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1 Groups

(1.1) Groups. a) A set G together with a multiplication · : G × G → G
fulfilling the following conditions is called a group: i) We have associativity
(fg)h = f(gh) for all f, g, h ∈ G; ii) there is a right neutral element 1 ∈ G
such that g · 1 = g for all g ∈ G; and iii) for any g ∈ G there is a right inverse
g−1 ∈ G such that g · g−1 = 1. If additionally gh = hg holds for all g, h ∈ G,
then G is called commutative or abelian.

The product g1g2 · · · gn ∈ G is well-defined independently from the bracketing
for all g1, . . . , gn ∈ G, and if G is abelian then the product g1g2 · · · gn ∈ G is
independent from the order of its factors. For g ∈ G let g0 := 1, and recursively
gn+1 := gng, and g−n := (g−1)n; then by the statements to be shown below we
have gmgn = gm+n and (gm)n = gmn and g−n = (gn)−1, for all m,n ∈ Z. If
g, h ∈ G commute, that is we have gh = hg, then we have (gh)n = gnhn =
hngn for all n ∈ Z. If G is finite, then its cardinality is called the order of G.

b) We collect a few immediate consequences: In particular, we have G 6= ∅.
We show that the right neutral element is left neutral as well, and that right
inverses are left inverses as well: To do so, we first observe that gg = g if
and only if g = 1: From gg = g we get g = g · 1 = g(gg−1) = (gg)g−1 =
gg−1 = 1, and for g = 1 we have 1 · 1 = 1; in particular 1−1 = 1. Now, from
(g−1g)(g−1g) = g−1(gg−1)g = (g−1 · 1)g = g−1g we infer g−1g = 1, and we get
g = g · 1 = g(g−1g) = (gg−1)g = 1 · g.

From this we infer that the neutral element is uniquely defined: If 1′ ∈ G
also is a neutral element, then we have 1 = 1 · 1′ = 1′. Moreover, inverses
are uniquely defined: If g′ ∈ G also is an inverse of g ∈ G, then we have
g′ = 1 · g′ = (g−1g)g′ = g−1(gg′) = g−1 · 1 = g−1.

We show the cancellation law: For f, g, h ∈ G we have f = g if and only if
fh = gh, which holds if and only if hf = hg: From fh = gh we deduce f =
f ·1 = f(hh−1) = (fh)h−1) = (gh)h−1 = g(hh−1) = g ·1 = g, and from hf = hg
we deduce f = 1 · f = (h−1h)f = h−1(hf) = h−1(hg) = (h−1h)g = 1 · g = g.

c) A subset ∅ 6= H ⊆ G is called a subgroup, if whenever g, h ∈ H then we have
gh−1 ∈ H as well. Then, assuming that g, h ∈ H, we first get 1 = gg−1 ∈ H,
and from this g−1 = 1 · g−1 ∈ H, and gh = g(h−1)−1 ∈ H. Thus H is closed
with respect to taking products and inverses, hence again is a group, and we
write H ≤ G; for example, we always have the trivial subgroup {1} and G
itself as subgroups of G.

(1.2) Symmetric groups. a) Let X be a set, and let SX := {π : X →
X;π bijective}. Now the composition of maps is associative, that is we have
(f(gh))(x) = f(g(h(x))) = ((fg)h)(x) for all x ∈ X, in other words (fg)h =
f(gh) for all maps f, g, h : X → X; we have idX ∈ SX , and for all π, ρ ∈ SX
we have πρ ∈ SX and π−1 ∈ SX , where the latter is the inverse map of π; and
we have π · idX = π and ππ−1 = idX . Hence we conclude that SX is a group,



2

being called the symmetric group on X. It is in general non-abelian, and its
elements are called permutations.

b) For n ∈ N we write Sn := S{1,...,n}, where for n = 0 we let S0 := S∅. Then
we have |Sn| = n!, where for n ∈ N we let n! := n(n−1) · · · 1, and 0! := 1, being
called the associated factorial:

We proceed by induction on n ∈ N0, where for n = 0 there is a unique map ∅ →
∅, which is bijective. Hence letting n ∈ N we may assume that X = {1, . . . , n},
and let X ′ := X \ {n}. Given a bijective map π : X → X, we have π(n) = y
for some y ∈ X, and hence π : X ′ → X \ {y} is bijective as well. Since there
are n possibilities to choose y, and we have |X ′| = n− 1, by induction there are
n · (n− 1)! = n! possibilities for π. ]

For example, for n = 1 there the unique permutation id{1} : 1 7→ 1. For n = 2

there are two permutations

[
1 2
1 2

]
and

[
1 2
2 1

]
, where we write out the pairs

[i, π(i)] in ‘downward notation’. For n = 3 there are six permutations:[
1 2 3
2 3 1

]
,

[
1 2 3
3 2 1

]
,

[
1 2 3
1 3 2

]
,

[
1 2 3
3 1 2

]
,

[
1 2 3
1 2 3

]
,

[
1 2 3
2 1 3

]
Then composition of maps is given by concatenation; for example:[

1 2 3
2 1 3

]
·
[
1 2 3
1 3 2

]
=

[
1 3 2
2 3 1

]
·
[
1 2 3
1 3 2

]
=

[
1 2 3
2 3 1

]
[
1 2 3
1 3 2

]
·
[
1 2 3
2 1 3

]
=

[
2 1 3
3 1 2

]
·
[
1 2 3
2 1 3

]
=

[
1 2 3
3 1 2

]
Inversion is given by swapping the rows, and subsequently standard notation is
achieved by sorting the rows in parallel; for example:([

1 2 3
2 3 1

])−1
=

[
2 3 1
1 2 3

]
=

[
1 2 3
3 1 2

]
c) Any permutation π ∈ Sn can be written as a product of disjoint cycles: We
consider the directed graph with vertex set {1, . . . , n} having an edge i→ j
if π(i) = j. Since π is a map, from any vertex precisely one edge emanates, and
since π is bijective, at any vertex precisely one edge ends. Hence the connected
components of this graph are directed circles. This also shows that the cycle
decomposition of π is unique up to reordering the factors, where the order of
the factors does not matter. Moreover, fixed points, that is cycles of length
1, are typically left out; and inverses are given by reading cycles backwardly.

For example, we have S1 = {()} and S2 = {(), (1, 2)}; these groups are abelian.
Next, we have S3 = {(1, 2, 3), (1, 3), (2, 3), (1, 3, 2), (), (1, 2)}, where (1, 2, 3)−1 =
(1, 3, 2) and (1, 3, 2)−1 = (1, 2, 3), while the other elements of S3 are their own
inverses; from (1, 2, 3) · (1, 2) = (1, 3) and (2, 3) · (1, 2, 3) = (1, 3) we deduce that
Sn is non-abelian whenever n ≥ 3.
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(1.3) Alternating groups. a) Let n ∈ N0, and for π ∈ Sn let l(π) := |{{i, j} ⊆
{1, . . . , n}; i < j, π(i) > π(j)}| ∈ N0 be its inversion number. Moreover, let

the sign map sgn: Sn → Q be defined by sgn(π) :=
∏

1≤i<j≤n
π(j)−π(i)

j−i .

Since π induces a bijection on the set of all 2-element subsets of {1, . . . , n},
with {i, j} also {π(i), π(j)} runs through these subsets. Thus this implies∏

1≤i<j≤n |π(j)− π(i)| =
∏

1≤i<j≤n(j − i), which equals
∏
k∈{1,...,n−1}(n− k)!.

Hence we actually have sgn: Sn → {±1} : π 7→ (−1)l(π).

For example, we have sgn(π) = sgn(π−1), for all π ∈ Sn, as well as sgn(()) =
1 and sgn((1, 2)) = −1; in particular, we infer im(sgn) = {±1} for n ≥ 2.
Moreover, for π, ρ ∈ Sn we have multiplicativity sgn(πρ) = sgn(π) · sgn(ρ):

We have sgn(πρ) =
∏

1≤i<j≤n
πρ(j)−πρ(i)

j−i =
∏

1≤i<j≤n(πρ(j)−πρ(i)ρ(j)−ρ(i) ·
ρ(j)−ρ(i)
j−i ) =

(
∏

1≤i<j≤n
π(ρ(j))−π(ρ(i))

ρ(j)−ρ(i) )·(
∏

1≤i<j≤n
ρ(j)−ρ(i)
j−i ). Since {ρ(i), ρ(j)} runs through

the 2-element subsets of {1, . . . , n} if {i, j} does so, from this we get sgn(πρ) =

(
∏

1≤i<j≤n
π(j)−π(i)

j−i ) · (
∏

1≤i<j≤n
ρ(j)−ρ(i)
j−i ) = sgn(π) · sgn(ρ). ]

b) To compute sgn(π) we may also proceed as follows: Writing π ∈ Sn as a
product of r ∈ N0 disjoint cycles, we get sgn(π) = (−1)n−r: By multiplicativity,
it suffices to show that for the k-cycle δk := (1, . . . , k) ∈ Sk, where k ≥ 2, we

have sgn(δk) = (−1)k−1: Indeed, writing δk =

[
1 2 . . . k − 1 k
2 3 . . . k 1

]
yields

l(δk) = k − 1; alternatively, we have δk = (1, k)(1, k − 1) · · · (1, 3)(1, 2) ∈ Sk,
which is a product of k − 1 transpositions, where l((1, 2)) = 1.

Note that this also shows that any permutation can be written as a product
of transpositions, but where in general this representation is not unique, not
even the number of transpositions is: (1, 2, 3) = (1, 3)(1, 2) = (1, 2)(2, 3) =
(1, 2)(1, 3)(2, 3)(1, 2) ∈ S3.

c) The elements of An := sgn−1({1}) = {π ∈ Sn; sgn(π) = 1} and of Sn \An =
{π ∈ Sn; sgn(π) = −1} are called even and odd permutations, respectively.
Hence by the properties collected above we conclude thatAn ≤ Sn is a subgroup,
being called the associated alternating group; note that A0 = S0 ∼= {1} and
A1 = S1 ∼= {1}, while An < Sn for n ≥ 2.

(1.4) Cosets. a) Let H ≤ G. Then, given g ∈ G, let the associated (left)
coset of H in G be defined as the subset gH := {gh ∈ G;h ∈ H} ⊆ G. Hence,
by the cancellation law, we conclude that the surjective map H → gH : h 7→ gh
is injective as well, that is bijective, in particular saying that |gH| = |H|.
Let G/H := {gH ⊆ G; g ∈ G} be the set of cosets of H in G. Then two
distinct cosets are disjoint: Let g, g′ ∈ G such that x ∈ gH ∩ g′H, then we have
x = gy = g′y′ for some y, y′ ∈ H, implying that gh = g′y′y−1h ∈ g′H for all
h ∈ H, that is gH ⊆ g′H, and by symmetry gH = g′H. Thus, since g ∈ gH for
any g ∈ G, we infer that the cosets of H in G disjointly cover all of G.

A subset T ⊆ G such that T → G/H : t 7→ tH is a bijection, is called a (left)
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transversal of H in G; note that giving a transversal T amounts to pick a
representative out of each coset, hence transversals exist by the Axiom of
Choice. Thus we have G =

∐
t∈T tH, and the cardinality [G : H] := |G/H| =

|T | is called the index of H in G.

Let now G be a finite group; then all cardinalities occurring above are finite.
Thus we have |G| =

∑
t∈T |gH| =

∑
t∈T |H| = |T | · |H|, implying Lagrange’s

Theorem saying that [G : H] = |G|
|H| ; in particular we have |H| | |G|. Thus,

in order to search for subgroups of G, we need only consider subsets of G of
cardinality dividing the cardinality of G.

For example, for n ≥ 2, using the multiplicativity of the sign map, for any π ∈ Sn
we get either sgn(π) = 1 or sgn((1, 2) ·π) = 1, thus Sn = An

.
∪ (1, 2) ·An. Hence

{(), (1, 2)} is a left transversal of An in Sn, and we conclude |An| = 1
2 · |Sn| =

n!
2 .

b) Similarly, given g ∈ G, the set Hg := {hg ∈ G;h ∈ H} ⊆ G is called the
associated right coset, where again H → Hg : h 7→ hg is bijective. Let H\G
be the set of right cosets of H in G, and a set of representatives of the latter
is called a right transversal of H in G. If T ⊆ G is a left transversal of
H in G, then from G =

∐
t∈T tH by inversion we get G =

∐
t∈T Ht

−1, hence
T −1 := {t−1 ∈ G; t ∈ T } is a right transversal of H in G. Thus the index
[G : H] is independent of whether right or left cosets are considered. But in
general left and right cosets do not coincide, and left transversals are not right
transversals, leading to the following notion:

H ≤ G is called normal, if gH ⊆ Hg for all g ∈ G; in this case we write HEG.
In this case, inversion yields Hg−1 ⊆ g−1H, and since this holds for all g ∈ G we
infer gH = Hg, saying that indeed left and right cosets coincide; equivalently
we have gHg−1 = H, that is H equals its conjugate gH := gHg−1.

For example, we have {1}EG and GEG; and any subgroup of an abelian group
is normal. Moreover, any subgroup of index 2 is normal: We have G = H

.
∪

Hg = H
.
∪ gH, for any g ∈ G \H. In particular, for n ≥ 2 we have An E Sn.

But H := {(), (1, 2)} ≤ G := S3, being of index 3, is not normal: We have
S3 = {(), (1, 2)}

.
∪ {(1, 2, 3), (1, 3)}

.
∪ {(1, 3, 2), (2, 3)} as left cosets, while we

get S3 = {(), (1, 2)}
.
∪ {(1, 2, 3), (2, 3)}

.
∪ {(1, 3, 2), (1, 3)} as right cosets; a left

transversal is {(), (1, 2, 3), (2, 3)}, which is not a right transversal.

(1.5) Generating sets. a) Let G be a group, and let {Ui ≤ G; i ∈ I} where I
is an index set. Then the set-theoretic intersection

⋂
i∈I Ui ≤ G is a subgroup;

if I = ∅ the latter is defined to be G. Moreover, if Ui E G for all i ∈ I, then⋂
i∈I Ui E G is normal as well. But in general

⋃
i∈I Ui ⊆ G is not a subgroup,

hence the set-theoretic union has to be replaced suitably:

Let S ⊆ G. Then 〈S〉 :=
⋂
{U ≤ G;S ⊆ U} ≤ G is the smallest subgroup of

G containing S, being called the subgroup generated by S, where S called a
generating set of 〈S〉, and if S is finite then 〈S〉 is called finitely generated.
Letting S−1 := {g−1; g ∈ S}, we conclude that 〈S〉 consists of all finite products
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of elements of S ∪ S−1. For example, we have 〈∅〉 = 〈1〉 = {1} and 〈G〉 = G,
hence in particular any finite group is finitely generated.

b) A subgroup H ≤ G is called cyclic, if there is g ∈ H such that H = 〈g〉. For
g ∈ G we have 〈g〉 = {gi ∈ G; i ∈ Z}; in particular cyclic groups are abelian.

If 〈g〉 is finite, then the cardinality |g| := |〈g〉| ∈ N is called the order of g.
We have the following description of |g|: Letting i < j ∈ Z such that gi = gj ,
we have gj−i = 1. Hence there is n ∈ N minimal such that gn = 1. Then for
any m ∈ Z by quotient and remainder we get m = kn + i, where k ∈ Z and
i ∈ {0, . . . , n−1}, thus gm = (gn)k ·gi = gi; in particular we have gm = 1 if and
only if i = 0, that is n | m. Hence we have 〈g〉 = {gi ∈ G; i ∈ {0, . . . , n − 1}},
where, since for i < j ∈ Z such that gi = gj we have n | j− i, we conclude that
〈g〉 has precisely n elements, that is |g| is the smallest n ∈ N such that gn = 1.

Hence if G is finite, then by Lagrange’s Theorem we have |g| | |G|, implying
Euler’s Theorem g|G| = 1. In particular, if |G| is a prime then G is cyclic.

Here is an infinite example: Z = 〈1〉 = 〈−1〉 is a cyclic additive group, and
for any n ∈ N we have the cyclic subgroup nZ = 〈n〉 = 〈−n〉 E Z, the set
Zn := {0, . . . , n − 1} ⊆ Z being a transversal: For m ∈ Z we have m = kn + i,
where k ∈ Z and i ∈ {0, . . . , n−1}, thus m+nZ = i+nZ; and if i+nZ = j+nZ,
where i < j ∈ Z, then n | j − i implies that j ≥ i+ n.

c) As for non-cyclic groups, for example, for the symmetric group S3 we have
S3 = 〈(1, 2, 3), (1, 2)〉, where any non-cyclic subgroup coincides with S3, thus the
only non-trivial proper subgroups are the normal cyclic subgroup 〈(1, 2, 3)〉 =
〈(1, 3, 2)〉 of order 3, which coincides with the alternating group A3, and the
non-normal cyclic subgroups 〈(1, 2)〉, 〈(1, 3)〉 and 〈(2, 3)〉 of order 2; indeed for
π := (1, 2, 3) we get π · (1, 2) · π−1 = (2, 3) and π · (2, 3) · π−1 = (1, 3). The
lattice of subgroups is depicted as a Hasse diagram as follows:

<(2,3)>

<(1,3)>

<(1,2,3)>

<(1,2)>

<(1,2,3),(1,2)>

<()>

The other way around, given a group and a set of its elements, we might ask
for the subgroup they generate; for example, we might just specify a few per-
mutations in some symmetric group:

(1.6) Example: Perfect shuffles. We consider a deck of n ∈ N of cards.

a) The Riffle shuffles are given as follows: Assume that n is even, divide the
deck into its top and bottom halves of the same size, and then interleave the
halves perfectly. Then the top card of either the top or the bottom half ends up
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at the top of the final deck, where these cases are called the out-shuffle and
the in-shuffle, respectively. Recording the position of the various cards before
and after the shuffling yields permutations ωn, ιn ∈ Sn. For example:

ω8 =

[
1 5 2 6 3 7 4 8
1 2 3 4 5 6 7 8

]
= (2, 3, 5)(4, 7, 6)

ι8 =

[
5 1 6 2 7 3 8 4
1 2 3 4 5 6 7 8

]
= (1, 2, 4, 8, 7, 5)(3, 6)

Iterating the shuffling corresponds to multiplying the associated permutations:
For example, for n = 8 performing an in-shuffle followed by an out-shuffle
yields ω8ι8 = (2, 3, 5)(4, 7, 6) · (1, 2, 4, 8, 7, 5)(3, 6) = (1, 3, 4, 8, 6, 5)(2, 7), while
the other way around we get ι8ω8 = (1, 2, 4, 8, 7, 5)(3, 6) · (2, 3, 5)(4, 7, 6) =
(1, 2, 6, 8, 7, 3)(4, 5). This translates back into decks of cards as follows:

ω8ι8 = (1, 3, 4, 8, 6, 5)(2, 7) =

[
5 7 1 3 6 8 2 4
1 2 3 4 5 6 7 8

]
ι8ω8 = (1, 2, 6, 8, 7, 3)(4, 5) =

[
3 1 7 5 4 2 8 6
1 2 3 4 5 6 7 8

]

Considering the Riffle shuffle group Rn := 〈ωn, ιn〉 ≤ Sn, for n ≥ 2 even, we
experimentally find the following pattern: Rn is transitive, but small compared
to Sn, where for m 6∈ {6, 12}

.
∪ {2k; k ≥ 0} we get |R2m| = 2m−1 · m!

2 whenever

m ≡ 0 (mod 4), and |R2m| = 2m · m!
2 whenever m ≡ 1 (mod 4), and |R2m| =

2m · m! whenever m ≡ 2 (mod 4), and |R2m| = 2m−1 · m! whenever m ≡ 3
(mod 4), while for k ≥ 1 we find |R2k | = 2k · k, and |R12| = 26 · 120 and
|R24| = 211 · 95040; note that this indicates a close relationship between R2m

and the Mongean shuffle groups Mm discussed now:

b) The Mongean shuffles are given as follows: Start with the topmost card,
and then put every other card on the top and on the bottom. Then the last
card ends up at the top or the bottom, yielding permutations µn, µ

′
n ∈ Sn. For

example, for n = 8 we get:

µ8 =

[
8 6 4 2 1 3 5 7
1 2 3 4 5 6 7 8

]
= (1, 5, 7, 8)(2, 4, 3, 6)

µ′8 =

[
7 5 3 1 2 4 6 8
1 2 3 4 5 6 7 8

]
= (1, 4, 6, 7)(2, 5)

Considering the Mongean shuffle group Mn := 〈µn, µ′n〉 ≤ Sn, for n ≥ 2, we
experimentally find the following pattern: If n 6∈ {6, 12}

.
∪ {2k; k ≥ 3}, then

Mn = Sn whenever n ≡ {2, 3} (mod 4), and Mn = An whenever n ≡ {0, 1}
(mod 4), while for k ≥ 3 we find |M2k | = 2k ·(k+1), and we get |M6| = 120 = 6!

6

and |M12| = 95040 = 12!
5040 .
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(1.7) Homomorphisms. a) Let G and H be groups. Then ϕ : G → H is
called a (group) homomorphism, if ϕ(gg′) = ϕ(g)ϕ(g′) for all g, g′ ∈ G.
Then ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) yields ϕ(1) = 1, and for g ∈ G we have
1 = ϕ(1) = ϕ(gg−1) = ϕ(g)ϕ(g−1), hence ϕ(g−1) = ϕ(g)−1, thus ϕ(gn) = ϕ(g)n

for n ∈ Z.

If ϕ is surjective it is called an epimorphism, if ϕ is injective it is called a
monomorphism, if ϕ is bijective it is called an isomorphism; in this case
ϕ−1 is an isomorphism, we write G ∼= H. If G = H, then ϕ is called an
endomorphism, and a bijective endomorphism is called an automorphism.

b) By the properties collected above, for any U ≤ G we have ϕ(U) ≤ H, in
particular im(ϕ) ≤ G; for any V ≤ H we have ϕ−1(V ) ≤ G. Moreover, if U EG
then from ϕ(g)ϕ(U)ϕ(g)−1 = ϕ(gUg−1) = ϕ(U), for all g ∈ G, we infer that
ϕ(U)E im(ϕ); and if V E im(ϕ) then from ϕ(gϕ−1(V )g−1) = ϕ(g)V ϕ(g)−1 = V ,
for all g ∈ G, we infer that ϕ−1(V ) E G; in particular the kernel ker(ϕ) :=
ϕ−1({1}) = {g ∈ G;ϕ(g) = 1}EG is a normal subgroup.

For g ∈ G and h = ϕ(g) ∈ im(ϕ), we have ϕ−1({h}) = g ker(ϕ) ∈ G/ ker(ϕ);
in particular, ϕ is injective if and only if ker(ϕ) = {1}: For u ∈ ker(ϕ) we have
ϕ(gu) = ϕ(g)ϕ(u) = h, thus g ker(ϕ) ⊆ ϕ−1({h}), and for g′ ∈ ϕ−1({h}) we
have ϕ(g−1g′) = 1, thus g′ = gg−1g′ ∈ g ker(ϕ).

c) For example, we have the trivial homomorphism ϕ : G→ {1} : g 7→ 1, with
kernel ker(ϕ) = G; and the identity homomorphism idG : G → G : g 7→ g with
image im(ϕ) = G and kernel ker(idG) = {1}.
Given g ∈ G, the map Z→ 〈g〉 : i 7→ gi is a surjective homomorphism from the
additive group Z to the multiplicative group 〈g〉, which for 〈g〉 finite has kernel
|g| · Z; for 〈g〉 infinite it has kernel {0}, thus in this case is an isomorphism.

The exponential function exp: R → R∗ : x 7→ ex is a homomorphism from
the additive group R to the multiplicative group R∗ := R \ {0}, with image
im(exp) = R>0 and kernel ker(exp) = {0}; in particular exp is injective.

The sign map sgn: Sn → {±1} is a homomorphism, where {±1} is considered
as a multiplicative group, with image im(sgn) = {±1} if and only if n ≥ 2, and
kernel An := ker(sgn) E Sn.

(1.8) Actions. a) Let G be a group, and let X 6= ∅ be a set. Then G is
said to act on X, and the latter is called a G-set, if there is an action map
G×X → X : [g, x] 7→ gx fulfilling the following conditions: We have i) 1 ·x = x,
and ii) (gh)x = g(hx) for g, h ∈ G and x ∈ X.

If X and Y are G-sets, then a map α : X → Y such that α(gx) = g(α(x), for all
x ∈ X and g ∈ G, is called a (G-set) homomorphism; if α is bijective, then
it is called an isomorphism, in which case X ∼= Y are also called equivalent.

The connection to group homomorphisms is given as follows: Given an action
of G on X, for g ∈ G let ϕg : X → X : x 7→ gx. Hence from ϕgϕg−1 = ϕg−1ϕg =
ϕ1 = idX we infer that ϕg ∈ SX for all g ∈ G, and since ϕgϕh = ϕgh for all
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g, h ∈ G we have an action homomorphism G → SX : g 7→ ϕg. Conversely,
if ϕ : G → SX : g 7→ ϕg is a homomorphism, then G ×X → X : [g, x] 7→ ϕg(x)
defines an action of G on X: We have ϕ1 = idX ∈ SX , and ϕgϕh = ϕgh implies
(gh)x = g(hx) for all g, h ∈ G and x ∈ X.

b) The relation O := {[x, y] ∈ X×X; y = gx for some g ∈ G} is an equivalence
relation on X: From 1 · x = x we infer that O is reflexive; from y = gx we get
g−1y = x, implying that O is symmetric; and from y = gx and z = hy we get
z = hg · x, implying that O is transitive.

Given x ∈ X, its equivalence class Gx := {gx ∈ X; g ∈ G} again is a G-set,
called the (G-)orbit of x; its cardinality |Gx| is called its length, and a subset
T ⊆ G such that T → Gx : t 7→ tx is a bijection is called a transversal of Gx
with respect to x; transversals exist by the Axiom of Choice.

Let G\X := {Gx ⊆ X;x ∈ X}. A subset S ⊆ X such that S → G\X : x 7→ Gx
is a bijection is called a set of orbit representatives of X; orbit representatives
exist by the Axiom of Choice, and we have X =

∐
x∈S Gx. If X = Gx for any

and thus all x ∈ X, then X is called a transitive G-set.

c) Here are a few examples: For n ∈ N the group Sn acts naturally on
{1, . . . , n} by ϕπ = π, for all π ∈ Sn, that is with action homomorphism idSn ;
the action is transitive. Hence for π ∈ Sn the subgroup 〈π〉 ≤ Sn also acts on
{1, . . . , n}; its orbits coincide with the cycles of π.

G acts trivially on X by ϕg : X → X : x 7→ x, for g ∈ G; the associated action
homomorphism is G→ SX : g 7→ idX , the orbits are the singleton subsets of X.

G acts by conjugation on G by κg : G → G : x 7→ gx = gxg−1, for g ∈
G: We have κ1 = idG, and κgκh = κgh : x 7→ g(hxh−1)g−1 = (gh)x(gh)−1.
The associated orbits are called the conjugacy classes of G. Note that, in
particular, any normal subgroup of G is a union of conjugacy classes.

G acts (left) regularly on G by ρg : G → G : x 7→ gx, for all g ∈ G: We
have ρ1 = idG, and ρgρh = ρgh by associativity. Since g · 1 = g, for g ∈ G,
the action is transitive. Let ρ : G → SG : g 7→ ρg be the associated action
homomorphism. For g ∈ ker(ρ) we have g = g · 1 = ρg(1) = idG(1) = 1,
implying that ker(ρ) = {1}, that is ρ is injective. Thus we have Cayley’s
Theorem, saying that G is isomorphic to a subgroup of SG.

(1.9) Transitive actions. a) We provide prototypes first: To this end let
G be a group and let U ≤ G. Then U acts on G by right multiplication
ρu : G → G : x 7→ xu−1 for all u ∈ U : We have ρ1(u) = u · 1−1 = u and
ρuv(x) = x(uv)−1 = xv−1u−1 = ρu(ρv(x)) for all x ∈ G and u, v ∈ U . Hence
the U -orbit of x ∈ G is the (left) coset xU := {xu ∈ G;u ∈ U} ⊆ G, and the
set of U orbits coincides with G/U . Moreover, G acts transitively on G/U by
left multiplication ρg : G/U → G/U : xU 7→ gxU for all g ∈ G: We have
1 · xU = xU and gh · xU = g · hxU for all g, h, x ∈ G,

Let now X be a transitive G-set. For x ∈ X let Gx = StabG(x) := {g ∈ G; gx =



9

x} be the stabilizer of x in G. Actually we have Gx ≤ G: We have 1 ∈ Gx, and
for g, h ∈ Gx from gx = x = hx we get g−1x = x = ghx, hence g−1, gh ∈ Gx.

Note that the elements of X have conjugate stabilizers: Indeed, for g ∈ G we
have Ggx = gGx: For h ∈ Gx, from ghg−1(gx) = gx we get gGxg

−1 ⊆ Ggx, and
thus we have Ggx = gg−1Ggxgg

−1 ⊆ gGg−1gxg
−1 = gGgxg

−1 as well.

Then for x ∈ X the natural map ν : G/Gx → X : gGx 7→ gx is a G-set isomor-
phism, where G acts on G/Gx by left multiplication; in other words, the G-sets
X and G/Gx are equivalent: For g, h ∈ G and u ∈ Gx we have gux = gx, hence
ν is well-defined; and ν(ghGx) = (gh)x = g(hx) = g ·ν(hGx), hence ν is a G-set
homomorphism; since X is transitive, ν is surjective; and whenever gx = hx
then we have h−1g ∈ Gx, hence g ∈ hGx, thus ν is injective as well.

Thus, if G is finite then we have the orbit-stabilizer theorem, saying that

for any x ∈ X we have |X| = [G : Gx] = |G|
|Gx| ; in particular we have |X| | |G|.

b) We proceed to give a classification of transitive G-sets, and again we consider
the prototypes first: Whenever V ≤ G is conjugate to U , then G/U and G/V
are equivalent: Indeed, letting h ∈ G such that V = hU , the map η : G/U →
G/hU : xU 7→ xh−1 · hU = xUh−1 is a G-set isomorphism: For u ∈ U , from
xUh−1 = xuUh−1 we infer that η is well-defined; for g ∈ G we have η(g ·xU) =
gxUh−1 and g · η(xU) = gxUh−1, hence η is a G-set homomorphism; η is
surjective; and for x, y ∈ G we have xUh−1 = yUh−1 if and only if xU = yU ,
thus η is injective as well.

This yields the following classification of transitive G-sets: If Y is a transitive
G-set, then X and Y are equivalent if and only if for some (and hence any)
x ∈ X and y ∈ Y the stabilizers Gx and Gy are conjugate in G: If α : X → Y
is a G-set isomorphism, then for any x ∈ X we have Gx = Gα(x): For g ∈ Gx
we have gα(x) = α(gx) = α(x) ∈ Y , and for g ∈ Gα(x) we have α−1α(gx) =
α−1(g · α(x)) = α−1α(x) = x ∈ X. Conversely, if Gy = gGx for some g ∈ G,
then we have Y ∼= G/Gy = G/gGx ∼= G/Gx ∼= X.

We show a useful statement allowing to determine (easily) the number of orbits
of a finite group action on a finite set; example applications are given in (1.18):

(1.10) Theorem: Cauchy-Frobenius-Burnside Lemma. Let G be a finite
group, and let X be a finite G-set. Then we have |G\X| = 1

|G| ·
∑
g∈G |FixX(g)|,

where FixX(g) := {x ∈ X; gx = x} is the set of fixed points of g ∈ G.

Proof. Letting F := {[g, x] ∈ G × X; gx = x}, we determine |F| in two dif-
ferent ways: On the one hand we have |F| =

∑
g∈G |{x ∈ X; gx = x}| =∑

g∈G |FixX(g)|. On the other hand we have |F| =
∑
x∈X |{g ∈ G; gx = x}| =∑

x∈X |Gx|. For y ∈ Gx we have |Gx| = |Gy|, and thus |Gx| = |Gy|. Letting S ⊆
X be a set of orbit representatives, we get

∑
x∈X |Gx| =

∑
x∈S

∑
y∈Gx |Gy| =∑

x∈S |Gx| · |Gx| =
∑
x∈S |G| = |G\X| · |G|. ]
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(1.11) Symmetries in geometry. Groups are the abstract concept to de-
scribe all kinds symmetries occurring in mathematics, physics or elsewhere in
nature: Let X be an ‘object’, that is a set X together with ‘additional structure’.
Then a symmetry of X is a bijective map π : X → X respecting the ‘additional
structure’. Hence, typically, given symmetries π and ρ, the composition πρ, the
inverse map π−1, and the identity map idX are symmetries as well. Thus the
set of symmetries of X forms a subgroup of SX , being called the symmetry
group of X . From our point of view, where groups are considered as abstract
mathematical objects in their own right, we need the notion of group actions to
facilitate their application to describe symmetries.

a) We consider the R-vector space Rn×1, for n ∈ N. Then the symmetries of
Rn×1 are its R-linear automorphisms. Hence its symmetry group is the general
linear group GLn(R) := {A ∈ Rn×n;A invertible} = {A ∈ Rn×n; rkR(A) =
n} = {A ∈ Rn×n; det(A) 6= 0} of degree n, where A ∈ GLn(R) acts naturally
on Rn×1 by ϕA : v 7→ Av; the orbits are given as {0} and Rn×1 \ {0}.
We have GL1(R) = R∗ = R\{0}, which is abelian, but the following shows that
GLn(R) is non-abelian for n ≥ 2:[

1 1
0 1

]
·
[
1 0
1 1

]
=

[
2 1
1 1

]
6=
[
1 1
1 2

]
=

[
1 0
1 1

]
·
[
1 1
0 1

]
Moreover, the determinant map det : GLn(R)→ R∗ is is an epimorphism, where
R∗ is considered as a multiplicative group. Its kernel SLn(R) := ker(det) = {A ∈
GLn(R); det(A) = 1} E GLn(R) is called the special linear group of degree
n. We have SL1(R) = {1}, while for n ≥ 2 the orbits of the action of SLn(R)
on Rn×1 are again given as {0} and Rn×1 \ {0}.
b) The R-vector space Rn×1 can be viewed as an Euclidean space, with re-
spect to the standard scalar product 〈·, ·〉 : Rn×1 × Rn×1 → R, which is given
by 〈[x1, . . . , xn]tr, [y1, . . . , xy]tr〉 :=

∑n
i=1 xiyi. Thus Rn×1 becomes a metric

topological space, and we may speak of the length of a vector and of the angle
between two non-zero vectors. Hence the symmetries of Rn×1 as an Euclidean
space are the R-linear automorphisms A ∈ GLn(R) leaving 〈·, ·〉 invariant, that
is the length- and angle-preserving R-linear automorphisms, where the latter
means that 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ Rn×1.

Using the standard R-basis of Rn×1, this condition translates into the equa-
tion AtrA = En. Hence as symmetry group we obtain the general orthog-
onal group On(R) = GOn(R) := {A ∈ GLn(R);AtrA = En} = {A ∈
GLn(R);A−1 = Atr} ≤ GLn(R), of degree n, its elements are called isometries;
note that for A,B ∈ On(R) we indeed have (AB)tr ·AB = BtrAtrAB = En and
(A−1)trA−1 = (Atr)−1A−1 = (AAtr)−1 = En, hence AB,A−1 ∈ On(R). The
orbits of the action of On(R) on Rn×1 are given as the sets of vectors of a fixed
length, that is the sets {v ∈ Rn×1; 〈v, v〉 = a} for a ≥ 0.

Moreover, for A ∈ On(R) we have det(A)2 = det(Atr) det(A) = det(AtrA) =
det(En) = 1, thus we get an epimorphism det : On(R) → {±1}, where {±1}
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is considered as a multiplicative group; note that |det(A)| = 1 for A ∈ O2(R)
reflects the fact that isometries are volume-preserving. The kernel SOn(R) :=
ker(det) = {A ∈ On(R); det(A) = 1} = SLn(R) ∩ On(R) E On(R) is called the
special orthogonal group of degree n, whose elements are called rotations,
and we have On(R) = SOn(R)

.
∪ {A ∈ On(R); det(A) = −1}, where the ele-

ments of On(R) \SOn(R) are called reflections. We have SO1(R) = {1}, while
for n ≥ 2 the orbits of the action of SOn(R) on Rn×1 are again given as the sets
{v ∈ Rn×1; 〈v, v〉 = a} for a ≥ 0.

(1.12) Dihedral groups. For n ≥ 3 let Dn ⊆ R2×1 be a regular n-gon centered
at the origin, and let Dn := {A ∈ O2(R);A ·Dn = Dn} ≤ O2(R) be its symmetry
group, where Cn := Dn ∩ SO2(R) E Dn is called its group of rotations. Hence
Dn permutes the n vertices of Dn, and numbering the vertices counterclockwise
yields an action homomorphism ϕ : Dn → Sn, whose image D2n := ϕ(Dn) ≤ Sn
is called the associated dihedral group; note that, since the set of vertices of
Dn contains an R-basis of R2×1, we conclude that ϕ is injective.

We describe the elements of D2n, showing that |D2n| = 2n; for example, we
have D6 = {(), (1, 2, 3), (1, 3, 2); (2, 3), (1, 3), (1, 2)} = S3 and

D8 = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (2, 4); (1, 3), (1, 2)(3, 4), (1, 4)(2, 3)}.

Since rotations are determined by their rotation angle, see (1.16), the rotations
in Dn are those with angle 2πk

n for k ∈ {0, . . . , n − 1}. Thus D2n contains
precisely n rotations, given as δkn ∈ Sn for k ∈ {0, . . . , n − 1}, where δn :=
(1, 2, . . . , n) ∈ Sn. Hence the group of rotations Cn ∼= Cn := {δkn; k ∈ {0, . . . , n−
1}} = 〈δn〉 ≤ D2n is cyclic of order n, and acts regularly, that is transitively
with |StabCn(1)| = 1.

Since reflections are determined by their reflection axis, see again (1.16), we
distinguish the cases n odd and even: For n odd the axis of a reflection in Dn
runs through one of the vertices of Dn and the edge opposite; thus in this case
D2n contains precisely n reflections, one of them being σn := (1)(2, n)(3, n −
1) · · · (n+1

2 , n+3
2 ) ∈ Sn. For n even the axis of a reflection in Dn either runs

through a pair of opposite vertices, or runs through a pair of opposite edges;
thus in this case D2n contains precisely n

2 + n
2 = n reflections, one of the former

being σn := (1)(n+2
2 )(2, n)(3, n−1) · · · (n2 ,

n+4
2 ) ∈ Sn and one of the latter being

(1, 2)(3, n)(4, n− 1) · · · (n+2
2 , n+4

2 ) ∈ Sn.

The group D2n acting transitively, we have |StabD2n
(1)| = |D2n|

n = 2; in both
cases we have StabD2n

(1) = 〈σn〉. Moreover, Cn E D2n is a normal subgroup
of index 2, where from σn 6∈ Cn we get D2n = Cn

.
∪ Cnσn = 〈δn, σn〉. Any

element π ∈ D2n can be written uniquely as π = δknσ
i
n, where i ∈ {0, 1} and k ∈

{0, . . . , n−1}, and σnδnσ
−1
n = (1, n, n−1, . . . , 2) = δ−1n shows that multiplication

is given by δknσ
i
n · δlnσjn = δk−iln σi+jn ; in particular D2n is non-abelian.

(1.13) Platonic solids. A platonic solid P is a convex polyhedron in Eu-
clidean space R3×1, whose faces are all regular n-gons, for some n ≥ 3, such
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that any vertex is incident with the same number k ∈ N of edges.

We proceed to find all platonic solids: Subdividing the regular n-gon into tri-
angles by connecting its barycenter with the vertices, the inner angle α at the
circumference is seen to be given by nα+ 2π = nπ, that is α = n−2

n ·π. In order
to form a convex body we necessarily have k ≥ 3 and kα < 2π. This yields
3 · n−2n < 2, that is n < 6. Then for n = 3 we get k · 13 < 2, thus k < 6; for
n = 4 we get k · 24 < 2, thus k < 4; and for n = 5 we get k · 35 < 2, thus k < 4.
This yields the five cases for [n, k] listed below.

We show that P is uniquely determined from [n, k]. To this end, let P have
v vertices, e edges and f faces. These figures are not independent from each
other, but related by Euler’s polyhedron formula v − e+ f = 2:

Projecting P, by stereographic projection, into the Euclidean plane yields a
connected finite graph with v vertices and e edges, dividing the plane into f
connected domains, one of which is unbounded. We proceed by induction on
f ∈ N: For f = 1 there only is the unbounded domain, implying that the graph
under consideration is a tree, hence v = e + 1 and thus v − e + f = 2. For
f ≥ 2 there are at least two domains, and removing an edge incident to the
unbounded domain, thereby loosing a bounded area as well, we obtain a graph
having v vertices, e − 1 edges and f − 1 domains, thus by induction we get
2 = v − (e− 1) + (f − 1) = v − e+ f . ]

Now, since any edge of P is incident with two faces and any face is incident with
n edges, we have 2e = nf ; and since any edge is incident with 2 vertices and
any vertex is incident with k edges, we have 2e = kv; this implies that nf = kv.
Then Euler’s polyhedron formula v − e + f = 2 yields 2 = nf

k −
nf
2 + f =

f · (nk −
n
2 + 1). Thus f is determined from [n, k], and subsequently e and v are

as well. For the five admissible cases we get:

n k v e f P
3 3 4 6 4 tetrahedron
3 4 6 12 8 octahedron
3 5 12 30 20 icosahedron
4 3 8 12 6 hexahedron
5 3 20 30 12 dodecahedron

For each of these five cases there actually exists a corresponding platonic solid,
where the names are reminiscent of the number of faces. Moreover, as the pairs
[v, f ] occurring already indicate, there is a duality between the octahedron and
the hexahedron (also called the cube), and between the icosahedron and the
dodecahedron, while the tetrahedron is self-dual: Connecting the barycenters
of the faces one of the mutually dual polyhedra yields the other one. Hence
polyhedra in duality have the same symmetry group, so that we can restrict
ourselves to the tetrahedron, the hexahedron and the icosahedron:
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(1.14) Polyhedral groups. a) Let T ⊆ R3×1 be a tetrahedron centered at

the origin, let T̃ := {A ∈ O3(R);A · T = T} ≤ O3(R) be its symmetry group,

and let T := T̃ ∩ SO3(R) E T̃ be its group of rotations. Hence T̃ permutes

the 4 vertices of T, yielding an action homomorphism ϕ : T̃ → S4, with image
T̃ := ϕ(T̃ ) ≤ S4. Then T := ϕ(T )E T̃ is a normal subgroup of index ≤ 2. Note
that the set of vertices of T contains an R-basis of R3×1, hence ϕ is injective.

The group T̃ acts transitively on the vertices. Fixing vertex 4, there is a rotation
of order 3 with respect to the axis given by connecting vertex 4 with the opposite
face {1, 2, 3}, and fixing edge {3, 4} pointwise there is a reflection with respect
to the hyperplane through {3, 4} and perpendicular to {1, 2}. Hence we get

S3 = 〈(1, 2, 3), (1, 2)〉 ≤ StabT̃ (1), where from |StabT̃ (4)| = |T̃ |
4 |

|S4|
4 = 6 = |S3|

we infer equality, and thus |T̃ | = |StabT̃ (4)| · 4 = 24 yields T̃ = S4.

Since T̃ contains a reflection, we have [T̃ : T ] = 2, thus |T | = 12. As above,
fixing the vertices in turn, we get 〈(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)〉 ≤ T , where
the left hand side equals A4, implying T = A4. In particular, T acts transitively
on the vertices, where C3

∼= 〈(1, 2, 3)〉 = StabT (4). Hence T contains 8 rotations
of order 3, with respect to the 4 axes obtained by connecting a vertex with the
barycenter of the opposite face, and 3 rotations of order 2, with respect to the
3 axes obtained by connecting the centers of opposite edges.

b) Let H ⊆ R3×1 be a hexahedron centered at the origin, let H̃ := {A ∈
O3(R);A·H = H} ≤ O3(R) be its symmetry group, and letH := H̃∩SO3(R)EH̃
be its group of rotations. Hence H̃ permutes the 8 vertices of H. Assuming these
to have coordinates [−1,−1,−1]tr, [−1,−1, 1]tr, . . . , [1, 1, 1]tr, in lexicographic

order, yields an action homomorphism ϕ : H̃ → S8, with image H̃ := ϕ(H̃) ≤ S8.

Then H := ϕ(H) E H̃ is a normal subgroup of index ≤ 2. Note that the set of
vertices of H contains an R-basis of R3×1, hence ϕ is injective.

Both groups H̃ and H act transitively on the vertices. Since H̃ contains the
reflection given by v 7→ −v, for all vertices v, in other words we have π :=
(1, 8)(2, 7)(3, 6)(4, 5) ∈ H̃, we conclude that [H̃ : H] = 2 and H̃ = 〈H,π〉.
We proceed to describe H: Fixing vertex 1, we conclude that vertex 8, being
the only of edge distance 3 from vertex 1, is fixed as well. Hence StabH(1)
only contains rotations of order 3, with respect to the axis given by connecting
vertices {1, 8}. These permute vertices {2, 3, 5} and {4, 6, 7}, that is those being
of edge distance 1 and 2 from vertex 1, respectively. Hence we conclude that
StabH(1) = 〈(2, 5, 3)(4, 6, 7)〉 ∼= C3, and thus |H| = |StabH(1)| · 8 = 24.

We consider the action of H̃ on the 4 axes obtained by connecting opposite
vertices, in other words we consider the action of H̃ on the set of 2-subsets X :=
{{1, 8}, {2, 7}, {3, 6}, {4, 5}}, in this order. This yields an action homomorphism

ψ : H̃ → S4, which since π ∈ ker(ψ) is not injective. But we show that the
restriction of ψ to H indeed is injective, implying that H ∼= S4:

Assume that ρ ∈ H ∩ ker(ψ), thus ρ fixes all 2-sets in X , in particular we have
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ρ(1) ∈ {1, 8}. Assume that ρ(1) = 8, then ρ interchanges 1 ↔ 8, and edge
distances show that ρ interchanges the sets {2, 3, 5} ↔ {4, 6, 7}; hence from
ρ ∈ ker(ψ) we infer that ρ interchanges 2↔ 7, 3↔ 6, 4↔ 5, thus ρ = π 6∈ H, a
contradiction. Hence we have ρ(1) = 1 and ρ(8) = 8, and edge distances show
that ρ leaves the sets {2, 3, 5} and {4, 6, 7} invariant; hence from ρ ∈ ker(ψ) we
infer that ρ fixes {2, . . . , 7} elementwise, hence ρ = ().

In particular, H acts transitively on X , where |StabH({1, 8})| = |H|
4 = 6. Hence

H contains 6 rotations of order 4, and 3 rotations of order 2, both with respect
to the 3 axes obtained by connecting the barycenters of opposite faces, and 8
rotations of order 3, with respect to the 4 axes obtained by connecting opposite
vertices, and 6 rotations of order 2, with respect to the 6 axes obtained by
connecting the centers of opposite edges.

c) Let I ⊆ R3×1 be an icosahedron centered at the origin, let Ĩ := {A ∈
O3(R);A·I = I} ≤ O3(R) be its symmetry group, and let I := Ĩ ∩SO3(R)EĨ be
its group of rotations. Instead of considering I we consider the truncated icosa-
hedron (Buckminsterfullerene, soccer ball) I′, which is obtained from I by
truncating at the 12 vertices, yielding a solid having 60 vertices, and 12 regular
pentagonal and 20 regular hexagonal faces, where each pentagonal face is sur-
rounded by hexagonal ones, and each hexagonal face is surrounded by hexagonal
and pentagonal ones. Hence Ĩ and I are also the symmetry group and group
of rotations of I′, respectively. We describe I:

The group I acts regularly, that is transitively with trivial stabilizer, on the
12 · 5 = 60 pairs of adjacent pentagon-hexagon pairs, implying |I| = 60. There
are 24 rotations of order 5, with respect to the 6 axes obtained by connecting
the barycenters of opposite pentagons, and 20 rotations of order 3, with respect
to the 10 axes obtained by connecting the barycenters of opposite hexagons,
and 15 rotations of order 2, with respect to the 15 axes obtained by connecting
the centers of opposite hexagon-hexagon edges.

We proceed to specify a transitive action of I on a 5-set, whose associate action
homomorphism ϕ : I → S5 is injective and whose image is contained in A5;
this implies that I ∼= A5: In order to do so we consider the 15 rotation axes of
order 2. Fixing such an axis, there are precisely two other such axes orthogonal
to the given one; connecting the 6 points of intersection of these axes with I′
yields the vertices of an octahedron. The orthogonality property implies that
this partitions the set of these rotation axes into 5 subsets Tj , for j ∈ {1, . . . , 5},
of cardinality 3 each. Thus I acts transitively on {T1, . . . , T5}, giving rise to an
action homomorphism ϕ : I → S5. We show that ϕ : I → A5 is an isomorphism:

Considering the elements π ∈ I of order 2, 3 and 5 separately, their respective
geometric interpretation shows that there always is some Tj which is not fixed
by π. Hence we have ϕ(π) 6= () for all π 6= id, implying that ϕ is injective.
Moreover, if π ∈ I has order 5 or 3 then ϕ(π) ∈ S5 necessarily is a 5-cycle
or 3-cycle, respectively, hence we have sgn(ϕ(π)) = 1; if τ ∈ I has order 2,
thus is a rotation associated with one of the sets Tj , the orthogonality property
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again implies that ϕ(τ) ∈ S5 has precisely one fixed-point, hence is a double
transposition, thus we have sgn(ϕ(τ)) = 1; this implies that ϕ(I) ≤ A5. ]

Indeed, we have |StabI(T5)| = |I|
5 = 12. Letting τi ∈ I, for i ∈ {1, . . . , 3}, be

the rotations associated with T5, then τ3 = τ1τ2 implies that we get an abelian
subgroup V4 ∼= V := 〈τ1, τ2〉 ≤ StabI(T5) of order 4; where ϕ(V) = V4 :=
〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ≤ S4 denotes the Klein 4-group. Moreover, there are
precisely 4 rotation axes of order 3 whose associated rotations permute the
elements of T5, hence letting ρ ∈ I be one of these rotations, by Lagrange’s
Theorem we get StabI(T5) = 〈τ1, τ2, ρ〉, where we may assume that ϕ(ρ) =
(1, 2, 3), and thus ϕ(StabI(T5)) = 〈(1, 2)(3, 4), (1, 2, 3)〉 = A4.

(1.15) Finite subgroups of O2(R). a) We first describe the elements of
O2(R); recall that SO2(R) E O2(R) is a normal subgroup of index 2: Given

A =

[
a b
c d

]
∈ O2(R), from E2 = AtrA =

[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
∈ R2×2 we in-

fer a2 + c2 = 1 = b2 + d2, hence there is a unique 0 ≤ α < 2π such that
[a, c]tr = [cosα, sinα]tr, and from ab+ cd = 0 we get [b, d]tr = ±[−c, a]tr.

Hence in the ‘+’ case we get A = Aα :=

[
cosα − sinα
sinα cosα

]
∈ SO2(R), a rotation

with angle α. Extending this notation to allow for all α ∈ R, we have Aα = E2

if and only if α ∈ 2πZ. Then, by symmetry properties and addition theorems of

trigonometric functions, we have A−1α = Atr
α =

[
cosα sinα
− sinα cosα

]
= A−α, and for

β ∈ R we get AαAβ =

[
cosα cosβ − sinα sinβ − sinα cosβ − cosα sinβ
sinα cosβ + cosα sinβ cosα cosβ − sinα sinβ

]
=

Aα+β . In particular, we infer that Aα has finite order if and only if α ∈ 2πQ.
Note that Aα has characteristic polynomial X2 − 2 cosα ·X + 1 ∈ R[X], which
does not have any roots in R unless α ∈ πZ, so that Aα does not have any
eigenvector, apart from the cases A0 = E2 and Aπ = −E2.

In the ‘−’ case we get A =

[
cosα sinα
sinα − cosα

]
∈ O2(R) \ SO2(R), having char-

acteristic polynomial X2 − 1 = (X − 1)(X + 1) ∈ R[X]. Hence for α 6∈ πZ
we find [sinα, 1 − cosα]tr ∈ R2×1 and [sinα,−1 − cosα]tr ∈ R2×1 as eigen-
vectors of A with respect to the eigenvalues 1 and −1, respectively. Taking
lengths into account, for all α ∈ R we get v1 := [cos α2 , sin

α
2 ]tr and v−1 :=

[sin α
2 ,− cos α2 ]tr, where 〈v1, v1〉 = 1 = 〈v−1, v−1〉, and 〈v1, v−1〉 = 〈Av1, v−1〉 =

〈v1, A−1v−1〉 = −〈v1, v−1〉, thus 〈v1, v−1〉 = 0. Hence {v1, v−1} is an orthonor-
mal R-basis of R2×1, giving rise to an orthogonal base change matrix P such that
PA = diag[1,−1] ∈ R2×2, thus A is a reflection with respect to the axis 〈v1〉R;
note that this is the principal axes transformation of the symmetric matrix A.

In conclusion, we have SO2(R) = {Aα ∈ O2(R); 0 ≤ α < 2π} and O2(R) =
B · SO2(R), where B ∈ O2(R) \ SO2(R) is any reflection. Thus SO2(R) is
abelian, and multiplication in O2(R) is determined by writing B(Aα) as a ro-
tation Aβ again. The latter is independent of the reflection chosen, and for
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B := diag[1,−1] we get B(Aα) = BAαB =

[
cosα sinα
− sinα cosα

]
= A−α = A−1α ; in

particular, O2(R) is non-abelian.

b) Let G ≤ SO2(R) be finite. Then, assuming that G 6= {1}, let E2 6= Aα ∈ G
such that 0 < α = 2πk

n < 2π is the smallest non-trivial rotation angle occurring
amongst the elements of G, where n ∈ N and k ∈ {0, . . . , n − 1}. We may
assume that gcd(k, n) = 1, hence there is i ∈ Z such that ik ≡ 1 (mod n),
implying that Aiα = A 2π

n
∈ G. Thus by the choice of α we have α = 2π

n , and

hence 〈A 2π
n
〉 ≤ G is a cyclic group of order n. Now let E2 6= A 2πl

m
∈ G, and

by the choice of α let k ∈ N be maximal such that 2πk
n ≤ 2πl

m . Then we have

A 2πl
m
A−k2π

n

= A 2πl
m −

2πk
n
∈ G, where by the choice of k we have 0 ≤ 2πl

m −
2πk
n < 2π

n ,

which by the choice of α implies 2πl
m −

2πk
n = 0, thus A 2πl

m
∈ 〈A 2π

n
〉. Hence we

have G = 〈A 2π
n
〉 and thus G = Cn is cyclic, using the notation of (1.12), where

for any n ∈ N there actually is a unique subgroup of order n.

Now let G ≤ O2(R) be finite such that G 6≤ SO2(R). Then G′ := G∩ SO2(R) is
a normal subgroup of G of index 2, and by the above G′ = 〈A〉 is cyclic of some
order n ∈ N, where A := A 2π

n
. Moreover, there is a reflection B ∈ G \G′, hence

we have G = 〈A,B〉 = {AiBj ∈ O2(R); i ∈ {0, . . . , n − 1}, j ∈ {0, 1}}, where
multiplication in G by the above is given by BA = A−1. Hence we infer that G
is conjugate in O2(R), that is up to choosing an orthonormal R-basis of R2×1, to
the subgroup 〈A 2π

n
,diag[1,−1]〉. Hence for n ≥ 3 we recover a conjugate of the

dihedral group Dn of order 2n, using the notation of (1.12), where for any n ≥ 3
there actually is a subgroup of order 2n. For n = 2 the group G is conjugate
to 〈−E2,diag[1,−1]〉, thus is isomorphic to the Klein 4-group V4; and for n = 1
the group G is conjugate 〈diag[1,−1]〉, a cyclic group of order 2.

(1.16) Finite subgroups of SO3(R). a) We restrict ourselves to the group
of rotations in Euclidean space R3×1, and first describe its elements: Let A ∈
SO3(R). Its characteristic polynomial in R[X] having degree 3, we infer that
there is a real eigenvalue λ0 ∈ R. Letting λ1, λ2 ∈ C be the further roots of
the characteristic polynomial, we either have λ2 = λ1 ∈ C \ R or λ1, λ2 ∈ R; in
particular, we have 1 = det(A) = λ0λ1λ2. If v ∈ R3×1 is an eigenvector ofA with
respect to some eigenvalue λ ∈ R, then we have 〈v, v〉 = 〈Av,Av〉 = λ2 · 〈v, v〉,
implying that λ ∈ {±1}. Thus, in the first case from λ1λ2 = |λ1|2 > 0 we infer
that λ0 = 1 and |λ1| = |λ2| = 1; and in the second case up to reordering we have
λ0 = 1 and [λ1, λ2] = ±[1, 1]. Hence in any case we may assume that λ0 = 1.

Now let v ∈ R3×1 be a fixed vector of A, that is an eigenvector with respect to
the eigenvalue λ0 = 1, chosen to be of unit length, that is 〈v, v〉 = 1, and let
U := 〈v〉⊥R ≤ R3×1 be the orthogonal complement of 〈v〉R ≤ R3×1. Then, for
u ∈ U we have 〈Au, v〉 = 〈u,A−1v〉 = 〈u, v〉 = 0, thus A leaves the orthogonal
decomposition R3×1 = 〈v〉R ⊕ U invariant. Moreover, A induces an orthogonal
map on U , whose eigenvalues are λ1 and λ2, thus det(A|U ) = λ1λ2 = 1 says
that A|U is a rotation in the Euclidean plane U ∼= R2×1.
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Thus geometrically A is a rotation of some angle 0 ≤ α < 2π with respect to the
axis 〈v〉R. Hence choosing an orthonormal R-basis {v1, v2} ⊆ U , with respect
to the orthonormal R-basis {v, v1, v2} ⊆ R3×1 we get A = diag[1, Aα]. Thus we
have proved Euler’s Theorem, saying that A is determined by a fixed vector
v of unit length and a rotation angle α. Since Aα has a real eigenvalue if and
only if α ∈ πZ, that is Aα ∈ {±E2}, we conclude that for A 6= E3 the Euler
description [v, α] of A is unique up to a sign; in particular, E3 is the only element
of SO3(R) fixing a plane elementwise.

b) Next to the polyhedral subgroups of SO3(R) already described in (1.14), we
provide a few more finite subgroups. Subsequently, we proceed to prove (or at
least to indicate) that this completes the list of all finite subgroups of SO3(R),
up to conjugacy, in particular implying that all these subgroups are rotational
symmetry groups of regular polygons:

We have an injective homomorphism O2(R) → SO(R) : B 7→ diag[det(B), B].

Hence, for any n ∈ N we get the cyclic group Ĉn := 〈diag[1, A 2π
n

]〉 ≤ SO3(R)

of order n, which is the image of Cn ≤ SO2(R), and the dihedral group D̂n :=
〈diag[1, A 2π

n
],diag[−1, 1,−1]〉 ≤ SO3(R) of order 2n, which for n ≥ 3 is conju-

gate to the image of Dn ≤ O2(R), while D̂2 = 〈diag[1,−1,−1],diag[−1, 1,−1]〉
is isomorphic to V4, and D̂1 = 〈diag[−1, 1,−1]〉 is conjugate to Ĉ2.

Letting n ≥ 2, the group Ĉn has a unique rotation axis, associated with n
rotations of order dividing n. Moreover, D̂n has a unique rotation axis associated
with n rotations of order dividing n, being the images of the rotations in Dn, as
well as n rotation axes associated with n rotations of order 2, being the images
of the reflections in Dn.

c) Let {E3} 6= G ≤ SO2(R) be finite. Let ∅ 6= V ⊆ R3×1 be the set of poles of G,
that is the set of fixed vectors of unit length occurring in the Euler description of
the non-trivial elements of G. Then G acts on V: For v ∈ V there is E3 6= A ∈ G
such that Av = v, then for any B ∈ G we have BA 6= E3 and BA · Bv = Bv,
hence, since Bv has unit length, we conclude that Bv ∈ V. Moreover, for v ∈ V
the stabilizer Gv = {A ∈ G;Av = v} ≤ G is non-trivial; note that by the proof
of Euler’s Theorem Gv is isomorphic to a subgroup of SO2(R), thus is cyclic.

We consider the set X := {[A, v] ∈ G × V;A 6= E3, Av = v}. We count |X | in
two different ways: Firstly, since any E3 6= A ∈ G has two fixed vectors in V, we
have |X | = 2(|G|−1). Secondly, since for any v ∈ V there are |Gv|−1 non-trivial
elements of G keeping v fixed, we get |X | =

∑
v∈V(|Gv|−1). Thus letting S ⊆ V

be a set of G-orbit representatives, and recalling that |Gv| = |G|
|Gv| only depends

on the G-orbit v ∈ V belongs to, this yields |X | =
∑
v∈S |Gv| · (|Gv| − 1) =

|G| ·
∑
v∈S(1 − 1

|Gv| ). Combining the two expressions for |X |, and dividing by

|G|, we get 1
2 · |S| ≤

∑
v∈S(1− 1

|Gv| ) = 2− 2
|G| < 2, hence we conclude |S| ≤ 3.

Assume that |S| = 1, then letting S = {v} we have 1 − 1
|Gv| = 2 − 2

|G| , thus

|G| = 2− |G||Gv| < 2, a contradiction. Hence we have |S| ∈ {2, 3}. Let first |S| = 2,
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and S = {v, w}. Then we have 1
|Gv| + 1

|Gw| = 2
|G| . Since |Gv|, |Gw| | |G| this

implies |Gv| = |Gw| = |G|, and thus |Gv| = |Gw| = 1, hence |V| = 2.

Let now |S| = 3, and S = {u, v, w}. Then we have 1
|Gu| +

1
|Gv| +

1
|Gw| = 1 + 2

|G| .

Assume that |Gu|, |Gv|, |Gw| ≥ 3, then we get 1 + 2
|G| ≤ 1, a contradiction.

Hence we may assume that |Gw| = 2, yielding 1
|Gu| + 1

|Gv| = 1
2 + 2

|G| . Assume

that |Gu|, |Gv| ≥ 4, then we get 1
2 + 2

|G| ≤
1
2 , a contradiction. Hence, assuming

that |Gu| ≥ |Gv|, we have |Gv| ≤ 3. Let first |Gv| = 2, then we get |Gu| = |G|
2 ,

and thus |Gv| = |Gw| = |G|
2 and |Gu| = 2, hence |V| = |G| + 2; note that

|V| ≤ 2(|G| − 1) implies |G| ≥ 4.

Let now |Gv| = 3, then we get 1
|Gu| = 1

6 + 2
|G| >

1
6 , hence |Gu| ∈ {3, 4, 5}. In

these cases, if |Gu| = 3 we get |G| = 12, and thus |Gw| = 6, |Gv| = 4 and
|Gu| = 4, hence |V| = 14; if |Gu| = 4 we get |G| = 24, and thus |Gw| = 12,
|Gv| = 8 and |Gu| = 6, hence |V| = 26; if |Gu| = 5 we get |G| = 60, and thus
|Gw| = 30, |Gv| = 20 and |Gu| = 12, hence |V| = 62.

Hence we have the following five cases, where n ≥ 2:

|G| |V| |S| |Gw| |Gw| |Gv| |Gv| |Gu| |Gu| G

n 2 2 1 n 1 n Ĉn ∼= Cn
2n 2n+ 2 3 n 2 n 2 2 n D̂n ∼= D2n

12 14 3 6 2 4 3 4 3 T ∼= A4

24 26 3 12 2 8 3 6 4 H ∼= S4
60 62 3 30 2 20 3 12 5 I ∼= A5

(1.17) Theorem: Classification of finite subgroups of SO3(R). Let G be
a finite subgroup of the special orthogonal group SO3(R). Then G is conjugate
to precisely one of the following groups:

i) the cyclic group Ĉn, for n ∈ N, ii) the dihedral group D̂n, for n ≥ 2, iii) the
tetrahedral group T , iv) the hexahedral group H, v) the icosahedral group I.

Proof. The finite subgroups given in the assertion have been described in (1.14)
and (1.16); in particular the number of rotation axes of a given order is as follows:

G |G| 2 3 4 5 n

Ĉn n 1

D̂n 2n n 1
T 12 3 4
H 24 6 4 3
I 60 15 10 6

This shows that they match up with the cases listed in the table preceding the
statement of the theorem as indicated; note that D4 := V4. It also follows
that these cases are mutually disjoint. We have already shown that G belongs
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to one of these cases, hence it remains to be shown that the geometrical data
determines G up to conjugacy. We give a sketch; for more details see [4, Ch.15]:

In the first case, G has a unique rotation axis, thus all elements of G are of the
form diag[1, B], where B ∈ SO3(R), hence G is conjugate to Ĉn, where n := |G|.
In the second case, if |G| = 2n ≥ 6, then G has a unique rotation axis 〈v〉R
associated with rotations of order n, and has an element mapping v 7→ −v,
which thus leaves 〈v〉⊥R ≤ R3×1 invariant; hence G is conjugate to D̂n. If |G| = 4,
then G has three rotation axes associated with rotations of order 2; hence the
latter are mutually orthogonal, implying that G is conjugate to D̂2.

In the third case, G has 4 rotation axes 〈vi〉R, for i ∈ {1, . . . , 4}, associated
with rotations of order 3. Letting {v1, . . . , v4} be a single G-orbit, the stabilizer
StabG(v4), being of order 3, permutes {v1, v2, v3} transitively. It follows that
〈vi, vj〉 has the same value, for all i 6= j ∈ {1, . . . , 4}, thus {v1, . . . , v4} forms a
tetrahedron, implying that G is conjugate to T .

In the fourth case, G has 3 rotation axes 〈vi〉R, for i ∈ {1, 2, 3}, associated with
rotations of order 4. Letting {±v1,±v2,±v3} be the associated G-orbit, the
stabilizer StabG(v3), being cyclic of order 4, fixes −v3 as well, and permutes
{±v1,±v2} transitively. It follows that 〈vi, vj〉 = 0, for all i 6= j ∈ {1, 2, 3}, thus
{±v1,±v2,±v3} forms an octahedron, implying that G is conjugate to H.

In the fifth case, which is the most complicated, G has 6 rotation axes 〈vi〉R,
for i ∈ {1, . . . , 6}, associated with rotations of order 5. Let {±v1, . . . ,±v6} be
the associated G-orbit, and call v 6= w ∈ {±v1, . . . ,±v6} adjacent, if 〈v, w〉 is
maximal. Note that, since we have more than 6 vectors, if v and w are adjacent
then we have 〈v, w〉 > 0; in particular v is never adjacent to both w and −w.

Assume that v6 is adjacent to v1, then the stabilizer StabG(v6), being cyclic of
order 5, fixes −v6 as well, and we may assume that it induces the 5-cycles
(v1, . . . , v5) and (−v1, . . . ,−v5) on {±v1, . . . ,±v5}; thus −v6 is adjacent to
{−v1, . . . ,−v5}. Then v1 is not adjacent to v3 and v4. Assume that v1 is not ad-
jacent to v2, hence also neither to v5; then v1 is adjacent to {−v2, . . . ,−v5, v6},
and v2 is adjacent to {−v1,−v3,−v4,−v5, v6}; since both of these form a pen-
tagon, their intersection being {−v3,−v4,−v5, v6} implies that these pentagons
coincide, contradicting the fact that v1 6= v2.

Hence v1 is adjacent to both v2 and v5. We infer that, for i ∈ {1, . . . , 5}, the sta-
bilizer StabG(vi) induces the 5-cycle (v6, v5,−v3,−v4, v2), (v6, v1,−v4,−v5, v3),
(v6, v2,−v5,−v1, v4), (v6, v3,−v1,−v2, v5), (v6, v4,−v2,−v3, v1) of neighbors of
vi, respectively. Hence these form a total of 12·5

3 = 20 regular triangles, thus
{±v1, . . . ,±v6} forms an icosahedron, implying that G is conjugate to I. ]

(1.18) Example: Coloring problems. In combinatorics, group actions can
be used to count the number of ‘configurations’ up to certain symmetry op-
erations. More formally, the set of admissible ‘configurations’ is considered to
be acted on by a suitable symmetry group, whence the relevant equivalence



20

classes are just the orbits with respect to this action. We consider the following
situation, which is only the starting point of so-called Polya Theory:

Given n ∈ N and k ∈ N, let Mn,k be the set of all maps f : {1, . . . , n} →
{1, . . . , k}; in more combinatorial terms, Mn,k can be viewed as the set of
all possible colorings of n objects with at most k colors. Then Sn acts on
Mn,k by pre-multiplication f 7→ π(f) := fπ−1, for all π ∈ Sn: Indeed,
we have id(f) = f , and for π, ρ ∈ Sn we have (πρ)(f) : i 7→ f(πρ)−1(i) =
fρ−1π−1(i) = ρ(f)(π−1(i)) = π(ρ(f))(i), for all i ∈ {1, . . . , n}, saying that
(πρ)(f) = π(ρ(f)). Note that, upon identifying f with the tuple [f(1), . . . , f(n)],
Sn acts by reordering the entries.

Hence, given G ≤ Sn, the number |G\Mn,k| of G-orbits on Mn,k can be de-
termined by applying the Cauchy-Frobenius-Burnside Lemma: We observe that
for π ∈ Sn and f ∈Mn,k we have π(f) = f if and only if fπ−1(i) = f(i) for all
i ∈ {1, . . . , n}, which holds if and only if f is constant on the cycles of π; thus
we have |FixMn,k

(π)| = kr, where r ∈ N is the number of cycles of π.

a) A necklace with n ≥ 3 pearls having k possible colors is just a map inMn,k,
where the set {1, . . . , n} is considered as the set of vertices of a regular n-gon
Dn, and necklaces are equivalent if they arise from each other by a symmetry
of Dn. Hence the number of equivalence classes is given as the number tn,k =
|D2n\Mn,k| ∈ N of D2n-orbits in Mn,k. Thus tn,k can be determined, using
the cycle types of the elements of D2n to count their fixed points in Mn,k, by
applying the Cauchy-Frobenius-Burnside Lemma.

For example, for n = 3 and n = 4 we get t3,k = 1
6 · (k

3 + 3k2 + 2k) = 1
6 · k(k +

1)(k+ 2) =
(
k+2
3

)
and t4,k = 1

8 · (k
4 + 2k3 + 3k2 + 2k) = 1

8 · k(k+ 1)(k2 + k+ 2):

π ∈ D6 type r

() [13] 3
(1, 2, 3) [3] 1
(1, 3, 2) [3] 1
(2, 3) [2, 1] 2
(1, 2) [2, 1] 2
(1, 3) [2, 1] 2

π ∈ D8 type r

() [14] 4
(1, 2, 3, 4) [4] 1
(1, 3)(2, 4) [22] 2
(1, 4, 3, 2) [4] 1
(2, 4) [2, 12] 3
(1, 3) [2, 12] 3
(1, 2)(3, 4) [22] 2
(1, 4)(2, 3) [22] 2

b) We consider the possible colorings of the vertices {1, . . . , 4} of the tetrahedron
T with at most k = 4 colors, that is the set of maps inM4,4, being acted on by

the polyhedral groups T̃ ∼= S4 and T ∼= A4. Hence the number of equivalence
classes, with respect to rotations and reflections, and with respect to rotations
alone, is given as |S4\M4,4| ∈ N and |A4\M4,4| ∈ N, respectively. In order
to determine these numbers, we collect the cycle types of the elements of S4,
the former three types constituting those belonging to A4, together with their
frequency of occurrence:
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card. type r

8 [3, 1] 2
3 [22] 2
1 [14] 4
6 [4] 1
6 [2, 12] 3

From this, counting fixed points in M4,4 and applying the Cauchy-Frobenius-
Burnside Lemma, we get |S4\M4,4| = 1

24 ·(8·4
2+3 ·42+1 ·44+6·41+6·43) = 35

and |A4\M4,4| = 1
12 · (8 ·4

2 +3 ·42 +1 ·44) = 36. Since the S4-orbits inM4,4 are
unions of A4-orbits, the above result implies that there is precisely one S4-orbit
in M4,4 which splits into two A4-orbits. Actually, it is given as follows:

Let f = [1, 2, 3, 4] ∈M4,4, which is a coloring where all 4 possible colors actually
occur. Then we have StabS4(f) = {()}, thus S4 acts regularly on the associated
S4-orbit of length 24, which hence consists of all surjective, that is bijective
maps. Similarly, StabA4(f) = {()} implies that A4 acts regularly on the asso-
ciated A4-orbit of length 12. Moreover, letting f ′ := (1, 2) · f = [2, 1, 3, 4], from
S4 = A4

.
∪ A4 · (1, 2) we get S4 ·f = A4 ·f

.
∪ A4 ·f ′, This phenomenon is known

to chemists as chirality.

2 Rings

(2.1) Commutative rings. a) A set R together with an addition +: R×R→
R and a multiplication · : R×R→ R fulfilling the following conditions is called
a commutative ring:
i) With respect to addition R is a commutative group with neutral element 0;
ii) with respect to multiplication R is a commutative monoid, that is we have
associativity and commutativity, and there is a neutral element 1;
iii) and we have distributivity a(b+ c) = ab+ ac, for all a, b, c ∈ R.

We derive a few immediate consequences: We have 0·a = 0 and (−1)·a = −a, as
well as (−a)b = −(ab), for all a, b ∈ R: From 0+0 = 0 we get 0 ·a = (0+0) ·a =
0 ·a+0 ·a and hence 0 ·a = 0; we have (−1) ·a+a = (−1) ·a+1 ·a = (−1+1) ·a =
0 · a = 0, hence (−1) · a = −a; thus we have −(ab) = (−1) · ab = (−a)b.

A subset S ⊆ R being an additive subgroup, containing 1 and being closed
closed with respect to multiplication is called a subring; then S is again a ring.

Letting S be a commutative ring, a map ϕ : R → S is called a (ring) homo-
morphism, if ϕ(1R) = 1S and ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b),
for all a, b ∈ R. Note that from ϕ(0) = ϕ(0 + 0) = ϕ(0) +ϕ(0) we get ϕ(0) = 0;
and hence from ϕ(1) + ϕ(−1) = ϕ(1 − 1) = ϕ(0) = 0 we get ϕ(−1) = −ϕ(1),
and thus ϕ(−a) = ϕ((−1) · a) = (−1) · ϕ(a) = −ϕ(a), for all a ∈ R.
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For example, R := {0} with addition 0 + 0 = 0 and multiplication 0 · 0 = 0,
hence 1 := 0, is a commutative ring, called the zero ring; note that conversely,
if R fulfills 1 = 0, then a = a · 1 = a · 0 = 0, for all a ∈ R, hence R = {0}.
b) Let R 6= {0}. Then let R∗ ⊆ R be the set of all a ∈ R having an inverse
a−1 ∈ R such that a · a−1 = 1; hence R∗ becomes a commutative multiplicative
group with neutral element 1, being called the group of units of R. The
latter can be characterized as follows: For a ∈ R the map λa : R→ R : x 7→ ax
is surjective if and only if a ∈ R∗: If λa is surjective, then there is b ∈ R
such that ab = 1, hence a ∈ R∗; if a ∈ R∗, then for all x ∈ R we have
x = aa−1x = λa(a−1x), hence λa is surjective.

Note that 0 6∈ R∗: Assume that 0 ∈ R∗, then 1 = 0 ·0−1 = 0, a contradiction. If
R∗ = R \ {0}, then R is called a field; a subring S ⊆ R of a field R, such that
for all 0 6= a ∈ S we have a−1 ∈ S, is called subfield, then S is again a field.

An element 0 6= a ∈ R such that ab = 0 for some 0 6= b ∈ R is called a zero-
divisor. The latter can be characterized as follows: For 0 6= a ∈ R the map
λa : R → R : x 7→ ax is injective if and only if a is not a zero-divisor: If λa
is injective, then ax = 0 = a · 0 implies x = 0, for all x ∈ R, thus a is not a
zero-divisor; if a is not a zero-divisor, then ax = ax′, where x, x′ ∈ R, implies
a(x− x′) = 0 and thus x = x′, hence λa is injective.

If there are no zero-divisors, that is for all a, b 6= 0 we have ab 6= 0, then R is
called an integral domain; note that in integral domain we have a cancella-
tion law saying that for 0 6= a ∈ R we have ab = ac ∈ R if and only if b = c.
Moreover, units are not zero-divisors; in particular, any field is an integral do-
main: Assume that for a ∈ R∗ there is 0 6= b ∈ R such that ab = 0, then we
have 0 = a−1 · 0 = a−1 · ab = 1 · b = b, a contradiction.

Here finally are the prototypical examples: Z ⊆ Q ⊆ R ⊆ C are integral do-
mains, where we have Z∗ = {±1}, while Q ⊆ R ⊆ C are fields; note that neither
N nor N0 are even rings.

(2.2) Residue class rings. For n ∈ N the associated congruence relation
is defined as Rn := {[a, b] ∈ Z2; a ≡ b (mod n)} = {[a, b] ∈ Z2;n | (a − b)}.
Since n | 0 = (a− a), and n | (−a) whenever n | a, and from n | (a− b) and
n | (b− c) get n | (a− b) + (b− c) = (a− c) as well, for all a, b, c ∈ Z, we infer
that Rn is reflexive, symmetric and transitive, thus is an equivalence relation
on Z. The associated equivalence classes [a]n = {a + kn ∈ Z; k ∈ Z} ⊆ Z, for
a ∈ Z, are called congruence classes modulo n.

Let Zn := {0, . . . , n−1}, and let : Z→ Zn be defined by letting a ∈ Zn be the
remainder of a ∈ Z upon division by n. Hence we have [a]n ∩Zn = {a}, for all
a ∈ Z, implying that there are precisely n congruence classes {[0]n, . . . , [n−1]n},
which are thus also called residue classes modulo n; for example, for n = 2
these are [0]2 = {0, 2,−2, 4,−4, . . .} and [1]2 = {1,−1, 3,−3, . . .}, that is the
even and odd integers, respectively. We proceed to develop an arithmetic on
the set of residue classes modulo n, where in order to do so we henceforth just
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identify the latter with the set Zn:

b) We define an addition +: Zn×Zn → Zn and a multiplication · : Zn×Zn → Zn
by a+ b := a+ b and a · b := ab; in other words addition and multiplication are
inherited from Z, by adding respectively multiplying in Z first, and subsequently
taking remainders upon division by n. We show that with respect to these
operations Zn becomes a commutative ring, being called the associated residue
class ring; in other words : Z→ Zn is a ring homomorphism:

We first show that the definition of addition and multiplication is independent
of the choice of representatives: Let a, a′, b, b′ ∈ Z such that a = a′ and b = b′.
Hence there are k, l ∈ Z such that a′ = a + kn and b′ = b + ln. Thus we have
a′ + b′ = (a + kn) + (b + ln) = (a + b) + (k + l)n, implying a′ + b′ = a+ b, as
well as a′b′ = (a+ kn)(b+ ln) = ab+ (al + bk + kln)n, implying a′b′ = ab.

Then associativity and distributivity follow from (a+ b) + c = a+ b+ c =

a+ (b+ c) and (a · b) · c = a · b · c = a · (b · c) and a · (b+ c) = a · (b+ c) =

(ab) + (ac), for all a, b, c ∈ Zn. Hence Zn becomes a commutative additive group
with neutral element 0 ∈ Zn, the additive inverse of a ∈ Zn being −a ∈ Zn,
where −a = n−a ∈ Zn for a 6= 0; and Zn becomes a commutative multiplicative
monoid, with neutral element 1 ∈ Zn for n ≥ 2, while Z1 = {0} anyway. ]

For example, we consider the cases p = 2, 3, 5, and by way of comparison n = 4.
Then addition and multiplication in Zn are described as given below; note that
the case p = 2 is reminiscent of boolean algebra, by identifying 0 and 1 with
the logical values false and true, respectively, and ‘+’ and ‘·’ with the logical
operations xor and and, respectively:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

c) Given n ≥ 2, we show that Zn is an integral domain if and only if n is a prime,
in which case it is a field, being called the finite (prime) field of order n: If
n is composite, then we have n = ab for some 1 6= a, b ∈ N, hence a, b 6= 0 ∈ Zn
but ab = 0 ∈ Zn, thus a, b ∈ Zn are zero-divisors.

If n is a prime, we have to show that Z∗n := Zn \ {0}: Letting 0 6= a ∈ Zn, we
first show that λa : Zn → Zn : x 7→ ax is injective, that is a is not a zero-divisor:
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Let x, x′ ∈ Zn such that ax = ax′ ∈ Zn, hence we have n | a(x− x′) ∈ Z; thus,
since n is a prime, we conclude that n | a or n | (x− x′), or equivalently that
a = 0 ∈ Zn or x− x′ = 0 ∈ Zn; since a 6= 0 ∈ Zn, we infer x = x′ ∈ Zn. Now,
since Zn is finite, we conclude that λa : Zn → Zn is surjective, hence a ∈ Z∗n. ]

Note that the above argument does not give a description of Z∗n whenever n is
composite, and only shows the existence of multiplicative inverses of all elements
of Zn \ {0} whenever n is a prime, but does not allow to compute them; we will
come back to this in (2.10).

(2.3) Example: Fermat numbers. For n ∈ N0 let Fn := 22
n

+ 1 ∈ N be the
n-th Fermat number, where F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537
are primes; it was conjectured [Fermat, 1640] that Fn always is a prime. But

for F5 := 22
5

+ 1 = 4 294 967 297 ∼ 4 · 109 we have F5 = 641 · 6 700 417 [Euler,
1732]; nowadays all Fn for n ∈ {5, . . . , 30} are known to be composite, but it is
still an open problem whether {F0, . . . , F4} are the only Fermat primes:

We have 641 = 640 + 1 = 5 · 27 + 1 ∈ Z, thus 5 · 27 = −1 ∈ Z641, and

641 = 625 + 16 = 54 + 24 ∈ Z, thus 2
4

= −5
4 ∈ Z641, hence F5 = 2

32
+ 1 =

2
4
2
28

+ 1 = −5 · 27
4

+ 1 = −(−1)4 + 1 = −1 + 1 = 0 ∈ Z641. ]

(2.4) Divisibility. a) Let R be an integral domain. Then a ∈ R is called a
divisor of b ∈ R, and b is called a multiple of a, if there is c ∈ R such that
ac = b; we write a | b. Elements a, b ∈ R are called associate if a | b and
b | a; we write a ∼ b, where in particular ∼ is an equivalence relation on R.

Moreover, we have a ∼ b if and only if there is u ∈ R∗ such that b = au ∈ R:
If b = au then we also have a = bu−1, thus a | b and b | a; if conversely a | b
and b | a, then there are u, v ∈ R such that b = au and a = bv, thus a = auv,
implying a(1−uv) = 0, hence a = 0 or uv = 1, where in the first case a = b = 0,
and in the second case u, v ∈ R∗.
Let ∅ 6= M ⊆ R be a subset. Then d ∈ R such that d | a for all a ∈ M is
called a common divisor of M ; any u ∈ R∗ always is a common divisor of M .
If for all common divisors c ∈ R of M we have c | d, then d ∈ R is called a
greatest common divisor of M . Let gcd(M) ⊆ R be the set of all greatest
common divisors of M . In general greatest common divisors do not exist; but if
gcd(M) 6= ∅ then, since for d, d′ ∈ gcd(M) we have d | d′ and d′ | d, it consists
of a single associate class. For a ∈ R we have a ∈ gcd(a) = gcd(0, a); elements
a, b ∈ R such that gcd(a, b) = R∗ are called coprime. Similarly, we get the
notion and basic properties of lowest common multiples lcm(M) ⊆ R.

b) Let 0 6= a ∈ R \ R∗. Then a is called irreducible or indecomposable,
if a = bc ∈ R implies b ∈ R∗ or c ∈ R∗; otherwise a is called reducible or
decomposable or composite; hence if a is irreducible then all its associates
also are. The element a is called a prime, if a | bc ∈ R implies a | b or a | c;
hence if a is a prime then all its associates also are.
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These notions are not independent, inasmuch if a ∈ R is a prime, then it is
irreducible as well: Let a = bc for some b, c ∈ R, hence we may assume that
a | b, thus there is d ∈ R such that ad = b, hence a = adc, yielding a(1−dc) = 0,
implying c ∈ R∗. But the converse does not hold in general, that is an irreducible
element in general is not a prime:

c) It seems worth-while to have a closer look at the prototype integral domain
Z, taking the existence of greatest common divisors, as well as the equivalence
of being irreducible and being a prime for granted, see (2.7). We recall the proof
of the irrationality of

√
2 ∈ R, where the property of being a prime is used:

Assume to the contrary that
√

2 = a
b ∈ Q ⊆ R, where we may assume addition-

ally that 1 ∈ gcd(a, b). Then we have 2b2 = a2 ∈ Z, hence 2 | a2, and since
2 ∈ Z is a prime, we infer 2 | a, which implies 22 | 2b2, thus 2 | b2, and hence
2 | b as well, a contradiction. ]

(2.5) Example: Irreducible vs. prime. We consider the integral domain
R := Z[

√
−5] := {a + b

√
−5 ∈ C; a, b ∈ Z}, a subring of C. We have 2 · 3 =

(1 +
√
−5)(1−

√
−5) ∈ R. We show that 2 ∈ R is neither a unit, nor a prime,

but is irreducible; similarly, 3 ∈ R and 1±
√
−5 ∈ R can be shown to have the

same properties:

Assume that there are a, b ∈ Z such that 1 = 2 · (a+ b
√
−5) = 2a+ 2b

√
−5 ∈ R,

then we have 2a = 1 and b = 0, a contradiction. Hence we have 2 6∈ R∗.
Assume that there are a, b ∈ Z such that 1 +

√
−5 = 2 · (a + b

√
−5) = 2a +

2b
√
−5 ∈ R, then we have 2a = 1 and 2b = 1, a contradiction; similarly, assume

that there are a, b ∈ Z such that 1−
√
−5 = 2 · (a+ b

√
−5) = 2a+ 2b

√
−5 ∈ R,

then we have 2a = 1 and 2b = −1, a contradiction. Hence we have 2 - 1±
√
−5 ∈

R, but 2 | (1 +
√
−5)(1−

√
−5) ∈ R, thus 2 ∈ R is not a prime.

Finally, let a, b, c, d,∈ Z such that 2 = (a + b
√
−5)(c + d

√
−5) = (ac − 5bd) +

(ad+ bc)
√
−5, thus we have ac− 5bd = 2 and ad+ bc = 0. Assume that b 6= 0,

then we get c = −adb , and thus 2 = −a
2d
b − 5bd, hence (a2 + 5b2)d = −2b, which

since d 6= 0 and a2 + 5b2 ≥ 5b2 > |2b| is a contradiction. Hence we have b = 0,
implying ad = 0 and ac = 2, thus d = 0 as well, and either a = ±1 or c = ±1,
saying that one of the factors considered is in R∗. Hence 2 ∈ R is irreducible. ]

(2.6) Factorial domains. Let R be an integral domain. Then R is called
factorial or a Gaussian domain, if any element 0 6= a ∈ R can be written
uniquely, up to reordering and taking associates, in the form a = u·

∏n
i=1 pi ∈ R,

where the pi ∈ R are irreducible, n ∈ N0 and u ∈ R∗.
Let P ⊆ R be a set of representatives of the associate classes of irreducible
elements of R; this exists by the Axiom of Choice. If R is factorial, then any
0 6= a ∈ R has a unique factorization a = ua ·

∏
p∈P p

νp(a), where ua ∈ R∗ and
νp(a) ∈ N0 is called the associated multiplicity; we have νp(a) = 0 for almost
all p ∈ P, thus

∑
p∈P νp(a) ∈ N0 is called the length of the factorization, and

a is called square-free if νp(a) ≤ 1 for all p ∈ P.
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For any subset ∅ 6= M ⊆ R \ {0} we have
∏
p∈P p

min{νp(a);a∈M} ∈ gcd(M), and

if M is finite then we have
∏
p∈P p

max{νp(a);a∈M} ∈ lcm(M). But note that in
order to use this to compute greatest common divisors in practice, the relevant
elements of R have to be factorized completely first.

If R is factorial, then any irreducible element a ∈ R is a prime; thus in this case
the irreducible elements and the primes of R indeed coincide: Let 0 6= b, c ∈ R
such that a | bc. Hence there is d ∈ R such that ad = bc = u ·

∏
p∈P p

νp(b)+νp(c),
where u ∈ R∗. Since a is irreducible, uniqueness of factorization implies a ∼ p
for some p ∈ P such that νp(b) + νp(c) > 0, hence a | b or a | c.

(2.7) Theorem: Fundamental Theorem of Arithmetic. Z is factorial.

Hence any 0 6= z ∈ Z can be written uniquely as z = sgn(z) ·
∏
p∈PZ

pνp(z),
where the sign sgn(z) ∈ {±1} = Z∗ is defined by z · sgn(z) > 0, and νp(z) ∈ N0,
and PZ ⊆ N is the set of positive primes, being a set of representatives of the
associate classes of irreducible elements.

Moreover, we have Euclid’s Theorem saying that PZ is infinite.

Proof. We give an immediate direct proof, using the principle of induction; in
(2.9) a more conceptual proof will be given: Letting n ∈ Z \ {0,±1}, we may
assume that n > 0, and we prove the existence of a factorization by induction
on n ≥ 2: If n is irreducible, we are done, in particular settling the case n = 2.
If n is reducible, there are 2 ≤ a, b < n such that n = ab, hence both a, b have
a factorization, thus n has a factorization as well.

As for uniqueness of factorizations, assume that n =
∏r
i=1 pi =

∏s
j=1 qj , where

2 ≤ p1 ≤ · · · ≤ pr and 2 ≤ q1 ≤ · · · ≤ qs are irreducible. We may assume
that both r, s ≥ 1, since otherwise we have r = s = 1, and that p1 6= q1, since
otherwise we are done by dividing by p1 = q1 and using induction. We may
assume that p1 < q1, and let n′ := (q1 − p1) ·

∏s
j=2 qj = n − p1 ·

∏s
j=2 qj =

p1 · (
∏r
i=2 pi −

∏s
j=2 qj). Hence we have 2 ≤ n′ < n, and thus by induction n′

has a unique factorization, which since p1 - (q1 − p1) and p1 -
∏s
j=2 qj cannot

possibly involve p1, contradicting the fact that p1 | n′.
Finally, as for the last statement, assume to the contrary that PZ = {p1, . . . , pn},
for some n ∈ N, and let z := 1 +

∏n
i=1 pi ∈ Z. Then we have pi - z for all

i ∈ {1, . . . , n}, and since z has a factorization we infer z = 1, a contradiction. ]

(2.8) Euclidean domains. a) An integral domain R is called Euclidean, if
R has a degree map δ : R \ {0} → N0 fulfilling the following condition: For all
a, b ∈ R such that b 6= 0 there are q, r ∈ R, called quotient and remainder
respectively, such that a = qb + r, where r = 0 or δ(r) < δ(b); note that no
uniqueness assumption is made here.

We may additionally assume monotonicity, that is δ(a) ≤ δ(b) whenever a |
b 6= 0: Letting δ′ : R \ {0} → N0 : a 7→ min{δ(b) ∈ N0; b ∈ R \ {0}, a | b}, we
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show that δ′ is a degree function: For a, b ∈ R such that b 6= 0, letting 0 6= c ∈ R
such that δ′(b) = δ(bc), there are q, r ∈ R such that a = q(bc) + r = (qc)b + r,
where r = 0 or δ′(r) ≤ δ(r) < δ(bc) = δ′(b).

Assuming monotonicity, we in particular have δ(a) = δ(b) whenever a ∼ b 6= 0.
Moreover, kind of conversely, if a | b 6= 0 such that δ(a) = δ(b), then we have
a ∼ b: There are q, r ∈ R such that a = qb+ r, where r = 0 or δ(r) < δ(b); but
assuming r 6= 0 from a | a− qb = r we get δ(a) ≤ δ(r) < δ(b), a contradiction;
hence we infer r = 0, that is b | a as well.

Again, our most prominent example is Z, which is Euclidean with respect to
the degree map δ : Z \ {0} → N0 : z 7→ |z|; note that upon dividing with respect
to n ∈ Z \ {0,±1} remainders are not unique, but may be chosen in {−|n| +
1, . . . , 0, . . . , |n| − 1}. Moreover, any field K is Euclidean with respect to the
degree map δ : K∗ → N0 : x 7→ 0, and polynomial rings over fields will turn out
to be Euclidean as well, see (2.13). Note that for all these examples monotonicity
is fulfilled right away.

b) The major feature of Euclidean domains is that they allow for computing
greatest common divisors without factorizing the relevant elements first: Given
a, b ∈ R such that a 6= 0, a greatest common divisor r ∈ R of a, b, together
with Bézout coefficients s, t ∈ R such that r = sa+ tb ∈ R can be computed
by the extended Euclidean algorithm; leaving out the steps indicated by ◦,
only needed to determine Bézout coefficients, leaves the Euclidean algorithm
to compute a greatest common divisor alone:

• r0 ← a, r1 ← b, i← 1
◦ s0 ← 1, t0 ← 0, s1 ← 0, t1 ← 1
• while ri 6= 0 do
• [qi, ri+1]← QuotRem(ri−1, ri) # quotient and remainder
# qi, ri+1 ∈ R such that ri+1 = ri−1 − qiri where ri+1 = 0 or δ(ri+1) < δ(ri)
◦ si+1 ← si−1 − qisi, ti+1 ← ti−1 − qiti
• i← i+ 1

• return [r; s, t]← [ri−1; si−1, ti−1]

Since δ(ri) > δ(ri+1) ≥ 0 for i ∈ N, there is l ∈ N0 such that rl 6= 0 and rl+1 = 0,
hence the algorithm terminates. We have ri = sia+ tib for all i ∈ {0, . . . , l+ 1},
hence r = rl = sa + tb. From ri+1 = ri−1 − qiri, for all i ∈ {1, . . . , l}, we get
r = rl ∈ gcd(rl, 0) = gcd(rl, rl+1) = gcd(ri, ri+1) = gcd(r0, r1) = gcd(a, b). ]

For example, let R := Z and a := 2 · 32 · 7 = 126 and b := 5 · 7 = 35, then we
have 7 = 2a− 7b ∈ gcd(a, b), where 7 = 2 · a− 7 · b:
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i qi ri si ti

0 126 1 0
1 3 35 0 1
2 1 21 1 −3
3 1 14 −1 4
4 2 7 2 −7
5 0 −5 18

(2.9) Theorem: Euclid implies Gauß. Any Euclidean domain is factorial.

Proof. Let R be an Euclidean domain with monotonous degree function δ. We
first show that any 0 6= a ∈ R\R∗ is a product of irreducible elements: Assuming
the contrary, let a be chosen of minimal degree not having this property. Then
a is reducible, hence there are b, c ∈ R \ R∗ such that a = bc. Thus we have
δ(b) < δ(a) and δ(c) < δ(a), implying that both b and c are irreducible, hence
a is a product of irreducible elements, a contradiction.

In order to show uniqueness of factorizations, we next show that any irreducible
element 0 6= a ∈ R \ R∗ is a prime: Let b, c ∈ R such that a | bc, where
may assume that a - b. Then we have 1 ∈ gcd(a, b), hence there are Bézout
coefficients s, t ∈ R such that 1 = sa+ tb. Thus we have a | sac+ tbc = c.

Now let a = u ·
∏n
i=1 pi ∈ R, where the pi are irreducible, n ∈ N0 and u ∈ R∗.

We proceed by induction on n ∈ N0, where we have n = 0 if and only if a ∈ R∗.
Hence let n ≥ 1, and let a =

∏m
j=1 qj ∈ R, where the qj are irreducible and m ∈

N. Since pn ∈ R is a prime we may assume that pn | qm, hence since qm ∈ R
is irreducible we infer pn ∼ qm. Thus we have u′ ·

∏n−1
i=1 pi =

∏m−1
j=1 qj ∈ R for

some u′ ∈ R∗, and we are done by induction. ]

(2.10) Example: Residue class rings, revisited. We consider again the
residue class ring Zn, where n ≥ 2. Then its group of units is given as Z∗n =
{a ∈ Zn; 1 ∈ gcd(a, n)}; note that this yields an alternative proof that Zn is a
field if and only if n is a prime:

If a ∈ Z∗n then there are k, l ∈ Z such that ka + ln = 1 ∈ Z, implying that 1 ∈
gcd(a, n); if a ∈ Zn such that 1 ∈ gcd(a, n), then there are Bézout coefficients
s, t ∈ Z such that 1 = sa+ tn ∈ Z, hence we have sa = 1 ∈ Zn, thus a ∈ Z∗n. ]

Note that in the latter case we have a−1 = s ∈ Z∗n, thus the extended Euclidean
algorithm allows to actually compute inverses of the elements of Z∗n.

(2.11) Polynomial rings. a) Let R be an integral domain. Then any element
of Maps′(N0, R) := {[ai ∈ R; i ∈ N0]; ai = 0 for all i > d for some d ∈ N0}
can be identified with an expression of the form f = f(X) :=

∑d
i=0 aiX

i =∑
i≥0 aiX

i, being called a polynomial in the indeterminate X, where ai is
called its i-th coefficient. If f 6= 0 let deg(f) := max{i ∈ N0; ai 6= 0} ∈
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N0 be its degree, and let lc(f) := adeg(f) ∈ R be its leading coefficient;
polynomials of degree 0, 1, 2, 3 are called constant, linear, quadratic and
cubic, respectively, and if lc(f) = 1 then f is called monic.

We write R[X] := Maps′(N0, R), which becomes a commutative ring, called the
associated polynomial ring, with respect to pointwise addition, and convo-
lutional multiplication, for f =

∑
i≥0 aiX

i ∈ R[X] and g =
∑
j≥0 bjX

j ∈ R[X]

being given as fg :=
∑
i≥0
∑
j≥0 aibjX

i+j =
∑
k≥0(

∑k
l=0 albk−l)X

k ∈ R[X]:

Indeed, R[X] is a commutative additive group; we have fg = gf and (fg)h =∑
i≥0
∑
j≥0

∑
k≥0 aibjckX

i+j+k = f(gh), where h =
∑
k≥0 ckX

k ∈ R[X], and

letting 1R[X] := 1R ·X0 ∈ R[X] we get 1R[X] ·f = f , thus R[X] is a commutative
multiplicative monoid; and we have distributivity f(g+h) =

∑
i≥0
∑
j≥0 ai(bj+

cj)X
i+j =

∑
i≥0
∑
j≥0 aibjX

i+j +
∑
i≥0
∑
j≥0 aicjX

i+j = fg + fh. ]

Hence for 0 6= f, g ∈ R[X] we have fg 6= 0 as well, where deg(fg) = deg(f) +
deg(g) and lc(fg) = lc(f)lc(g) 6= 0. Hence R[X] is an integral domain. More-
over, for any unit f ∈ R[X] we hence necessarily have deg(f) = 0, and thus,
identifying R with R ·X0 ⊆ R[X], for the group of units we have R[X]∗ = R∗;
in particular, R[X] is not a field.

b) Given f ∈ R[X] and z ∈ R, we have the evaluation map εz : R[X] →
R : f =

∑
i≥0 aiX

i 7→
∑
i≥0 aiz

i =: f(z); in particular, if f(z) = 0 then z

is called a root or zero of f . Letting g =
∑
i≥0 biX

i ∈ R[X] we have (f +

g)(z) =
∑
i≥0(ai + bi)z

i =
∑
i≥0 aiz

i +
∑
i≥0 biz

i = f(z) + g(z) and (fg)(z) =∑
i≥0
∑
j≥0 ajbjz

i+j = (
∑
i≥0 aiz

i) · (
∑
j≥0 bjz

j) = f(z)g(z), as well as εz(1) =
1, thus εz is a ring homomorphism.

Letting z ∈ R vary, this gives rise to the polynomial map f̂ : R → R : z 7→
εz(f) = f(z) associated with fixed f ∈ R[X]. Now the set Maps(R,R) is a
ring with pointwise addition f + g : R → R : z 7→ f(z) + g(z) and multipli-
cation fg : R → R : z 7→ f(z)g(z), neutral elements being the constant maps
R → R : z 7→ 0 and R → R : z 7→ 1, respectively. Hence the fact that the
evaluation map εz : R[X] → R is a ring homomorphism, for all z ∈ R, implies

that ̂: R[X]→ Maps(R,R) : f 7→ f̂ is a ring homomorphism as well.

Note that ̂ in general is not injective, not even if R = K is a field; for example,
considering the finite field Z2, for 0 6= f = X(X + 1) = X2 + X ∈ Z2[X] we

have f(0) = f(1) = 0 ∈ Z2, implying that f̂ = 0 ∈ Maps(Z2,Z2). But we
will show in (2.13) that ̂: K[X] → Maps(K,K) is injective whenever K is an
infinite field, thus in this case we may identify any polynomial f ∈ K[X] with

the polynomial map f̂ ∈ Maps(K,K).

(2.12) Theorem: Polynomial division. Let R be an integral domain, let
f ∈ R[X] and let 0 6= g ∈ R[X] such that lc(g) ∈ R∗. Then there are uniquely
determined q, r ∈ R[X], called quotient and remainder, respectively, such
that f = qg + r where r = 0 or deg(r) < deg(g).
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Proof. Let qg + r = f = q′g + r′ where q, q′, r, r′ ∈ R[X] such that r = 0 or
deg(r) < deg(g), and r′ = 0 or deg(r′) < deg(g′). Then we have (q−q′)g = r′−r,
where r′ = r or deg(r′ − r) < deg(g), and q = q′ or deg((q − q′)g) = deg(g) +
deg(q − q′) ≥ deg(g). Hence we have r′ = r and q = q′, showing uniqueness.

To show existence, we may assume that f 6= 0 and m := deg(f) ≥ deg(g) := n.
We proceed by induction on m ∈ N0: Letting f ′ := f − lc(f)lc(g)−1gXm−n ∈
R[X], the m-th coefficient of f ′ shows that f ′ = 0 or deg(f ′) < m. By induction
there are q′, r′ ∈ R[X] such that f ′ = q′g+ r′, where r′ = 0 or deg(r′) < deg(g),
hence f = (q′g + r′) + lc(f)lc(g)−1gXm−n = (q′ + lc(f)lc(g)−1Xm−n)g + r′. ]

(2.13) Polynomial rings over fields. a) Let K be a field. Then we have
K∗ = K[X]∗ = {f ∈ K[X] \ {0}; deg(f) = 0}, that is the set of non-zero
constant polynomials. Thus we conclude that the polynomial ring K[X] is
Euclidean with respect to the monotonous degree map deg.

Hence any 0 6= f ∈ K[X] can be written uniquely as f = lc(f) ·
∏
p∈PK p

νp(f),
where νp(f) ∈ N0 and PK ⊆ K[X] is the set of irreducible monic polynomials,
being a set of representatives of the associate classes of irreducible polynomials;
we have deg(f) =

∑
p∈PK νp(f) deg(p) ∈ N0. In particular, any linear polyno-

mial is irreducible, and we have {X − a ∈ K[X]; a ∈ K} ⊆ PK .

For example, for f := (X3+2)(X+1)(X−1) = X5−X3+2X2−2 ∈ Z[X] ⊆ Q[X]
and g := (X2 + X + 1)(X + 1) = X3 + 2X2 + 2X + 1 ∈ Z[X] ⊆ Q[X] we get
f = qg + r where q := X2 − 2X + 1 ∈ Z[X] and r := 3X2 − 3 ∈ Z[X]. We have
X+1 ∈ gcd(f, g) ⊆ Q[X], whereX+1 = − 1

9 (X+2)·f+ 1
9 (X3−3X+5)·g ∈ Q[X]:

i qi ri si ti

0 X5 −X3 + 2X2 − 2 1 0
1 X2 − 2X + 1 X3 + 2X2 + 2X + 1 0 1
2 1

3
(X + 2) 3(X2 − 1) 1 −(X2 − 2X + 1)

3 X − 1 3(X + 1) − 1
3
(X + 2) 1

3
(X3 − 3X + 5)

4 0 1
3
(X2 +X + 1) − 1

3
(X4 −X3 + 2X − 2)

b) Over any integral domain R, polynomial division encompasses the following
particular case: Given f ∈ R[X], an element a ∈ R is a root of f if and only if
(X − a) | f ∈ R[X]: There are q, r ∈ R[X] such that f = q · (X − a) + r, where
r = 0 or deg(r) < deg(X − a) = 1; hence we have r ∈ R, where r = 0 if and
only if (X − a) | f , and r = f(a)− q(a) · (a− a) = f(a) says that r = 0 if and
only if a is a root of f .

c) In the Euclidean domain K[X] this leads to the following observations: Given
0 6= f ∈ K[X], any element a ∈ K is called a root of f of multiplicity νa(f) :=
νX−a(f) ∈ N0; hence the roots of f are the roots of non-zero multiplicity. From∑
a∈K νa(f) ≤ deg(f) we conclude that f has at most deg(f) ∈ N0 roots,

counted with multiplicity. Moreover, if f is quadratic or cubic, then considering
its factorization shows that f is irreducible if and only if f does not have any
root; for example, X2 + 1 ∈ Q[X] ⊆ R[X] is irreducible.
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The field K is called algebraically closed if any non-constant polynomial in
K[X] has a root, or equivalently if PK = {X−a ∈ K[X]; a ∈ K}. For example,
while Q and R are not algebraically closed, the Fundamental Theorem of
Algebra [Gauß, 1801] says that C is algebraically closed.

Finally, we show that the ring homomorphism ̂: K[X]→ Maps(K,K) is injec-
tive if and only if K is infinite: If K is finite, then for 0 6= f :=

∏
a∈K(X − a) ∈

K[X] we get f(z) = 0 ∈ K for all z ∈ K, thus f̂ = 0 ∈ Maps(K,K). If K is

infinite, then let f ∈ K[X] such that f̂ = 0 ∈ Maps(K,K); assume that f 6= 0,
then f has all infinitely many elements of K as its roots, a contradiction; hence
we conclude that f = 0 and thus ̂ is injective.

(2.14) Polynomial residue class rings. a) By way of comparison of the
integers Z and the polynomial ring K[X], where K is a field, we mimic the
construction of the residue class ring Zn, where n ∈ N, whose arithmetic is
inherited from Z by virtue of taking remainders upon division by n:

Let 0 6= f ∈ K[X] have degree d := deg(f) ∈ N0. Then the set of remainders
occurring for division by f equals K[X]f := K[X]<d := {0}

.
∪ {g ∈ K[X] \

{0}; deg(g) < d}; in particular, we have K[X]f = {0} if and only if f ∈ K[X]∗.
Anyway, this gives rise to the map : K[X]→ K[X]f , being defined by letting
g ∈ K[X]f be the remainder of g upon division by f .

We define an addition +: K[X]f × K[X]f → K[X]f and a multiplication
· : K[X]f ×K[X]f → K[X]f by g + h := g + h and g · h := gh. In other words
addition and multiplication are inherited from K[X], by adding respectively
multiplying in K[X] first, and subsequently taking remainders upon division by
f ; but note that here we actually have g + h ∈ K[X]f whenever g, h ∈ K[X]f .

Then, entirely similar to the case of Z, it follows that the definition of addition
and multiplication is independent of the choice of representatives, and thus the
properties needed to make K[X]f into a commutative ring follow from those
of K[X]; in other words : K[X] → K[X]f becomes a ring homomorphism.
The latter ring is again called the associated residue class ring, as it can
be identified with the set of congruence classes modulo f , that is the set of
equivalence classes with respect to the congruence relation Rf := {[g, h] ∈
K[X]2; g ≡ h (mod f)} = {[g, h] ∈ K[X]2; f | (g − h)} on K[X].

Again in parallel to the integers Z, we show that K[X]f , where 0 6= f ∈ K[X] \
K[X]∗, is a field if and only if f is irreducible:

If f = gh is reducible, where g, h ∈ K[X]\K[X]∗, then we have deg(g),deg(h) <
deg(f), hence g, h 6= 0 ∈ K[X]f but gh = 0 ∈ K[X]f , thus g, h ∈ K[X]f are
zero-divisors. If f is irreducible and 0 6= g ∈ K[X]f , then f - g implies that f
does not occur in the factorization of g, hence we have 1 ∈ gcd(g, f) ⊆ K[X];
then there are Bézout coefficients s, t ∈ K[X] such that 1 = sg + tf ∈ K[X],
hence we have sg = 1 ∈ K[X]f , thus g ∈ K[X]∗. ]

b) We present a few examples: For z ∈ K the polynomial X − z ∈ K[X] is
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irreducible, hence K[X]X−z = {a ∈ K[X]; a ∈ K} is a field, where addition and
multiplication are as in K, hence K[X]X−z can be identified with K.

The polynomial X2 + 1 ∈ R[X] is irreducible, hence R[X]X2+1 = {a + bX ∈
R[X]; a, b ∈ R} is a field, where multiplication is determined by X2 = −1 ∈
R[X]X2+1, hence is given by (a+ bX)(a′ + b′X) = (aa′ − bb′) + (ab′ + a′b)X ∈
R[X]X2+1; thus R[X]X2+1 → C : a+ bX 7→ a+ bi is a ring isomorphism.

The polynomial X2 + X + 1 ∈ Z2[X] is the unique irreducible one of degree 2
over Z2, hence F4 := Z2[X]X2+X+1 = {a + bX ∈ Z2[X]; a, b ∈ Z2} is a field,
having 4 elements, where X2 = 1 +X ∈ F4 shows that F4 = {0, 1, X,X2}, and
X3 = 1 ∈ F4 implies that F∗4 = 〈X〉 is cyclic of order 3.

Similarly, the polynomials X3 + X + 1 ∈ Z2[X] and X3 + X2 + 1 ∈ Z2[X]
are the unique irreducible ones of degree 3 over Z2, hence Z2[X]X3+X+1 =
Z2[X]X3+X2+1 = {a + bX + cX2 ∈ Z2[X]; a, b, c ∈ Z2}, having 8 elements,
becomes a field in two different ways, being called F8 and F′8, respectively: In
F8 we have X3 = 1+X, X4 = X+X2, X5 = 1+X+X2, X6 = 1+X2, showing
that F8 = {0, 1, X, . . . ,X6}, where X7 = 1 implies that F∗8 = 〈X〉 is cyclic of
order 7; in F′8 we have X3 = 1+X2, X4 = 1+X+X2, X5 = 1+X, X6 = X+X2,
showing that F′8 = {0, 1, X, . . . ,X6}, where X7 = 1 implies that (F′8)∗ = 〈X〉
is cyclic of order 7. Actually, the cyclicity of the above groups of units is
a special case of Artin’s Theorem. Finally, we have the ring isomorphism
F′8 → F8 : a+bX+cX2 7→ a+b(1+X)+c(1+X2) = (a+b+c)+bX+cX2: Since
multiplication is determined by X3 = 1+X ∈ F8 respectively X3 = 1+X2 ∈ F′8,
it suffices to show that 1 +X ∈ F8 is a root of T 3 + T 2 + 1 ∈ Z2[T ]; indeed we
have (1 +X)3 + (1 +X)2 + 1 = X3 +X + 1 = 0 ∈ F8.
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