
Computer algebra:

Primality testing and

integer factorisation

Friedrich-Schiller-Universität Jena, WS 2014

Jürgen Müller

Contents

1 Integer arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Primality testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Integer factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Integer factorisation II . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Exercises (in German) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



1

1 Integer arithmetic

(1.1) Landau symbols. Let F be the set of all functions f : Df → R>0,
where Df ⊆ N0 is a co-finite subset, that is all functions defined for almost
all non-negative integers and taking positive real values. Then for f ∈ F the
Landau symbols O(f) and o(f) are the sets of all functions g ∈ F such that the

sequence [ g(n)f(n) ∈ R>0;n ∈ Df ∩Dg] is bounded, and such that limn→∞
g(n)
f(n) = 0,

respectively; hence we have o(f) ⊆ O(f).

Functions f, g ∈ F are called asymptotically equivalent if limn→∞
g(n)
f(n) = 1;

we write f ∼ g, and in this case we have f ∈ O(g) and g ∈ O(f). We use a
similar notation for functions in several variables, and for functions defined on
right unbounded subsets of R.

For example, Stirling’s formula limn→∞
n!·en

nn·
√
2πn

= 1 says that n! ∼ (ne )n ·
√

2πn,

hence ln(n!) ∼ n(ln(n) − 1) + 1
2 · ln(n) + ln(

√
2π) ∼ n ln(n). Moreover, letting

P := {p ∈ N; p prime}, and for x ∈ R letting P≤x := {p ∈ P; p ≤ x} and
π(x) := |P≤x| ∈ N0, the Prime Number Theorem says that π(x) ∼ x

ln(x) .

(1.2) Bit lengths and bit operations. The number of digits to the base

1 6= z ∈ N necessary to represent n =
∑b−1
i=0 niz

i ∈ N, where ni ∈ {0, . . . , z− 1},
is given as the bit length b = bz(n) = 1+blogz(n)c = 1+b ln(n)ln(z) c ∈ N, where b·c
denotes lower Gaussian brackets. For n ∈ Z we need an additional sign, hence
the input length of 0 6= n ∈ Z into a Turing machine is 1+bz(|n|) ∼ 1

ln(z) ·ln(|n|),
the representation of |n| being the sequence [n0, . . . , nb].

The computational complexity of integer arithmetic is counted in bit oper-
ations on bit strings, hence with respect to the base z = 2: These are the
operations ‘and’, ‘or’, ‘exclusive or’, ‘not’, and ‘shift’, Generalised bit operations
are Byte operations, word operations and long word operations, with
respect to the bases z = 28, z = 232 and z = 264, respectively. The time needed
for these operations indeed is polynomial in the input length.

We treat bit operations as oracles. An algorithm, whose input up to sign is
n ∈ N, is called an Lα,c-time algorithm, where 0 ≤ α ≤ 1 and c > 0, if it needs
O(Lα,c(n)) bit operations, where Lα,c(n) := exp(c · (ln(n))α · (ln(ln(n)))1−α).
Hence for α = 0 we have L0,c(n) = lnc(n), thus runs in polynomial time; for
α = 1 we have L1,c(n) = exp(c ln(n)) = nc, thus runs in exponential time;
and for 0 < α < 1 we have cxα ln(x)1−α ∈ o(x), see Exercise (6.2), thus runs in
subexponential time O(exp(h(ln(n)))), for some function h(x) ∈ o(x).

(1.3) Ring operations. These in general are addition, subtraction and multi-
plication, as well as division by units; the latter do not play a role for integers.
The following algorithms are essentially the conventional techniques:

a) Addition. Let n ≥ m ∈ N and b := bz(n) = max{bz(n), bz(m)}, for some

1 6= z ∈ N. Hence we have n =
∑b−1
i=0 niz

i, where ni ∈ {0, . . . , z − 1}, and we
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may assume m =
∑b−1
j=0mjz

j , where mj ∈ {0, . . . , z− 1}, by letting mj := 0 for
j ∈ {bz(m), . . . , b− 1}.
• δ ← 0 # carry
• for k ∈ [0, . . . , b− 1] do
• sk ← nk +mk + δ # sk ∈ {0, . . . , 2z − 1}
• if sk ≥ z then
• sk ← sk − z
• δ ← 1

• else
• δ ← 0

• sb ← δ
• return [s0, . . . , sb]

Hence we have n + m =
∑b
k=0 skz

k. For each k ∈ {0, . . . , b} this needs a fixed
number of bit operations, and hence needs O(b) = O(ln(n)) bit operations in
total, that is runs in linear time. A similar analysis, see Exercise (6.4), shows
that subtraction also needs O(ln(n)) bit operations.

b) Multiplication. Let bn := bz(n) and bm := bz(m). Hence we have

nm =

bn−1∑
i=0

bm−1∑
j=0

nimjz
i+j =

bn+bm−2∑
k=0

 min{bn−1,k}∑
l=max{0,k−bm+1}

nlmk−l

 zk.

• for k ∈ [0, . . . , bn + bm − 1] do
• sk ← 0

• for i ∈ [0, . . . , bn − 1] do
• δ ← 0 # carry
• for j ∈ [0, . . . , bm − 1] do
• s← si+j + nimj + δ # s ∈ {0, . . . , z2 − 1}
• si+j ← s mod z # s = (s mod z) + b sz c · z
• δ ← b sz c # δ ∈ {0, . . . , z − 1}

• si+bm ← δ
• return [s0, . . . , sbn+bm−1]

Hence we have nm =
∑bn+bm−1
k=0 skz

k. For each i and j this needs a fixed
number of bit operations, thus in total needs O(bz(n)bz(m)) = O(ln(n) ln(m))
bit operations. Hence for n ≥ m this amounts to O(ln2(n)) bit operations, that
is runs in quadratic time.

(1.4) Fast multiplication [Karatsuba, 1962]. As for multiplication, we can
do better. To this end, let k ∈ N0 and b := 2k, and let 1 6= z ∈ N and m,n ∈ N
such that m,n < zb; hence we have bz(m), bz(n) ≤ b.

For k ≥ 1, let m = m′·z b2 +m′′ and n = n′·z b2 +n′′, for some 0 ≤ m′,m′′, n′, n′′ <
z
b
2 . Hence we have 0 ≤ |m′−m′′|, |n′−n′′| < z

b
2 , and m ·n = m′n′zb+ (m′n′′+

m′′n′) · z b2 +m′′n′′, where m′n′′ +m′′n′ = m′n′ +m′′n′′ + (m′ −m′′)(n′′ − n′).
Thus let K(m,n, k) be the following algorithm:
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• if k = 0 then
• return mn

• else
• r ← K(m′, n′, k − 1)
• s← K(m′′, n′′, k − 1)
• t← K(|m′ −m′′|, |n′ − n′′|, k − 1)
• b← 2k

• return rzb + (r + s± t) · z b2 + s

Hence by induction with respect to k ∈ N0 we have K(m,n, k) = mn. We
show that this divide-and-conquer technique needs O(blog2(3)) bit operations;

assuming that n ≥ m and b
2 < bz(n) ≤ b this amounts to O(lnlog2(3)(n)) bit

operations, where 1 < 158
100 < log2(3) < 159

100 < 2, thus runs in time strictly
between quadratic and linear:

Let κ(k) ∈ N be the number of bit operations needed to compute K(·, ·, k). Then
we may assume that κ(0) = 1, and for k > 0 we have three calls of K(·, ·, k− 1)
as well as additions and shifts, thus κ(k) = 3 · κ(k− 1) + γ · 2k, for some γ > 0.
Thus by induction we get

κ(k) = 3k ·κ(0)+γ ·
k−1∑
i=0

(3i ·2k−i) = 3k+2k ·γ ·
( 3
2 )k − 1
3
2 − 1

= (2γ+1) ·3k−γ ·2k+1.

Hence we have κ(k) ∈ O(3k) = O(3log2(b)) = O((2log2(3))log2(b)) = O(blog2(3)). ]

The best known integer multiplication algorithm, the Schönhage-Strassen
Algorithm [1971] using Fast Fourier Transform, see [2, Ch.8.3], runs in
nearly-linear time O(ln(n) · ln(ln(n)) · ln(ln(ln(n)))) ⊆ O(ln1+ε(n)), for ε > 0.

(1.5) Quotient and remainder. Let m ≥ n ∈ N, and let q, r ∈ N0 be the
unique elements such that r < n and m = qn+ r; they are called the associated
quotient and remainder, respectively, and we have q = b nmc. Note that in
particular to compute in Zn the computation of remainders is needed. Again,
the following is derived from the conventional technique to compute quotients:

Let b := bz(n) and b′ := bz(m), for some 1 6= z ∈ N, and n =
∑b−1
i=0 niz

i and

m =
∑b′−1
j=0 mjz

j , where ni,mj ∈ {0, . . . , z − 1}. For later use, replacing [m,n]
by [km, kn] where k := b z

nb−1+1c, we may assume that nb−1 ≥ b z2c; this does not

change b and increases b′ by at most 1. We consider the leading bits of n and
m in order to find the leading bit of the quotient: To this end, replacing n by
zln for some l ∈ {0, . . . , b′− b}, we may assume that we have b ≤ bz(m) ≤ b+ 1,
and that q ∈ {0, . . . , z − 1} is the leading bit we are looking for. Now, letting
q′ := min{bmbz+mb−1

nb−1
c, z − 1}, we have q′ − 2 ≤ q ≤ q′:

To show that q ≤ q′ we may assume that q′ = bmbz+mb−1

nb−1
c. Then we have

nb−1q
′ ≥ mbz+mb−1−(nb−1−1). Hence m−q′n ≤ m−q′nb−1zb−1 ≤ m−(mbz+

mb−1)zb−1 + (nb−1 − 1)zb−1 = (nb−1 − 1)zb−1 +
∑b−2
j=0mjz

j < nb−1z
b−1 ≤ n
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implies that q ≤ q′. Now assume that q′ ≥ q + 3. Then from q′ ≤ m
nb−1zb−1 <

m
n−zb−1 and q = bmn c >

m
n−1 we get 3 ≤ q′−q < m

n−zb−1−(mn−1) = m·zb−1

n(n−zb−1)
+1,

thus m
n > 2(nb−1−1), and hence z−4 ≥ q′−3 ≥ q = bmn c ≥ 2(nb−1−1) ≥ z−3,

a contradiction. Thus we have q′ ≤ q + 2. ]

Having found the first bit q of the quotient, we replace m by m − qzln, and
iterate. Hence we need at most b′−b+1 iteration steps. In each step, to compute
q at most 3 trials are necessary, and the multiplication to compute qzln needs
O(b) bit operations; note that the shift is not performed in practice. Moreover,
since m ≥ qzln and b′ ≤ bz(qz

ln) + 1, the subtraction m − qzln also needs
O(b) bit operations only, instead of O(b′). This amounts to O(b) bit operations
per iteration step, and thus to a total of O(b(b′ − b)) = O(ln(n) ln(mn )) ⊆
O(ln(n) ln(m)) ⊆ O(ln2(m)) bit operations, that is runs in quadratic time.

(1.6) Extended Euclidean algorithm. Let m,n ∈ N. Then the greatest
common divisor r = gcd(m,n) ∈ N, and Bézout coefficients s, t ∈ Z such
that r = sm + tn ∈ Z, can be computed as follows, without determining the
factorisation of m and n. Leaving out the steps indicated by ◦, only needed
to compute s and t, just yields the greatest common divisor r, the remaining
algorithm being called the Euclidean algorithm:

• r0 ← m
• r1 ← n
◦ s0 ← 1
◦ t0 ← 0
◦ s1 ← 0
◦ t1 ← 1
• i← 1
• while ri > 0 do
• ri+1 ← ri−1 mod ri # quotient and remainder ri−1 = qiri + ri+1

◦ qi ← b ri−1

ri
c

◦ si+1 ← si−1 − qisi
◦ ti+1 ← ti−1 − qiti
• i← i+ 1

• return [r; s, t]← [ri−1; si−1, ti−1] # resp. r ← ri−1

We have r0 = s0m + t0n and r1 = s1m + t1n, and by induction on i ≥ 1 we
have ri+1 = ri−1 − qiri = (si−1m + ti−1n) − qi · (sim + tin) = si+1m + ti+1n.
As we have ri < ri−1 for all i ≥ 1, there is l ∈ N such that rl > 0 and rl+1 = 0.
Hence the algorithm terminates, after l executions of the while loop, returning
[r, s, t] := [rl, sl, tl] such that r = sa + tb. Moreover, from ri+1 = ri−1 − qiri,
for all i ∈ {1, . . . , l}, we indeed get r = rl = gcd(rl, 0) = gcd(rl, rl+1) =
gcd(ri, ri+1) = gcd(ri−1, ri) = gcd(r0, r1) = gcd(m,n).

Let 1 6= z ∈ N. For i ∈ {1, . . . , l} we need O(bz(ri)bz(qi)) bit operations to

compute [qi, ri+1]. Since bz(qi) = 1 + blogz(qi)c, we have O(
∑l
i=1 bz(qi)) =

O(bz(
∏l
i=1 qi)) ⊆ O(bz(r0)). Hence computing the quotients and remainders
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needs O(
∑l
i=1 bz(ri)bz(qi)) ⊆ O(bz(r1) ·

∑l
i=1 bz(qi)) ⊆ O(bz(r1)bz(r0)) bit op-

erations. To compute the linear combinations needs O(
∑l
i=1 bz(qi)bz(si)) bit

operations, where in turn bz(si) ∈ O(bz(si−1)+bz(qi−1)), hence we have bz(si) ∈
O(
∑i−1
j=1 bz(qj)), yielding O(

∑l
i=1

∑i−1
j=1 bz(qi)bz(qj)) bit operations. As above

we from this obtain O(
∑l−1
j=1

∑l
i=j+1 bz(qj)bz(qi)) ⊆ O(

∑l−1
j=1 bz(qj)bz(rj)) ⊆

O(bz(r1) ·
∑l−1
j=1 bz(qj)) ⊆ O(bz(r1)bz(r0)) bit operations. Thus this needs

O(bz(r1)bz(r0)) = O(bz(m)bz(n)) bit operations; if m ≥ n this hence needs
O(ln(m) ln(n)) ⊆ O(ln(m)2) bit operations, that is runs in quadratic time.

Note that the number l of steps needed is not explicitly needed nor determined
in the previous argument; actually it is in O(ln(n)), see Exercise (6.6). For
example, for m := 126 and n := 35 we get r = gcd(m,n) = 7 = 2m− 7n:

i qi ri si ti

0 126 1 0
1 3 35 0 1
2 1 21 1 −3
3 1 14 −1 4
4 2 7 2 −7
5 0 −5 18

(1.7) Polynomial arithmetic. Let R be a commutative ring and let R[X] be

the polynomial ring over R in the indeterminate X. For 0 6= f =
∑d
i=0 fiX

i ∈
R[X], where fi ∈ R, having leading coefficient lc(f) := fd 6= 0, let deg(f) :=
d ∈ N0 denote its degree.

The computational complexity of polynomial arithmetic is usually measured in
ring operations in R, relative to the degrees of the polynomials involved. Hence
in general this is not directly related to the number of bit operations needed,
since coefficient growth in R has to be taken into account, for example for R = Z,
while it directly relates to the number of bit operations needed for finite rings
R, for example for residue class rings R = Z/nZ or for finite fields R = Fq.

The algorithms for integer arithmetic straightforwardly generalize to polynomial
arithmetic by letting z := X, and even have a tendency to become slightly easier,
see Exercise (6.10):

Let 0 6= f, g ∈ R[X], where deg(f) ≥ deg(g). Addition f + g and subtraction
f−g need O(deg(f)) ring operations, while multiplication f ·g, using the classical
technique, needs O(deg(f)2) ring operations. The Karatsuba algorithm general-
izes to multiplication f · g, needing O(deg(f)log2(3)) ring operations. Moreover,
the best known polynomial multiplication algorithm again is the Schönhage-
Strassen Algorithm [1971], see [2, Ch.8.3], whenever deg(f) + deg(g) ≤ n
needing O(n · ln(n) · ln(ln(n))) ring operations.

Let 0 6= g ∈ R[X] such that its leading coefficient lc(g) ∈ R is a unit in R. Hence
for f ∈ R[X] there exist unique q, r ∈ R[X] such that r = 0 or deg(r) < deg(g),
fulfilling f = qg + r. We may assume deg(f) ≥ deg(g), hence to compute [q, r]
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needs O(deg(f)·(deg(f)−deg(g))) ⊆ O(deg(f)2) ring operations in R; note that
only lc(g) ∈ R∗ has to be inverted, and that the quotient q can be computed
without guessing. Finally, R[X] is Euclidean if and only if R is a field; in this
case the extended Euclidean algorithm generalizes to 0 6= f, g ∈ R[X], and needs
O(deg(f) · deg(g)) ring operations.

2 Modular arithmetic

(2.1) Groups. a) A set G together with a multiplication · : G × G → G
fulfilling the following conditions is called a commutative group: We have
commutativity ab = ba for all a, b ∈ G; we have associativity (ab)c = a(bc)
for all a, b, c ∈ G; there is a neutral element 1 ∈ G such that a · 1 = a for all
a ∈ G; and for any a ∈ G there is an inverse a−1 ∈ G such that a · a−1 = 1.

Then 1 ∈ G is the unique neutral element, and a−1 ∈ G is the unique inverse of
a ∈ G: Let 1′ ∈ G also be a neutral element, then 1 = 1 · 1′ = 1′; and letting
a′ ∈ G also be an inverse of a, then a′ = a′ · 1 = a′aa−1 = 1 · a−1 = a−1.
Moreover, a subset ∅ 6= H ⊆ G is called a subgroup, if it is closed under
products and taking inverses. Then we have 1 ∈ H, and H again becomes a
commutative group; we write H ≤ G.

b) If G is finite, then the cardinality |G| ∈ N is called the order of G. In this
case, the order of a ∈ G is defined as |a| := min{m ∈ N; am = 1} ∈ N; this
indeed is well-defined: Since G is finite, there are m,n ∈ Z, where m > n, such
that am = an, hence we have am−n = am · (an)−1 = 1 where m− n ∈ N.

Moreover, letting n := |a|, we have al = am for l,m ∈ Z if and only if n | (l−m):
If n | (l−m) then there is k ∈ Z such that l = m+kn, hence al = am(an)k = an.
Conversely, if al = am, then by quotient and remainder writing l−m = qn+ r,
where q ∈ Z and r ∈ {0, . . . , n− 1}, yields 1 = al−m = ar · (an)q = ar, thus by
the minimality of n we conclude r = 0, that is n | (l −m).

In particular, we have am = 1 if and only if n | m. This also shows that the
cyclic subgroup 〈a〉 := {am ∈ G;m ∈ Z} = {am ∈ G;m ∈ {0, . . . , n− 1}} ≤ G
has order |〈a〉| = n. Hence it follows from Lagrange’s Theorem below that |a| |
|G|, thus in particular we have Fermat’s Theorem saying that a|G| = 1 ∈ G.

c) Let H ≤ G be a subgroup. Then we have Lagrange’s Theorem saying
that |H| | |G|: For g ∈ G we consider the set gH := {gh ∈ G;h ∈ H} ⊆ G. We
have gh = gh′, for h, h′ ∈ H, if and only if h = h′. Thus we have |gH| = |H|.
Moreover, for g, g′ ∈ G we have either gH ∩ g′H = ∅ or gH = g′H: Let
gh = g′h′, for h, h′ ∈ H, then we have g′ = ghh′−1, and thus g′h′′ = ghh′−1h′′

for all h′′ ∈ H. Thus we have g′H ⊆ gH, and hence by symmetry gH = g′H.
Letting X := {gH ⊆ G; g ∈ G}, we thus have G =

∐
X∈X X, hence |H| | |G|.

(2.2) Modular arithmetic. a) For n ∈ N let Zn := {0, . . . , n − 1} ⊆ Z, and
for a ∈ Z let a := (a mod n) ∈ Zn be the remainder of a upon division by n. We
define an addition +: Zn × Zn → Zn and a multiplication · : Zn × Zn → Zn by
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a+ b := a+ b and a · b := ab. This is well-defined, since we have independence
from the choice of representatives: Let a, a′, b, b′ ∈ Z such that a = a′ and b = b′,
that is there are k, l ∈ Z such that a′ = a + kn and b′ = b + ln. Thus we have
a′ + b′ = (a+ kn) + (b+ ln) = (a+ b) + (k + l)n and a′b′ = (a+ kn)(b+ ln) =
ab+ (al + bk + kln)n, hence a′ + b′ = a+ b and a′b′ = ab.

This shows that the laws of commutativity, associativity and distributivity are
inherited from Z; note that iterated arithmetic operations can be performed in
Z before going over to remainders with respect to n, although this is usually
not recommended. As for addition, we have a neutral element 0 ∈ Zn, and
any a ∈ Zn has an additive inverse −a ∈ Zn; hence Zn is a commutative
additive group. As for multiplication, we have a neutral element 1 ∈ Zn, but a
multiplicative inverse does not always exist; for example, 2 ∈ Z4 does not have
an inverse. Thus Zn is a commutative ring, but not necessarily a field.

b) We consider the multiplicative structure of Zn: An element a ∈ Zn is called
invertible, if there is b ∈ Zn such that ab = 1 ∈ Zn. Let Z∗n := {a ∈
Zn; a invertible}, then Z∗n is a commutative multiplicative group with neutral
element 1 ∈ Z∗n, called the group of units of Zn. Note that Z∗1 = Z1 = {0},
while for n ≥ 2 we have 0 6= 1 and 0 6∈ Z∗n. Thus Zn is a field if and only if
Z∗n = Zn \ {0}. Let ϕ : N → N : n 7→ |Z∗n| be Euler’s totient function, thus
Zn is a field if and only if ϕ(n) = n− 1.

In general, we have Z∗n = {a ∈ Zn; gcd(a, n) = 1}, being also called the group
of prime residues modulo n: Note first that, whenever a, a′ ∈ Z such that
a = a′, we have gcd(a, n) = gcd(a′, n). If a ∈ Z∗n, having inverse b ∈ Z∗n, then
ab = 1 ∈ Zn says that there is k ∈ Z such that ab + kn = 1 ∈ Z, implying
that gcd(a, n) = 1. Conversely, if a ∈ Zn such that gcd(a, n) = 1, then there
are Bézout coefficients s, t ∈ Z such that sa + tn = 1 ∈ Z, hence we have
1 = sa+ tn = sa ∈ Zn, saying that s ∈ Zn is an inverse of a ∈ Zn. Note that
hence inverses can be computed using the extended Euclidean algorithm, thus
needing O(ln2(n)) bit operations.

From that we conclude that Zn is a field if and only if n ∈ N is a prime: We
have Z1 = {0}; if n ≥ 2 is composite then there are a, b ∈ Zn \ {0, 1} such that
n = ab ∈ Z, hence we have gcd(a, n) = a 6= 1, that is a 6∈ Z∗n

.
∪ {0}; if n is a

prime, then we have gcd(a, n) = 1 for all 0 6= a ∈ Zn, hence Z∗n = Zn \ {0}.
c) We consider the additive structure of Zn: The additive group Zn = 〈1〉 is
cyclic of order n. We have Zn =

∐
d |n{a ∈ Zn; gcd(a, n) = d}, where in turn

{a ∈ Zn; gcd(a, n) = d} = {kd ∈ Zn; k ∈ Zn
d

; gcd(k, nd ) = 1} = dZ∗n
d

. Moreover,

given a ∈ dZ∗n
d

, that is gcd(a, n) = d, and k ∈ Z, we have ka = 0 ∈ Zn if

and only if n | ka, which holds if and only if n
d | k. Hence dZ∗n

d
⊆ Zn is

the subset of all elements having additive order n
d . Thus Zn has precisely ϕ(d)

elements of additive order d, for all d | n, and hence we have
∑
d |n ϕ(d) = n.

Moreover, from that we conclude that Zn has precisely d elements of additive
order dividing d, that is precisely one cyclic subgroup of order d, for all d | n.
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d) Here is a couple of examples: If n := pe where p ∈ N is a prime and e ∈ N,
then we have Zn \ Z∗n = {a ∈ Zn; gcd(a, n) > 1} = {a ∈ Zn; p | a} = pZpe−1 ,
thus ϕ(pe) = |Z∗pe | = pe − pe−1 = pe−1(p− 1). Alternatively, in terms ϕ alone,
we proceed by induction on e, where for e = 1 we have ϕ(p) = p − 1; letting

e ≥ 2, we get ϕ(pe) = pe−
∑e−1
i=0 ϕ(pi) = pe− 1−

∑e−1
i=1 (pi− pi−1) = pe− pe−1.

If n := pq, where p 6= q ∈ N are primes, then we have Zn \ Z∗n = {a ∈
Zn; gcd(a, n) > 1} = {a ∈ Zn; p | a} ∪ {a ∈ Zn; q | a} = pZq ∪ qZp, thus
ϕ(pq) = |Z∗pq| = n− (q+p−1) = (p−1)(q−1). Alternatively, in terms ϕ alone,
we have ϕ(n) = n−ϕ(p)−ϕ(q)−ϕ(1) = pq−(p−1)−(q−1)−1 = (p−1)(q−1).

(2.3) Modular exponentiation. Let e, n ∈ N and m ∈ Zn = {0, . . . , n− 1}.
Then the modular e-th power me ∈ Zn can be computed by repeated squaring
as follows: To this end, let e =

∑k−1
j=0 ej2

j be the binary representation of e,
where ei ∈ {0, 1} and k := b2(e).

• b0 ← 1
• a0 ← m
• for i ∈ [0, . . . , k − 1] do
• bi+1 ← bi
• if ei = 1 then
• bi+1 ← aibi+1 mod n

• ai+1 ← a2i mod n
• return bk
By induction on i ∈ {0, . . . , k} we have ai = m2i ∈ Zn. Thus by induction on

i ∈ {−1, . . . , k−1} we get bi+1 = m
∑i
j=0 ej2

j

∈ Zn: The case i = −1 being clear,

let i ≥ 0; if ei = 0 then bi+1 = bi = m
∑i−1
j=0 ej2

j

= m
∑i
j=0 ej2

j

, if ei = 1 then

bi+1 = aibi = m2i+
∑i−1
j=0 ej2

j

= m
∑i
j=0 ej2

j

. This yields bk = m
∑k−1
j=0 ej2

j

= me.

All integers occurring are bounded above by n2, hence have bit lengths in
O(ln(n)), and the number of multiplications needed is in O(ln(e)). Hence this
needs O(ln(e) ln2(n)) bit operations, that is runs in polynomial time. Note that
‘classical’ exponentiation by computing me ∈ Z first produces integers of bit
lengths in O(e · ln(n)), and even by taking remainders modulo n needs O(e)
multiplications, hence the latter run in exponential time.

(2.4) Cryptosystems. A cryptosystem [P, C,K, E ,D] is a tuple, where the
plaintexts P, the ciphertexts C and the keys K are finite sets, and where
E = {Ee : P → C; e ∈ K} and D = {Dd : C → P; d ∈ K} are encryption and
decryption functions, respectively, such that for all e ∈ K there is some, but
not necessarily unique, d ∈ K such that Dd ◦ Ee = idP .

To encrypt and decrypt plain texts, letters from the Latin alphabet are first
encoded into and decoded from Z26 = {0, . . . , 25}, or electronic text data,
using the ASCII alphabet of length 128, is encoded into and decoded from
Z128 = {0, . . . , 127}. Hence a word of length l ∈ N is identified with an element



9

in Zlz, for some z ≥ 2, and the latter is interpreted as the representation of a
non-negative integer with respect to the base z. So, typically we have P, C ⊆ Zlz.

The idea now is to keep information private to communication partners, Alice
and Bob say, who communicate through an insecure channel, where data might
be caught by an opponent, Oscar say. Hence plaintexts are first encrypted
by Bob, then sent through the channel, and are decrypted again by Alice.
Thus in practice, given the keys, encryption and decryption functions should be
efficiently computable. Moreover, it should be difficult for Oscar to determine
plaintexts from ciphertexts without knowing the keys used, and it should also
be difficult for Oscar to determine the keys employed.

If given an encryption key e ∈ K a suitable decryption key d ∈ K can be assumed
to be equal to e, or if d can be easily computed from e, then the cryptosystem
is called symmetric or a private-key cryptosystem. In this case Alice and
Bob first have to exchange the keys securely.

If a suitable decryption key d ∈ K cannot be computed easily from e, then the
cryptosystem is called asymmetric and can be used as a public-key cryp-
tosystem: To receive messages Alice publishes e ∈ K, which Bob uses to encrypt
messages, but Alice keeps the suitable decryption keys d ∈ K private. In this
case no secure key exchange is necessary.

(2.5) The Rivest-Shamir-Adleman (RSA) cryptosystem [1978]. a) Let
p 6= q ∈ N be primes and let n := pq ∈ N be the associated modulus. Let P =
C := Z∗n and K := Z∗ϕ(n), where ϕ(n) = (p− 1)(q − 1), Moreover, for e ∈ Z∗ϕ(n)
let Ee : Z∗n → Z∗n : a 7→ ae, and let E = D := {Ee : Z∗n → Z∗n; e ∈ Z∗ϕ(n)}. This

indeed is an (unsymmetric) cryptosystem:

Given e ∈ Z∗ϕ(n), we have to provide d ∈ Z∗ϕ(n) such that Ed ◦ Ee = idZ∗n .
In order to do so, let d ∈ Z∗ϕ(n) such that ed = 1 ∈ Z∗ϕ(n). Then we have

ed = 1 + kϕ(n) ∈ Z, for some k ∈ Z, and since by Fermat’s Theorem we have
aϕ(n) = 1 ∈ Z∗n, we get (ae)d = aed = a · (aϕ(n))k = a ∈ Z∗n, for all a ∈ Z∗n.
Hence we may choose [n, e] as public key, the private key being [p, q, d].

b) This can be used in an RSA block cipher, where l := blog26(n)c ∈ N is
the block length: Words of length l in the Latin alphabet are first encoded into
Zl26, and then via 26-adic expansion considered as elements of Z26l ⊆ Zn; for
example, for l = 3 the word ‘abc’ yields 0 · 262 + 1 · 26 + 2 = 28 ∈ Zn.

For example, for p := 97 and q := 193 we get n = 18721, and since 263 = 17576
we let l := 3. Letting e := 43, using ϕ(n) = (p − 1)(q − 1) = 96 · 192 = 18432,
the extended Euclidean algorithm yields 1 = gcd(e, ϕ(n)) = −8573 ·e+20 ·ϕ(n),
hence we let d := −8573 = 9859 ∈ Z∗ϕ(n). Then the plaintext ‘she has sensed

a change in the weather’ is encrypted as shown in Table 1; note that we add
trailing letters in order to obtain a plaintext whose length is a multiple of the
block length. Note that letting l := 1 results in a protocol failure: By encrypting
all the plaintext letters we may directly read off the plaintext from a ciphertext.
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Table 1: RSA block cipher.

Z26 P = Z263 C = Z18721

she 18 7 4 12354 13130
has 7 0 18 4750 95
sen 18 4 13 12285 7342
sed 18 4 3 12275 13805
ach 0 2 7 59 8347
ang 0 13 6 344 10022
ein 4 8 13 2925 5164
the 19 7 4 13030 13434
wea 22 4 0 14976 18716
the 19 7 4 13030 13434
rzz 17 25 25 12167 14498

(2.6) The RSA cryptosystem and integer factorisation. Let p 6= q ∈ N
be primes and let n := pq ∈ N. If ϕ(n) is known, then inverses in Z∗ϕ(n) can be
computed in polynomial time, by the extended Euclidean algorithm.

Computing ϕ(n) = (p− 1)(q− 1) is polynomial time equivalent to factoring
n = pq: If p and q are known, then ϕ(n) = (p − 1)(q − 1) is easily computed
as well; conversely, if ϕ(n) = (p − 1)(q − 1) = (p − 1)(np − 1) is known, then

p2 + (ϕ(n)−n−1)p+n = 0 shows that {p, q} can be determined as the roots of

a quadratic equation, namely {p, q} = {n+1−ϕ(n)
2 ±

√
(n+1−ϕ(n))2−4n

2 }. Hence p
and q must be kept private. In particular, since for 0 6= a ∈ Zn \ Z∗n we have
1 < gcd(a, n) < n, yielding a prime divisor of n, these elements have to be

excluded; but since n−1−ϕ(n)
n = p+q

pq = 1
p + 1

q , they are extremely rare anyway.

Hence breaking the RSA cryptosystem polynomial time reduces to factoring
n, thus the RSA cryptosystem is secure only if factoring n = pq is computa-
tionally difficult. It is conjectured that factoring integers of the form pq is
as difficult as factoring arbitrary integers, and that integer multiplication is a
(cryptographic) one-way function, that is factoring integers cannot be done
algorithmically in (randomised) polynomial time. Conversely it is conjectured
that factoring n = pq polynomial time reduces to breaking the RSA cryptosys-
tem, implying that these problems are polynomial time equivalent.

Given the capabilities of the known factorisation algorithms, p and q should
be chosen of the same size, which should be at least p ∼ 2512 ∼ 10154, thus
n ∼ 21024 ∼ 10308. The PKCS#1 standard currently in use employs 1024-bit
moduli; the challenges RSA-200 and RSA-640, which are of size n ∼ 2663 ∼ 10200

and n ∼ 2640 ∼ 10192, respectively, have been successfully factored [2004, 2005].

Since factorisation algorithms might run faster for certain choices of the prime
divisors of n, for example if p−1 or p+1 has no large prime divisors, then these
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have to be avoided as well; and |p − q| must not be too small, since otherwise
the prime divisors of n can be found by trial division with integers close to

√
n.

Finally, it can be shown that |E| =
|Z∗ϕ(n)|

gcd(p−1,q−1) = ϕ((p−1)(q−1))
gcd(p−1,q−1) , thus p and q

have to be chosen such that gcd(p−1, q−1) is not too large. Actually, given an
encryption key, there are precisely gcd(p− 1, q− 1) admissible decryption keys;
in particular, since 2 | gcd(p− 1, q− 1) in any case the latter are never unique.

3 Primality testing

(3.1) The Lucas test. a) Let 1 6= n ∈ N. Then n is a prime if and only if
there is a primitive root a ∈ Z∗n such that |a| = n− 1:

The number n is a prime if and only if ϕ(n) = |Z∗n| = n − 1. Thus, if there is
an element a ∈ Z∗n such that |a| = n − 1, then by Fermat’s Theorem we have
n−1 | ϕ(n), hence ϕ(n) = n−1. Conversely, if n is a prime, then for all a ∈ Z∗n
we have |a| | n−1, but we have to show that there actually is some a ∈ Z∗n such
that |a| = |Z∗n|, that is to show Artin’s Theorem saying that Z∗n is cyclic:

Let d | n − 1 = |Z∗n|, and let a ∈ Z∗n such that d = |a| = |〈a〉|. Then, by
Fermat’s Theorem, all elements of the cyclic group 〈a〉 have order dividing d.
Now, Z∗n being a field, the polynomial Xd − 1 ∈ Zn[X] has at most d roots in
Zn, implying that Z∗n has at most d elements having order dividing d. Thus we
conclude that 〈a〉 consists of all elements of Z∗n of order dividing d. Since 〈a〉
has precisely ϕ(d) elements of order d, this implies that Z∗n has precisely ϕ(d)
elements of order d. Thus, assuming that Z∗n does not have an element of order
n− 1, then we have |Z∗n| ≤

∑
d |n−1,d 6=n−1 ϕ(d) < n− 1, a contradiction. ]

b) To verify primality we have the Lucas primality test [1876]: Let n− 1 =∏r
i=1 p

ei
i , where r ∈ N0, the p1, . . . , pr ∈ N are pairwise distinct primes and

e1, . . . , er ∈ N. Then a ∈ Z∗n has order n − 1 if and only if an−1 = 1 ∈ Z∗n and

a
n−1
pi 6= 1 ∈ Z∗n, for all i ∈ {1, . . . , r}: We only have to show that the power

conditions imply that |a| = n− 1. Indeed, the conditions imply that |a| | n− 1;
and assuming that |a| < n − 1, we conclude that |a| divides a maximal proper
divisor of n− 1, contradicting the conditions.

If n is a prime, then the tuple [a; p1, . . . , pr] is a called a Lucas certificate for
n, where the primitive root a ∈ Z∗n is called a Lucas witness. Note that to
do this we need a factorisation algorithm to find factors of n− 1, and to apply
the Lucas test recursively to verify primality of the candidate prime factors of
n−1 found. This yields a Pratt certificate [1975] for n, consisting of a Lucas
certificate for n, together with Pratt certificates for the prime factors of n− 1;
here no certificate is necessary for the primes found by the Sieve of Erathostenes.

(3.2) Example: Fermat numbers. For n ∈ N0 let Fn := 22
n

+ 1 ∈ N
be the n-th Fermat number, where F0 = 3, F1 = 5, F2 = 17, F3 = 257,
F4 = 65537 are primes. It was conjectured [Fermat, 1640] that Fn always is
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a prime. Actually, for n ∈ {1, . . . , 4} we have 3
Fn−1

2 = 32
2n−1

= −1 ∈ Z∗Fn
and thus 3Fn−1 = 32

2n

= 1 ∈ Z∗Fn , implying that 3 ∈ Z∗Fn is a primitive root

and [3; 2] is a Lucas certificate for Fn. Note that from 22
n

= −1 ∈ Z∗Fn we get

22
n+1

= 1 ∈ Z∗Fn , showing that 2 ∈ Z∗Fn has order 2n+1, which always divides

Fn − 1 = 22
n

, and implies that 2 ∈ Z∗Fn is a primitive root if and only if n ≤ 1,
thus in these cases [2; 2] is a Lucas certificate, but no statement is made elsewise.

But [Euler, 1732] has shown that F5 := 22
5

+ 1 = 4 294 967 297 has the prime
divisor 641, hence is composite: We have 641 = 640 + 1 = 5 · 27 + 1 ∈ Z,

thus 5 · 27 = −1 ∈ Z641, and 641 = 625 + 16 = 54 + 24 ∈ Z, thus 2
4

=

−5
4 ∈ Z641, hence F5 = 2

32
+ 1 = 2

4
2
28

+ 1 = −5 · 27
4

+ 1 = −(−1)4 + 1 =

−1 + 1 = 0 ∈ Z641. Similarly, [Landry, 1880] has shown that F6 := 22
6

+ 1 =
18 446 744 073 709 551 617 has the prime divisor 274 177, hence is composite, too.

Actually, we have 3F5−1 = 32
32

= 3 029 026 160 6= 1 ∈ Z∗F5
, saying that the order

of 3 ∈ Z∗F5
does not divide F5−1, implying that F5 is composite without exhibit-

ing a proper divisor. Similarly, 3F6−1 = 32
64

= 8 752 249 535 465 629 170 6= 1 ∈
Z∗F6

implies that F6 is composite as well. Using Pepin’s test [1877], proved us-
ing the quadratic reciprocity law for Jacobi symbols, saying that 3 ∈ Z∗Fn
always is a Lucas primality or Fermat compositeness witness for Fn whenever
n ≥ 1, it has been shown that all Fn for n ∈ {5, . . . , 32} are composite, while it
is still an open problem whether {F0, . . . , F4} are the only Fermat primes.

(3.3) The Fermat test. Let 1 6= n ∈ N. To verify primality only with a
certain probability we have the Fermat compositeness test: If n is a prime
then for all a ∈ Z∗n we have an−1 = 1. Hence if there is a ∈ Z∗n such that
an−1 6= 1 ∈ Z∗n, then n is composite, and a is called a Fermat witness for n.

If n is composite, but still an−1 = 1 ∈ Z∗n for some 1 6= a ∈ Z∗n, then n is called
a Fermat pseudo-prime with respect to the base a, and a is called a Fermat
liar for n. If n is a Fermat pseudo-prime with respect to all bases 1 6= a ∈ Z∗n,
then n is called a Carmichael number [Korselt, 1899; Carmichael, 1910].

We have n
2
7 ≤ |{k ∈ {1, . . . , n}; k Carmichael number}| ≤ n1−(1+ε)·

ln(ln(ln(n)))
ln(ln(n)) ,

for n → ∞ and for all ε > 0 [Alford-Granville-Pomerance, 1992; Pomerance-
Selfridge-Wagstaff, 1980], hence there are infinitely many Carmichael numbers;
those ≤ 104 are [561, 1105, 1729, 2465, 2821, 6601, 8911].

The set Un := {a ∈ Z∗n; an−1 = 1} ≤ Z∗n is a subgroup, where we have Un = Z∗n
if and only if n is either a prime or a Carmichael number. If Un 6= Z∗n, then by

Lagrange’s Theorem we have |Un||Z∗n|
≤ 1

2 , implying that the fraction of Fermat liars

is at most 1
2 ; actually, we cannot do better in general, see Exercise (6.21). Since

modular exponentiation needs O(ln(n)3) bit operations, we have the following
polynomial time Monte-Carlo algorithm to decide compositeness:

Given an error bound 0 < ε ≤ 1
2 , for at least d− log2(ε)e randomly chosen

elements of Z∗n we perform the Fermat test; if a Fermat compositeness witness
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is found then composite is returned, otherwise (probably) prime (or Carmichael,
to be precise) is returned. Thus, the answer composite is correct, while the
answer prime is incorrect with an error probability of at most ε.

(3.4) The Miller-Rabin test [Miller, 1976; Rabin, 1980]. a) Let 1 6= n ∈
N be odd, and let n − 1 = 2lm, where l ∈ N and m ∈ N is odd. Moreover,

let On := {a ∈ Z∗n; am = 1} ≤ Z∗n and Bn,k := {a ∈ Z∗n; a2
km = −1} ⊆ Z∗n,

for k ∈ {0, . . . , l − 1}; note that for the cases k ≥ l we have Bn,k = ∅ anyway,

see Exercise (6.23). These sets are mutually disjoint, and we have Bn := On
.
∪∐l−1

k=0Bn,k ⊆ Un := {a ∈ Z∗n; an−1 = 1} ≤ Z∗n; note that B−1n = Bn.

Then, if n is a prime we have Bn = Z∗n: Let a ∈ Z∗n \On, that is am 6= 1. Then,

letting J := {j ∈ {0, . . . , l − 1}; a2jm 6= 1}, we have 0 ∈ J , hence J 6= ∅, thus

we may let let 1 6= b := a2
km ∈ Z∗n, where k := maxJ . Hence if k < l − 1 we

get b2 = a2
k+1m = 1, while if k = l − 1 we get b2 = a2

lm = an−1 = 1 anyway,
thus in any case b is a root of X2 − 1 ∈ Zn[X], which since Zn is a field implies
that b = −1, hence a ∈ Bn,k.

To the contrary, if n 6= 9 is composite, then by (3.6) below we have |Bn||Z∗n|
≤ 1

4 ;

note that for n = 9 we have l = 3 and m = 1, hence O9 = {1}, as well as
B9,0 = {−1} and B9,1 = {a ∈ Z∗9; a2 = −1} = ∅ and B9,2 = {a ∈ Z∗9; a4 =
−1} = ∅, thus B9 = {±1}, while ϕ(9) = 6. An element a ∈ Z∗n \ Bn is called a
strong compositeness witness for n; note that these for composite n always
exist, thus there are no ‘strong Carmichael numbers’. Since l ∈ O(ln(n)) and
modular exponentiation needs O(ln(n)3) bit operations, a strong compositeness
test needs O(ln(n)4) bit operations, yielding a polynomial time Monte-Carlo
algorithm to decide compositeness, which actually is the workhorse of modern
primality (or better compositeness) testing.

If n is composite and a ∈ Bn, then n is called a strong pseudo-prime with
respect to the base a, and a is called a strong liar for n; in this case, from
Bn ⊆ Un we conclude that a also is a Fermat liar. Although there are composite
n 6= 9 having a fraction of 1

4 strong liars, for most n this fraction is much smaller,
see Exercise (6.22). Moreover, although it is possible to construct strong pseudo-
primes for any given finite set of bases [Arnault, 1995], these are extremely rare:
In view of the considerations below, if n is a strong pseudoprime with respect
to a, a′ ∈ Z∗n, then it is likely that it is also with respect to aa′ ∈ Z∗n. Hence
we are tempted to only consider bases a ∈ Z∗n such that a ∈ N can be chosen
to be prime. For example, letting {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .} be the
smallest primes, then the smallest strong pseudo-prime n with respect to the
first t ∈ N smallest primes, where t ∈ {1, . . . , 11}, is given in Table 2.

b) If n is composite such that l ≥ 2, then in general Bn ⊆ Un is not a subgroup,
see Exercise (6.23): More precisely, we have On ≤ Un and OnBn,k = Bn,k for
all k ∈ {0, . . . , l − 1}, and for k′ ∈ {0, . . . , l − 1} such that k′ < k we have
Bn,k′Bn,k ⊆ Bn,k. Moreover, we have Bn,0Bn,0 ⊆ On, implying that for l = 1

we indeed have Bn ≤ Un. But for k ≥ 1 we might have Bn,kBn,k 6⊆ On
.
∪
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Table 2: Strong pseudo-primes.

t n factorisation ∼
1 2047 23 · 89 2 · 103

2 1373653 829 · 1657 1 · 106

3 25326001 2251 · 11251 3 · 107

4 3215031751 151 · 751 · 28351 3 · 109

5 2152302898747 6763 · 10627 · 29947 2 · 1012

6 3474749660383 1303 · 16927 · 157543 3 · 1012

7, 8 341550071728321 10670053 · 32010157 3 · 1014

9, 10, 11 3825123056546413051 149491 · 747451 · 34233211 4 · 1018

∐k−1
i=0 Bn,i, thus Bn,kBn,k 6⊆ Bn.

Actually, elements violating the closure property with respect to products lead
to a factorisation of n: Let a, b ∈ Bn,k for some k ≥ 1, such that ab 6∈ Bn. Then

let j := min{i ∈ N0; (ab)2
im = 1}. Thus from (ab)2

km = 1 and ab 6∈ On we infer

j ∈ {1, . . . , k}. Thus letting x := (ab)2
j−1m ∈ Z∗n we get x2 = 1, where x 6= 1,

and from ab 6∈ Bn,j−1 we get x 6= −1. Hence we have (x+ 1)(x− 1) = x2 − 1 =
0 ∈ Zn, while x± 1 6= 0 ∈ Zn, thus 1 < gcd(x± 1, n) < n; note that this is just
a special case of the Fermat-Legendre factorisation method, see (5.1).

We now proceed to prove the Miller-Rabin criterion:

(3.5) Proposition. Let p ∈ N be an odd prime, and let e ∈ N. Then Z∗pe is a
cyclic group of order pe−1(p− 1).

Proof. By Artin’s Theorem, Z∗p is a cyclic group of order p−1, hence using the
natural map Zpe → Zp : a (mod pe) 7→ a (mod p), which induces a homomor-
phism of groups Z∗pe → Z∗p, there is an element of Z∗pe having order divisible by
p− 1, thus there is a ∈ Z∗pe having order p− 1. If there is b ∈ Z∗pe having order
pe−1, then ab ∈ Z∗pe has order pe−1(p − 1) = |Z∗pe |, implying that Z∗pe is cyclic.

Thus, it suffices to show by induction on e ∈ N that (1 + p)p
e−1

= 1 + kep
e ∈ Z,

where p 6 | ke ∈ N, implying that b := 1 + p ∈ Z∗pe has order pe−1:

For e = 1 we have ke = 1, while for e ≥ 2 we have (1+p)p
e−1

= (1+ke−1p
e−1)p =

1+ke−1p
e+ p(p−1)

2 k2e−1p
2(e−1)+

∑p
i=3

(
p
i

)
kie−1p

i(e−1). We have 2(e−1)+1 ≥ e+1

if and only if e ≥ 2, and i(e− 1) ≥ e+ 1 if and only if e ≥ i+1
i−1 = 1 + 2

i−1 , which

for e ≥ 2 and i ≥ 3 is fulfilled. Thus we have (1+p)p
e−1

= 1+ke−1p
e+k′e−1p

e+1,
for some k′e−1 ∈ Z, hence p - ke := ke−1 + pk′e−1. ]
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(3.6) Theorem: [Miller, 1976; Rabin, 1980]. Let 9 6= n ∈ N be odd and
composite. Keeping the notation of (3.4), we have |Bn| ≤ 1

4ϕ(n).

Proof. Let n =
∏r
i=1 p

ei
i , where the pi ∈ N are pairwise distinct odd primes,

ei ∈ N and
∑r
i=1 ei ≥ 2. By the Chinese remainder theorem, see Exer-

cise (6.12), the natural map Zn →
∏r
i=1 Zpeii : a (mod n) 7→ [a (mod peii ); i ∈

{1, . . . , r}] is an isomorphism of rings. This induces an isomorphism of groups
Z∗n →

∏r
i=1 Z∗peii . In particular, we have ϕ(n) =

∏r
i=1 ϕ(peii ) =

∏r
i=1 p

ei−1
i (pi −

1) =
∏r
i=1 2limi, where ϕ(peii ) = 2limi, and in turn li ∈ N and mi ∈ N odd.

Hence we get gcd(n − 1, ϕ(peii )) = 2min{l,li}m′i, where still n − 1 = 2lm and
m′i := gcd(m,mi). Finally, let l′ := min{l1, . . . , lr}.
We have On ∼=

∏r
i=1{a ∈ Z∗

p
ei
i

; am = 1} as commutative groups. Since Z∗
p
ei
i

is a

cyclic group of order ϕ(pei), and thus for any d | ϕ(pei) has precisely d elements
of order dividing d, we conclude that |On| =

∏r
i=1 gcd(m,ϕ(peii )) =

∏r
i=1m

′
i.

We have Bn,k ∼=
∏r
i=1{a ∈ Z∗

p
ei
i

; a2
km = −1} as sets, thus for k ≥ l′ we have

Bn,k = ∅. For k < l′ we have |{a ∈ Z∗
p
ei
i

; a2
km = −1}| = |{a ∈ Z∗

p
ei
i

; a2
k+1m =

1}|− |{a ∈ Z∗
p
ei
i

; a2
km = 1}| = gcd(2k+1m,ϕ(peii ))−gcd(2km,ϕ(peii )) = (2k+1−

2k) gcd(m,mi) = 2km′i, for i ∈ {1, . . . , r}, implying |Bn,k| = 2kr ·
∏r
i=1m

′
i.

Hence we get |Bn| =
∏r
i=1m

′
i+
∑l′−1
k=0 (2kr ·

∏r
i=1m

′
i) = (1 + 2rl

′
−1

2r−1 ) ·
∏r
i=1m

′
i =

α · β · ϕ(n), where α := 2rl
′
+2r−2

(2r−1)·2
∑r
i=1

li
and β :=

∏r
i=1

m′i
mi
≤ 1. Since α ≤

1
2r−1 · (1 + 2r−2

2rl′
) ≤ 1

2r−1 · (1 + 2r−2
2r ) = 2(2r−1)

2r(2r−1) = 1
2r−1 , we are done for r ≥ 3.

Similarly, if r = 2 and [m1,m2] 6= [m′1,m
′
2], then we have α ≤ 1

2 and β ≤ 1
2 .

Hence let r = 2 and mi = m′i. Then we have pei−1i | mi = m′i | m | n − 1,
and from pi | n we conclude ei = 1, and thus n = p1p2. Since ei = 1 we have

pi − 1 = 2limi, and hence 0 = n− 1 = p1p2 − 1 = pj − 1 = 2
lj ·mj ∈ Zmi , for

j 6= i. This implies mi | mj , and hence we have m1 = m2 and thus l1 6= l2.

From this we obtain α ≤ 1
22−1 ·

22l
′
+22−2

2l1+l2
≤ 1

3 ( 22l
′

22l′+1 + 2
23 ) = 1

3 ( 1
2 + 1

4 ) = 1
4 .

Finally, for r = 1 and e1 > 1, since Z∗
p
e1
1

is cyclic, we get |Bn| ≤ |Un| =

gcd(ϕ(n), n−1) = gcd(pe1−11 (p1−1), pe11 −1) = p1−1, thus since n 6= 9 we have
|Bn|
ϕ(n) ≤

p1−1
p
e1−1
1 (p1−1)

= 1

p
e1−1
1

≤ 1
4 . ]

(3.7) Other primality and compositeness tests. The Solovay-Strassen
test [1977], based on Euler’s criterion for being a modular square and using
Jacobi symbols, also is a polynomial time Monte-Carlo algorithm to prove com-
positeness, the associated liars being called Euler liars. But since it is more
expensive and has more liars, it is superseded by the Rabin-Miller test.

Adleman-Huang [1992] have given a polynomial time Monte-Carlo algorithm
to decide primality; this algorithm uses hyperelliptic curves of genus 2 and
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is impractical. For practical purposes, the elliptic curve primality proving
(ECPP) algorithm [Atkin-Morain, 1990] is used, which is based on the imprac-
tical Goldwasser-Kilian test [1986], and needs expected polynomial time,
but in the worst case might be much slower. The largest integers proven to be
prime have size ∼ 101000, but are of a special shape.

The simple deterministic primality test based on Wilson’s Theorem, see Exer-
cise (6.16), runs in exponential time O(n ln2(n)). Much better, the Jacobi sum
test [Adleman-Pomerance-Rumely, 1983] to deterministically decide primality

runs in time O(lnc ln(ln(ln(n)))(n)), for some c > 0, which is close to polynomial
time. Finally, Agrawal-Kayal-Saxena [2002] have given an astonishingly
simple polynomial time algorithm to decide primality; this is as yet impractical,
but it shows that primality can be deterministically decided in polynomial time.

4 Integer factorisation

(4.1) Trial division. a) The straightforward approach to compute the fac-
torisation of 1 6= n ∈ N is to use trial division with respect to P≤√n; since
any proper prime divisor of n is contained in P≤√n, this in particular proves
primality or compositeness:

• L← []
• for p ∈ P≤√n do
• while (n mod p) = 0 do
• append(L,p)
• n← n

p
• if n = 1 then
• return L # n decomposable, factorisation found

• else
• return [n] # n is a prime

By the Prime Number Theorem, the number of trials is given as π(
√
n) ∼√

n
ln(
√
n)

, each needing ln(n) quotient and remainder steps, each in turn using

O(ln(
√
n) ln(n)) bit operations. Hence trial division is an exponential time

algorithm which runs time O(
√
n · ln2(n)) ⊆ O(exp(( 1

2 + ε) ln(n))), for all ε > 0.
Although there are better integer factorisation algorithms, as we will see below,
and much better primality testing or compositeness testing algorithms, as we
have seen above, trial division is still used in practice to treat small n or to
discard small prime divisors.

b) The set P≤n, for 1 6= n ∈ N, is computed by the Sieve of Erathostenes:

• L← [2, . . . , n]
• k ← 1
• while k < n do
• k ← k + 1
• if k in L then
• j ← 2k
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• while j ≤ n do
• delete(L,j)
• j ← j + k

• return L
In practice, this is run only once for some fixed n, and the set P≤n is stored; a
typical choice is n := 106, where π(n) = 78498. Note that to save space only
the differences between the successive elements of P≤n are stored.

(4.2) The ρ-method [Pollard, 1975]. Let 1 6= n ∈ N. Letting x0 ∈ Zn,
and given a function f : Zn → Zn, let recursively xi := f(xi−1), for i ∈ N. We
assume that f is chosen such that it behaves as a uniformly distributed random
variable. In practice, in order to minimise the number of operations needed
and since linear functions do not fulfill the randomness assumption, functions
fc : x 7→ x2 + c, for some c ∈ Zn \ {0,±2}, are used, where a typical choice is
c := 1; note that f0(x) = x2, and f±2(x ∓ x−1) = x2 + x−2, for x ∈ Z∗n, do
not fulfill the randomness assumption either. Actually it is an open problem
whether there are random functions in the above sense at all.

Let 1 6= p ∈ N be a divisor of n. Then there are k ∈ N0 and l ∈ N minimal such
that we have a collision xk = xk+l ∈ Zp, implying that p | gcd(xk − xk+l, n).
Note that we have xk = xk+jl ∈ Zp, for all j ∈ N0, which is the name-giving
property of the method. To find a collision, it can be avoided to store the
sequence of xi’s by using Floyd’s cycle detection trick: Let y0 := x0 ∈ Zn
and yi := f(f(yi−1)) = x2i ∈ Zn, for i ∈ N. Then we have xi = yi ∈ Zp if
and only if i ≥ k and l | 2i − i = i. Thus the minimal i ∈ N fulfilling these
conditions is an element of {k, . . . , k+ l}, hence we still need at most k+ l steps
to arrive at a collision.

Now let q := n
p ∈ N, and assume that q 6= 1 and gcd(p, q) = 1; note that p and

q exist if and only if n is not a prime power, see also Exercise (6.20). Hence
by the Chinese remainder theorem, see Exercise (6.12), the natural map
Zn = Zpq → Zp×Zq : a (mod n) 7→ [a (mod p), a (mod q)] is a bijection. Thus
we infer that the images of xi in Zp and Zq, respectively, can be considered
as independent random variables. Hence with probability q−1

q we have q 6 |
gcd(xk − xk+l, n), implying that 1 < gcd(xk − xk+l, n) < n, thus yielding a
proper divisor of n. This yields the following Las-Vegas algorithm, where
t ∈ N is the maximum number of tries made:

• choose x ∈ Zn randomly
• y ← x
• i← 0
• while i < t do
• i← i+ 1
• x← f(x)
• y ← f(f(y))
• g ← gcd(x− y, n)
• if 1 < g < n then
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• return g # proper divisor found
• return fail # no proper divisor found

Each execution of the loop runs in quadratic time. We are going to show that
the number t of tries needed to arrive at a collision with a given probability
1−ε, where 0 < ε < 1, is in O(

√
p) ⊆ O( 4

√
n), yielding exponential running time

O(exp( 1
4 ln(n)) · ln2(n)), but actually depends on the smallest prime divisor p

of n, and thus is in O(exp( 1
2 ln(p)) · ln2(n)):

For t ∈ N0 such that t ≤ p, precisely
∏t
i=0(p− i) of the pt+1 sequences in Zt+1

p

have pairwise distinct entries. By Taylor series expansion, for 0 ≤ λ ≤ 1

we have 0 ≤ exp(−λ) − (1 − λ) ≤ λ2

2 , hence for the fraction of the sequences

with pairwise distinct entries amongst all sequences we get
∏t
i=0(1 − i

p ) ≤∏t
i=0 exp(− i

p ) = exp(−t(t+1)
2p ) ≤ exp(−t

2

2p ), where exp(−t
2

2p ) < ε if and only if

t >
√
−2p · ln(ε) ∈ O(

√
p). Note that for ε = 1

2 and p = 365 this yields t ≥ 23,
being called the birthday paradox. ]

For example, let n := 7429 = 17 · 19 · 23. Then using x 7→ x2 + 1 we get:

i x y g

0 1 1
1 2 5 1
2 5 677 1
3 26 2957 1
4 677 6890 19

(4.3) The (p − 1)-method [Pollard, 1974]. We introduce a new concept,
which will play a key role in the more efficient factorisation methods to be
desribed below: An integer n ∈ N is called b-smooth, for some b ∈ N, if it
has the factorisation n =

∏
q∈P≤b q

eq(n), where eq(n) ∈ N0, that is the prime

divisors of n do not exceed b.

Now let 1 6= n ∈ N, let b ≤ n, and let p ∈ N be a prime divisor of n such
that p − 1 is b-smooth. Then, for x ∈ Z∗n and e ∈ N such that p − 1 | e we
have xe = 1 ∈ Z∗p, thus gcd(xe − 1, n) > 1. To find a suitable exponent e, we
observe that by smoothness eq(p − 1) 6= 0 only for q ∈ P≤b, and in this case

eq(p−1) ≤ logq(n), hence we may choose e :=
∏
q∈P≤b q

blogq(n)c ∈ N. Note that

in practice b is chosen small enough so that P≤b can be determined explicitly, but
this can be avoided by observing that e = lcm{mblogm(n)c ∈ N;m ∈ {2, . . . , b}}.
Letting n =

∏
q∈P q

eq(n), by the Chinese remainder theorem, see Exercise
(6.12), the natural map Zn →

∏
q∈P,eq(n)>0 Zqeq(n) is an isomorphism of rings,

inducing an isomorphism of groups Z∗n →
∏
q∈P,eq(n)>0 Z∗qeq(n) , where by (3.5)

Z∗qd is a cyclic group of order qd−1(q − 1), where d ∈ N. This shows that if n
additionally has a prime divisor q 6= p such that q − 1 is not b-smooth, then it
is likely that xe 6= 1 ∈ Z∗q , implying that gcd(xe − 1, n) < n. Assuming again
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that n is not a prime power, see also Exercise (6.20), this yields the following
Las-Vegas algorithm to find a proper divisor of n:

• choose x ∈ Z∗n randomly
• for q ∈ P≤b do
• e← q
• while e ≤ n do
• e← e · q

• e← e
q

• x← xe mod n
• g ← gcd(x− 1, n)
• if 1 < g < n then
• return g

• else
• return fail

In each execution of the loop, computing qe needs O(ln2(q) log2
q(n)) = O(ln2(n))

bit operations, and modular exponentiation needs O(ln3(n)) bit operations. By
the Prime Number Theorem, the loop is executed ∼ b

ln(b) times, hence this runs

in exponential time O( b
ln(b) · ln

3(n)). Thus b must be chosen small indeed; in

practice, a typical choice is b ≤ 106. But note that this limits usability due to
the strong assumptions on the prime divisors of n.

For example, let again n := 7429 = 17 · 19 · 23, where 17 − 1 = 24 and 19 −
1 = 2 · 32 and 23 − 1 = 2 · 11. We choose x := 2. Then for b := 2 we get
e = 212 = 4096 and xe = 4064 ∈ Zn, thus g = gcd(4063, 7429) = 17; for
b := 3 we get e = 212 · 38 = 4096 · 6561 = 26 873 856 and xe = 1616 ∈ Zn, thus
g = gcd(1615, 7429) = 323 = 17 · 19.

(4.4) Example: Fermat numbers. We apply the ρ-method and the (p− 1)-
method to a few Fermat numbers; for the former, which in the considered cases
always works, we use the iteration x 7→ x2 +1 and the initial value x := 1, while
the parameters for the latter in the successful cases are given below. Moreover,
to exhibit Pratt certificates, we take the primes up to 106 for granted.

i) For the Fermat number F5 := 22
5

+ 1 = 4 294 967 297 ∼ 4 · 109 the ρ-method
needs 22 tries to find the divisor p3 := 641, hence we get p7 := F5

p3
= 6 700 417

[Euler, 1732]; the (p − 1)-method finds p3 with b ≤ 3 and x := 5, and b := 5
and x := 3. From p3 − 1 = 27 · 5 we find the Lucas witness 3 for p3; from
p7 − 1 = 27 · 3 · 17449 we find the Lucas witness 5 for p7.

ii) For the Fermat number F6 := 22
6

+1 ∼ 2 ·1019, the ρ-method needs 808 tries
to find the divisor p6 := 274177, hence we get p14 := F6

p6
= 67 280 421 310 721

[Landry, 1880]; the (p − 1)-method finds p6 with 3 ≤ b ≤ 5 and x := 479, and
7 ≤ b ≤ 13 and x := 67, and b := 17 and x := 3. From p6 − 1 = 28 · 32 · 7 · 17
we find the Lucas witness 5 for p6; and from p14 − 1 = 28 · 5 · 47 · 373 · 2 998 279
and 2 998 279 − 1 = 2 · 32 · 166571 we find the Lucas witnesses 3 for 2 998 279,
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and 3 for p14.

iii) For the Fermat number F7 := 22
7

+ 1 ∼ 3 · 1038 the ρ-method needs
455 756 940 tries to find the divisor p17 := 59 649 589 127 497 217, hence we
get p22 := F7

p17
= 5 704 689 200 685 129 054 721 [Morrison-Brillhart, 1971]; the

(p−1)-method is unsuccessful. The factorisation was originally obtained by the
continued fraction method (CFRAC).

From p17 − 1 = 29 · 116 503 103 764 643 and 116 503 103 764 643− 1 = 2 · 7 · 449 ·
18 533 742 247 and 18 533 742 247 − 1 = 2 · 33 · 181 · 1 896 229 and 1 896 229 −
1 = 22 · 32 · 52673 we find the Lucas witnesses 2 for 1 896 229, and 11 for
18 533 742 247, and 2 for 116 503 103 764 643, and 3 for p17. From p22 − 1 =
29 ·35 ·5 ·12497 ·733 803 839 347, and 733 803 839 347−1 = 2 ·3 ·2203 ·55 515 497,
and 55 515 497−1 = 23 ·6 939 437, and 6 939 437−1 = 22 ·7·139·1783 we find the
Lucas witnesses 2 for 6 939 437, and 3 for 55 515 497, and 2 for 733 803 839 347,
and 23 for p22.

iv) For the Fermat number F8 := 22
8

+ 1 ∼ 1 · 1077, the ρ-method needs
14 816 648 tries to find the divisor p16 := 1 238 926 361 552 897, hence we get
p62 := F8

p16
[Brent-Pollard, 1981]; the (p − 1)-method is unsuccessful. The fac-

torisation was indeed originally obtained by the ρ-method.

From p16− 1 = 211 · 157 · 3 853 149 761 and 3 853 149 761− 1 = 26 · 5 · 719 · 16747
we find the Lucas witnesses 7 for 3 853 149 761, and 3 for p16. We proceed to
show that p62 is prime: We have p62−1 = 211 ·3 ·5 ·7 ·13 ·n, where n ∼ 3 ·1055,
and the ρ-method needs 4 999 212 tries to find n = 31 618 624 099 079 ·n′, where
n′ ∼ 1 · 1042; the (p− 1)-method finds 31 618 624 099 079 with b := 876769 and
x := 2. From 31 618 624 099 079− 1 = 2 · 1789 · 10079 · 876769 we find the Lucas
witness 17 for 31 618 624 099 079. We proceed to show that n′ is prime; then we
find the Lucas witness 43 for p62:

The ρ-method needs 5890 and 4 731 257 tries, respectively, to find successively
n′ − 1 = 24 · 3 · 8861 · 10 608 557 · 25 353 082 741 699 · 9 243 081 088 796 207; in the
first step the (p−1)-method is successful with b := 1699 and x := 2, while in the
second step the (p−1)-method is unsuccessful. From 10 608 557−1 = 22 ·7 ·223 ·
1699 we find the Lucas witness 2 for 10 608 557; from 25 353 082 741 699 − 1 =
2 · 32 · 16879 · 83 447 159 and 83 447 159− 1 = 2 · 41 723 579 and 41 723 579− 1 =
2 · 13 · 1 604 753 and 1 604 753− 1 = 24 · 100297 we find the Lucas witnesses 3 for
1 604 753, and 2 for 41 723 579, and 11 for 83 447 159, and 2 for 25 353 082 741 699;
from 9 243 081 088 796 207− 1 = 2 · 20939 · 220 714 482 277 and 220 714 482 277−
1 = 22 · 32 · 6 130 957 841 and 6 130 957 841 − 1 = 24 · 5 · 7 · 10 948 139 and
10 948 139 − 1 = 2 · 23 · 292 · 283 we find the Lucas witnesses 2 for 10 948 139,
and 3 for 6 130 957 841, and 5 for 220 714 482 277, and 5 for 9 243 081 088 796 207.
This finally yields the Lucas witness 11 for n′.

v) For the Fermat number F9 := 22
9

+ 1 ∼ 1 · 10154, the ρ-method needs 1563
tries to find the divisor p7 := 2 424 833; the (p− 1)-method finds p7 with b ≤ 31
and x := 37, and b := 37 and x := 3. From p7 − 1 = 216 · 37 we find the Lucas
witness 3 for p7. For n := F6

p6
∼ 6 · 10146 we find the Fermat compositeness
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witness 3; indeed we have n = p49 ·p99 [Lenstra, 1990], the prime factors having
the indicated number of digits, where the factorisation was originally obtained
by the Number Field Sieve (NFS).

vi) For the Fermat number F10 := 22
10

+ 1 ∼ 2 ·10308, the ρ-method needs 9005
and 167955 tries, respectively, to find successively the divisors p8 := 45 592 577
and p10 := 6 487 031 809 The (p−1)-method finds p10 with b := 37 and x := 173,
and b := 41 and x := 3; then it finds p8 with b := 11131 and x := 3. From
p8 − 1 = 212 · 11131 we find the Lucas witness 3 for p8; and from p10 − 1 =
214 ·32 ·29 ·37 ·41 we find the Lucas witness 7 for p10. For n := F10

p8·p10 ∼ 6 ·10290

we find the Fermat compositeness witness 3; indeed we have n = p40 · p252
[Brent, 1995], the prime factors having the indicated number of digits, where the
factorisation was originally obtained by the Elliptic Curve Method (ECM).

vii) For the Fermat number F11 := 22
11

+ 1 ∼ 3 · 10616, the ρ-method needs 178
and 832 tries, respectively, to find successively the prime divisors p6 := 974849
and p′6 := 319489. The (p − 1)-method finds p′6 with b := 2 and x := 103, and
3 ≤ b ≤ 11 and x := 11, and b := 13 and x := 3; subsequently it finds p6 with
b := 17 and x := 3. Indeed we have p6 − 1 = 213 · 7 · 17 and p′6 − 1 = 213 · 3 · 13.
For n := F11

p6·p′6
∼ 1 · 10605 we find the Fermat compositeness witness 3; indeed

we have n = p21 · p22 · p564 [Brent, 1988], the prime factors having the indicated
number of digits, where the factorisation was originally obtained by the ECM.

viii) For the Fermat number F12 := 22
12

+ 1 ∼ 1 · 101233, the ρ-method needs
343 and 730 and 5085 and 384615 and 49 572 772 tries, respectively, to find
successively the prime divisor p6 := 114689, and the divisors p8 := 26 017 793
and p′8 := 63 766 529 and p12 := 190 274 191 361 and p16 := 1 256 132 134 125 569.
The (p− 1)-method finds p6 with b ≤ 5 and x := 7, and b := 7 and x := 3; then
it finds p′8 with b := 139 and x := 3; next it finds p8 with b := 397 and x := 3;
and finally it finds p12 with b := 211153 and x := 3; but subsequently it is
unsuccessful. Indeed we have p6−1 = 214 ·7; from p8−1 = 216 ·397 we find the
Lucas witness 3 for p8; from p′8−1 = 216 ·7 ·139 we find the Lucas witness 13 for
p′8; from p12−1 = 214 ·5·11·211153 we find the Lucas witness 3 for p12; and from
p16−1 = 214·72·53·29 521 841 and 29 521 841−1 = 24·5·369023 we find the Lucas
witnesses 3 for 29 521 841, and 3 for p16. For n := F12

p6·p8·p′8·p12·p16
∼ 2 · 101186 we

find the Fermat compositeness witness 3; the factorisation of n is not known.

Note that in general already integers of size ∼ 10200 pose severe problems to
factorisation methods. We proceed to present a few ideas behind modern factori-
sation methods, in particular the use of quadratic forms and sieving techniques.

5 Integer factorisation II

(5.1) The Fermat-Legendre method. Let 1 6= n ∈ N be odd. Then we
have mutually inverse bijections {[x, y] ∈ N2;x ≥ y, n = xy} ↔ {[s, t] ∈ N2

0; s >
t, n = s2−t2} given by [x, y] 7→ [x+y2 , x−y2 ] and [s, t] 7→ [s+t, s−t]. Thus finding
a divisor of n is equivalent to writing n as a difference of two squares.
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Hence, if x, y ∈ Zn such that y 6∈ {±x} ⊆ Zn and x2 = y2 ∈ Zn, then we have
(x+y)(x−y) = x2−y2 = kn ∈ Z, for some k ∈ Z, and thus 1 < gcd(x±y, n) < n.
This yields the Fermat-Legendre method to find a divisor of n: Choosing
k ∈ N small, for increasing x > b

√
knc check whether x2 − kn ∈ N is a square.

For example, let again n := 7429 = 17 ·19 ·23, hence m := b
√
nc = 86. Choosing

k := 1, for x := m + 87 = 173 we get x2 − n = 29929 − 7429 = 22500 = 1502,
thus letting y := 150 we get n = x2 − y2 = (x− y)(x+ y) = 23 · 323.

(5.2) The random squares method [Dixon, 1981]. We keep the setting of
(5.1). Letting n =

∏
q∈P q

eq(n) again, there is a natural isomorphism of groups
Z∗n →

∏
q∈P,eq(n)>0 Z∗qeq(n) , where Z∗qd , for d ∈ N, is cyclic, and thus {±1} ⊆ Z∗qd

are the only elements of Z∗qd of order dividing 2. Hence any square in Z∗n has

precisely 2r square roots, where r := |{q ∈ P; eq(n) ≥ 1}| ∈ N is the number of
factors in the above direct product, that is the number of prime divisors of n.

Thus, given x ∈ Z∗n, if y ∈ Z∗n is randomly chosen such that x2 = y2 ∈ Z∗n, then
with probability 2r−2

2r = 1 − 1
2r−1 we have y 6∈ {±x}. Hence, assuming again

that n is not a prime power, that is r ≥ 2, computing gcd(x ± y, n) yields a
proper divisor of n with probability ≥ 1

2 . Still, given x ∈ Z∗n, the task to find
some y ∈ Z∗n \ {±x} such that x2 = y2 ∈ Z∗n remains:

Let b ∈ N, and assume that P≤b = {p1, . . . , pl}, where l ∈ N0, is known.
Letting additionally p0 := −1, the sequence [p0, p1, . . . , pl] is called the fac-
tor base associated with b. For x ∈ Z∗n let x′ ∈ {−n−12 , . . . , n−12 } such that

x2 = x′ ∈ Z∗n. If |x′| ∈ N is b-smooth, then we have x′ =
∏l
i=0 p

ei(x)
i ∈ Z,

where ei(x) ∈ N0 and e0(x) ≤ 1; in this case x is called a b-number, the se-
quence e(x) := [e0(x), . . . , el(x)] ∈ Nl+1

0 is called its exponent vector, and
taking remainders modulo 2 componentwise, we get the reduced exponent vec-
tor e(x) := [e0(x), . . . , el(x)] ∈ Zl+1

2 ; note that Z2 is a field.

Let x1, . . . , xk ∈ Z∗n be b-numbers fulfilling
∑k
j=1 e(xj) = 0 ∈ Zl+1

2 , thus fi :=∑k
j=1 ei(xj) ∈ N0 is even, for all i ∈ {0, . . . , l}. Letting x :=

∏k
j=1 xj ∈ Z and

y :=
∏l
i=0 p

fi
2
i ∈ Z we have y2 =

∏l
i=0 p

fi
i =

∏k
j=1

∏l
i=0 p

ei(xj)
i =

∏k
j=1 x

′
j ∈ Z,

implying that y2 =
∏k
j=1 x

2
j = x2 ∈ Z∗n; note that x and y can be computed

in Zn. Hence it suffices to find such a Z2-linear dependency between reduced
exponent vectors in order to obtain a proper divisor of n with a probability ≥ 1

2 .

Exponent vectors can be computed independently from each other, which hence
can be done using distributed computing. Moreover, a Z2-linear dependency
between reduced exponent vectors occurs for some k ≤ l + 2, and is detected
using Gaussian elimination, where specially tailored techniques for sparse ma-
trices over Z2 can be used; note that the running time of Gaussian elimination,
in general, is in O(l3) = O(( b

ln(b) )
3), by the Prime Number Theorem.

If the xj ∈ Z∗n are chosen randomly, this yields a Las-Vegas algorithm to factor
n, where using the Canfield-Erdős-Pomerance Theorem [1983] estimating
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the fraction of b-smooth integers in Z∗n, and finding an optimal tradeoff between
the constraints that the fraction of b-numbers increases as b gets larger, but
the cost of Gaussian elimination decreases as b gets smaller, we get Dixon’s
Theorem: Letting L(n) := L 1

2 ,1
(n) = exp(

√
ln(n) · ln(ln(n))), see (1.2), a

proper divisor of n is found, using a smoothness bound b ∈ O(L 1
2 ,

1
2
(n)) =

O(
√
L(n)), in subexponential time O(L2+ε(n)), for ε > 0.

For example, let again n := 7429 = 17 · 19 · 23. We choose b := b
√
L(n)c = 9,

hence the factor base is [−1, 2, 3, 5, 7], and l = 4. Using the random choices
x1 := 6708 and x2 := 2468, we get x21 = 7240 ∈ Zn and x′1 = 7240 − n =
−189 = (−1)1 · 33 · 7, as well as x22 = 6673 ∈ Zn and x′2 = 6673 − n = −756 =
(−1)1 · 22 · 33 · 7, that is e(x1) = [1, 0, 3, 0, 1] ∈ N5

0 and e(x2) = [1, 2, 3, 0, 1] ∈
N5

0, in terms of exponent vectors, which yields the reduced exponent vectors
e(x1) = e(x2) = [1, 0, 1, 0, 1] ∈ Z5

2. Hence we infer e(x1) + e(x2) = 0 ∈ Z5
2, and

thus 1
2 (e(x1) + e(x2)) = [1, 1, 3, 0, 1] ∈ N5

0. From that we obtain x = x1x2 =
16 555 344 = 3532 ∈ Zn, and y = (−1)1 · 21 · 33 · 50 · 71 = −378 = 7051 ∈ Zn,
thus gcd(x+ y, n) = 19 and gcd(x− y, n) = 391, hence n = 19 · 391.

(5.3) The Quadratic Sieve (QS) [Pomerance, 1984]. We keep the setting
of (5.2). Let m := b

√
nc ∈ N and f := (X + m)2 − n ∈ Z[X]. Rather than

looking for b-numbers amongst random choices from Z∗n, it should be much more
likely to find b-smooth integers amongst the f(x) ∈ Z whenever x ∈ Z is small.

To this end, we choose c ∈ N, small compared to m, and consider the sieve
interval I := {−c, . . . , c} ⊆ Z. Thus for x ∈ I we have f(x) = x2 + 2xm +
(m2 − n) ∼ 2xm, hence |f(x)| is bounded by ∼ 2cm. Then the Pomerance
Conjecture says that the fraction of b-smooth integers in {f(x) ∈ Z;x ∈ I}
is asymptotically the same as the fraction of b-smooth integers in {1, . . . ,m}.
This shows that running through x ∈ I provides a sufficiently good supply of
b-numbers. Moreover, instead of finding the latter one by one, applying a sieve
strategy to I yields whole bunches of b-numbers at the same time:

If p ∈ N is a prime, then from f(x+p) = (x+m+p)2−n = f(x)+p(2x+2m+p) ∈
Z we conclude that f(x) = 0 ∈ Zp if and only if f(x + kp) = 0 ∈ Zp for all
k ∈ Z. Thus, we first compute f(x) ∈ Z for all x ∈ I. Subsequently, for the
primes p ∈ P≤b in turn, we determine all x ∈ {−p−12 , . . . , p−12 } if p is odd,
and x ∈ {0, 1} for p = 2, such that f(x) = 0 ∈ Zp, then for those x we run
through {x + kp ∈ Z; k ∈ Z} ∩ I, divide out the maximum p-power dividing
f(x+ kp) ∈ Z, and replace the latter by the quotient.

Assuming the validity of the Pomerance Conjecture, and using sieving as de-
scribed above, this yields a Las-Vegas algorithm to factor n, where we have
Pomerance’s Theorem: A proper divisor of n is found, using a smoothness
bound of size b ∈ O(

√
L(n)) and a sieving interval of size c ∼ b2 ∈ O(L(n)), in

subexponential time O(L1+ε(n)), for ε > 0.

In practice, smaller values are used: For n ∼ 1050 smoothness bounds of size
b ∼ 5 ·104, by the Prime Number Theorem corresponding to factor bases of size
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l ∼ b
ln(b) ∼ 5 · 103, and sieve intervals of size c ∼ 105 are used, while L ∼ 1010;

for n ∼ 10100 smoothness bounds of size b ∼ 106, corresponding to factor bases
of size l ∼ 5 · 104, and sieve intervals of size c ∼ 107 are used, while L ∼ 1015.

We describe a further improvement: For any odd prime p ∈ N such that p - n,
from f(x) = 0 ∈ Zp we infer that n = (x + m)2 ∈ Z∗p is a square. Since by
Artin’s Theorem Z∗p is cyclic, the latter by Euler’s Criterion is equivalent

to n
p−1
2 = 1 ∈ Z∗p. Thus the odd primes p such that n

p−1
2 6= 1 ∈ Z∗p can be

discarded from the factor base in advance. Moreover, since {±1} ⊆ Z∗p are
the only elements of order dividing 2, for the admissible odd primes there are
precisely two square roots ±

√
n ∈ Z∗p of n ∈ Z∗p, hence we have f(x) = 0 ∈ Zp

if and only if x ∈ {−m±
√
n} ⊆ Zp. Similarly, p = 2 is always admissible, and

from n = 1 ∈ Z2 we get f(x) = 0 ∈ Z2 if and only if x = m+ 1 ∈ Z2.

For example, let again n := 7429 = 17 · 19 · 23, hence we have m := b
√
nc = 86.

We again choose b := 9, hence the factor base is [−1, 2, 3, 5, 7], and l = 4; note
that by Euler’s Criterion all these primes are admissible. We choose the sieve
interval I := {−3, . . . , 3}, that is c := 3:

x −3 −2 −1 0 1 2 3
(x+m)2 − n −540 −373 −204 −33 140 315 492

sieve with 2 −135 −51 35 123
sieve with 3 −5 −17 −11 35 41
sieve with 5 −1 7 7
sieve with 7 1 1

Thus {−3, 1, 2} ⊆ I yields b-numbers, whose associated matrix of exponent vec-

tors is M :=

1 2 3 1 .
. 2 . 1 1
. . 2 1 1

 ∈ N3×5
0 . Reduction yields

1 . 1 1 .
. . . 1 1
. . . 1 1

 ∈
Z3×5
2 , whose kernel is 〈[0, 1, 1]〉Z2 . This yields x = (1 + m) · (2 + m) = 87 ·

88 = 7656 = 227 ∈ Zn, and from 1
2 · [0, 1, 1] ·M = [0, 1, 1, 1, 1] ∈ N5

0 we get
y = (−1)0 · 21 · 31 · 51 · 71 = 210 ∈ Zn. Thus we obtain gcd(x− y, n) = 17 and
gcd(x+ y, n) = 437, hence n = 17 · 437.

(5.4) Other factorisation methods. Generalising the (p−1)-method, which
is based on the cyclic group Z∗p of order p− 1, using the cyclic group F∗p2/F

∗
p of

order p+ 1 instead, where Fp2 is the field with p2 elements, yields the (p+ 1)-
method [Guy, 1975; Williams, 1982], and more generally the Φk(p)-method
[Bach-Shallit, 1988], where Φk ∈ Z[X] is the k-th cyclotomic polynomial.

In the Elliptic Curve Method (ECM) [Lenstra, 1987], which also generalises
the (p − 1)-method, the group G of points of an elliptic curve over Fp is used
instead. The Hasse bound yields ||G| − (p + 1)| ≤ 2

√
p, hence we again

have |G| ∼ p, and varying the elliptic curve it is likely to find a group G
such that |G| only has small prime divisors. Conjecturally, the ECM has Las-
Vegas subexponential running time O(L1+ε(n)), for ε > 0. Actually the running
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time of the ECM depends on the smallest prime divisor p of n, inasmuch it

conjecturally has Las-Vegas subexponential running time O(L
√

1
2+ε(p)), for ε >

0; thus the ECM is superior to the QS and its improvements mentioned below
whenever n has a small prime divisor.

The earliest method using quadratic forms is the continued fraction method
(CFRAC) [Morrison-Brillhart, 1971], which conjecturally runs in Las-Vegas

subexponential time O(L
√

3
2+ε(n)), for ε > 0. Shanks’s class group method

[1969] and the Square Form Factorisation method (SQUFOF) [Shanks,
1972], using the ideal class groups of imaginary and real quadratic num-
ber fields, respectively, have Las-Vegas exponential running time O(exp(( 1

4 +
ε) ln(n))), for ε > 0, but combining these with the ideas of the (p−1)-method and
sieving techniques yields the Schnorr-Lenstra class group method [1984],
which has Las-Vegas subexponential running time O(L1+ε(n)), for ε > 0.

Generalising the quadratic sieve, the Multi-Polynomial Quadratic Sieve
(MPQS) [Pomerance, 1987], conjecturally has Las-Vegas subexponential run-
ning time O(L1+ε(n)), for ε > 0. The Number Field Sieve (NFS) [Lenstra-
Lenstra-Manasse-Pollard, 1990] generalises the QS from quadratic to general
number fields, and conjecturally has Las-Vegas subexponential running time
O(Lc+ε1

3

(n)), where L 1
3
(n) := L 1

3 ,1
(n) = exp( 3

√
ln(n) · ln(ln(n))2), see (1.2), and

c := 3

√
64
9 , for ε > 0. The running times of the latter methods do not depend on

the size of the prime divisors of n, contrary to the ECM method. Although the
running times of the ECM and the MPQS have the same asymptotics, for arbi-
trary n the latter is superior, and the asymptotically better NFS becomes faster
than the MPQS for n ∼ 10130. Finally, although the asymptotics of the running
time of the NFS is quite close to polynomial, it still remains an open problem
whether integer factorisation can be done in Las-Vegas polynomial time.
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6 Exercises (in German)

(6.1) Aufgabe: Asymptotisches Verhalten.
a) Man zeige ohne Benutzung der Stirling-Formel: Für n ∈ N gelten ln(n!) ∈
O(n ln(n)) und n ln(n) ∈ O(ln(n!)).

b) Für festes k ∈ N0 und variables n ∈ N zeige man: Es gilt
∑n
i=1 i

k ∼ nk+1

k+1 .
Bleibt diese Aussage auch richtig, wenn man n fest läßt und k variiert?
c) Man betrachte die Fibonacci-Zahlen Fn := Fn−1 + Fn−2 ∈ N, für n ≥ 3,
wobei F2 = F1 := 1. Man gebe einfache Funktionen an, die zu Fn bzw. der
Bitlänge von Fn asymptotisch äquivalent sind.

(6.2) Aufgabe: Größenordnungen.
a) Man ordne die folgenden Zahlen ihrer asymptotischen Größe nach:
i) die Bitlänge von 2n; ii) die Bitlänge von b

√
nc!; iii) die Anzahl konsekutiver

0en am Ende der Binärdarstellung von n!; iv) die Bitlänge des Werts eines
Polynoms fünften Grades mit Koeffizienten der Bitlänge 20 an der Stelle n; v)
die Anzahl der nötigen Probedivisionen zum Beweis, daß n prim ist.

b) Man betrachte die folgenden Funktionen N\{1} → R>0, wobei 0 < ε < 1 < c:

1 < ln(ln(n)) < ln(n) < e(ln(n))
1
2 ·(ln(ln(n))

1
2 < nε < nc < nln(n) < cn < nn < cc

n

Man zeige, daß für je zwei dieser Funktionen mit f < g auch f ∈ o(g) gilt.

(6.3) Aufgabe: Bitoperationen.
a) Man zeige: Für n ∈ N kann man n! mit O(n2 ln2(n)) Bitoperationen berech-
nen. Wieviele Bitoperationen braucht man für nn bzw. nk, für k ∈ N?

b) Man zeige: Für n ∈ N gilt
∑n
i=1 i

2 = n(n+1)(2n+1)
6 . Wieviele Bitoperationen

braucht man zur Berechnung der linken bzw. der rechten Seite dieser Gleichung?
c) Für i ∈ N sei Fi ∈ N die zugehörige Fibonacci-Zahl. Wieviele Bitoperationen
braucht man zur Berechnung von

∑n
i=1 Fi bzw.

∏n
i=1 Fi, für n ∈ N?

d) Für 1 6= z ∈ N und n ∈ N seien Pz,n := {p ∈ N prim; bz(p) ≤ n}. Wieviele
Bitoperationen braucht man zur Berechnung von

∑
Pz,n bzw.

∏
Pz,n?

(6.4) Aufgabe: Subtraktion.
Man gebe einen Algorithmus zur Subtraktion zweier Zahlen m,n ∈ N an. Wie
entscheidet man, ob m ≥ n gilt? Wieviele Bitoperationen werden benötigt?

(6.5) Aufgabe: Euklidischer Algorithmus.
Für q,m, n ∈ N mit q 6= 1 zeige man: Es gilt ggT(qm−1, qn−1) = qggT(m,n)−1.

(6.6) Aufgabe: Satz von Lamé.
Es seien m ≥ n ∈ N. Man zeige, daß der Euklidische Algorithmus zur Berech-

nung von ggT(m,n) höchstens b ln(
√
5·n)

ln( 1+
√

5
2 )
e − 1 Divisionsschritte benötigt.
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(6.7) Aufgabe: Binärer Euklidischer Algorithmus [Stein, 1967].
a) Es seien m,n ∈ N. Man zeige: Es gilt

ggT(m,n) =

 2 · ggT(m2 ,
n
2 ), falls m und n gerade sind,

ggT(m2 , n), falls m gerade und n ungerade ist,
ggT(m−n2 , n), falls m und n ungerade sind.

b) Man zeige, daß der folgende Algorithmus ggT(m,n) ∈ N berechnet, und gebe
unter Verwendung von max{b2(m), b2(n)} eine Abschätzung für die benötigte
Anzahl von Bitoperationen an. Welche Vorteile und Nachteile besitzt dieser
Algorithmus gegenüber dem Euklidischen Algorithmus?

• k ← 0.
• while (m mod 2) = 0 and (n mod 2) = 0 do
• m← m

2
• n← n

2
• k ← k + 1

• while (m mod 2) = 0 do
• m← m

2
• while (n mod 2) = 0 do
• n← n

2
• while m 6= n do
• t← m−n

2
• while (t mod 2) = 0 do
• t← t

2
• if t > 0 then
• m← t

• else
• n← −t

• return 2k ·m

(6.8) Aufgabe: Lineare diophantische Gleichungen.
Es seien a, b, c ∈ Z mit [a, b] 6= [0, 0]. Man zeige: Die lineare diophan-
tische Gleichung aX + bY = c hat genau dann eine Lösung [x, y] ∈ Z2,
wenn ggT(a, b) | c gilt. Wie sieht in diesem Fall die Lösungsgesamtheit aus?

(6.9) Aufgabe: Matrixmultiplikation.
Für k,m, n ∈ N seien A ∈ Zk×m und B ∈ Zm×n. Wieviele Ringoperationen
braucht man zur klassischen Berechnung des Matrixprodukts AB ∈ Zk×n?

(6.10) Aufgabe: Polynomarithmetik.
Es seien R ein kommutativer Ring, F ein Körper, und R[X] sowie F [X] die
zugehörigen Polynomringe.
a) Man formuliere den Karatsuba-Algorithmus zur Multiplikation der Polynome
0 6= f, g ∈ R[X], und zeige für deg(f) ≥ deg(g), daß hierzu O(deg(f)log2 3)
Ringoperationen im Ring R benötigt werden.
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b) Man formuliere den Erweiterten Euklidischen Algorithmus für Polynome
0 6= f, g ∈ F [X], und zeige, daß hierzu O(deg(f) · deg(g)) Ringoperationen im
Ring F benötigt werden.

(6.11) Aufgabe: Restklassen.
a) Es seien n ∈ N und a ∈ Zn := {0, . . . , n− 1} der Rest der Division von a ∈ Z
durch n. Zahlen a, b ∈ Z mit a = b heißen kongruent modulo n; man schreibt
a ≡ b (mod n). Man zeige: Es gilt genau dann a ≡ b (mod n), wenn n ein Teiler
von a− b ist, und folgere, daß Kongruenz modulo n eine Äquivalenzrelation auf
Z ist. Die zugehörigen Äquivalenzklassen heißen Restklassen modulo n, und
die Restklasse von a ∈ Z wird mit [a] bezeichnet.
b) Man zeige: Sind a, a′, b, b′ ∈ Z mit [a] = [a′] und [b] = [b′], so gilt auch [a+b] =
[a′+b′] und [ab] = [a′b′]. Man folgere, daß dadurch (repräsentantenweise) Addi-
tion und Multiplikation auf der Menge Z/nZ := {[a] ⊆ Z; a ∈ Z} der Restklassen
modulo n definiert werden, die die Kommutativ-, Assoziativ- und Distributivge-
setze erfüllen, und daß [0] bzw. [1] die jeweiligen eindeutigen neutralen Elemente
sind. Was sind die additiven bzw. multiplikativen Inversen zu [a] ∈ Z/nZ?
c) Man zeige: Die Abbildung ρn : Z/nZ → Zn : [a] 7→ a ist eine Bijektion, die
mit Addition und Multiplikation auf Z/nZ bzw. Zn verträglich ist; dabei trage
Zn die bekannten Operationen.

(6.12) Aufgabe: Chinesischer Restsatz.
a) Für k ∈ N seien n1, . . . , nk ∈ N paarweise teilerfremd, d. h. es ist

ggT(ni, nj) = 1, für alle i 6= j ∈ {1, . . . , k}, sowie n :=
∏k
i=1 ni ∈ N. Für

a ∈ Z seien a ∈ Zn und a(i) ∈ Zni die Reste von a bei Division durch n
bzw. ni, für alle i ∈ {1, . . . , k}. Man zeige: Die natürliche Abbildung
Zn → Zn1

× · · · × Znk : a 7→ [a(1), . . . , a(k)] ist wohldefiniert, bijektiv, und
verträglich mit Addition und Multiplikation.
b) Man gebe einen Algorithmus an, der für ein gegebenes Tupel [b1, . . . , bk] ∈
Zn1
× · · · × Znk von simultanen Kongruenzen das eindeutig bestimmte Ele-

ment a ∈ Zn mit [a(1), . . . , a(k)] = [b1, . . . , bk] berechnet.

(6.13) Aufgabe: Modulare Inverse.
Man bestimme alle a ∈ {0, . . . , 999}, so daß 67a in Dezimaldarstellung die drei
letzten Ziffern 123 hat. Was passiert, wenn man 68a und/oder 124 betrachtet?

(6.14) Aufgabe: Satz von Fermat.
a) Es sei p ∈ N prim. Man zeige den Kleinen Satz von Fermat [1632]: Für
alle a ∈ Z gilt ap = a ∈ Zp. Man gebe zwei Beweise an, zum einen als Folgerung
aus dem Satz von Fermat, zum anderen unter Benutzung von Freshman’s
Dream (a+ b)p = ap + bp ∈ Zp, für a, b ∈ Zp.
b) Wie kann man mittels des Satzes von Fermat das multiplikative Inverse von
a ∈ Z∗p bestimmen? Wieviele Bitoperationen sind dazu notwendig?
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(6.15) Aufgabe: Teilbarkeit.
a) Es sei n ∈ N. Man zeige: Gilt 2n = 1 ∈ Zn, so ist n = 1. Daraus folgere
man: Gilt 2n+1 = 2 ∈ Zn, so ist n = 1 oder n = 2.
b) Es sei n ∈ N. Man zeige: Ist n4 + 4n ∈ N prim, so ist n = 1.

(6.16) Aufgabe: Wilson-Primzahltest.
a) Man zeige den Satz von Wilson: Es sei 1 6= n ∈ N. Dann ist n genau dann
prim, wenn (n− 1)! = −1 ∈ Zn gilt.
b) Wieviele Bitoperationen benötigt ein Primzahltest, der diesen Satz benutzt?

(6.17) Aufgabe: Pocklington-Lehmer-Primzahltest.
a) Es seien n ∈ N, sowie p ∈ N prim und e ∈ N mit pe | n− 1 und pe+1 - n− 1.

Weiter sei a ∈ Zn mit an−1 = 1 ∈ Zn und a
n−1
p − 1 ∈ Z∗n. Man zeige: Für jeden

Teiler d ∈ N von n gilt pe | d− 1.
b) Es sei n − 1 = ml, wobei m, l ∈ N mit ggT(m, l) = 1 und m ≥

√
n. Man

zeige: Es ist n genau dann prim, wenn es für jeden Primteiler p | m ein a ∈ Zn
gibt, das die Bedingung in a) erfüllt.

(6.18) Aufgabe: Carmichael-Zahlen.
Es sei n ∈ N zerlegbar. Man zeige:
a) Es ist n genau dann eine Carmichael-Zahl, wenn n quadratfrei ist und für
jeden Primteiler p ∈ N von n gilt p− 1 | n− 1.
b) Ist n eine Carmichael-Zahl, so ist n ungerade und hat mindestens drei paar-
weise verschiedene Primteiler.
c) Ist p ∈ N eine ungerade Primzahl, so gibt es nur endlich viele durch p teilbare
Carmichael-Zahlen mit genau drei paarweise verschiedenen Primteilern. Man
bestimme diese für p = 3 und p = 5.

(6.19) Aufgabe: Carmichael-Funktion.
Für n =

∏r
i=1 p

ei
i ∈ N ungerade, mit r ∈ N, paarweise verschiedenen Primzahlen

pi ∈ N sowie ei ∈ N, sei λ(n) := kgV(ϕ(pe11 ), . . . , ϕ(perr )) ∈ N.
a) Man zeige: Für alle a ∈ Z∗n gilt aλ(n) = 1 ∈ Z∗n. Daraus folgere man, daß n
genau dann eine Carmichael-Zahl ist, wenn λ(n) | n− 1 gilt.

b) Man zeige: Es ist Vn := {a ∈ Z∗n; a
λ(n)

2 = ±1 ∈ Z∗n} eine Untergruppe von
Z∗n, und es gilt Vn = Z∗n genau dann, wenn n eine Primzahlpotenz ist.
c) Kann man daraus einen randomisierten Zerlegbarkeitstest entwickeln, wenn
man voraussetzt, daß n keine Primzahlpotenz ist?

(6.20) Aufgabe: Primzahlpotenzen.
a) Für n ∈ N zeige man: Gibt es (einen Fermat-Zeugen) a ∈ Z∗n mit an−1− 1 ∈
Z∗n, so ist n keine Primzahlpotenz. Man beweise ein Analogon für starke Zeugen.
b) Man zeige: Ist n ∈ N eine zerlegbare Primzahlpotenz, so hat n einen Fermat-
Zeugen. Man gebe einen randomisierten Algorithmus zur Bestimmung des
Primteilers von n an.
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(6.21) Aufgabe: Fermat-Lügner.
a) Es seien p ∈ N prim, so daß auch 2p−1 ∈ N prim ist, und n := p(2p−1) ∈ N.
Man zeige: Es gibt genau 1

2ϕ(n) Fermat-Lügner für n.
b) Es seien p 6= q ∈ N prim mit p, q ≡ 3 (mod 4) und ggT(p − 1, q − 1) = 2,
sowie n := pq ∈ N. Man zeige, daß |{an−1 ∈ Z∗p; a ∈ Z∗p}| = |{a2 ∈ Z∗p; a ∈ Z∗p}|
gilt, und bestimme daraus den Anteil der Fermat-Lügner in Z∗n.

(6.22) Aufgabe: Starke Lügner.
a) Es seien p ∈ N prim mit p ≡ 3 (mod 4), so daß auch 2p − 1 ∈ N prim ist,
und n := p(2p− 1) ∈ N. Man zeige: Es gibt genau 1

4ϕ(n) starke Lügner für n.
b) Für t ∈ N sei nt :=

∏
{p ∈ {3, . . . , t}; p prim} ∈ N. Man zeige, daß {±1} ⊆

Z∗nt die einzigen starken Lügner für n sind.

(6.23) Aufgabe: Satz von Miller-Rabin.
Es seien 1 6= n ∈ N ungerade, und n−1 = 2l ·m, wobei l,m ∈ N mit m ungerade.

Weiter seien On := {a ∈ Z∗n; am = 1} und Bn,k := {a ∈ Z∗n; a2
km = −1} für

k ∈ N0, sowie Bn := On
.
∪
∐
k∈N0

Bn,k ⊆ Z∗n. Man zeige:

a) Sind a ∈ Z∗n und e ∈ N mit ae = −1 ∈ Z∗n, so gilt 2l - e. Daraus folgere
man: Es gilt Bn,k = ∅ für k ≥ l.
b) Die Menge Bn ist genau dann eine Untergruppe von Z∗n, wenn n eine
Primzahlpotenz ist oder einen Primteiler p mit 4 | p+ 1 besitzt.

(6.24) Aufgabe: Pollard-ρ-Algorithmus.
Man betrachte die durch x0 := 1 ∈ N und xi := x2i−1+1 ∈ N, für i ∈ N, rekursiv
definierte Folge. Für 1 6= n ∈ N sei κ(n) := min{i ∈ N;xi = x2i ∈ Zn}
a) Es seien 1 6= n ∈ N, und k ∈ N mit ggT(xi−x2i, n) = 1 für alle i ∈ {1, . . . , k}.
Man zeige: Für alle Primteiler p ∈ N von n gilt κ(p) > k.
b) Mittels GAP bestimme manK ∈ N minimal mit κ(p) ≤ K für alle Primzahlen
p < 106. Wie kann man damit zeigen, daß n keinen Primteiler < 106 hat?

(6.25) Aufgabe: Quadratwurzeln.
Es sei 1 6= n ∈ N ungerade und keine Primzahlpotenz. Man zeige: Die Probleme
‘Berechnung eines nichttrivialen Teilers von n’ und ‘Berechnung einer Wurzel
eines Quadrats in Z∗n’ sind randomisiert polynomzeit-äquivalent.

(6.26) Aufgabe: (n+ 1)-Methoden.
a) Es sei 1 6= n ∈ N ungerade. Man gebe einen Primzahltest an, der ana-
log zum Pocklington-Lehmer-Primzahltest, siehe Aufgabe (6.17), statt der Fak-
torisierung von n− 1 diejenige von n+ 1 benutzt.
b) Analog zur (p− 1)-Methode gebe man eine (p+ 1)-Methode zur Berechnung
eines nichttrivialen Teilers von n an.

Hinweis. Man benutze die zyklische Gruppe F∗p2/F
∗
p der Ordnung p+ 1.
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