta_{q k} \delta_{r l}\right]_{k l} \in F^{d \times d}$ be a matrix unit, for $q \in\{1, \ldots, d\}$ and $r \in\left\{1, \ldots, d^{\prime}\right\}$ where $d:=\operatorname{dim}_{F}(S)$ and $d^{\prime}:=\operatorname{dim}_{F}\left(S^{\prime}\right)$, we have $E_{q r}^{+}:=\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right) E_{q r} \delta^{\prime}\left(A_{i}\right) \in \operatorname{Hom}_{\mathcal{A}}\left(S, S^{\prime}\right)$. Hence by Schur's Lemma there are $c_{S, q r} \in F$ such that $E_{q r}^{+}=\delta_{S, S^{\prime}} c_{S, q r}$. $\operatorname{diag}[1, \ldots, 1] \in F^{d \times d^{\prime}}$. In terms of coordinate functions, where $p \in\{1, \ldots, d\}$ and $s \in\left\{1, \ldots, d^{\prime}\right\}$, we infer $\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right)_{p q} \delta^{\prime}\left(A_{i}\right)_{r s}=\delta_{S, S^{\prime}} \delta_{p s} c_{S, q r} \in F$. Interchanging the roles of $\left\{A_{1}, \ldots, A_{n}\right\}$ and $\left\{A_{1}^{*}, \ldots, A_{n}^{*}\right\}$ yields $c_{S, p s}^{*} \in F$ such that $\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right)_{p q} \delta\left(A_{i}\right)_{r s}=\delta_{q r} c_{S, p s}^{*} \in F$. Thus from $\delta_{p s} c_{S, q r}=\delta_{q r} c_{S, p s}^{*}$ we infer that there is a Schur element $c_{S} \in F$ such that $c_{S, q r}=\delta_{q r} c_{S}$, and we have the Frobenius-Schur relations $\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right)_{p q} \delta^{\prime}\left(A_{i}\right)_{r s}=\delta_{S, S^{\prime}} \delta_{p s} \delta_{q r} c_{S} \in F$.
This yields the orthogonality relations for irreducible characters: Let φ and φ^{\prime} be the characters afforded by S and S^{\prime}, respectively. Then we have $\sum_{i=1}^{n} \varphi\left(A_{i}^{*}\right) \varphi^{\prime}\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{d} \sum_{k=1}^{d^{\prime}} \delta\left(A_{i}^{*}\right)_{j j} \delta^{\prime}\left(A_{i}\right)_{k k}=\delta_{\varphi, \varphi^{\prime}} c_{\varphi} \cdot \sum_{j=1}^{d} 1=$ $\delta_{\varphi, \varphi^{\prime}} c_{\varphi} d_{\varphi}$, where $c_{\varphi}:=c_{S}$ and $d_{\varphi}:=\bar{d}=\varphi\left(1_{\mathcal{A}}\right) \in F$ is the associated degree.
c) By the Gaschütz-Higman-Ikeda Theorem [6, Thm.IX.62.11], S is projective if and only if there is $M \in \operatorname{End}_{F}(S)$ such that $M^{+}=\operatorname{id}_{S} \in \operatorname{End}_{\mathcal{A}}(S)$. Hence this is the case if and only if $c_{S} \neq 0 \in F$. In that case, S lies in a block $\mathcal{A}_{S} \cong \operatorname{End}_{F}(S) \cong F^{d \times d}$ of its own, and we have the λ-orthogonal decomposition $\mathcal{A} \cong \mathcal{A}_{S} \oplus \mathcal{A}^{\prime}$ as F-algebras.
Let S be an irreducible \mathcal{A}-module such that $c_{\varphi}=c_{S} \neq 0 \in F$, and for $i, j \in\{1, \ldots, d\}$ let $e_{\varphi, i j}:=\frac{1}{c_{\varphi}} \cdot \sum_{k=1}^{n} \delta\left(A_{k}^{*}\right)_{j i} A_{k} \in \mathcal{A}$. Hence for the natural representation $\rho_{\mathcal{A}^{\prime}}: \mathcal{A} \rightarrow \operatorname{End}_{F}\left(\mathcal{A}^{\prime}\right)$ we have $\rho_{\mathcal{A}^{\prime}}\left(e_{\varphi, i j}\right) \in \operatorname{Hom}_{\mathcal{A}}\left(S, \mathcal{A}^{\prime}\right)=\{0\}$, implying that $e_{\varphi, i j} \in \mathcal{A}_{S}$. The Frobenius-Schur relations yield $\delta\left(e_{\varphi, i j}\right)=$ $\frac{1}{c_{\varphi}} \cdot \sum_{k=1}^{n} \delta\left(A_{k}^{*}\right)_{j i} \delta\left(A_{k}\right)=E_{i j} \in F^{d \times d}$. Since $\delta: \mathcal{A}_{S} \rightarrow \operatorname{End}_{F}(S)$ is faithful, we conclude that $\left\{e_{\varphi, i j} ; i, j \in\{1, \ldots, d\}\right\} \subseteq \mathcal{A}_{S}$ is an F-basis, and that $e_{\varphi, 11}, \ldots, e_{\varphi, d d} \in \mathcal{A}_{S}$ are mutually orthogonal primitive idempotents, that is we have $e_{\varphi, i i} e_{\varphi, j j}=\delta_{i j} e_{\varphi, i i}$ for all $i, j \in\{1, \ldots, d\}$. Thus we have $\epsilon_{\varphi}:=$ $\sum_{i=1}^{d} e_{\varphi, i i}=\frac{1}{c_{\varphi}} \cdot \sum_{k=1}^{n} \varphi\left(A_{k}^{*}\right) A_{k}=1_{\mathcal{A}_{S}} \in \mathcal{A}_{S}$, hence $\epsilon_{\varphi} \in \mathcal{A}$ is the centrally primitive idempotent associated with \mathcal{A}_{S}.
Since for the commutator subspace $\left[\mathcal{A}_{S}, \mathcal{A}_{S}\right]:=\left\langle A B-B A ; A, B \in \mathcal{A}_{S}\right\rangle_{F}$ we have $\left[\mathcal{A}_{S}, \mathcal{A}_{S}\right]=\operatorname{ker}(\operatorname{tr})$, where $\operatorname{tr}: \mathcal{A}_{S} \cong F^{d \times d} \rightarrow F$ is the usual matrix trace, we infer that $\langle\operatorname{tr}\rangle_{F}$ coincides with the F-vector space of all trace forms on \mathcal{A}_{S}, that is the F-linear forms having $\left[\mathcal{A}_{S}, \mathcal{A}_{S}\right]$ in their kernel. Since λ restricts to a symmetrising form on \mathcal{A}_{S}, there is $0 \neq c \in F$ such that $\left.\lambda\right|_{\mathcal{A}_{S}}=c \cdot \operatorname{tr}$, and hence the dual basis associated with $\left\{E_{i j} ; i, j \in\{1, \ldots, d\}\right\} \subseteq \mathcal{A}_{S}$ is given as $\left\{\frac{1}{c} E_{j i} ; i, j \in\{1, \ldots, d\}\right\} \subseteq \mathcal{A}_{S}$. The Frobenius-Schur relations yield $\frac{1}{c}=$ $\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{c}\left(E_{j i}\right)_{k k}\left(E_{i j}\right)_{k k}=c_{\varphi}$, for any $k \in\{1, \ldots, d\}$.
Since \mathcal{A} is semisimple if and only if all irreducible \mathcal{A}-modules are projective, we conclude that \mathcal{A} is semisimple if and only if $c_{S} \neq 0 \in F$ for all irreducible \mathcal{A}-modules S. In that case, we have the λ-orthogonal decomposition $\mathcal{A}=$ $\bigoplus_{\varphi \in \operatorname{Irr}(\mathcal{A})} F^{d_{\varphi} \times d_{\varphi}}$, and $\left\{\epsilon_{\varphi} \in \mathcal{A} ; \varphi \in \operatorname{Irr}(\mathcal{A})\right\}$ are mutually orthogonal centrally primitive idempotents such that $\sum_{\varphi \in \operatorname{Irr}(\mathcal{A})} \epsilon_{\varphi}=1$, and $\lambda=\sum_{\varphi \in \operatorname{Irr}(\mathcal{A})} \frac{1}{c_{\varphi}} \varphi$.

We place ourselves into an even more general setting, until further notice.
(3.2) Decomposition theory. Let R be the ring of integers in an algebraic number field K, let $\wp \triangleleft R$ be a prime ideal, and let $R_{\wp} \subseteq K$ be the localisation of R with respect to \wp; hence R_{\wp} is a discrete valuation ring in K. Moreover, let ${ }^{-}: R_{\wp} \rightarrow R_{\wp} / \wp R_{\wp} \cong R / \wp=: F$ be the natural map onto the finite residue class field F. Let \mathcal{A} be an R-free R-algebra with R-basis $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathcal{A}$ where $n:=\operatorname{rk}_{R}(\mathcal{A}) \in \mathbb{N}$, such that $\mathcal{A}_{K}:=\mathcal{A} \otimes_{R} K$ is split.
a) Let V be an \mathcal{A}_{K}-module, with representation δ, and let $\left\{b_{1}, \ldots, b_{d}\right\} \subseteq V$ be a K-basis where $d:=\operatorname{dim}_{K}(V) \in \mathbb{N}$. Then V is realisable over R_{\wp} : The subset $\widetilde{V}:=\left\langle b_{j} A_{i} ; j \in\{1, \ldots, d\}, i \in\{1, \ldots, n\}\right\rangle_{R_{\wp}} \subseteq V$ is an $\mathcal{A}_{R_{\wp}}$-submodule, and since R_{\wp} is a principal ideal domain we conclude that \tilde{V} is an R_{\wp}-free $\mathcal{A}_{R_{\wp}}$ module, and since it contains a K-basis of V it hence is a full $\mathcal{A}_{R_{\wp}}$-lattice in V, that is we have $\widetilde{V}_{K}:=\widetilde{V} \otimes_{R_{\wp}} K \cong V$.
Letting $\mathcal{A}_{F}:=\mathcal{A} \otimes_{R} F$, we thus obtain the \mathcal{A}_{F}-module $\overline{\widetilde{V}}:=\widetilde{V} \otimes_{R_{\wp}} F$ by $\wp-$ modular reduction. Since F is perfect, we by the Brauer-Nesbitt Theorem [6, Thm.V.30.16, Thm.XII.82.1] get a decomposition map $D_{\wp}: \mathbb{Z} \operatorname{Irr}\left(\mathcal{A}_{K}\right) \rightarrow$ $\mathbb{Z} \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ between the Grothendieck groups of \mathcal{A}_{K} and \mathcal{A}_{F}, that is the free abelian groups generated by the isomorphism types of irreducible \mathcal{A}_{K}-modules and \mathcal{A}_{F}-modules, respectively.
b) Let V be a projective indecomposable \mathcal{A}_{F}-module. Thus there is a primitive idempotent $e \in \mathcal{A}_{F}$ such that $V \cong e \mathcal{A}_{F}$ as \mathcal{A}_{F}-modules. Hence by lifting of idempotents, [7, Exc.6.16] for the case \mathcal{A}_{K} semisimple and [20, Thm.3.4.1] for the general case, there is a primitive idempotent $\widehat{e} \in \mathcal{A}_{R_{\wp}} \subseteq \mathcal{A}_{K}$ such that $\overline{\widehat{e}}=e$. Thus the projective indecomposable $\mathcal{A}_{R_{\wp}}$-module $\widetilde{V}:=\widehat{e} \mathcal{A}_{R_{\wp}}$ lifts V in the sense that $\bar{V} \cong \overline{\widehat{e} \mathcal{A}_{R_{\wp}}} \cong e \mathcal{A}_{F} \cong V$ as \mathcal{A}_{F}-modules.
c) We show Tits' Deformation Theorem: Let \mathcal{A}_{F} be semisimple. Since F is perfect, there is a finite field extension $F \subseteq F^{\prime}$ such that $\mathcal{A}_{F^{\prime}}$ is split semisimple, and there is a finite field extension $K \subseteq K^{\prime}$ with ring of integers R^{\prime} having a prime ideal $\wp^{\prime} \triangleleft R^{\prime}$ such that $\wp^{\prime} \cap R=\wp$ and $R^{\prime} / \wp^{\prime} \cong F^{\prime}$. Then for any $\psi \in \operatorname{Irr}\left(\mathcal{A}_{F^{\prime}}\right)$ the associated irreducible $\mathcal{A}_{F^{\prime}-\text { module being projective, there is }}$ $\widehat{\psi} \in \operatorname{Irr}\left(\mathcal{A}_{K^{\prime}}\right)=\operatorname{Irr}\left(\mathcal{A}_{K}\right)$ such that $D_{\wp}(\widehat{\psi})=\psi$, implying that ψ is realisable over F, that is \mathcal{A}_{F} is split. By Wedderburn's Theorem we have $\sum_{\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)} d_{\psi}^{2}=n$, and since the lifting map $\psi \rightarrow \widehat{\psi}$ is injective we conclude $\sum_{\widehat{\psi} \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} d_{\widehat{\psi}}^{2}=n$, implying that \mathcal{A}_{K} is semisimple as well. Moreover, the map $\psi \rightarrow \widehat{\psi}$ is also surjective, that is $D_{\wp}: \operatorname{Irr}\left(\mathcal{A}_{K}\right) \rightarrow \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ is a bijection.
(3.3) Proposition. Let $\lambda: \mathcal{A} \rightarrow R$ be a trace form such that $\tau_{\lambda}: \mathcal{A}^{2} \rightarrow$ $R:[A, B] \mapsto \lambda(A B)$ has discriminant $0 \neq \Delta \in R$ with respect to $\left\{A_{1}, \ldots, A_{n}\right\}$. Then, letting $R_{\Delta} \subseteq K$ be the localisation of R with respect to $\left\{\Delta^{k} ; k \in \mathbb{N}_{0}\right\} \subseteq$ R, we for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ have $\varphi\left(A_{i}\right) \in R$ and $\varphi\left(A_{i}^{*}\right) \in R_{\Delta}$ as well as $c_{\varphi} \in R_{\Delta}$.

Proof. Let S be the irreducible \mathcal{A}_{K}-module affording φ, with associated representation δ. Since φ and c_{φ} are independent of the particular choice of a K-basis of S, we may assume that $\delta\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d \times d}$, where $d:=\operatorname{dim}_{K}(S)$, implying that $\varphi\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}$. Since R is a Dedekind ring, thus a Krull ring [18, Ch.IV.12], we have $R=\bigcap_{\wp \triangleleft R \text { prime }} R_{\wp} \subseteq K$, thus we infer $\varphi(\mathcal{A}) \subseteq R$.
Moreover, $\mathcal{A}_{R_{\Delta}}$ is a symmetric R_{Δ}-algebra. Hence we have $A_{i}^{*} \in \mathcal{A}_{R_{\Delta}}$, for all $i \in\{1, \ldots, n\}$, thus $\varphi\left(A_{i}^{*}\right) \in R_{\Delta}$. For any prime ideal $\wp \triangleleft R$ such that $\Delta \notin \wp$, that is $\wp \cap\left\{\Delta^{k} ; k \in \mathbb{N}_{0}\right\}=\emptyset$, we have $R_{\Delta} \subseteq R_{\wp}$. Hence we have $A_{i}^{*} \in \mathcal{A}_{R_{\varphi}}$, for all $i \in\{1, \ldots, n\}$, and thus the Frobenius-Schur relations imply $c_{\varphi}=\sum_{i=1}^{n} \delta\left(A_{i}^{*}\right)_{j j} \delta\left(A_{i}\right)_{j j} \in R_{\wp} \subseteq K$, for any $j \in\{1, \ldots, d\}$. Hence we have $c_{\varphi} \in \bigcap_{\Delta \notin \wp \triangleleft R \text { prime }} R_{\wp}=R_{\Delta}$.
(3.4) Proposition. Let $\Delta \notin \wp \triangleleft R$ be a prime ideal such that \mathcal{A}_{F} is split. Then D_{\wp} induces a bijection $\left\{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right) ; \bar{c}_{\varphi} \neq 0 \in F\right\} \rightarrow\left\{\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right) ; c_{\psi} \neq\right.$ $0 \in F\}$. In particular, \mathcal{A}_{F} is semisimple if and only if $\bar{c}_{\varphi} \neq 0 \in F$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$.

Proof. For all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ we have $c_{\varphi} \in R_{\wp}$, and \mathcal{A}_{F} is a symmetric F-algebra, hence the sets are well-defined. We show that the above map is well-defined:
Let $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ such that $\bar{c}_{\varphi} \neq 0 \in F$, hence we have $\frac{1}{c_{\varphi}} \in R_{\wp}$. Let $\delta: \mathcal{A}_{K} \rightarrow$ $K^{d \times d}$ be the representation of degree d affording φ, where we may assume that $\delta\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d \times d}$. Since $\mathcal{A}_{R_{\wp}}$ is a symmetric R_{\wp}-algebra, letting $e_{\varphi, i j}=\frac{1}{c_{\varphi}}$. $\sum_{k=1}^{n} \delta\left(A_{k}^{*}\right)_{j i} A_{k} \in \mathcal{A}_{R_{\wp}}$, for all $i, j \in\{1, \ldots, d\}$, the Frobenius-Schur relations yield $\delta\left(e_{\varphi, i j}\right)=E_{i j} \in \delta\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d \times d}$. Thus we have $\delta\left(\mathcal{A}_{R_{\wp}}\right)=R_{\wp}^{d \times d}$, implying $\bar{\delta}\left(\mathcal{A}_{F}\right)=F^{d \times d}$, that is the \wp-modular reduction is irreducible, and we have $c_{\bar{\delta}}=\bar{c}_{\varphi} \neq 0 \in F$.
As for injectivity, for the centrally primitive idempotent $\epsilon_{\varphi} \in \mathcal{A}_{R_{\wp}}$ associated with φ we have $\bar{\delta}\left(\bar{\epsilon}_{\varphi}\right)=\overline{\delta\left(\epsilon_{\varphi}\right)}=\overline{I_{d}}=I_{d}$, while for any $\varphi \neq \varphi^{\prime} \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ with associated representation δ^{\prime} of degree d^{\prime}, where we also may assume that $\delta^{\prime}\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d^{\prime} \times d^{\prime}}$, we have $\delta^{\prime}\left(\epsilon_{\varphi}\right)=0$ and thus $\bar{\delta}^{\prime}\left(\bar{\epsilon}_{\varphi}\right)=0 \in F^{d^{\prime} \times d^{\prime}}$. As for surjectivity, let $\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ such that $c_{\psi} \neq 0$, that is the irreducible \mathcal{A}_{F}-module affording ψ is projective, thus there is an irreducible \mathcal{A}_{K}-module lifting it.
Finally, \mathcal{A}_{F} is semisimple if and only if $\sum_{\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right), c_{\psi} \neq 0 \in F} d_{\psi}^{2}=n$, that is $\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right), \bar{c}_{\varphi} \neq 0 \in F} d_{\varphi}^{2}=n$, that is $\bar{c}_{\varphi} \neq 0 \in F$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$.
(3.5) Theorem. Let \mathcal{A}_{K} be semisimple.
a) Then for the Frame number we have $\mathcal{N}:=\Delta \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} c_{\varphi}^{d_{\varphi}^{2}} \in R$.
b) The ideal $\mathcal{N} R \unlhd R$ is the square of an ideal in R.

Proof. We proceed towards in interpretation of \mathcal{N} : Given any trace form $\psi: \mathcal{A}_{K} \rightarrow K$, let $\tau_{\psi}: \mathcal{A}_{K}^{2} \rightarrow K:[A, B] \mapsto \psi(A B)$ be the associated symmetric associative K-bilinear form. Given any K-basis $\mathcal{B}:=\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \mathcal{A}_{K}$, let
$\mathcal{B}_{\mathcal{B}}\left(\tau_{\psi}\right)_{\mathcal{B}}:=\left[\psi\left(B_{i} B_{j}\right)\right]_{i j} \in K^{n \times n}$ be the associated Gram matrix, hence the discriminant of τ_{ψ} with respect to \mathcal{B} is given as $\operatorname{det}\left(\mathcal{B}_{\mathcal{B}}\left(\tau_{\psi}\right)_{\mathcal{B}}\right) \in K$.
We have $\mathcal{A}_{K} \cong \bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} K^{d_{\varphi} \times d_{\varphi}}$, hence let $\mathcal{E}:=\coprod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \mathcal{E}_{\varphi} \subseteq \mathcal{A}_{K}$ be a Wedderburn basis of \mathcal{A}_{K}, that is $\mathcal{E}_{\varphi}:=\left\{e_{\varphi, p q} \in \mathcal{A}_{K} ; p, q \in\left\{1, \ldots, d_{\varphi}\right\}\right\}$ is the K-basis of the block associated with φ such that $\delta_{\varphi}\left(e_{\varphi, p q}\right)=E_{p q} \in K^{d_{\varphi} \times d_{\varphi}}$. This yields $\varphi\left(e_{\varphi, p q} e_{\varphi, r s}\right)=\delta_{p s} \delta_{q r}$ and $e_{\varphi, p q} e_{\varphi^{\prime}, r s}=0 \in \mathcal{A}_{K}$, for all $\varphi \neq \varphi^{\prime} \in$ $\operatorname{Irr}\left(\mathcal{A}_{K}\right)$ and $p, q \in\left\{1, \ldots, d_{\varphi}\right\}$ and $r, s \in\left\{1, \ldots, d_{\varphi^{\prime}}\right\}$. Thus for any trace form $\psi=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \alpha_{\varphi} \varphi$, where $\alpha_{\varphi} \in K$, we get $\psi\left(e_{\varphi, p q} e_{\varphi^{\prime}, r s}\right)=\alpha_{\varphi} \delta_{\varphi, \varphi^{\prime}} \delta_{p s} \delta_{q r}$, and hence the associated discriminant is $\operatorname{det}\left(\mathcal{E}^{(}\left(\tau_{\psi}\right)_{\mathcal{E}}\right)=\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}\left((-1)^{\binom{d_{\varphi}}{2}}\right.$. $\left.\prod_{p=1}^{d_{\varphi}} \prod_{q=1}^{d_{\varphi}} \alpha_{\varphi}\right)=\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}} \alpha_{\varphi}^{d_{\varphi}^{2}}$.
For the symmetrising form $\lambda=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \frac{1}{c_{\varphi}} \varphi$ we thus get $\operatorname{det}\left(\mathcal{E}\left(\tau_{\lambda}\right)_{\mathcal{E}}\right)=$ $\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}}\left(\frac{1}{c_{\varphi}}\right)^{d_{\varphi}^{2}}$, while by assumption we have $\operatorname{det}\left({ }_{\left\{A_{i}\right\}}\left(\tau_{\lambda}\right)_{\left\{A_{i}\right\}}\right)=\Delta$. Thus letting $C:={ }_{\left\{A_{i}\right\}} \mathrm{id}_{\mathcal{E}} \in K^{n \times n}$ we from $\operatorname{det}\left({ }_{\left\{A_{i}\right\}}\left(\tau_{\lambda}\right)_{\left\{A_{i}\right\}}\right)=\operatorname{det}\left(\mathcal{E}\left(\tau_{\lambda}\right)_{\mathcal{E}}\right)$. $\operatorname{det}(C)^{2}$ infer $\operatorname{det}(C)^{2}=\Delta \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}} c_{\varphi}^{d_{\varphi}^{2}}$. For $\omega:=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \varphi$ we get $\operatorname{det}\left(\mathcal{E}\left(\tau_{\omega}\right)_{\mathcal{E}}\right)=\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}}$, hence for the reduced discriminant we have $\operatorname{det}\left({ }_{\left\{A_{i}\right\}}\left(\tau_{\omega}\right)_{\left\{A_{i}\right\}}\right)=\operatorname{det}\left(\mathcal{E}\left(\tau_{\omega}\right)_{\mathcal{E}}\right) \cdot \operatorname{det}(C)^{2}=\Delta \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} c_{\varphi}^{d_{\varphi}^{2}}=\mathcal{N}$.
a) Since $\omega(\mathcal{A}) \subseteq R$ we infer $\mathcal{N}=\operatorname{det}\left({ }_{\left\{A_{i}\right\}}\left(\tau_{\omega}\right)_{\left\{A_{i}\right\}}\right)=\operatorname{det}\left(\left[\omega\left(A_{i} A_{j}\right)\right]_{i j}\right) \in R$.
b) Letting $\wp \triangleleft R$ be a prime ideal we may assume that $\delta_{\varphi}\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d_{\varphi} \times d_{\varphi}}$. Since $\bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \delta_{\varphi}$ is faithful, we infer $A_{i}=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \sum_{p=1}^{d_{\varphi}} \sum_{q=1}^{d_{\varphi}} \delta_{\varphi}\left(A_{i}\right)_{p q} e_{\varphi, p q} \in$ \mathcal{A}_{K} for all $i \in\{0, \ldots, d\}$. This shows that a Wedderburn basis can chosen such that $C={ }_{\left\{A_{i}\right\}} \mathrm{id}_{\mathcal{E}} \in R_{\wp}^{n \times n}$. Letting $\nu_{\wp}: K^{*} \rightarrow \mathbb{Z}$ be the discrete valuation of K associated with \wp we infer $\nu_{\wp}(\mathcal{N})=\nu_{\wp}\left(\mathcal{N} \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}}\right)=$ $\nu_{\wp}\left(\operatorname{det}(C)^{2}\right)=2 \nu_{\wp}(\operatorname{det}(C)) \in 2 \mathbb{N}_{0} . \operatorname{From} \mathcal{N} R=\prod_{k=1}^{s} \wp_{k}^{e_{k}} \unlhd R$, where $s, e_{k} \in \mathbb{N}_{0}$ and the $\wp_{k} \triangleleft R$ are pairwise different prime ideals, we thus get $e_{k} \in 2 \mathbb{N}_{0}$. $\quad \sharp$
(3.6) Theorem: Fleischmann, 1993 [9]. Let \mathcal{A}_{K} be semisimple. Then \mathcal{A}_{F} is semisimple if and only if $\overline{\mathcal{N}} \neq 0 \in F$, that is $\mathcal{N} \notin \wp$.

Proof. Let $V:=\bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} S_{\varphi}$ with representation $\delta=\bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \delta_{\varphi}$, affording the character $\omega=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \varphi$. We may assume that $\delta_{\varphi}\left(\mathcal{A}_{R_{\wp}}\right) \subseteq R_{\wp}^{d_{\varphi} \times d_{\varphi}}$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, hence the \mathcal{A}_{F}-module $\bar{V}=\bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \bar{S}_{\varphi}$ affords the character $\bar{\omega}=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \bar{\varphi}$. Since $\overline{\mathcal{N}} \in F$ is the discriminant of $\tau_{\bar{\omega}}$ with respect to $\left\{A_{1}, \ldots, A_{n}\right\}$, we show that $\tau_{\bar{\omega}}$ is non-degenerate if and only if \mathcal{A}_{F} is semisimple: If \mathcal{A}_{F} is semisimple, then by Tits' Deformation Theorem \mathcal{A}_{F} is split and the decomposition map $D_{\wp}: \operatorname{Irr}\left(\mathcal{A}_{K}\right) \rightarrow \operatorname{Irr}\left(\mathcal{A}_{F}\right): \varphi \mapsto \bar{\varphi}$ is a bijection, thus $\bar{\delta}=$ $\bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \delta_{\bar{\varphi}}: \mathcal{A}_{F} \rightarrow \bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} F^{d_{\varphi} \times d_{\varphi}}$ is an isomorphism of F-algebras, in particular $\bar{\delta}$ is faithful. Letting $A \in \operatorname{rad}\left(\tau_{\bar{\omega}}\right) \unlhd \mathcal{A}_{F}$, for any $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ and all $i, j \in\left\{1, \ldots, d_{\varphi}\right\}$, using the matrix units of the block of \mathcal{A}_{F} associated with $\bar{\varphi}$, we
have $\delta_{\bar{\varphi}}(A)_{i j}=\operatorname{tr}\left(E_{k i}^{\bar{\varphi}} A E_{j k}^{\bar{\varphi}}\right)=\bar{\omega}\left(E_{k i}^{\bar{\varphi}} A E_{j k}^{\bar{\varphi}}\right)=0 \in F$, for any $k \in\left\{1, \ldots, d_{\varphi}\right\}$. Thus we have $\bar{\delta}(A)=0$, implying $A=0$.

If \mathcal{A}_{F} is not semisimple, then let $0 \neq A \in \operatorname{rad}\left(\mathcal{A}_{F}\right) \triangleleft \mathcal{A}_{F}$. Hence $\delta_{\psi}(A B)=0$ for all $\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ and $B \in \mathcal{A}_{F}$. Thus considering a composition series of \bar{S}_{φ} shows that $\bar{\varphi}(A B)=0 \in F$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ and $B \in \mathcal{A}_{F}$, hence $\bar{\omega}(A B)=0 \in F$ for all $B \in \mathcal{A}_{F}$, that is $A \in \operatorname{rad}\left(\tau_{\bar{\omega}}\right)$.
(3.7) Proposition. Let \mathcal{A}_{K} be semisimple, and let $K^{\prime} \subseteq K$ be a subfield with ring of integers R^{\prime}, such that $\mathcal{A}_{R^{\prime}}:=\left\langle A_{1}, \ldots, A_{n}\right\rangle_{R^{\prime}}$ is an R^{\prime}-subalgebra and such that $\lambda: \mathcal{A}_{R^{\prime}}^{2} \rightarrow R^{\prime}$. If the Schur elements $c_{\varphi} \in K$, for $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, are pairwise different, then the character field $K^{\prime}\left(\varphi\left(\mathcal{A}_{K^{\prime}}\right) ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right)=$ $K^{\prime}\left(c_{\varphi} ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right)$ is the unique minimal splitting field of $\mathcal{A}_{K^{\prime}}$ in K.

Proof. From the Frobenius-Schur relations we infer that any splitting field of $\mathcal{A}_{K^{\prime}}$ contains $L:=K^{\prime}\left(c_{\varphi} ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right) \subseteq K^{\prime}\left(\varphi\left(\mathcal{A}_{K^{\prime}}\right) ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right)$. We show that L is a splitting field:

We may assume that $K^{\prime} \subseteq K$ is Galois. Let $\sigma \in \operatorname{Aut}_{K^{\prime}}(K)$ and $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$. Then from $\mathcal{A}_{K^{\prime}}$ being a K^{\prime}-subalgebra we infer that letting $A_{i} \mapsto \delta_{\varphi}\left(A_{i}\right)^{\sigma}$, for all $i \in\{1, \ldots, n\}$ and σ being applied entrywise, K-linear extension yields an irreducible representation of \mathcal{A}_{K}, affording the character $\varphi^{\sigma}\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right):=$ $\sum_{i=1}^{n} \alpha_{i} \varphi\left(A_{i}\right)^{\sigma}$, where $\alpha_{i} \in K$. Since $A_{i}^{*} \in \mathcal{A}_{K^{\prime}}$ for all $i \in\{1, \ldots, n\}$, the Frobenius-Schur relations imply $c_{\varphi^{\sigma}}=c_{\varphi}^{\sigma} \in K$. Thus for all $\sigma \in \operatorname{Aut}_{L}(K)$ we have $c_{\varphi^{\sigma}}=c_{\varphi}$, the Schur elements being pairwise different implying $\varphi^{\sigma}=\varphi$.
The field automorphism σ extends to a K^{\prime}-algebra automorphism of \mathcal{A}_{K} given by $\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)^{\sigma}:=\sum_{i=1}^{n} \alpha_{i}^{\sigma} A_{i}$. Thus for $A=\sum_{i=1}^{n} \alpha_{i} A_{i} \in \mathcal{A}_{K}$ we have $\varphi^{\sigma}\left(A^{\sigma}\right)=\varphi^{\sigma}\left(\sum_{i=1}^{n} \alpha_{i}^{\sigma} A_{i}\right)=\sum_{i=1}^{n} \alpha_{i}^{\sigma} \varphi\left(A_{i}\right)^{\sigma}=\varphi(A)^{\sigma} \in K$. In particular, σ permutes the set $\left\{\epsilon_{\varphi} ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right\}$ of centrally primitive idempotents of \mathcal{A}_{K}, and from $\varphi^{\sigma}\left(\epsilon_{\varphi}^{\sigma}\right)=\varphi\left(\epsilon_{\varphi}\right)^{\sigma}=1^{\sigma}=1$ we infer $\epsilon_{\varphi}^{\sigma}=\epsilon_{\varphi^{\sigma}}$. Thus for all $\sigma \in \operatorname{Aut}_{L}(K)$ we have $\epsilon_{\varphi}^{\sigma}=\epsilon_{\varphi}$, which since $\operatorname{Fix}_{K}\left(\operatorname{Aut}_{L}(K)\right)=L$ implies $\epsilon_{\varphi} \in$ $\mathcal{A}_{L} \subseteq \mathcal{A}_{K}$ Hence $\mathcal{A}_{L} \cong \bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \epsilon_{\varphi} \mathcal{A}_{L}$ has at least as many irreducible representations as \mathcal{A}_{K}, hence equally many, thus is split.

4 Structure of adjacency algebras

We return to our original setting of association schemes.
(4.1) Theorem. Let R be a commutative ring, and let \mathcal{X} be an association scheme such that $\Delta:=\prod_{i=0}^{d} n_{i} \in R^{*}$. Then \mathcal{A}_{R} is a symmetric R-algebra with respect to the symmetrising form $\lambda: \mathcal{A}_{R} \rightarrow R: \sum_{k=0}^{d} \alpha_{k} A_{k} \mapsto \alpha_{0}$, where $\left\{A_{i} ; i \in\{0, \ldots, d\}\right\}$ and $\left\{\frac{1}{n_{i}} \cdot A_{i^{*}} ; i \in\{0, \ldots, d\}\right\}$ are mutually dual R-bases of \mathcal{A}_{R}; the latter is called the dual Schur basis.

Proof. Let $\tau_{\lambda}: \mathcal{A}_{R}^{2} \rightarrow R:[A, B] \mapsto \lambda(A B)$ be the associated R-bilinear form. Hence we have $\tau_{\lambda}(A B, C)=\lambda(A B \cdot C)=\lambda(A \cdot B C)=\tau_{\lambda}(A, B C)$, for all $A, B, C \in \mathcal{A}_{R}$, that is τ_{λ} is associative. We show that τ_{λ} is symmetric, and that its discriminant is a unit in R : Let $A=\sum_{i=0}^{d} \alpha_{i} A_{i}$ and $B=\sum_{j=0}^{d} \beta_{j} A_{j}$, where $\alpha_{i}, \beta_{j} \in R$. Then we have $\lambda(A B)=\sum_{i=0}^{d} \sum_{j=0}^{d} \sum_{k=0}^{d} \alpha_{i} \beta_{j} p_{i j}^{k} \lambda\left(A_{k}\right)=$ $\sum_{i=0}^{d} \alpha_{i} \beta_{i^{*}} n_{i}=\lambda(B A)$, and $\lambda\left(A_{i} A_{j^{*}}\right)=\sum_{k=0}^{d} p_{i j^{*}}^{k} \lambda\left(A_{k}\right)=n_{i} \delta_{i j} \in R^{*}$, for all $i, j \in\{0, \ldots, d\}$, hence the discriminant with respect to the Schur basis equals $(-1)^{\frac{d+1-|\mathcal{I}|}{2}} \cdot \Delta \in R^{*}$, where $\mathcal{I}:=\left\{i \in\{0, \ldots, d\} ; i^{*}=i\right\}$.
(4.2) Theorem. Let \mathcal{X} be an association scheme, and let F be a field such that $p:=\operatorname{char}(F) \geq 0$ and $p \nmid n \Delta$, and such that \mathcal{A}_{F} is split. Then for any $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ we have $m_{\varphi} \neq 0 \in F$ and $c_{\varphi}=\frac{n}{m_{\varphi}} \in F$.

Proof. For the natural \mathcal{A}_{F}-module we have $F^{n} \cong \bigoplus_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)} \bigoplus_{k=1}^{m_{\varphi}} S_{\varphi}$, where S_{φ} is the irreducible \mathcal{A}_{F}-module affording φ. For the centrally primitive idempotent $\epsilon_{\varphi}=\frac{1}{c_{\varphi}} \cdot \sum_{j=0}^{d} \frac{\varphi\left(A_{j^{*}}\right)}{n_{j}} A_{j} \in \mathcal{A}_{F, \varphi}$ in the block associated with $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)$ and all $i \in\{0, \ldots, d\}$ we have $\epsilon_{\varphi} A_{i} \in \mathcal{A}_{F, \varphi}$. Hence for the natural character we get $\nu\left(\epsilon_{\varphi} A_{i}\right)=\sum_{\psi \in \operatorname{Irr}\left(\mathcal{A}_{F}\right)} m_{\psi} \psi\left(\epsilon_{\varphi} A_{i}\right)=m_{\varphi} \varphi\left(\epsilon_{\varphi} A_{i}\right)=m_{\varphi} \varphi\left(A_{i}\right) \in F$. Thus from $\nu\left(\epsilon_{\varphi} A_{i}\right)=\frac{1}{c_{\varphi}} \cdot \sum_{j=0}^{d} \frac{\varphi\left(A_{j^{*}}\right)}{n_{j}} \nu\left(A_{j} A_{i}\right)=\frac{\varphi\left(A_{i}\right)}{c_{\varphi} n_{i}} \cdot n n_{i}=\frac{\varphi\left(A_{i}\right) n}{c_{\varphi}} \in F$, choosing $i \in\{0, \ldots, d\}$ such that $\varphi\left(A_{i}\right) \neq 0 \in F$, we infer $m_{\varphi}=\frac{n}{c_{\varphi}} \neq 0 \in F$.
(4.3) Theorem: Hanaki, 2000 [12]. Let \mathcal{X} be an association scheme.
a) Let K be a field such that $\operatorname{char}(K)=0$ and \mathcal{A}_{K} is split. Then for any $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ we have $c_{\varphi} \in \mathbb{Z}_{\Delta} \subseteq \mathbb{Q}$, and for the Frame number we have

$$
\mathcal{N}=\frac{(-1)^{\frac{d+1-|\mathcal{I}|}{2}} \Delta \cdot n^{d+1}}{\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} m_{\varphi}^{d_{\varphi}^{2}}} \in \mathbb{Z}
$$

b) Let F be a field such that $p:=\operatorname{char}(F) \geq 0$. Then \mathcal{A}_{F} is semisimple if and only if $p \not \backslash \mathcal{N} \in \mathbb{Z}$.

Proof. a) Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q}, hence $\mathcal{A}_{\overline{\mathbb{Q}}}$ is split. Thus we may assume that K is an algebraic number field. Let R be the ring of integers in K, then $\mathcal{A}_{R_{\Delta}}$ is a symmetric R_{Δ}-algebra, hence we infer that $c_{\varphi} \in R_{\Delta} \cap \mathbb{Q}=\mathbb{Z}_{\Delta}$. The discriminant of the symmetrising form with respect to the Schur basis being $(-1)^{\frac{d+1-|\mathcal{I}|}{2}} \Delta$, we from $d+1=\operatorname{dim}_{K}\left(\mathcal{A}_{K}\right)=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} d_{\varphi}^{2}$ get $\mathcal{N}=$ $(-1)^{\frac{d+1-|\mathcal{I}|}{2}} \Delta \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}\left(\frac{n}{m_{\varphi}}\right)^{d_{\varphi}^{2}}=\frac{(-1)^{\frac{d+1-|\mathcal{I}|}{2} \Delta \cdot n^{d+1}}}{\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} m_{\varphi}^{d_{\varphi}^{2}}} \in \mathbb{Z}_{\Delta} \cap R=\mathbb{Z}$.
b) We may assume that $p \neq 0$. Then we have $\mathcal{A}_{F} \cong \mathcal{A}_{\mathbb{F}_{p}} \otimes_{\mathbb{F}_{p}} F$, and since \mathbb{F}_{p} is perfect we get $\operatorname{rad}\left(\mathcal{A}_{F}\right)=\operatorname{rad}\left(\mathcal{A}_{\mathbb{F}_{p}}\right) \otimes_{\mathbb{F}_{p}} F$ [7, Thm.7.9]. Hence we may assume that F is a finite field such that \mathcal{A}_{F} is split. Let K be an algebraic number field with ring of integers $R \subseteq K$, such that \mathcal{A}_{K} is split and R has a
prime ideal $\wp \triangleleft R$ such that $R / \wp \cong F$. Then \mathcal{A}_{F} is semisimple if and only if $\mathcal{N} \in \mathbb{Z} \backslash(\wp \cap \mathbb{Z})=\mathbb{Z} \backslash p \mathbb{Z}$.
(4.4) Theorem: Frame, 1941 [10]. Let \mathcal{X} be an association scheme.
a) We have $n^{2} \mid \mathcal{N} \in \mathbb{Z}$.
b) If $\mathcal{A}_{\mathbb{Q}}$ is split, then $|\mathcal{N}|$ is a square in \mathbb{Z}.
c) Let K be a field such that $\operatorname{char}(K)=0$ and \mathcal{A}_{K} is split. If the multiplicities m_{φ}, for $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, are pairwise different, then $A_{\mathbb{Q}}$ is split.

Proof. a) Let K be an algebraic number field such that \mathcal{A}_{K} is split, let R be the ring of integers in K, and let $\wp \triangleleft R$ be a prime ideal. Then there is a Wedderburn basis $\mathcal{E} \subseteq \mathcal{A}_{K}$ such that $C:={ }_{\left\{A_{i}\right\}} \mathrm{id}_{\mathcal{E}} \in R_{\wp}^{(d+1) \times(d+1)}$. We have $\sum_{i=0}^{d} A_{i}=J_{n}=n \epsilon_{\varphi_{0}} \in \mathcal{A}_{K}$, where $\epsilon_{\varphi_{0}}=e_{\varphi_{0}, 11}$ is the centrally primitive idempotent associated with the trivial character φ_{0}. Thus we get $[1, \ldots, 1]$. $C=\left(J_{n}\right)_{\mathcal{E}}=[n, 0, \ldots, 0] \in R_{\wp}^{d+1}$. This implies $n \mid \operatorname{det}(C) \in R_{\wp}$ and hence $n^{2} \mid \mathcal{N} \in R_{\wp}$. Thus we get $\frac{\mathcal{N}}{n^{2}} \in \mathbb{Q} \cap \bigcap_{\wp \triangleleft R \text { prime }} R_{\wp}=\mathbb{Q} \cap R=\mathbb{Z}$.
(4.5) Theorem: Wielandt, 1964 [21]; Higman, 1975 [14]. Let \mathcal{X} be an association scheme, let $p \in \mathbb{Z}$ be a prime and $l \in \mathbb{N}$. Then we have $\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right), p^{l} \mid m_{\varphi}} d_{\varphi}^{2} \leq\left|\left\{i \in\{0, \ldots, d\} ; p^{l} \mid n n_{i}\right\}\right|$. In particular, if \mathcal{X} is commutative then we have $\left|\left\{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right) ; p^{l} \mid m_{\varphi}\right\}\right| \leq\left|\left\{i \in\{0, \ldots, d\} ; p^{l} \mid n n_{i}\right\}\right|$.

Proof. Let K be an algebraic number field such that \mathcal{A}_{K} is split, let R be the ring of integers in K, and let $\wp \triangleleft R$ be a prime ideal such that $\wp \cap \mathbb{Z}=p \mathbb{Z}$; for the associated valuations we have $\left.\nu_{\wp}\right|_{\mathbb{Z}}=e \nu_{p}$, where $e \in \mathbb{N}$ is the ramification index. We may assume that $\Psi:=\left[\delta_{\varphi}\left(A_{i}\right)_{r s} ;[\varphi, r, s] \in \mathcal{T}, i \in\{0, \ldots, d\}\right]_{\varphi, r, s ; i} \in$ $R_{\wp}^{(d+1) \times(d+1)}$, where $\mathcal{T}:=\left\{[\varphi, r, s] ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right), r, s \in\left\{1, \ldots, d_{\varphi}\right\}\right\}$ is ordered lexicographically; if \mathcal{X} is commutative, that is $d_{\varphi}=1$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, then $\Psi=\Phi\left(\mathcal{A}_{K}\right)$ coincides with the character table of \mathcal{A}_{K}.
Let $N:=\operatorname{diag}\left[n_{0}, \ldots, n_{d}\right] \in \mathbb{Z}^{(d+1) \times(d+1)}$ and $M:=\operatorname{diag}\left[m_{\varphi} I_{d_{\varphi}^{2}} ; \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)\right] \in$ $\mathbb{Z}^{(d+1) \times(d+1)}$. The orthogonality relations read $(\Psi Q) N^{-1}(P \Psi)^{\operatorname{tr}}=n M^{-1} \in$ $K^{(d+1) \times(d+1)}$, where $Q \in \mathbb{Z}^{(d+1) \times(d+1)}$ is the permutation matrix describing the involution $*: i \mapsto i^{*}$ on $\{0, \ldots, d\}$, and $P \in \mathbb{Z}^{(d+1) \times(d+1)}$ is the permutation matrix describing the appropriate reordering of \mathcal{T}. In particular $\Psi \in K^{(d+1) \times(d+1)}$ is invertible. Inverting yields $(P \Psi)^{-\operatorname{tr}} N(\Psi Q)^{-1}=n^{-1} M$ and thus $(P \Psi)^{\operatorname{tr}} M(\Psi Q)=n N \in R_{\wp}^{(d+1) \times(d+1)}$.
Since R_{\wp} is a principal ideal domain, it has an elementary divisor theory with respect to its only prime ideal \wp, where elementary divisors are greatest common divisors of appropriate matrix minors. Writing $M=\operatorname{diag}\left[m_{0}, \ldots, m_{d}\right]$, we for $k \in \mathbb{N}_{0}$ have $\left|\left\{i \in\{0, \ldots, d\} ; \nu_{\wp}\left(m_{i}\right) \geq k\right\}\right| \leq\left|\left\{i \in\{0, \ldots, d\} ; \nu_{\wp}\left(n n_{i}\right) \geq k\right\}\right| . \quad \forall$
(4.6) Remark. The above matrix calculation relates to the Frame number as follows: We have $\operatorname{det}(Q)=(-1)^{\frac{d+1-|\mathcal{I}|}{2}}$ and $\operatorname{det}(P)=\prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}}$,
thus we get $(-1)^{\frac{d+1-|I|}{2}} \operatorname{det}(\Psi)^{2} \cdot \prod_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)}(-1)^{\binom{d_{\varphi}}{2}} m_{\varphi}^{d_{\varphi}^{2}}=n^{d+1} \Delta$, thus $\mathcal{N}=$ $\operatorname{det}\left(P \Psi^{2}\right)$. The associated Wedderburn basis $\mathcal{E} \subseteq \mathcal{A}_{K}$ is given as $\mathcal{E}^{\operatorname{id}}\left\{A_{i}\right\}=$ $n^{-1} M P(\Psi Q) N^{-1}$. Hence from $n^{-1}(\Psi Q) N^{-1}=M^{-1}(P \Psi)^{- \text {tr }}$ and using $M P=$ $P M$ and $P=P^{-1}=P^{\text {tr }}$, we conclude $\mathcal{E}^{\operatorname{id}_{\left\{A_{i}\right\}}}=M P M^{-1} P^{-\operatorname{tr}} \Psi^{-\mathrm{tr}}=\Psi^{-\mathrm{tr}}$, implying $C:={ }_{\left\{A_{i}\right\}} \mathrm{id}_{\mathcal{E}}=\Psi^{\mathrm{tr}}$.
(4.7) Theorem: Higman, 1975 [14]. Let \mathcal{X} be an association scheme. Then $\left|\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)\right|=2$ implies $d=1$. In particular, if $d \leq 4$ then \mathcal{X} is commutative.

Proof. Let $\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)=\left\{\varphi_{0}, \varphi\right\}$, where φ_{0} is the trivial character. Hence we have $d+1=\operatorname{dim}_{\mathbb{C}}\left(\mathcal{A}_{\mathbb{C}}\right)=1+d_{\varphi}^{2}$, thus $d_{\varphi}^{2}=d$. For the natural character $\nu=\varphi_{0}+m_{\varphi} \varphi$ we have $0=\nu\left(A_{i}\right)=n_{i}+m_{\varphi} \varphi\left(A_{i}\right)$, for all $i \geq 1$, thus $\varphi\left(A_{i}\right)=\frac{-n_{i}}{m_{\varphi}}<0$, and since $\varphi\left(A_{i}\right)$ is an integer we conclude $\varphi\left(A_{i}\right) \leq-1$. For $J_{n}=\sum_{i=0}^{d} A_{i}=n \epsilon_{\varphi_{0}}$ we have $0=\varphi\left(J_{n}\right)=d_{\varphi}+\sum_{i=1}^{d} \varphi\left(A_{i}\right) \leq d_{\varphi}-d=d_{\varphi}-d_{\varphi}^{2}$, thus $d_{\varphi}^{2} \leq d_{\varphi}$, implying $d_{\varphi}=1$ and hence $d=d_{\varphi}^{2}=1$.
If $d \leq 3$, then from $\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathrm{C}}\right)} d_{\varphi}^{2}=d+1 \leq 4$ and $d_{\varphi_{0}}=1$ we conclude that $d_{\varphi}=1$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)$, that is $\mathcal{A}_{\mathbb{C}}$ is commutative. Finally, if $d=4$ then assume that $\mathcal{A}_{\mathbb{C}}$ is not commutative. Then we have $\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)=\left\{\varphi_{0}, \varphi\right\}$ where $d_{\varphi}=2$, implying $d=1$, a contradiction.
(4.8) Theorem: Bannai-Ito, 1984 [3]. Let \mathcal{X} be an association scheme, such that all non-trivial characters in $\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)$ have the same multiplicity m. Then \mathcal{X} is commutative, and we have $n_{1}=\cdots=n_{d}=m$ and $|\mathcal{N}|=n^{d+1}$.

Proof. We may assume that $d \geq 1$; we have $n_{0}=m_{\varphi_{0}}=d_{\varphi_{0}}=1$ anyway. Then $n=1+m \cdot \sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)} d_{\varphi}$ implies that n and m are coprime. Since $\sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)} d_{\varphi}^{2}=d$ we infer that $|\mathcal{N}|=\frac{n^{d+1} \Delta}{m^{d}} \in \mathbb{Z}$, and thus $m^{d} \mid$ Δ, hence $m \leq \Delta^{\frac{1}{d}}$. The inequality between the geometric and arithmetic mean yields $\Delta^{\frac{1}{d}}=\left(\prod_{i=1}^{d} n_{i}\right)^{\frac{1}{d}} \leq \frac{1}{d} \cdot \sum_{i=1}^{d} n_{i}=\frac{n-1}{d}=\frac{m \cdot \sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathrm{C}}\right)} d_{\varphi}}{d} \leq$ $\frac{m \cdot \sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)} d_{\varphi}^{2}}{d}=m \leq \Delta^{\frac{1}{d}}$. Hence $\sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)} d_{\varphi}=\sum_{\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)} d_{\varphi}^{2}$ implies $d_{\varphi}=d_{\varphi}^{2}=1$ for all $\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)$, that is $\mathcal{A}_{\mathbb{C}}$ is commutative, thus $\left|\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)\right|=d+1$. Moreover, $\left(\prod_{i=1}^{d} n_{i}\right)^{\frac{1}{d}}=\frac{1}{d} \cdot \sum_{i=1}^{d} n_{i}$ implies $n_{1}=\cdots=n_{d}$, hence we have $1+d n_{1}=n=1+d m$, implying $n_{1}=m$ and $\Delta=m^{d}$.
(4.9) Theorem: Hanaki, 2002 [11]; Hanaki-Uno, 2006 [13]. Let \mathcal{X} be an association scheme such that $n=p^{l}$, where $p \in \mathbb{Z}$ is a prime and $l \in \mathbb{N}$.
a) Let F be a field such that $\operatorname{char}(F)=p$. Then \mathcal{A}_{F} is a local algebra.
b) If $n=p$ then all non-trivial characters in $\operatorname{Irr}\left(\mathcal{A}_{\mathbb{C}}\right)$ have the same multiplicity.

Proof. a) The adjacency algebra \mathcal{A}_{F} is local if and only if the trivial representation is the only irreducible representation. Hence we may assume that F
is a finite field and \mathcal{A}_{F} is split. Let K be an algebraic number field with ring of integers R, having a prime ideal $\wp \triangleleft R$ such that $R / \wp \cong F$, where we may assume that \mathcal{A}_{K} is split. We show that \mathcal{A}_{F} has a unique primitive idempotent:
Let first $e_{\varphi} \in \mathcal{A}_{K}$ be a primitive idempotent associated with $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, then from $\lambda=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \frac{1}{c_{\varphi}} \varphi$ we get $\lambda\left(e_{\varphi}\right)=\frac{1}{c_{\varphi}}=\frac{m_{\varphi}}{n} \in K$. Let now $f \in \mathcal{A}_{F}$ be a primitive idempotent. Then there is a primitive idempotent $\widehat{f} \in \mathcal{A}_{R_{\wp}}$ such that $\bar{f}=f$. Let $\widehat{f}=\sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} \sum_{i=1}^{k_{\varphi}} e_{\varphi, i}$ be a decomposition into pairwise orthogonal primitive idempotents $e_{\varphi, i} \in \mathcal{A}_{K}$, where $e_{\varphi, i}$ is associated with $\varphi \in$ $\operatorname{Irr}\left(\mathcal{A}_{K}\right)$ and $k_{\varphi} \in\left\{0, \ldots, d_{\varphi}\right\}$. Hence we have $\lambda(\widehat{f})=\frac{1}{p^{t}} \cdot \sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} k_{\varphi} m_{\varphi} \in$ $R_{\wp} \cap \mathbb{Q}=\mathbb{Z}_{\langle p\rangle}$, implying that $n=p^{l} \mid \sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} k_{\varphi} m_{\varphi} \leq \sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} d_{\varphi} m_{\varphi}=$ n, thus $k_{\varphi}=d_{\varphi}$ for all $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$, hence $\widehat{f}=A_{0}$ and thus $f=\widehat{f}=A_{0}$.
b) Let K be an algebraic number field with ring of integers R such that \mathcal{A}_{K} is split, where we may assume that $\mathbb{Q} \subseteq K$ is Galois, and let $\wp \triangleleft R$ be a prime ideal such that $F:=R / \wp$ is a field such that $\operatorname{char}(F)=p$. We show that all $\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ are algebraically conjugate, then in particular all the Schur elements $c_{\varphi}=\frac{n}{m_{\varphi}} \in \mathbb{Q}$ are the same, and thus the multiplicities as well:
For $\varphi_{0} \neq \varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ let $\mathcal{O}:=\left\{\varphi^{\sigma} \in \operatorname{Irr}\left(\mathcal{A}_{K}\right) ; \sigma \in \operatorname{Aut}_{\mathbb{Q}}(K)\right\}$ and $\mathcal{O}^{\prime}:=$ $\operatorname{Irr}\left(\mathcal{A}_{K}\right) \backslash\left(\left\{\varphi_{0}\right\} \dot{\mathcal{O}}\right)$, where the latter is to be shown to be the empty set, and let $\psi:=\sum_{\varphi^{\prime} \in \mathcal{O}} \varphi^{\prime}$ and $\psi^{\prime}:=\sum_{\varphi^{\prime} \in \mathcal{O}^{\prime}} \varphi^{\prime}$. Hence we have $\psi\left(A_{i}\right), \psi^{\prime}\left(A_{i}\right) \in$ $\operatorname{Fix}_{K}\left(\operatorname{Aut}_{\mathbb{Q}}(K)\right) \cap R=\mathbb{Q} \cap R=\mathbb{Z}$, for all $i \in\{0, \ldots, d\}$, and letting $d_{\psi}:=$ $\psi\left(A_{0}\right)=|\mathcal{O}|$ and $d_{\psi^{\prime}}:=\psi^{\prime}\left(A_{0}\right)=\left|\mathcal{O}^{\prime}\right|$ be the associated degrees we have $1 \leq d_{\psi}<\left|\operatorname{Irr}\left(\mathcal{A}_{K}\right)\right| \leq \sum_{\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)} m_{\varphi} d_{\varphi}=n=p$ and similarly $0 \leq d_{\psi^{\prime}}<p$.
Since the trivial character is the unique irreducible character of \mathcal{A}_{F}, decomposition theory implies that $\psi\left(A_{i}\right)-n_{i} d_{\psi} \in \wp$. Thus there are $a_{i} \in \mathbb{Z}$ such that $\psi\left(A_{i}\right)=n_{i} d_{\psi}-p a_{i} \in \mathbb{Z}$, and similarly there are $a_{i}^{\prime} \in \mathbb{Z}$ such that and $\psi^{\prime}\left(A_{i}\right)=n_{i} d_{\psi^{\prime}}-p a_{i}^{\prime} \in \mathbb{Z}$, for all $i \in\{0, \ldots, d\}$. The orthogonality relations imply $0=\sum_{i=0}^{d} \frac{\varphi_{0}\left(A_{i^{*}}\right) \psi\left(A_{i}\right)}{n_{i}}=\sum_{i=0}^{d} \psi\left(A_{i}\right)=p\left(d_{\psi}-\sum_{i=0}^{d} a_{i}\right)$, thus $\sum_{i=0}^{d} a_{i}=d_{\psi}$ and similarly $\sum_{i=0}^{d} a_{i}^{\prime}=d_{\psi^{\prime}}$. Again by the orthogonality relations we get $0=$ $\sum_{i=0}^{d} \frac{\psi\left(A_{i^{*}}\right) \psi^{\prime}\left(A_{i}\right)}{n_{i}}=\sum_{i=0}^{d} n_{i} d_{\psi} d_{\psi^{\prime}}-p \cdot \sum_{i=0}^{d}\left(d_{\psi} a_{i}^{\prime}+d_{\psi^{\prime}} a_{i^{*}}\right)+p^{2} \cdot \sum_{i=0}^{d} \frac{a_{i^{*}} a_{i}^{\prime}}{n_{i}}=$ $-p d_{\psi} d_{\psi^{\prime}}+p^{2} \cdot \sum_{i=0}^{d} \frac{a_{i^{*}} a_{i}^{\prime}}{n_{i}}$. Since $n_{i}<n=p$ for all $i \in\{0, \ldots, d\}$, this implies $d_{\psi} d_{\psi^{\prime}}=p \cdot \sum_{i=0}^{d} \frac{a_{i *} a_{i}^{\prime}}{n_{i}} \in \mathbb{Z}_{\langle p\rangle}$, hence $p \mid d_{\psi} d_{\psi^{\prime}} \in \mathbb{Z}$, and thus $d_{\psi^{\prime}}=0 . \quad \#$
(4.10) Example: Johnson scheme $\mathcal{J}(7,2)$. By (2.7) the adjacency algebra \mathcal{A}_{F} is split for any field F. Hence we let $K:=\mathbb{Q}$ and $R:=\mathbb{Z}$ and consider the cases $F:=\mathbb{F}_{p}$ for $p \in\{2,3,5,7\}$. We have $n=21$ and $n_{0}=1$ and $n_{1}=$ $n_{2}=10$, hence $\Delta=\prod_{i=0}^{2} n_{i}=100=2^{2} \cdot 5^{2}$. Moreover, we have $\mathcal{I}=\{0, \ldots, 2\}$, hence the Frame number is $\mathcal{N}=(-1)^{0} \cdot \Delta \cdot \prod_{i=0}^{2} c_{i}^{d_{i}^{2}}=11025=3^{2} \cdot 5^{2} \cdot 7^{2}$, and the decomposition matrices, that is the matrices describing the various
decomposition maps, are as follows, where $3,7 \notin \Delta$ while $2,5 \in \Delta$:

	m_{i}	c_{i}	d_{i}	$p=7$	$p=3$	$p=5$	$p=2$	
φ_{0}	1	21	1	1	\cdot	1	.	1
.	1	.	\cdot					
φ_{1}	6	$\frac{7}{2}$	1	1	.	.	1	.
φ_{2}	14	$\frac{3}{2}$	1	.	1	1	.	.

(4.11) Example. Let $G:=J_{1}$ be the smallest sporadic simple Janko group, of order $|G|=175560=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$, let $H:=L_{2}(11)<G$ be the largest maximal subgroup, of order $|H|=660=2^{2} \cdot 3 \cdot 5 \cdot 11$, and let \mathcal{X} be the Schurian scheme on $X:=H \backslash G$. Then \mathcal{X} is commutative such that $d=4$ and $n=266=2 \cdot 7 \cdot 19$. We have $\left[n_{0}, \ldots, n_{4}\right]=[1,11,110,132,12]$, and by (5.4) the character table $\Phi\left(\mathcal{A}_{\mathbb{C}}\right)$ is given as follows:

	m_{i}	c_{i}	d_{i}	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}
φ_{0}	1	266	1	1	11	110	132	12
φ_{1}	56	$\frac{19}{4}$	1	1	$\frac{-7-\sqrt{5}}{2}$	$\frac{5+7 \sqrt{5}}{2}$	$\frac{3-9 \sqrt{5}}{2}$	$\frac{-3+3 \sqrt{5}}{2}$
φ_{2}	56	$\frac{19}{4}$	1	1	$\frac{-7+\sqrt{5}}{2}$	$\frac{5-7 \sqrt{5}}{2}$	$\frac{3+9 \sqrt{5}}{2}$	$\frac{-3-3 \sqrt{5}}{2}$
φ_{3}	76	$\frac{7}{2}$	1	1	4	5	-8	-2
φ_{4}	77	$\frac{38}{11}$	1	1	1	-10	4	4

Since $\mathcal{A}_{\mathbb{Q}}$ is commutative, the character field $K:=\mathbb{Q}(\sqrt{5})$ is the unique minimal splitting field of $\mathcal{A}_{\mathbb{Q}}$ in \mathbb{C}; the ring of integers in K is $R:=\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, which is a principal ideal domain. The valencies $n_{i}=\varphi_{0}\left(A_{i}\right)$ are pairwise different, implying that $\mathcal{I}:=\{0, \ldots, 4\}$, and yielding $\Delta=\prod_{i=0}^{4} n_{i}=1916640=2^{5}$. $3^{2} \cdot 5 \cdot 11^{3}$. The multiplicities m_{i} are not pairwise different, and we have $\mathcal{N}=$ $(-1)^{0} \cdot \Delta \cdot n^{5} \cdot \prod_{i=0}^{4}\left(\frac{1}{m_{i}}\right)^{d_{i}^{2}}=139081177620=2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11^{2} \cdot 19^{4}$, which is not a square in \mathbb{Z}, but only is a square in R.

As for the decomposition maps, let $\wp \triangleleft R$ be a prime ideal such that $\wp \cap \mathbb{Z}=p \mathbb{Z}$ for $p \in\{2,3,5,7,11,19\}$, where $11,19 \notin \Delta$ while $2,3,5,11 \in \Delta$. Appropriate choices of \wp for $p \in\{11,19\}$ yield:

| | c_{i} | $p=19$ | | $p=7$ | | | | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| φ_{0} | 266 | 1 | \cdot | \cdot | 1 | . | \cdot | \cdot |
| φ_{1} | $\frac{19}{4}$ | 1 | . | . | . | 1 | . | . |
| φ_{2} | $\frac{19}{4}$ | \cdot | 1 | . | . | . | 1 | \cdot |
| φ_{3} | $\frac{7}{2}$ | . | . | 1 | 1 | . | . | . |
| φ_{4} | $\frac{38}{11}$ | . | 1 | . | . | . | . | 1 |

	c_{i}	$p=11$				$p=5$			$p=3$			$p=2$					
φ_{0}	266	1	.	.	.	1	.	.	.	1	.	.	.	1	.	.	.
φ_{1}	$\frac{19}{4}$.	1	.	.	.	1	.	.	.	1	.	.	.	1	.	.
φ_{2}	$\frac{19}{4}$.	.	1	.	.	1	1	.	.	.	1	.
φ_{3}	$\frac{7}{2}$.	.	1	.	.	.	1	1
φ_{4}	$\frac{38}{11}$.	.	.	1	.	.	.	1	.	.	.	1

5 Commutative schemes

In this section let \mathcal{X} be a commutative association scheme.
(5.1) The natural module. Endowing the natural $\mathcal{A}_{\mathbb{C}}$-module \mathbb{C}^{n} with the standard scalar product $\langle v, w\rangle:=v \cdot \bar{w}^{\mathrm{tr}} \in \mathbb{C}$, for all $v, w \in \mathbb{C}^{n}$, the adjoint of $A \in \mathbb{C}^{n \times n}$ is given as $A^{\text {adj }}=\bar{A}^{\operatorname{tr}}$, where ${ }^{-}: \mathbb{C} \rightarrow \mathbb{C}$ is complex conjugation. Since $A_{j}^{\text {adj }}=\bar{A}_{j}^{\mathrm{tr}}=A_{j^{*}} \in \mathcal{A}$, for all $j \in\{0, \ldots, d\}$, we conclude that A_{j} is a normal matrix, that is A_{j} commutes with its adjoint. Hence by the spectral theorem for complex normal matrices there is an orthogonal direct sum decomposition $\mathbb{C}^{n}=\bigoplus_{i=0}^{t} V_{i}$ as \mathbb{C}-vector spaces, for some $t \in \mathbb{N}_{0}$, such that the strata V_{i} are maximal simultaneous eigenspaces of all elements of $\mathcal{A}_{\mathbb{C}}$.
Letting $\varphi_{i}\left(A_{j}\right) \in \mathbb{C}$ be the associated eigenvalue of A_{j}, for all $i \in\{0, \ldots, t\}$ and $j \in\{0, \ldots, d\}$, we have $\left.A_{j}\right|_{V_{i}}=\varphi_{i}\left(A_{j}\right) \cdot \mathrm{id}_{V_{i}}$. Since $\left.\left(A^{\text {adj }}\right)\right|_{V_{i}}=\left(\left.A\right|_{V_{i}}\right)^{\text {adj }}$ for all $A \in \mathcal{A}_{\mathbb{C}}$, we conclude that $\varphi_{i}\left(A_{j^{*}}\right)=\bar{\varphi}_{i}\left(A_{j}\right) \in \mathbb{C}$; in particular if $j^{*}=j$ then we have $\varphi_{i}\left(A_{j}\right) \in \mathbb{R}$. For the minimum and characteristic polynomials of A_{j} we have $\mu_{A_{j}}=\prod_{i=0}^{t}\left(T-\varphi_{i}\left(A_{j}\right)\right) \in \mathbb{C}[T]$ and $\chi_{A_{j}}=\prod_{i=0}^{t}\left(T-\varphi_{i}\left(A_{j}\right)\right)^{m_{i}} \in \mathbb{C}[T]$, where $m_{i}:=\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right) \in \mathbb{N}$. Since the natural representation is faithful, the character table of $\mathcal{A}_{\mathbb{C}}$ is given as $\Phi:=\Phi\left(\mathcal{A}_{\mathbb{C}}\right)=\left[\varphi_{i}\left(A_{j}\right)\right]_{i j} \in \mathbb{C}^{(t+1) \times(d+1)}$ with associated multiplicities $m_{i} \in \mathbb{N}$ and degrees $d_{i}=1$, for all $i \in\{0, \ldots, t\}$.
If \mathcal{X} is symmetric, then $A_{i}^{\text {tr }}=A_{i} \in \mathcal{A} \subseteq \mathbb{R}^{n \times n}$ shows that A_{i} is a symmetric real matrix, for all $i \in\{0, \ldots, d\}$. Letting \mathbb{R}^{n} be endowed with the standard scalar product $\langle v, w\rangle:=v \cdot w^{\operatorname{tr}} \in \mathbb{R}$, for all $v, w \in \mathbb{R}^{n}$, by the spectral theorem for symmetric real matrices there is an orthogonal direct sum decomposition $\mathbb{R}^{n}=\bigoplus_{i=0}^{t} W_{i}$ as \mathbb{R}-vector spaces such that $V_{i}=W_{i} \otimes_{\mathbb{R}} \mathbb{C}$.
(5.2) Characters. Let K be an algebraic number field such that \mathcal{A}_{K} is split, and let R be the ring of integers in K. The algebra \mathcal{A}_{K} is split semisimple, this implies $t=d$, hence we have $\mathcal{A}_{K} \cong \bigoplus_{i \in\{0, \ldots, d\}} \operatorname{End}_{K}\left(S_{i}\right) \cong \bigoplus_{i \in\{0, \ldots, d\}} K$, where S_{i} is the irreducible \mathcal{A}_{K}-module affording $\varphi_{i} \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$. We have $\varphi_{i}\left(A_{j}\right) \in R$ for all $i, j \in\{0, \ldots, d\}$, and $\Phi \in R^{(d+1) \times(d+1)}$ is a square matrix. We may assume that $K:=\mathbb{Q}\left(\varphi_{i}\left(A_{j}\right) ; i, j \in\{0, \ldots, d\}\right)$ is the character field, being the unique minimal splitting field of $\mathcal{A}_{\mathbb{Q}}$ in \mathbb{C}.
Letting $N:=\operatorname{diag}\left[n_{0}, \ldots, n_{d}\right] \in \mathbb{Z}^{(d+1) \times(d+1)}$ and $M:=\operatorname{diag}\left[m_{0}, \ldots, m_{d}\right] \in$ $\mathbb{Z}^{(d+1) \times(d+1)}$, the orthogonality relations yield row orthogonality $\bar{\Phi} N^{-1} \Phi^{\operatorname{tr}}=$ $n M^{-1} \in K^{(d+1) \times(d+1)}$; in particular, Φ is invertible, and we have Biggs' formula (1974) $\sum_{j=0}^{d} \frac{1}{n_{j}} \bar{\varphi}_{i}\left(A_{j}\right) \varphi_{i}\left(A_{j}\right)=\frac{n}{m_{i}}$ relating the character φ_{i} and its multiplicity m_{i}. Letting $Q \in \mathbb{Z}^{(d+1) \times(d+1)}$ be the permutation matrix describing the involution $*: i \mapsto i^{*}$ on $\{0, \ldots, d\}$, we have $\bar{\Phi}=\Phi Q$. By inverting, row orthogonality implies $\Phi^{-\operatorname{tr}} N \bar{\Phi}^{-1}=\frac{1}{n} M$, and thus we have column orthogonality $\Phi^{\operatorname{tr}} M \bar{\Phi}=n N \in R^{(d+1) \times(d+1)}$.
Let $\varphi_{0} \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ be the trivial character, that is we have $\varphi_{0}\left(A_{i}\right)=n_{i} \geq 0$
for all $i \in\{0, \ldots, d\}$. From row orthogonality we infer that φ_{0} is the unique irreducible character $\varphi \in \operatorname{Irr}\left(\mathcal{A}_{K}\right)$ such that $\varphi\left(A_{i}\right) \geq 0$ for all $i \in\{0, \ldots, d\}$. Hence the valencies $n_{i}=\varphi_{0}\left(A_{i}\right)$ and thus the multiplicities m_{i} are determined from the character table Φ alone.

Let $\mathcal{E}=\left\{\epsilon_{0}, \ldots, \epsilon_{d}\right\} \subseteq \mathcal{A}_{K}$ be the Wedderburn basis, where $\epsilon_{i} \in \mathcal{A}_{K}$ is the centrally primitive idempotent associated with φ_{i}. Hence we have $\mathcal{E} \operatorname{id}_{\left\{A_{k}\right\}}=\Phi^{-\operatorname{tr}} \in$ $K^{(d+1) \times(d+1)}$. The intersection matrices $P_{j}={ }_{\left\{A_{k}\right\}}\left(A_{j}\right)_{\left\{A_{k}\right\}} \in \mathbb{Z}^{(d+1) \times(d+1)}$, for $j \in\{0, \ldots, d\}$, being the representing matrices of the right regular representation of \mathcal{A}_{K} with respect to the Schur basis, we from $\epsilon_{i} A_{j}=\varphi_{i}\left(A_{j}\right) \epsilon_{i}$, for $i \in\{0, \ldots, d\}$, get $\mathcal{E}^{\operatorname{id}_{\left\{A_{k}\right\}} \cdot P_{j}=C_{j} \cdot \mathcal{E}^{\operatorname{id}}{ }_{\left\{A_{k}\right\}} \text {, where } C_{j}:=\operatorname{diag}\left[\varphi_{i}\left(A_{j}\right) ; i \in, ~\left(A^{\prime}\right)\right.}$ $\{0, \ldots, d\}] \in R^{(d+1) \times(d+1)}$. Hence we have $P_{j}=\left(\mathcal{E i d}_{\left\{A_{k}\right\}}\right)^{-1} \cdot C_{j} \cdot \mathcal{E}^{\operatorname{id}_{\left\{A_{k}\right\}}}=$ $\Phi^{\mathrm{tr}} C_{j} \Phi^{-\mathrm{tr}}$, thus the intersection matrices P_{j} are determined from Φ alone.

Conversely, we show how Φ can be determined from the P_{j} : Since $\mathcal{E}^{\operatorname{id}}\left\{A_{k}\right\}$ describes the Wedderburn isomorphism $\mathcal{A}_{K} \cong \bigoplus_{i=0}^{d} \mathcal{A}_{K} \epsilon_{i} \cong \bigoplus_{i=0}^{d} K$ in terms of the Schur basis, the rows of $\mathcal{E}^{\operatorname{id}}\left\{A_{k}\right\}=\Phi^{-\mathrm{tr}}$ are simultaneous eigenvectors of all the P_{j}, with associated eigenvalues $\varphi_{i}\left(A_{j}\right)$; this is also seen from the equation $\Phi^{-\operatorname{tr}} P_{j}=C_{j} \Phi^{-\operatorname{tr}}$. Since $\mathcal{P}_{K} \cong \mathcal{A}_{K}$ as K-algebras, any non-zero simultaneous eigenspace of all the P_{j} corresponds to a submodule of \mathcal{A}_{K} having only one constituent, thus is one-dimensional. Hence the non-zero simultaneous eigenspaces of all the P_{j} are the K-spans of the various rows of $\Phi^{-\mathrm{tr}}$. Thus $\Phi^{-\mathrm{tr}}$ can be determined up to scalars from the P_{j}, by computing eigenspaces and intersecting them, where it is sufficient to determine only a subset of the P_{j} and their eigenspaces such that one-dimensional simultaneous eigenspaces are obtained; finally Φ is found from transposing, inverting and using $\varphi_{i}\left(A_{0}\right)=1$.

The P_{j}^{tr} are the representing matrices of the left regular representation of \mathcal{A}_{K}, that is the right regular representation of the opposite algebra $\mathcal{A}_{K}^{\text {opp }} \cong \mathcal{A}_{K}$, with respect to the dual Schur basis. The Frobenius-Schur relations imply $\mathcal{E}^{\operatorname{id}}\left\{A_{k}^{*}\right\}=$ $\operatorname{diag}\left[c_{i} ; i \in\{0, \ldots, d\}\right]^{-1} \cdot \Phi \in K^{(d+1) \times(d+1)}$, where $c_{i} \in K$ is the Schur element associated with φ_{i}. Hence the rows of Φ are simultaneous eigenvectors of all the P_{j}^{tr}, with associated eigenvalues $\varphi_{i}\left(A_{j}\right)$; this is also seen in terms of matrices, since from $\Phi^{-\operatorname{tr}} P_{j}=C_{j} \Phi^{-\mathrm{tr}}$ we get $C_{j}^{-1} \Phi^{-\mathrm{tr}}=\Phi^{-\mathrm{tr}} P_{j}^{-1}$, and thus inverting and transposing yields $\Phi P_{j}^{\mathrm{tr}}=C_{j} \Phi$. As above we conclude that the non-zero simultaneous eigenspaces of all the $P_{j}^{\operatorname{tr}}$ are the K-spans of the various rows of Φ. Thus Φ can be determined directly from the P_{j}^{tr}, avoiding a matrix inversion.
(5.3) Central Schurian schemes. Let $X:=G$ be a finite group, let $G=$ $\coprod_{i=0}^{d} C_{i}$ be its conjugacy classes, and let $x_{i} \in C_{i}$ for all $i \in\{0, \ldots, d\}$, where $x_{0}:=1$. For $i \in\{0, \ldots, d\}$ let $R_{i}:=\left\{[x, y] \in G^{2} ; x^{-1} y \in C_{i}\right\}$. Then we have $G^{2}=\coprod_{i=0}^{d} R_{i}$ where $R_{0}=\{[x, x] ; x \in G\}$, and letting $i^{*} \in\{0, \ldots, d\}$ such that $C_{i}^{-1}=C_{i^{*}}$ we have $R_{i}^{\mathrm{tr}}=R_{i^{*}}$; hence $R_{i}^{\mathrm{tr}}=R_{i}$ if and only if C_{i} is self-inverse. Indeed $\mathcal{X}:=\left[G,\left\{R_{0}, \ldots, R_{d}\right\}\right]$ is a Schurian association scheme:
We consider the transitive action of $G \times G$ on G via $[g, h]: x \mapsto g^{-1} x h$. We have $\operatorname{Stab}_{G \times G}(1)=\Delta(G):=\{[g, g] ; g \in G\} \cong G$, and hence the $\Delta(G)$-suborbits are
given by $x^{\Delta(G)}=\left\{g^{-1} x g ; g \in G\right\}$ for $x \in G$, that is the conjugacy classes of G. The diagonal action of $G \times G$ on G^{2} is given by $[g, h]:[x, y] \mapsto\left[g^{-1} x h, g^{-1} y h\right]$. For $i \in\{0, \ldots, d\}$ let $\left[1, x_{i}\right]^{G \times G}=\left\{\left[g^{-1} h, g^{-1} x_{i} h\right] ; g, h \in G\right\}$ be an orbital. Then $\left(g^{-1} h\right)^{-1}\left(g^{-1} x_{i} h\right)=h^{-1} x_{i} h \in C_{i}$ implies $\left[1, x_{i}\right]^{G \times G} \subseteq R_{i}$. Hence from $\coprod_{i=0}^{d}\left[1, x_{i}\right]^{G \times G}=G^{2}=\coprod_{i=0}^{d} R_{i}$ we infer $\left[1, x_{i}\right]^{G \times G}=R_{i}$ for all $i \in\{0, \ldots, d\}$. For $i, j, k \in\{0, \ldots, d\}$, since $\left[1, x_{k}\right] \in R_{k}$ we have $p_{i j}^{k}=\mid\{x \in G ;[1, x] \in$ $\left.R_{i},\left[x, x_{k}\right] \in R_{j}\right\}\left|=\left|\left\{x \in G ; x \in C_{i}, x^{-1} x_{k} \in C_{j}\right\}\right|=\left|C_{i} \cap x_{k} C_{j}^{-1}\right|=\right|\{[x, y] \in$ $\left.C_{i} \times C_{j} ; x y=x_{k}\right\} \mid=: a_{i j}^{k}$, the central structure constants of G :
Let R be a ring, and let $Z(R[G])$ be the centre of the group algebra $R[G]$. Then $\left\{C_{i}^{+} ; \in\{0, \ldots, d\}\right\} \subseteq Z(R[G])$ is an R-basis, where $C_{i}^{+}:=\sum_{x \in C_{i}} x \in R[G]$ is the associated conjugacy class sum. Then we have $C_{i}^{+} C_{j}^{+}=\sum_{k=0}^{d} a_{i j}^{k} C_{k}^{+}$, for all $i, j, k \in\{0, \ldots, d\}$. Thus we infer that $Z(R[G]) \rightarrow \mathcal{A}_{R}: C_{i}^{+} \mapsto A_{i}$ is an isomorphism of R-algebras; in particular \mathcal{X} is commutative.
Let K be a field such that $\operatorname{char}(K)=0$ and $K[G]$ is split. For $\chi \in \operatorname{Irr}(K[G])$ let $\omega_{\chi} \in \operatorname{Irr}(Z(K[G]))$ be the associated central character given by $\omega_{\chi}\left(C_{i}^{+}\right)=$ $\frac{\left|C_{i}\right| \chi\left(x_{i}\right)}{\chi(1)} \in K$, for all $i \in\{0, \ldots, d\}$, describing the scalar action of $Z(K[G])$ on the irreducible module affording χ. Hence the character table $\left[\omega_{\chi}\left(C_{i}^{+}\right) ; \chi \in\right.$ $\operatorname{Irr}(K[G]), i \in\{0, \ldots, d\}]_{\chi, i}$ of $Z(K[G])$ with respect to the class sum basis coincides with the character table of \mathcal{A}_{K} with respect to the Schur basis. Thus the character table of $Z(K[G])$, and hence the irreducible characters of G, can be determined from the central structure constants.
(5.4) Example. Let \mathcal{X} be the Schurian scheme on $X:=H \backslash G$ where $G:=J_{1}$ and $H:=L_{2}(11)<G$ from (4.11). Still letting $\left[n_{0}, \ldots, n_{4}\right]=[1,11,110,132,12]$, the intersection matrix $P_{1} \in \mathbb{Z}^{5 \times 5}$ associated to $A_{1} \in \mathcal{A}$ is given as follows:

$$
P_{1}=\left[\begin{array}{rrrrr}
. & 1 & . & . & . \\
11 & . & 1 & . & \cdot \\
. & 10 & 4 & 5 & . \\
. & . & 6 & 5 & 11 \\
. & . & . & 1 & \cdot
\end{array}\right]
$$

Hence for the minimum polynomial of $b:=[1,0,0,0,0] \in K^{5}$ with respect to P_{1} we have $\mu_{P_{1}, b}=T^{5}-9 T^{4}-42 T^{3}+193 T^{2}+341 T-484=(T-11)(T-$ $\left.\frac{-7-\sqrt{5}}{2}\right)\left(T-\frac{-7+\sqrt{5}}{2}\right)(T-4)(T-1) \in K[T]$, thus for the minimum polynomial of P_{1} we have $\mu_{P_{1}}=\mu_{P_{1}, b}$. Hence we have $\left\langle P_{1}^{i} ; i \in \mathbb{N}_{0}\right\rangle_{K}=\left\langle P_{1}^{0}, \ldots, P_{1}^{4}\right\rangle_{K}$, where $\left\{P_{1}^{0}, \ldots, P_{1}^{4}\right\}$ is K-linearly independent. Hence we have $\left\langle P_{1}^{0}, \ldots, P_{1}^{4}\right\rangle_{K}=\mathcal{P}_{K}$, and it suffices to compute the eigenspaces of P_{1}, which are as follows:

$$
\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
110+110 \sqrt{5} & -60-40 \sqrt{5} & 20+6 \sqrt{5} & \frac{-35-5 \sqrt{5}}{2} & 55 \\
110-110 \sqrt{5} & -60+40 \sqrt{5} & 20-6 \sqrt{5} & \frac{-35+5 \sqrt{5}}{2} & 55 \\
66 & 24 & 3 & -4 & -11 \\
33 & 3 & -3 & 1 & 11
\end{array}\right]
$$

The character table Φ is then found from inverting, transposing and normalising the above matrix. Equivalently, it suffices to compute the eigenspaces of P_{1}^{tr}, where normalising eigenvectors directly yields the character table Φ :

$$
\left[\begin{array}{rrrrr}
1 & 11 & 110 & 132 & 12 \\
1 & \frac{-7-\sqrt{5}}{2} & \frac{5+7 \sqrt{5}}{2} & \frac{3-9 \sqrt{5}}{2} & \frac{-3+3 \sqrt{5}}{2} \\
1 & \frac{-7+\sqrt{5}}{2} & \frac{5-7 \sqrt{5}}{2} & \frac{3+9 \sqrt{5}}{2} & \frac{-3-3 \sqrt{5}}{2} \\
1 & 4 & 5 & -8 & -2 \\
1 & 1 & -10 & 4 & 4
\end{array}\right]
$$

6 References

[1] E. Assmus, J. Key: Designs and their codes, Cambridge Tracts in Mathematics 103, Cambridge University Press, 1992.
[2] R. Bailey: Association Schemes: Designed experiments, algebra and combinatorics, Cambridge University Press, 2004.
[3] E. Bannai, T. Ito: Algebraic combinatorics I: Association schemes, Benjamin, 1984.
[4] R. Bose, T. Shimamoto: Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc. 47, 1952, 151-184.
[5] A. Brouwer, A. Cohen, A. Neumaier: Distance-regular graphs, Springer, 1989.
[6] C. Curtis, I. Reiner: Representation theory of finite groups and associative algebras, Wiley, 1962.
[7] C. Curtis, I. Reiner: Methods of representation theory I, Wiley, 1981.
[8] P. Delsarte: An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10, 1973.
[9] P. Fleischmann: On Lusztig's isomorphism theorems for Hecke algebras and representation theory, J. London Math. Soc. 47, 1993, 450-472.
[10] J. Frame: The double cosets of a finite group, Bull. Amer. Math. Soc. 47, 1941, 458-467.
[11] A. Hanaki: Locality of a modular adjacency algebra of an association scheme of prime power order, Arch. Math. 79, 2002, 167-170.
[12] A. Hanaki: Semisimplicity of adjacency algebras of association schemes, J. Algebra. 225, 2000, 124-129.
[13] A. Hanaki, K. Uno: Algebraic structure of association schemes of prime order, J. Algebraic. Combin. 23, 2006, 189-195.
[14] D. Higman: Lectures on permutation representations, Vorlesungen aus dem Mathematischn Institut Gies̈en 4, 1977.
[15] D. Higman: Coherent configuration II: Weights, Geom. Dedicata 5, 1976, 413-424.
[16] D. Higman: Coherent configuration I: Ordinary representation theory, Geom. Dedicata 4, 1975, 1-32.
[17] J. JACOB: Representation theory of association schemes, Dissertation, RWTH Aachen, 2004.
[18] H. Matsumura: Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1989.
[19] J. MüLler: On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen, 2003.
[20] J. MÜLLER: Zerlegungszahlen für generische Iwahori-Hecke-Algebren von exzeptionellem Typ, Dissertation, RWTH Aachen, 1995.
[21] H. Wielandt: Finite permutation groups, Academic Press, 1964.
[22] P. Zieschang: An algebraic approach to association schemes, Lecture Notes in Mathematics 1628, Springer, 1996.

